Hierarchies of Sets in Classical and Constructive Set Theories

Albert Ziegler

School of Mathematics
University of Leeds

March 8, 2012
Creating the Universe in Three Simple Steps

1. Start with the empty set $V_0 = \emptyset$.
2. Take the powerset of what you have so far (i.e. take all subsets).
3. Go to step 2.

The Cumulative Hierarchy

$V_\alpha = \bigcup_{\beta < \alpha} P(V_\beta)$

$V = \bigcup_\alpha V_\alpha$
Creating the Universe in Three Simple Steps

1. Start with the empty set $V_0 = \emptyset$.
Creating the Universe in Three Simple Steps

1. Start with the empty set $V_0 = \emptyset$.
2. Take the powerset of what you have so far (i.e. take all subsets).
Creating the Universe in Three Simple Steps

1. Start with the empty set $V_0 = \emptyset$.
2. Take the powerset of what you have so far (i.e. take all subsets).
3. Go to step 2.
Creating the Universe in Three Simple Steps

1. Start with the empty set $V_0 = \emptyset$.
2. Take the powerset of what you have so far (i.e. take all subsets).
3. Go to step 2.

The Cumulative Hierarchy

$$V_\alpha = \bigcup_{\beta < \alpha} \mathcal{P}(V_\beta)$$

$$V = \bigcup_{\alpha} V_\alpha$$
Set Theory with Constructive Logic

- Classical Set Theory can serve as a framework for all classical mathematics
- The concept of set is just as compatible with constructivism
- Use set theory with constructive logic to serve as a framework for constructive mathematics
- For CZF, take same language and axioms as ZF
Classical Set Theory can serve as a framework for all classical mathematics

The concept of set is just as compatible with constructivism

Use set theory with constructive logic to serve as a framework for constructive mathematics

For CZF, take same language and axioms as ZF

But there is some ambiguity in how exactly to state the axioms: Classically equivalent formulations of the axioms can become constructively different.
The following are classically equivalent:

Powerset

\[\forall a \exists b. \; b = \mathcal{P}(a) := \{x \mid x \subseteq a\} \]

Binary Exponentiation

\[\forall a \exists b. \; b = a^2 := \{f \mid f : a \to 2\} \]
Powerset and Exponentiation

The following are classically equivalent:

Powerset

\[\forall a \exists b. \ b = \mathcal{P}(a) := \{ x | x \subseteq a \} \]

Binary Exponentiation

\[\forall a \exists b. \ b = ^a 2 := \{ f | f : a \to 2 \} \]

CZF instead includes the axiom

Fullness

\[\forall A, B \exists C \forall R. \ \forall x \in A \exists y \in B (x, y) \in R \rightarrow \exists R' \in C.R' \subseteq R \wedge \forall x \in A \exists y \in B(x, y) \in R' \]
ZF and CZF

<table>
<thead>
<tr>
<th>ZF</th>
<th>CZF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensionality</td>
<td>Extensionality</td>
</tr>
<tr>
<td>Foundation</td>
<td>∈-Induction</td>
</tr>
<tr>
<td>Pairing</td>
<td>Pairing</td>
</tr>
<tr>
<td>Union Axiom</td>
<td>Union Axiom</td>
</tr>
<tr>
<td>Infinity</td>
<td>Infinity</td>
</tr>
<tr>
<td>Separation</td>
<td>Separation for Δ_0-formulae</td>
</tr>
<tr>
<td>Replacement</td>
<td>Strong Collection</td>
</tr>
<tr>
<td>Powerset</td>
<td>Fullness</td>
</tr>
</tbody>
</table>
The Cumulative Hierarchy in a Constructive Context

$$V_\alpha = \bigcup_{\beta < \alpha} \mathcal{P}(V_\beta), \quad V = \bigcup_{\alpha} V_\alpha$$
The Cumulative Hierarchy in a Constructive Context

\[V_\alpha = \bigcup_{\beta < \alpha} \mathcal{P}(V_\beta), \quad V = \bigcup_{\alpha} V_\alpha \]

- Constructively, the collection of all subsets (the "powerset") is too unstructured to be accepted as a set.
- Consequently, the \(V_\alpha \) are not sets but only classes.
- The description of the universe as \(\bigcup_\alpha V_\alpha \) still holds true.
- But it loses much of its power.
A Modified Hierarchy for Constructive Purposes

Definition

Let for $\alpha \in O_n$

$$\tilde{V}_\alpha = \bigcup_{\beta < \alpha} \{X \subseteq \tilde{V}_\beta\}$$
A Modified Hierarchy for Constructive Purposes

Definition

Let for $\alpha \in O_n$

$$\tilde{V}_\alpha = \bigcup_{\beta < \alpha} \{X \subseteq \tilde{V}_\beta \mid \forall x \in \tilde{V}_\beta. \{0| x \in X\} \in \{0, 1\}\}$$
Definition

Let for $\alpha \in \mathbb{O}_n$

$$\tilde{V}_\alpha = \bigcup_{\beta < \alpha} \{ X \subseteq \tilde{V}_\beta \mid \forall x \in \tilde{V}_\beta. \{0|x \in X\} \in \{0, 1\} \cup \tilde{V}_\beta \}$$

be defined by recursion over the ordinals.
Finite Stages

For n finite, \tilde{V}_n is also finite and has $2^n - 1$ elements:

<table>
<thead>
<tr>
<th>\tilde{V}_0</th>
<th>\tilde{V}_1</th>
<th>\tilde{V}_2</th>
<th>\tilde{V}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${\emptyset}$</td>
<td>${\emptyset, {\emptyset}}$</td>
<td>${\emptyset, {\emptyset}, {{\emptyset}}, {\emptyset, {\emptyset}}}$</td>
</tr>
</tbody>
</table>

...

Between 0 and 1

For $0 \leq \alpha \leq 1$, and $\alpha < \beta$: $\tilde{V}_\alpha = \{0|0 \in \alpha\} = \alpha \in \tilde{V}_\beta$
The Good Stuff

Theorem

1. For all α, the class \tilde{V}_α is actually a set.
The Good Stuff

Theorem

1. For all α, the class \tilde{V}_α is actually a set.

2. $V = \bigcup_\alpha \tilde{V}_\alpha$.
 More precisely, there is a class function $\tilde{rk} : V \rightarrow O_n$ such that

 $\forall a. a \in \tilde{V}_{\tilde{rk}(a)}$
Quantifier Elimination

As an immediate consequence of this, all unbounded quantification in CZF can be replaced by bounded quantification and quantification over the ordinals.

Theorem

There is a definitional extension of CZF and a primitive recursive mapping $\phi \mapsto \phi^*$ of formulas, such that

1. All quantifiers in ϕ^* are either bounded by sets
 $(\forall x \in a, \exists x \in a)$ or range over the class of ordinals
 $(\forall \alpha \in O_n, \exists \alpha \in O_n)$

2. ϕ and ϕ^* are provably equivalent.
Large cardinals have become a central topic in classical set theory

The classical concept of cardinals does not fit well with constructive set theory

Instead of lifting the properties of a large cardinal κ to a constructive setting, better lift the properties of the universe V_κ.
Large Cardinals and Large Sets

- Large cardinals have become a central topic in classical set theory
- The classical concept of cardinals does not fit well with constructive set theory
- Instead of lifting the properties of a large cardinal κ to a constructive setting, better lift the properties of the universe V_κ.

Inaccessible Sets

A set I is called inaccessible iff

$$(I, \in) \models CZF_2$$
The modified hierarchy interacts very well with large sets:

- Inaccessible sets are closed under the mappings $\alpha \mapsto \tilde{V}_\alpha$ and $a \mapsto \tilde{rk}(a)$.
- Every inaccessible set I is equal to some \tilde{V}_α, in fact
 \[I = \tilde{V}_{I \cap \alpha} = \tilde{V}_{rk(I)} = \tilde{V}_{\tilde{rk}(I)} \]
- So inaccessible sets are uniquely determined by the ordinals they contain.
- The class of all inaccessible sets is isomorphic to a subclass of the ordinals with the isomorphism just being $I \mapsto rk(I)$.
Two Definitions of Mahlo

The constructive definition works with constructively powerful concepts like total relations and reflections:

Constructive Definition of Mahloness

An inaccessible set M is called Mahlo if every total relation R with $\forall a \in M \exists b \in M. aRb$ is reflected at an inaccessible point $I \in M$, i.e. $\forall a \in I \exists b \in I. aRb$.

The classical definition uses classically successful concepts like stationary sets and clubs:

Classical Definition of Mahloness

An inaccessible set M is called Mahlo if the inaccessibles within M are stationary, i.e. if every club has an inaccessible member.
Two Definitions of Mahlo

The constructive definition works with constructively powerful concepts like total relations and reflections:

Constructive Definition of Mahloness

An inaccessible set M is called Mahlo if every total relation R with $\forall a \in M \exists b \in M. aRb$ is reflected at an inaccessible point $I \in M$, i.e. $\forall a \in I \exists b \in I. aRb$.

The classical definition uses classically successful concepts like stationary sets and clubs:

Classical Definition of Mahloness

An inaccessible set M is called Mahlo if the inaccessibles within M are stationary, i.e. if every club has an inaccessible member.
It can be proved that a constructively useful definition of Mahlo sets is equivalent to the classical one:

Theorem (DC)

For an inaccessible set M, the following are equivalent:

1. M is constructively Mahlo.
2. M is classically Mahlo.

A similar result holds for the entire hierarchy of α–Mahlo sets. There is also a choice free version of the theorem using the RRS-property.
The new hierarchy
- describes the structure of the set theoretic universe in a useable way
- lets constructive set theory make more fruitful use of ordinals as a tool for handling arbitrary sets
- can be applied to get new and interesting results about large sets in constructive set theory:
 - structure of inaccessible sets
 - characterisation of Mahlo sets
 - maybe also useful for weakly compact sets, 2-strong sets...