Reverse Mathematics and Non-Standard Methods

Kazuyuki Tanaka

March 9, 2012

Mathematical Institute, Tohoku University

Logic \& Foundations

England

Continent

Boole, de Morgan
Cantor, Dedekind

Frege, Peano, Peirce

Foundational Doctrines \Rightarrow Key Persons

- 1. Feasibility (Poly-time) \Rightarrow Ko
- 2 . Finitism
- 3 . Computability
- 4 . Constructivity
- 5 . Finitistic Reductionism
- 6 . Predicativity
- 7 . Predic. Reductionism
- 8 . Semi-Finit. Consistency
- 9 . Second Order Arith.
- 10. Ramified Type Theory
- 11. Constructible Universe
- 12. Large Cardinals
\Rightarrow Hilbert
\Rightarrow Aberth, Pour-El
\Rightarrow Bishop
\Rightarrow Hilbert
\Rightarrow Weyl
\Rightarrow Feferman
\Rightarrow Takeuti
\Rightarrow Hilbert
\Rightarrow Russell
\Rightarrow Gödel
\Rightarrow Gödel

Foundational Doctrines \Rightarrow Formal Systems

- 1 . Feasibility
- 2 . Finitism
- 3 . Computability
- 4 . Constructivity
- 5 . Finitistic Reductionism
- 6 . Predicativity
- 7 . Predic. Reductionism
- 8 . Semi-Finit. Consistency
- 9 . Second Order Arith.
- 10. Ramified Type Theory
- 11. Constructible Universe
- 12. Large Cardinals
$\Rightarrow \quad S_{2}^{1}$, BTFA
\Rightarrow PRA
$\Rightarrow \mathrm{RCA}_{0}$
$\Rightarrow \mathrm{RCA}_{0}$
$\Rightarrow \quad \mathrm{WKL}_{0}$
$\Rightarrow A C A_{0}$
$\Rightarrow \mathrm{ATR}_{0}$
$\Rightarrow \quad \Pi_{1}^{1}-\mathrm{CA}_{0}$
$\Rightarrow \mathrm{Z}_{2}$
$\Rightarrow P M$
$\Rightarrow V=L$
$\Rightarrow \mathrm{V}_{\alpha}$

From Foundationalism to Reverse Math

Foundationalism（基礎付け主義）：
 Which systems are needed to do mathematics？

Reverse Mathematics（逆数学）：
Which axioms are needed to prove a theorem？
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics．The method can briefly be described as＂going backwards from the theorems to the axioms＂．This contrasts with the ordinary mathematical practice of deriving theorems from axioms．

Wikipedia

Reverse Mathematics Phenomenon

Which axioms are needed to prove a theorem?
0 . Fix a weak base system S (e.g. RCAo).

1. Pick a theorem Φ and formalize it in S .
2. Find a weakest axiom α to prove Φ in S .
3. Very often, we can show (over S) that α and Φ are logically equivalent

Second Order Arithmetic (Hilbert Arithmetic)

A first order theory of natural numbers and sets of them.
Standard Model: $(\omega \cup \wp(\omega) ;+, \cdot, 0,1,<, \in)$
Second order arithmetic Z_{2}
$=$ Basic axioms for ($(+, \cdot, 0,1,<)$

+ Comprehension (CA) : $\exists X \forall x(x \in X \leftrightarrow \varphi(x))$
+ Induction: $\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x \varphi(x)$

Classifying Formulas

\checkmark Bounded formulas (Σ_{0}^{0}), only with $\forall x<t, \exists x<t$
\checkmark Arithmetical formulas $\left(\Sigma_{0}^{1}\right)$, with no set quantifiers

$$
\begin{aligned}
& \Sigma_{n}^{0}: \exists \overrightarrow{x_{1}} \forall \overrightarrow{x_{2}} \cdots Q \overrightarrow{x_{n}} \varphi \text { with } \varphi \text { bounded. } \\
& \Pi_{n}^{0}: \forall \overrightarrow{x_{1}} \exists \overrightarrow{x_{2}} \cdots Q \overrightarrow{x_{n}} \varphi \text { with } \varphi \text { bounded. }
\end{aligned}
$$

\checkmark Analytical formulas:

$$
\begin{aligned}
& \Sigma_{n}^{1}: \exists \overrightarrow{X_{1}} \forall \overrightarrow{X_{2}} \cdots Q \overrightarrow{X_{n}} \varphi \text { with } \varphi \text { arithmetic. } \\
& \Pi_{n}^{1}: \forall \overrightarrow{X_{1}} \exists \overrightarrow{X_{2}} \cdots Q \overrightarrow{X_{n}} \varphi \text { with } \varphi \text { arithmetic. }
\end{aligned}
$$

Examples.

$\Delta_{1}^{0}=\Sigma_{1}^{0} \cap \Pi_{1}^{0} \quad$ Recursive, Computable, Decidable
Σ_{1}^{0}
r.e. (recursively enumerable), c.e., the set of theorems of a formal system
Π_{1}^{0}
co-r.e., finitistic assertions, the Gödel sentence, consistency, the Goldbach conjecture
Π_{2}^{0}
1-consistency, the twin prime conj., Paris-Harrington, $\mathrm{P} \neq \mathrm{NP}$

Big five subsystems

$$
\begin{aligned}
& R C A_{0}= \Delta_{1}^{0}-C A+\Sigma_{1}^{0}-i n d \\
& W K L_{0}= R C A_{0}+\quad \text { weak König's lemma } \\
& \quad\left(\Sigma_{1}^{0}-\text { Separation }\right) \\
& A C A_{0}= R C A_{0}+\Sigma_{1}^{0}-C A
\end{aligned}
$$

$$
A T R_{0}=R C A_{0}+\text { transfinite iteration of } \Sigma_{1}^{0}-C A
$$

$$
\left(\Sigma_{1}^{1}-\text { Separation }\right)
$$

$$
\Pi_{1}^{1}-C A_{0}=R C A_{0}+\Pi_{1}^{1}-C A
$$

Weak König's Lemma for infinite binary trees

Some results of R. M.

Over $R C A_{0}$
$W K L_{0} \leftrightarrow$ the maximum principle
\leftrightarrow the Cauchy-Peano theorem
\leftrightarrow Brouwer's fixed point theorem
$A C A_{0} \leftrightarrow$ the Bolzano-Weierstrass theorem
\leftrightarrow the Ascoli lemma
$A T R_{0} \leftrightarrow$ the Luzin separation theorem
$\leftrightarrow \Sigma_{1}^{0}$-determinacy
$\Pi_{1}^{1}-C A_{0} \leftrightarrow$ the Cantor-Bendixson theorem
$\leftrightarrow \Sigma_{1}^{0} \wedge \Pi_{1}^{0}$-determinacy

Mathematics in the Big Five

	$R C A_{0}$	$W K L_{0}$	$A C A_{0}$	$A T R_{0}$	$\Pi_{1}^{1}-C A_{0}$
analysis (separable): differential equations continuous functions	\times	\times			
completeness, etc.	\times	\times	\times		
Banach spaces	\times	\times	\times		
open and closed sets	\times	\times	\times		\times
Borel and analytic sets	\times	\times		\times	\times
algebra (countable):	\times				\times
countable fields	\times	\times	\times		
commutative rings	\times	\times	\times		
vector spaces	\times		\times		
Abelian groups	\times		\times	\times	\times
miscellaneous:					
mathematical logic	\times	\times		\times	\times
countable ordinals	\times		\times	\times	\times
infinite matchings					
the Ramsey property					
infinite games					

Defining the real number system \mathbb{R}

The following definitions are made in $R C A_{0}$.
\checkmark Using the pairing function, we define \mathbb{N} and \mathbb{Q}.
\checkmark The basic operations on \mathbb{N} and \mathbb{Q} are also naturally defined.
\checkmark A real number is an infinite sequence $\left\{q_{n}\right\}$ of rationals such that $\left|q_{n}-q_{m}\right| \leq 2^{-n}$ for all $m>n$.
\checkmark The operations on \mathbb{R} are also defined so that the resulting structure is a real closed order field.

Some results

1. Sakamoto-T (2004) proved

RCA $_{0} \mid-\forall \sigma$ (RCOF $|-\sigma \Rightarrow \mathbf{R}|=\sigma$)
with the help of the fundamental theorem of algebra
(strong FTA) $R C A_{0} \vdash \forall p(x) \in \mathbb{Q}[x] \exists \vec{\alpha} \in \mathbb{C}^{<\mathbb{N}} p(x)=\Pi_{i}\left(x-\alpha_{i}\right)$
2. Simpson-T.-Yamazaki (2002) proved

$$
\begin{aligned}
& W K L_{0} \vdash \sigma \Rightarrow R C A_{0} \vdash \sigma \\
& \text { for } \sigma \equiv \forall X \exists!Y \varphi(X, Y) \text { with } \varphi \text { arith. }
\end{aligned}
$$

Thus, it suffices to show strong FTA in WKL_{0}.
3. Strong FTA can be proved by a non-standard method in $W_{K} L_{0}$.

Satisfaction on \mathbb{R}

\checkmark Simpson-T.-Yamazaki
Sat $t_{\mathbb{R}}(\lceil\varphi(\vec{x})\rceil, \vec{\xi})$ can be defined as a Δ_{2}^{0} formula. In $R C A_{0}, S a t_{\mathbb{R}}$ satisfies the Tarski clauses for the standard formulas.
\checkmark Sakamoto-T. (2004)
In $R C A_{0}, S a t_{\mathbb{R}}$ satisfies the Tarski clauses for all the formulas. In particular, $\operatorname{Sat}_{\mathbb{R}}(\lceil\exists \vec{x} \varphi(\vec{x}, \vec{y})\rceil, \vec{\beta}) \leftrightarrow \exists \vec{\alpha} \operatorname{Sat}_{\mathbb{R}}(\lceil\varphi(\vec{x}, \vec{y})\rceil, \vec{\alpha}, \vec{\beta})$

* The following fact (called strong FTA) is essential:

$$
R C A_{0} \vdash \forall p(x) \in \mathbb{Q}[x] \exists \vec{\alpha} \in \mathbb{C}^{<\mathbb{N}^{2}} p(x)=\Pi_{i}\left(x-\alpha_{i}\right)
$$

Applications of Sakamoto-T's result

$$
R C A_{0} \vdash \text { strong } F T A
$$

$$
\begin{aligned}
& R C A_{0} \vdash \text { Hilbert's Nullstellensatz: } \\
& p_{1}, \cdots, p_{m} \in \mathbb{C}[\vec{x}] \text { have no common zeros } \\
& \Rightarrow \exists q_{1} \cdots \exists q_{m} \in \mathbb{C}[\vec{x}] p_{1} q_{1}+\cdots+p_{m} q_{m}=0
\end{aligned}
$$

Conservation results

\checkmark Shoenfield:

$$
Z F+V=L \vdash \sigma \Rightarrow Z F \vdash \sigma \text { for } \sigma \in \Sigma_{2}^{\frac{1}{2} \cup \Pi_{2}^{1}}
$$

\checkmark Barwise-Schlipf:

$$
\Sigma_{1}^{1}-A C_{0} \vdash \sigma \Rightarrow A C A_{0} \vdash \sigma \text { for } \sigma \in \Pi_{2}^{1}
$$

\checkmark Harrington:

$$
W K L_{0} \vdash \sigma \Rightarrow R C A_{0} \vdash \sigma \text { for } \sigma \in \Pi_{1}^{1}
$$

\checkmark Simpson-T.-Yamazaki (2002):

$$
\begin{aligned}
& W K L_{0} \vdash \sigma \Rightarrow R C A_{0} \vdash \sigma \\
& \text { for } \sigma \equiv \forall X \exists!Y \varphi(X, Y) \text { with } \varphi \text { arith. }
\end{aligned}
$$

Application of Simpson-T.-Yamazaki's result

The fundamental theorem of algebra (FTA):
Any complex polynomial of a positive degree has a unique factorization into linear terms.

By the STY result, we have

$$
W_{K L} \mid- \text { (strong) FTA } \Rightarrow \text { RCA }_{0} \mid- \text { (strong) FTA. }
$$

By the usual mathematical argument, we have

$$
\mathrm{WKL}_{0} \text { I- FTA (for any particular standard polynomial). }
$$

Thus, we have
RCA $_{0}$ |- FTA (standard),
which is not enough for our purpose.

Non-Standard Models

Theorem (H. Friedman, Kirby-Paris)

Suppose $M \models P R A$, countable.
Suppose $b<_{M} c\left(i . e ., f(b)<_{M} c\right.$ for all prim. rec. f).
Then $\exists I \subseteq_{e} M$ s.t. $b \in I, c \notin I$ and $I \models \mathrm{I} \Sigma_{1}$
Moreover, if $C(M)=\{X \subseteq M: \exists a \in M$ codes $X\}$,

$$
(I, C(M) \upharpoonright I) \vDash W K L_{0} .
$$

Theorem (T.) A converse to the above holds.
Suppose $(M, S) \models W K L_{0}$, countable, $M \neq \omega$.
Then $\exists^{*} M \supseteq e M$ s.t. ${ }^{*} M \models \mathrm{I} \Sigma_{1}$ and $S=C\left({ }^{*} M\right) \upharpoonright M$.

Self-Embedding Theorems

Thm. (self-embedding for $W K L_{0}$, T. 1997) Suppose $(M, S) \models W K L_{0}$, countable, $M \neq \omega$. Then $\exists I \subsetneq e M$ s.t. $(M, S) \simeq(I, S\ulcorner I)$.

* History of self embedding results.
H.Friedman (1970's) for PA.

Ressayre, Dimitracopoulous and Paris
(1980's) for I_{1}.
(Proof) By a back-and-forth argument.
Cor. Suppose $(M, S)=W K L_{0}$, countable, $M \neq \omega$.

$$
\begin{array}{r}
\text { Then } \exists^{*} M \supsetneq e M, \exists^{*} S \text { s.t. } \quad\left({ }^{*} M,{ }^{*} S\right) \neq W K L_{0} \\
\text { and } S={ }^{*} S \upharpoonright M .
\end{array}
$$

Application (the maximum principle)

$W K L_{0} \vdash$ Any cont. function $f:[0,1] \rightarrow[0,1]$ has a max.
(Proof)

Application

$W K L_{0} \vdash$ Strong FTA.

(Proof) $\quad V=(M, S)$
 ${ }^{*} V=\left({ }^{*} M,{ }^{*} S\right)$

$f: \underset{\|}{\mathbb{Q}}[x] \rightarrow\left(\mathbb{C} \cap \mathbb{Q}^{2}\right)^{<\mathbb{N}} \quad \Longrightarrow{ }^{*} f:\left\{p_{i}\right\}_{i<a} \rightarrow\left({ }^{*} \mathbb{C} \cap^{*} \mathbb{Q}^{2}\right)^{<b}$
$\left\{p_{i}\right\}_{i \in M}$ with infinite repetition

$$
\left(a, b \in{ }^{*} M-M, f={ }^{*} f \cap M\right)
$$

s.t. $f\left(p_{i}\right)$ is a list of rational approximations of the roots of p_{i} with error $<2^{-i}$.
${ }^{*} f\left(p_{j_{i}}\right) \Gamma M$ is the list of roots of $p_{i} . \Longleftarrow\left\{p_{i}\right\}_{i \in M}=\left\{p_{j_{i}}\right\}_{j_{i} \notin M, i \in M}$

Other applications

WKL $L_{0} \vdash$ The Cauchy-Peano theorem (Tanaka, 1997)
$W K L_{0} \vdash$ The existence of Haar measure
for a compact group (Tanaka-Yamazaki, 2000)
$W K L_{0} \vdash$ The Jordan curve theorem
(Sakamoto-Yokoyama, 2007)

Application (Sakamoto, Yokoyama)

$W K L_{0} \vdash$ The Jordan Curve Theorem
(Proof) $\quad V=(M, S) \quad{ }^{*} V=\left({ }^{*} M,{ }^{*} S\right)$

Outer model method for $A C A_{0}$

Suppose $(M, S) \models A C A_{0}$, countable, $M \neq \omega$.
Then $\exists^{*} M \supsetneq e M \exists^{*} S$

$$
\text { s.t. }\left({ }^{*} M,{ }^{*} S\right)=A C A_{0}, S={ }^{*} S \upharpoonright M
$$

and $\exists *: S \rightarrow{ }^{*} S \forall \varphi(x, X) \in \Sigma_{1}^{1} \cup \Pi_{1}^{1}$

$$
(M, S) \models \varphi(m, A) \leftrightarrow\left({ }^{*} M,{ }^{*} S\right) \models \varphi\left(m,{ }^{*} A\right)
$$

This easily follows from
Theorem (Gaifman): Every model M of PA has a conservative extension K, i.e., (the sets definable in $K) \upharpoonright M=$ the sets definable in M.

Applications

$A C A_{0} \vdash$ Any Cauchy sequence converges.
(Proof)

$$
V=(M, S)
$$

$$
{ }^{*} V=\left({ }^{*} M,{ }^{*} S\right)
$$

$\left\{a_{i}\right\}_{i \in M}$ a Cauchy seq. $\Longrightarrow *\left(\left\{a_{i}\right\}_{i \in M}\right)=\left\{\left({ }^{*} a\right)_{i}\right\}_{i \in{ }^{*} M}$.
Pick $j \in \in^{*} M-M$.
$\forall n \in M \exists m \in M \forall k>m$
$\forall n \exists m \forall k>m\left|a_{k}-b\right|<2^{-n} \Longleftarrow\left|\left({ }^{*} a\right)_{k}-\left({ }^{*} a\right)_{j}\right|<2^{-n}$.

$$
{ }^{*} b \approx\left({ }^{*} a\right)_{j} .
$$

$A C A_{0} \vdash$ The Riemann mapping theorem.
(Yokoyama)

Outer model method II for $A C A_{0}$

Suppose $(M, S)=\Sigma_{1}^{1}-\mathrm{AC}_{0}$, countable.

Then $\exists^{*} M \supsetneq e M \exists^{*} S$

$$
\text { s.t. }\left({ }^{*} M,{ }^{*} S\right) \mid=\Sigma_{1}^{1}-\mathrm{AC}_{0}, S={ }^{*} S \upharpoonright M
$$

$$
\text { and } \exists *: S \rightarrow{ }^{*} S \forall \varphi(x, X) \in \Sigma_{2}^{1} \cup \Pi_{2}^{1}
$$

$$
(M, S) \models \varphi(m, A) \leftrightarrow\left({ }^{*} M,{ }^{*} S\right) \models \varphi\left(m,{ }^{*} A\right)
$$

This can be used with

$$
\Sigma_{1}^{1}-A C_{0} \vdash \sigma \Rightarrow A C A_{0} \vdash \sigma \text { for } \sigma \in \Pi_{2}^{1}
$$

Some general results (due to Schmerl)

Suppose (M, S) $\models \Sigma_{n}^{1}$ - $\mathrm{A} \mathrm{C}_{0}$, countable.
Then $\exists^{*} M \supsetneq e M \exists^{*} S$ s.t. $S={ }^{*} S \upharpoonright M$

$$
\text { and } \exists *: S \rightarrow{ }^{*} S \forall \varphi(x, X) \in \Sigma_{n+1}^{1} \cup \Pi_{n+1}^{1}
$$

$$
(M, S) \models \varphi(m, A) \leftrightarrow\left({ }^{*} M,{ }^{*} S\right) \models \varphi\left(m,{ }^{*} A\right)
$$

Suppose $(M, S) \models \Pi_{n}^{1}-\mathrm{CA}_{0}+\Sigma_{n}^{1}-\mathrm{AC}_{0}$, countable.
Then $\exists^{*} M \supsetneq e M \exists^{*} S$ s.t. $S={ }^{*} S \upharpoonright M$

$$
\left({ }^{*} M,{ }^{*} S\right)=\Pi_{n}^{1}-\mathrm{CA}_{0}+\Sigma_{n}^{1}-\mathrm{AC}_{0}
$$ and $\exists *: S \rightarrow{ }^{*} S$ as above.

Suppose $(M, S) \models \Pi_{n}^{1}-\mathrm{CA}_{0}+\Sigma_{n}^{1}-\mathrm{AC}_{0}$ Then $\exists^{*} M \supsetneq M \exists^{*} S$ s.t. $\left({ }^{*} M,{ }^{*} S\right) \models \Sigma_{n+1}^{1}-\mathrm{AC}_{0}$ and $\exists *: S \rightarrow{ }^{*} S$ as above.

Other nonstandard methods

- Comparing nonstandard arithmetic with second-order arithmetic (Keisler, et al.)
- Nonstandardizing second-order arithmetic (Yokoyama)
- Analyzing the strength of transfer principles over very weak arithmetic (Impens, Sanders)
- Relating the existence of cuts or end-extentions of a nonstandard model of arithmetic to second order principles (Kaye, Wong)

THANK YOU

