Reverse Mathematics and Non-Standard Methods

Kazuyuki Tanaka

March 9, 2012

Mathematical Institute, Tohoku University

Logic & Foundations

Foundational Doctrines ⇒ Key Persons

- 1. Feasibility (Poly-time)
- 2. Finitism
- 3. Computability
- 4. Constructivity
- 5. Finitistic Reductionism
- 6. Predicativity
- 7. Predic. Reductionism
- 8. Semi-Finit. Consistency
- 9. Second Order Arith.
- 10. Ramified Type Theory
- 11. Constructible Universe
- 12. Large Cardinals

- ⇒ Ko
- ⇒ Hilbert
- ⇒ Aberth, Pour-El
- ⇒ Bishop
- ⇒ Hilbert
- ⇔ Weyl
- ⇔ Feferman
- ⇔ Takeuti
- ⇒ Hilbert
- ⇒ Russell
- ⇔ Gödel
- ⇔ Gödel

Foundational Doctrines ⇒ Formal Systems

- I. Feasibility
- 2. Finitism
- RCA_o 3. Computability \Rightarrow
- 4. Constructivity \Rightarrow
- 5. Finitistic Reductionism
- 6. Predicativity
- 7. Predic. Reductionism
- 8. Semi-Finit. Consistency
- 9. Second Order Arith.
- 10. Ramified Type Theory
- 11. Constructible Universe
- 12. Large Cardinals

- \Rightarrow S¹₂, BTFA
- PRA
- RCA₀
 - \Rightarrow WKL₀
 - ACA₀
 - \Rightarrow ATR₀
 - $\Rightarrow \Pi_{1}^{1}-CA_{0}$
 - \Rightarrow Z₂
 - ⇒ PM
 - \Rightarrow V=L
 - $\Rightarrow V_{\alpha}$

From Foundationalism to Reverse Math

Foundationalism (基礎付け主義): Which systems are needed to do mathematics?

Reverse Mathematics (逆数学): Which axioms are needed to prove a theorem?

Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. The method can briefly be described as "going backwards from the theorems to the axioms". This contrasts with the ordinary mathematical practice of deriving theorems from axioms. Wikipedia

Reverse Mathematics Phenomenon

Which axioms are needed to prove a theorem?

- 0. Fix a weak base system S (e.g. RCAo).
- **1.** Pick a theorem Φ and formalize it in S.
- 2. Find a weakest axiom α to prove Φ in S.
- 3. Very often, we can show (over S) that α and Φ are logically equivalent

Second Order Arithmetic (Hilbert Arithmetic)

A first order theory of natural numbers and sets of them.

Standard Model: $(\omega \cup \wp(\omega); +, \cdot, 0, 1, <, \in)$

Second order arithmetic Z_2

- = Basic axioms for $(+, \cdot, 0, 1, <)$
- + Comprehension (CA) : $\exists X \forall x (x \in X \leftrightarrow \varphi(x))$
- + *Induction* : $\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1)) \to \forall x\varphi(x)$

Classifying Formulas

- ✓ Bounded formulas (Σ_0^0), only with $\forall x < t, \exists x < t$
- ✓ Arithmetical formulas (Σ_0^1) , with no set quantifiers

$$\Sigma_n^0 : \exists \overrightarrow{x_1} \forall \overrightarrow{x_2} \cdots Q \overrightarrow{x_n} \varphi \text{ with } \varphi \text{ bounded.}$$
$$\Pi_n^0 : \forall \overrightarrow{x_1} \exists \overrightarrow{x_2} \cdots Q \overrightarrow{x_n} \varphi \text{ with } \varphi \text{ bounded.}$$

Analytical formulas:

 $\Sigma_n^1 : \exists \overrightarrow{X_1} \forall \overrightarrow{X_2} \cdots Q \overrightarrow{X_n} \varphi \text{ with } \varphi \text{ arithmetic.}$ $\Pi_n^1 : \forall \overrightarrow{X_1} \exists \overrightarrow{X_2} \cdots Q \overrightarrow{X_n} \varphi \text{ with } \varphi \text{ arithmetic.}$

$\Delta_1^0 = \Sigma_1^0 \cap \Pi_1^0$ Recursive, Computable, Decidable

r.e. (recursively enumerable), c.e., the set of theorems of a formal system

 Π_{1}^{0}

 Σ_1^0

co-r.e., finitistic assertions, the Gödel sentence, consistency, the Goldbach conjecture

 Π_{2}^{0}

1-consistency, the twin prime conj., Paris-Harrington, $P \neq NP$

$$RCA_0 = \Delta_1^0 - CA + \Sigma_1^0 - ind$$

$$WKL_0 = RCA_0 + weak \ K\ddot{o}nig's \ lemma \\ (\Sigma_1^0 - \text{Separation})$$

$$ACA_0 = RCA_0 + \Sigma_1^0 - CA$$

 $ATR_0 = RCA_0 + \text{transfinite iteration } of \Sigma_1^0 - CA$ $(\Sigma_1^1 - \text{Separation})$

 $\Pi_1^1 - CA_0 = RCA_0 + \Pi_1^1 - CA$

Weak König's Lemma for infinite binary trees

Some results of R. M.

 $Over \ RCA_0$

$\begin{array}{rcl} WKL_{0} \leftrightarrow & the \ maximum \ principle \\ \leftrightarrow & the \ Cauchy-Peano \ theorem \\ \leftrightarrow & Brouwer's \ fixed \ point \ theorem \end{array}$

$ACA_0 \leftrightarrow the Bolzano-Weierstrass theorem \\ \leftrightarrow the Ascoli lemma$

 $\begin{array}{rcl} \mathit{ATR}_0 \leftrightarrow & \mathit{the \ Luzin \ separation \ theorem} \\ \leftrightarrow & \Sigma_1^0 \textit{-determinacy} \end{array}$

 $\Pi_{1}^{1}-CA_{0} \leftrightarrow \text{ the Cantor-Bendixson theorem} \\ \leftrightarrow \Sigma_{1}^{0} \wedge \Pi_{1}^{0}-determinacy$

Mathematics in the Big Five

	RCA_0	WKL ₀	ACA_0	ATR_0	$\Pi_1^1 - CA_0$
analysis (separable):			¥		
differential equations	\times	\times			
continuous functions	\times	\times	\times		
completeness, etc.	\times	\times	\times		
Banach spaces	\times	\times	\times		×
open and closed sets	\times	\times		\times	×
Borel and analytic sets	\times			\times	×
algebra (countable):					
countable fields	\times	\times	\times		
commutative rings	\times	\times	\times		
vector spaces	\times		\times		
Abelian groups	\times		\times	\times	×
miscellaneous:					
mathematical logic	×	\times			
countable ordinals	\times		\times	\times	
infinite matchings		\times	\times	\times	
the Ramsey property			X	X	×
infinite games			×	×	×

Defining the real number system \mathbb{R}

The following definitions are made in RCA_0 .

- ✓ Using the pairing function, we define ℕ and ℚ.
- ✓ The basic operations on ℕ and ℚ are also naturally defined.
- ✓ A <u>real number</u> is an infinite sequence $\{q_n\}$ of rationals such that $|q_n - q_m| \le 2^{-n}$ for all m > n.
- ✓ The operations on \mathbb{R} are also defined so that the resulting structure is a real closed order field.

Some results

1. Sakamoto-T (2004) proved $RCA_0 \mid - \forall \sigma (RCOF \mid -\sigma \Rightarrow R \mid = \sigma)$

with the help of the fundamental theorem of algebra

(strong FTA) $RCA_0 \vdash \forall p(x) \in \mathbb{Q}[x] \exists \overrightarrow{\alpha} \in \mathbb{C}^{<\mathbb{N}} p(x) = \Pi_i(x - \alpha_i)$

2. Simpson-T.-Yamazaki (2002) proved

 $WKL_0 \vdash \sigma \Rightarrow RCA_0 \vdash \sigma$

for $\sigma \equiv \forall X \exists ! Y \varphi(X, Y)$ with φ arith.

Thus, it suffices to show strong FTA in WKL₀.

3. Strong FTA can be proved by a non-standard method in WKL_0 .

✓ Simpson-T.-Yamazaki

 $Sat_{\mathbb{R}}(\lceil \varphi(\vec{x}) \rceil, \vec{\xi})$ can be defined as a Δ_2^0 formula. In $RCA_0, Sat_{\mathbb{R}}$ satisfies the Tarski clauses for the <u>standard formulas</u>.

✓ Sakamoto-T. (2004)

In RCA_0 , $Sat_{\mathbb{R}}$ satisfies the Tarski clauses for $\underline{all \ the \ formulas}$. In particular, $Sat_{\mathbb{R}}(\exists \vec{x} \varphi(\vec{x}, \vec{y}) \exists \vec{\beta}) \leftrightarrow \exists \vec{\alpha} Sat_{\mathbb{R}}([\varphi(\vec{x}, \vec{y})], \vec{\alpha}, \vec{\beta})$

* The following fact (called *strong FTA*) is essential: $RCA_0 \vdash \forall p(x) \in \mathbb{Q}[x] \exists \overrightarrow{\alpha} \in \mathbb{C}^{<\mathbb{N}} p(x) = \prod_i (x - \alpha_i)$

Applications of Sakamoto-T's result

 $RCA_0 \vdash$ Hilbert's Nullstellensatz:

 $p_1, \cdots, p_m \in \mathbb{C}[\overrightarrow{x}] \text{ have no common zeros}$ $\Rightarrow \exists q_1 \cdots \exists q_m \in \mathbb{C}[\overrightarrow{x}] p_1 q_1 + \cdots + p_m q_m = 0$

 $RCA_0 \vdash strong FTA$

Shoenfield:

 $ZF + V = L \vdash \sigma \Rightarrow ZF \vdash \sigma \text{ for } \sigma \in \Sigma_2^1 \cup \Pi_2^1$ $\checkmark \text{ Barwise-Schlipf:}$

 $\Sigma_1^1 \text{-} AC_0 \vdash \sigma \Rightarrow ACA_0 \vdash \sigma \text{ for } \sigma \in \Pi_2^1$

Harrington:

 $WKL_0 \vdash \sigma \Rightarrow RCA_0 \vdash \sigma \ for \ \sigma \in \Pi_1^1$

✓ Simpson-T.-Yamazaki (2002): $WKL_0 \vdash \sigma \Rightarrow RCA_0 \vdash \sigma$

for $\sigma \equiv \forall X \exists ! Y \varphi(X, Y)$ with φ arith.

Application of Simpson-T.-Yamazaki's result

The fundamental theorem of algebra (FTA): Any complex polynomial of a positive degree has a unique factorization into linear terms.

By the STY result, we have

WKL₀ |- (strong) FTA \Rightarrow RCA₀ |- (strong) FTA.

By the usual mathematical argument, we have

WKL₀ |- FTA (for any particular standard polynomial). Thus, we have

RCA₀ |- FTA (standard),

which is not enough for our purpose.

Non-Standard Models
Theorem (H. Friedman, Kirby-Paris)
Suppose
$$M \models PRA$$
, countable.
Suppose $b \ll_M c$ (i.e., $f(b) <_M c$ for all prim. rec. f).
Then $\exists I \subseteq_e M$ s.t. $b \in I, c \notin I$ and $I \models I\Sigma_1$
Moreover, if $C(M) = \{X \subseteq M : \exists a \in M \text{ codes } X\}$,
 $(I, C(M) \upharpoonright I) \models WKL_0$.

Theorem (T.) A converse to the above holds.

Suppose $(M, S) \models WKL_0$, countable, $M \neq \omega$. Then $\exists^* M \supseteq_e M$ s.t. $^*M \models I\Sigma_1$ and $S = C(^*M) \upharpoonright M$.

- Thm. (self-embedding for WKL_0 , T. 1997) Suppose $(M, S) \models WKL_0$, countable, $M \neq \omega$. Then $\exists I \subseteq_e M$ s.t. $(M, S) \simeq (I, S \sqcap I)$.
- * History of self embedding results. *H.Friedman* (1970's) for PA. *Ressayre*, Dimitracopoulous and Paris (1980's) for IΣ₁.

(Proof) By a back-and-forth argument.

Cor. Suppose $(M, S) \models WKL_0$, countable, $M \neq \omega$. Then $\exists^*M \supseteq_e M, \exists^*S \ s.t. \ (*M, *S) \models WKL_0$ and $S = *S \upharpoonright M$.

Application (the maximum principle)

 $WKL_0 \vdash Any \ cont. \ function \ f : [0, 1] \rightarrow [0, 1] \ has \ a \ max.$

Application

$$WKL_{0} \vdash Strong \ FTA.$$

$$(Proof) \quad V = (M, S) \qquad *V = (*M, *S)$$

$$f: \mathbb{Q}[x] \rightarrow (\mathbb{C} \cap \mathbb{Q}^{2})^{<\mathbb{N}} \implies *f: \{p_{i}\}_{i < a} \rightarrow (*\mathbb{C} \cap *\mathbb{Q}^{2})^{} \qquad *f: \{p_{i}\}_{i < a} \rightarrow (*\mathbb{C} \cap *\mathbb{Q}^{2})^{} \qquad (a, b \in *M - M, f = *f \cap M)$$

$$s.t. \ f(p_{i}) \ is \ a \ list \ of \ rational \ approximations \ of \ the \ roots \ of \ p_{i} \ with \ error < 2^{-i}.$$

$$*f(p_{j_{i}}) \Gamma M \ is \ the \ list \ of \ roots \ of \ p_{i}. \qquad \{p_{i}\}_{i \in M} = \{p_{j_{i}}\}_{j_{i} \notin M, i \in M}$$

$WKL_0 \vdash The Cauchy-Peano theorem (Tanaka, 1997)$

$WKL_0 \vdash$ The existence of Haar measure

for a compact group (Tanaka-Yamazaki, 2000)

WKL₀ ⊢ The Jordan curve theorem (Sakamoto-Yokoyama, 2007)

Application (Sakamoto, Yokoyama)

 $WKL_0 \vdash$ The Jordan Curve Theorem

(Proof) V = (M, S)*V = (*M, *S) $^{*}U_{1}$ U_1 $^{*}U_{0}$ U_0

Outer model method for ACA_0

Suppose $(M, S) \models ACA_0$, countable, $M \neq \omega$. Then $\exists^*M \supseteq_e M \exists^*S$ s.t. $(*M, *S) \models ACA_0, S = *S \upharpoonright M$ and $\exists * : S \to *S \forall \varphi(x, X) \in \Sigma_1^1 \cup \Pi_1^1$ $(M, S) \models \varphi(m, A) \leftrightarrow (*M, *S) \models \varphi(m, *A)$

This easily follows from

Theorem (Gaifman): Every model M of PA has a conservative extension K, i.e., (the sets definable in K) $\upharpoonright M =$ the sets definable in M.

 $ACA_0 \vdash Any Cauchy sequence converges.$ (Proof) V = (M, S)*V = (*M, *S) $\{a_i\}_{i \in M} \ a \ Cauchy \ seq. \implies^* (\{a_i\}_{i \in M}) = \{(*a)_i\}_{i \in *M}.$ Pick $j \in {}^*M - M$. $\forall n \in M \exists m \in M \forall k > m$ $\forall n \exists m \forall k > m |a_k - b| < 2^{-n} \iff |(*a)_k - (*a)_j| < 2^{-n}.$ $b \approx (a)_{i}$

♦ $ACA_0 \vdash$ The Riemann mapping theorem.

(Yokoyama)

Outer model method II for ACA_0 Suppose $(M, S) \models \Sigma_1^1 \text{-}AC_0$, countable. Then $\exists^*M \supseteq_e M \exists^*S$ $s.t. (*M, *S) \models \Sigma_1^1 \text{-}AC_0, S = *S \upharpoonright M$ and $\exists * : S \to *S \ \forall \varphi(x, X) \in \Sigma_2^1 \cup \Pi_2^1$ $(M, S) \models \varphi(m, A) \leftrightarrow (*M, *S) \models \varphi(m, *A)$

This can be used with $\Sigma_1^1 - AC_0 \vdash \sigma \Rightarrow ACA_0 \vdash \sigma \text{ for } \sigma \in \Pi_2^1$

Some general results (due to Schmerl)

Suppose
$$(M, S) \models \Sigma_n^1 - AC_0$$
, countable.
Then $\exists^* M \supseteq_e M \exists^* S \ s.t. \ S = {}^*S \upharpoonright M$
and $\exists_* : S \to {}^*S \forall \varphi(x, X) \in \Sigma_{n+1}^1 \cup \prod_{n+1}^1$
 $(M, S) \models \varphi(m, A) \leftrightarrow ({}^*M, {}^*S) \models \varphi(m, {}^*A)$

Suppose $(M, S) \models \prod_{n=1}^{1} - CA_{0} + \sum_{n=1}^{1} - AC_{0}$, countable. Then $\exists^{*}M \supseteq_{e} M \exists^{*}S \ s.t. \ S = {}^{*}S \upharpoonright M$ $({}^{*}M, {}^{*}S) \models \prod_{n=1}^{1} - CA_{0} + \sum_{n=1}^{1} - AC_{0}$ and $\exists^{*}: S \to {}^{*}S \ as \ above$. Suppose $(M, S) \models \prod_{n=1}^{1} - CA_{0} + \sum_{n=1}^{1} - AC_{0}$ Then $\exists^{*}M \supseteq M \exists^{*}S \ s.t. \ ({}^{*}M, {}^{*}S) \models \sum_{n=1}^{1} - AC_{0}$ and $\exists^{*}: S \to {}^{*}S \ as \ above$.

Other nonstandard methods

- Comparing nonstandard arithmetic with second-order arithmetic (Keisler, et al.)
- Nonstandardizing second-order arithmetic (Yokoyama)
- Analyzing the strength of transfer principles over very weak arithmetic (Impens, Sanders)
- Relating the existence of cuts or end-extentions of a nonstandard model of arithmetic to second order principles (Kaye, Wong)

THANK YOU