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Creating the Universe in Three Simple Steps

1 Start with the empty set V0 = ∅.
2 Take the powerset of what you have so far (i.e. take all

subsets).
3 Go to step 2.

The Cumulative Hierarchy

Vα =
⋃
β<α

P(Vβ)

V =
⋃
α

Vα
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Set Theory with Constructive Logic

Classical Set Theory can serve as a framework for all classical
mathematics
The concept of set is just as compatible with constructivism
Use set theory with constructive logic to serve as a framework
for constructive mathematics
For CZF, take same language and axioms as ZF

But...
But there is some ambiguity in how exactly to state the axioms:
Classically equivalent formulations of the axioms can become
constructively different.
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Powerset and Exponentiation
The following are classically equivalent:

Powerset

∀a∃b. b = P(a) := {x |x ⊆ a}

Binary Exponentiation

∀a∃b. b = a2 := {f |f : a→ 2}

CZF instead includes the axiom
Fullness

∀A,B∃C∀R. ∀x ∈ A∃y ∈ B (x , y) ∈ R →
∃R ′ ∈ C .R ′ ⊆ R ∧ ∀x ∈ A∃y ∈ B(x , y) ∈ R ′
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ZF and CZF

ZF CZF
Extensionality Extensionality
Foundation ∈-Induction
Pairing Pairing
Union Axiom Union Axiom
Infinity Infinity
Separation Separation for ∆0-formulae
Replacement Strong Collection
Powerset Fullness
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The Cumulative Hierarchy in a Constructive Context

Vα =
⋃
β<α

P(Vβ), V =
⋃
α

Vα

Constructively, the collection of all subsets (the ”powerset”) is
too unstructured to be accepted as a set.
Consequently, the Vα are not sets but only classes.
The description of the universe as

⋃
α Vα still holds true.

But it loses much of its power.
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A Modified Hierarchy for Constructive Purposes

Definition
Let for α ∈ On

Ṽα =
⋃
β<α

{X ⊆ Ṽβ

| ∀x ∈ Ṽβ. {0|x ∈ X} ∈ {0, 1} ∪ Ṽβ}

be defined by recursion over the ordinals.
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be defined by recursion over the ordinals.

Albert Ziegler Hierarchies of Sets in Classical and Constructive Set Theories



Setting the Stage
A Modified Hierarchy

Applications

Definition
Basic Properties
Central Properties

Exploring the Modified Hierarchy

Finite Stages

For n finite, Ṽn is also finite and has 2n − 1 elements:

Ṽ0 = ∅
Ṽ1 = {∅}
Ṽ2 = {∅, {∅}}
Ṽ3 = {∅, {∅}, {{∅}}, {∅, {∅}}}
...

Between 0 and 1
For 0 ≤ α ≤ 1, and α < β: Ṽα = {0|0 ∈ α} = α ∈ Ṽβ
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The Good Stuff

Theorem
1 For all α, the class Ṽα is actually a set.

2 V =
⋃
α Ṽα.

More precisely, there is a class function r̃k : V → On such that

∀a.a ∈ Ṽr̃k(a)
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Quantifier Elimination

As an immediate consequence of this, all unbounded quantification
in CZF can be replaced by bounded quantification and
quantification over the ordinals.

Theorem
There is a definitional extension of CZF and a primitive recursive
mapping φ 7→ φ∗ of formulas, such that

1 All quantifiers in φ∗ are either bounded by sets
(∀x ∈ a,∃x ∈ a) or range over the class of ordinals
(∀α ∈ On,∃α ∈ On)

2 φ and φ∗ are provably equivalent.
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Large Cardinals and Large Sets

Large cardinals have become a central topic in classical set
theory
The classical concept of cardinals does not fit well with
constructive set theory
Instead of lifting the properties of a large cardinal κ to a
constructive setting, better lift the properties of the universe
Vκ.

Inaccessible Sets
A set I is called inaccessible iff

(I,∈) � CZF2
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The Structure of Large Sets

The modified hierarchy interacts very well with large sets:

Inaccessible sets are closed under the mappings α 7→ Ṽα and
a 7→ r̃k(a).
Every inaccessible set I is equal to some Ṽα, in fact

I = ṼI∩On = Ṽrk(I) = Ṽr̃k(I)

So inaccessible sets are uniquely determined by the ordinals
they contain.
The class of all inaccessible sets is isomorphic to a subclass of
the ordinals with the isomorphism just being I 7→ rk(I).

Albert Ziegler Hierarchies of Sets in Classical and Constructive Set Theories



Setting the Stage
A Modified Hierarchy

Applications

Quantifier Elimination for CZF
The Structure of Large Sets
A Characterization of Mahlo Sets

Two Definitions of Mahlo

The constructive definition works with constructively powerful
concepts like total relations and reflections:

Constructive Definition of Mahloness
An inaccessible set M is called Mahlo if every total relation R with
∀a ∈ M∃b ∈ M.aRb is reflected at an inaccessible point I ∈ M, i.e.
∀a ∈ I∃b ∈ I.aRb.

The classical definition uses classically successful concepts like
stationary sets and clubs:

Classical Definition of Mahloness
An inaccessible set M is called Mahlo if the inaccessibles within M
are stationary, i.e. if every club has an inaccessible member.
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A Characterization of Mahlo Sets

It can be proved that a constructively useful definition of Mahlo
sets is equivalent to the classical one:

Theorem (DC)
For an inaccessible set M, the following are equivalent:

1 M is constructively Mahlo.
2 M is classically Mahlo.

A similar result holds for the entire hierarchy of α−Mahlo sets.
There is also a choice free version of the theorem using the
RRS-property.
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Summary and Outlook

The new hierarchy
describes the structure of the set theoretic universe in a
useable way
lets constructive set theory make more fruitful use of ordinals
as a tool for handling arbitrary sets
can be applied to get new and interesting results about large
sets in constructive set theory:

structure of inaccessible sets
characterisation of Mahlo sets
maybe also useful for weakly compact sets, 2-strong sets...
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