Hierarchies of Sets in Classical and Constructive Set Theories

Albert Ziegler

School of Mathematics University of Leeds

March 8, 2012

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

Creating the Universe in Three Simple Steps

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

Creating the Universe in Three Simple Steps

① Start with the empty set $V_0 = \emptyset$.

Creating the Universe in Three Simple Steps

- Start with the empty set $V_0 = \emptyset$.
- ② Take the powerset of what you have so far (i.e. take all subsets).

Creating the Universe in Three Simple Steps

- Start with the empty set $V_0 = \emptyset$.
- 2 Take the powerset of what you have so far (i.e. take all subsets).
- 3 Go to step 2.

Creating the Universe in Three Simple Steps

- Start with the empty set $V_0 = \emptyset$.
- 2 Take the powerset of what you have so far (i.e. take all subsets).
- Go to step 2.

The Cumulative Hierarchy

$$egin{aligned} &V_lpha &= igcup_{eta < lpha} \mathcal{P}(V_eta) \ &V &= igcup_lpha V_lpha \end{aligned}$$

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

Set Theory with Constructive Logic

- Classical Set Theory can serve as a framework for all classical mathematics
- The concept of set is just as compatible with constructivism
- Use set theory with constructive logic to serve as a framework for constructive mathematics
- For CZF, take same language and axioms as ZF

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

Set Theory with Constructive Logic

- Classical Set Theory can serve as a framework for all classical mathematics
- The concept of set is just as compatible with constructivism
- Use set theory with constructive logic to serve as a framework for constructive mathematics
- For CZF, take same language and axioms as ZF

But...

But there is some ambiguity in how exactly to state the axioms: Classically equivalent formulations of the axioms can become constructively different.

・ロト ・回 ト ・ヨト ・ヨト

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

Powerset and Exponentiation

The following are classically equivalent:

Powerset

$$\forall a \exists b. \ b = \mathcal{P}(a) := \{x | x \subseteq a\}$$

Binary Exponentiation

$$\forall a \exists b. \ b = \ ^{a}2 := \{f | f : a \rightarrow 2\}$$

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

Powerset and Exponentiation

The following are classically equivalent:

Powerset

$$\forall a \exists b. \ b = \mathcal{P}(a) := \{x | x \subseteq a\}$$

Binary Exponentiation

$$\forall a \exists b. \ b = \ ^{a}2 := \{f | f : a \rightarrow 2\}$$

CZF instead includes the axiom

Fullness

$\forall A, B \exists C \forall R. \qquad \forall x \in A \exists y \in B (x, y) \in R \rightarrow \\ \exists R' \in C.R' \subseteq R \land \forall x \in A \exists y \in B(x, y) \in R'$

Albert Ziegler Hierarchies of Sets in Classical and Constructive Set Theories

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

ZF and CZF

ZF	CZF
Extensionality	Extensionality
Foundation	\in -Induction
Pairing	Pairing
Union Axiom	Union Axiom
Infinity	Infinity
Separation	Separation for Δ_0 -formulae
Replacement	Strong Collection
Powerset	Fullness

ヘロト 人間 とくほとくほとう

æ

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

The Cumulative Hierarchy in a Constructive Context

$$V_lpha = igcup_{eta < lpha} \mathcal{P}(V_eta), \,\, V = igcup_lpha V_lpha$$

Setting the Stage A Modified Hierarchy Applications The Cumula

The Cumulative Hierarchy CZF The Cumulative Hierarchy and CZF

The Cumulative Hierarchy in a Constructive Context

$$V_{lpha} = igcup_{eta < lpha} \mathcal{P}(V_{eta}), \ V = igcup_{lpha} V_{lpha}$$

- Constructively, the collection of all subsets (the "powerset") is too unstructured to be accepted as a set.
- Consequently, the V_{lpha} are not sets but only classes.
- The description of the universe as $\bigcup_{\alpha} V_{\alpha}$ still holds true.
- But it loses much of its power.

Definition Basic Properties Central Properties

A Modified Hierarchy for Constructive Purposes

Definition

Let for $\alpha \in O_n$

$$\widetilde{V}_{lpha} = igcup_{eta < lpha} \{ X \subseteq \widetilde{V}_{eta}$$

Definition Basic Properties Central Properties

A Modified Hierarchy for Constructive Purposes

Definition

Let for $\alpha \in O_n$

$$\widetilde{V}_lpha = igcup_{eta < lpha} \{ X \subseteq \widetilde{V}_eta \mid orall x \in \widetilde{V}_eta. \ \{0|x \in X\} \in \{0,1\}$$

Definition Basic Properties Central Properties

A Modified Hierarchy for Constructive Purposes

Definition

Let for $\alpha \in O_n$

$$\widetilde{V}_lpha = igcup_{eta < lpha} \{ X \subseteq \widetilde{V}_eta \mid orall x \in \widetilde{V}_eta. \ \{0|x \in X\} \in \{0,1\} \cup \widetilde{V}_eta\}$$

be defined by recursion over the ordinals.

Definition Basic Properties Central Properties

Exploring the Modified Hierarchy

. . .

Finite Stages

For *n* finite, \widetilde{V}_n is also finite and has $2^n - 1$ elements:

$$\begin{split} \widetilde{V}_0 &= \emptyset \\ \widetilde{V}_1 &= \{\emptyset\} \\ \widetilde{V}_2 &= \{\emptyset, \{\emptyset\}\} \\ \widetilde{V}_3 &= \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \end{split}$$

Between 0 and 1

For
$$0 \le \alpha \le 1$$
, and $\alpha < \beta$: $\widetilde{V}_{\alpha} = \{0 | 0 \in \alpha\} = \alpha \in \widetilde{V}_{\beta}$

Definition Basic Properties Central Properties

The Good Stuff

Theorem

• For all α , the class \widetilde{V}_{α} is actually a set.

Albert Ziegler Hierarchies of Sets in Classical and Constructive Set Theories

Definition Basic Properties Central Properties

The Good Stuff

Theorem

• For all α , the class \widetilde{V}_{α} is actually a set.

More precisely, there is a class function $\widetilde{\mathit{rk}}: \mathit{V}
ightarrow \mathrm{O}_{\mathrm{n}}$ such that

$$\forall a.a \in \widetilde{V}_{\widetilde{rk}(a)}$$

Quantifier Elimination for CZF The Structure of Large Sets A Characterization of Mahlo Sets

Quantifier Elimination

As an immediate consequence of this, all unbounded quantification in CZF can be replaced by bounded quantification and quantification over the ordinals.

Theorem

There is a definitional extension of CZF and a primitive recursive mapping $\phi\mapsto \phi^*$ of formulas, such that

 All quantifiers in φ^{*} are either bounded by sets (∀x ∈ a, ∃x ∈ a) or range over the class of ordinals (∀α ∈ O_n, ∃α ∈ O_n)

2)
$$\phi$$
 and ϕ^* are provably equivalent.

 Setting the Stage
 Quantifier Elimination for CZF

 A Modified Hierarchy
 The Structure of Large Sets

 Applications
 A Characterization of Mahlo Sets

Large Cardinals and Large Sets

- Large cardinals have become a central topic in classical set theory
- The classical concept of cardinals does not fit well with constructive set theory
- Instead of lifting the properties of a large cardinal κ to a constructive setting, better lift the properties of the universe V_{κ} .

 Setting the Stage
 Quantifier Elimination for CZF

 A Modified Hierarchy
 The Structure of Large Sets

 Applications
 A Characterization of Mahlo Sets

Large Cardinals and Large Sets

- Large cardinals have become a central topic in classical set theory
- The classical concept of cardinals does not fit well with constructive set theory
- Instead of lifting the properties of a large cardinal κ to a constructive setting, better lift the properties of the universe V_{κ} .

Inaccessible Sets

```
A set I is called inaccessible iff
```

$$(I, \in) \models CZF_2$$

The Structure of Large Sets

The modified hierarchy interacts very well with large sets:

- Inaccessible sets are closed under the mappings $\alpha \mapsto \widetilde{V}_{\alpha}$ and $a \mapsto \widetilde{rk}(a)$.
- Every inaccessible set I is equal to some \widetilde{V}_{lpha} , in fact

$$I = \widetilde{V}_{I \cap \mathcal{O}_{n}} = \widetilde{V}_{rk(I)} = \widetilde{V}_{\widetilde{rk}(I)}$$

- So inaccessible sets are uniquely determined by the ordinals they contain.
- The class of all inaccessible sets is isomorphic to a subclass of the ordinals with the isomorphism just being $I \mapsto rk(I)$.

Quantifier Elimination for CZF The Structure of Large Sets A Characterization of Mahlo Sets

Two Definitions of Mahlo

The constructive definition works with constructively powerful concepts like total relations and reflections:

Constructive Definition of Mahloness

An inaccessible set M is called Mahlo if every total relation R with $\forall a \in M \exists b \in M.aRb$ is reflected at an inaccessible point $I \in M$, i.e. $\forall a \in I \exists b \in I.aRb$.

Quantifier Elimination for CZF The Structure of Large Sets A Characterization of Mahlo Sets

Two Definitions of Mahlo

The constructive definition works with constructively powerful concepts like total relations and reflections:

Constructive Definition of Mahloness

An inaccessible set M is called Mahlo if every total relation R with $\forall a \in M \exists b \in M.aRb$ is reflected at an inaccessible point $I \in M$, i.e. $\forall a \in I \exists b \in I.aRb$.

The classical definition uses classically successful concepts like stationary sets and clubs:

Classical Definition of Mahloness

An inaccessible set M is called Mahlo if the inaccessibles within M are stationary, i.e. if every club has an inaccessible member.

 Setting the Stage
 Quantifier Elimination for CZF

 A Modified Hierarchy
 The Structure of Large Sets

 Applications
 A Characterization of Mahlo Sets

A Characterization of Mahlo Sets

It can be proved that a constructively useful definition of Mahlo sets is equivalent to the classical one:

Theorem (DC)

For an inaccessible set M, the following are equivalent:

- M is constructively Mahlo.
- 2 M is classically Mahlo.

A similar result holds for the entire hierarchy of α -Mahlo sets. There is also a choice free version of the theorem using the RRS-property.

Summary and Outlook

The new hierarchy

- describes the structure of the set theoretic universe in a useable way
- lets constructive set theory make more fruitful use of ordinals as a tool for handling arbitrary sets
- can be applied to get new and interesting results about large sets in constructive set theory:
 - structure of inaccessible sets
 - characterisation of Mahlo sets
 - maybe also useful for weakly compact sets, 2-strong sets...