
Master’s Thesis

Automatic stub generation
from natural language description

1410212 Le Vinh

Supervisor: Prof. Mizuhito Ogawa
Main Examiner: Prof. Mizuhito Ogawa

Examiners: Associate Prof. Nao Hirokawa
Associate Prof. Nguyen Minh Le

School of Information Science
Japan Advanced Institute of Science and Technology

August 2016

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Mizuhito Ogawa
for the continuous support of not only my thesis but also my life. He instructed me how
to deal with a problem, and evaluate research.

My sincere thanks also goes to Associate Professor Nao Hirokawa and Associate Pro-
fessor Nguyen Minh Le for their detailed and constructive comments and also for their
important support through this work. I learned a lot from him how to write scientific
documents.

I would like to thank to Mr Nguyen Minh Hai and my laboratory colleagues, who helped
me a lot in the research. I owe my loving thanks to my parents and my friends. Without
their encouragement and understanding it would have been impossible for me to finish
this work.

1

Contents

1 Introduction 4

2 Preliminaries 6
2.1 Windows API . 6
2.2 Java Native Access (JNA) . 8
2.3 Bayesian Learning and Sentence Similarity 10

3 BE-PUM System 14
3.1 What is BE-PUM . 14
3.2 BE-PUM Architecture . 15
3.3 API Stub in BE-PUM . 15

4 Observation 19
4.1 Stub and Path Condition . 19
4.2 Required Windows API Specification . 20
4.3 Description Format of Windows API Specification 21

5 Specification Extraction 24
5.1 API Identification . 24
5.2 API Parameters . 25
5.3 Buffer Pointer and Memory Length Parameter 26

6 Stub Generation 31
6.1 Class for Structure Definition . 31
6.2 Interface for DLL proxy . 32
6.3 API Stub Class . 33

7 Implementation 35
7.1 Module Collector . 35
7.2 Module extractor . 36
7.3 Module generator . 37
7.4 Experiments . 39

2

8 Summary and Future Work 41
8.1 Conclusion and Current Limitation . 41
8.2 Related Works . 42
8.3 Future Work . 42

3

Chapter 1

Introduction

Motivation and problems

Malware is a computer program which is intended to damage or disrupt a system, some
typical types of malware are virus, trojan horse and keylogger [1]. It is distributed as a
binary executable, without source codes. The advanced techniques, such as obfuscation
techniques (e.g. dead code insertion, code reordering, instruction replacement), poly-
morphic techniques (e.g. self encryption and self modification) and simulator detection
(e.g. change behavior in emulation environment), have been used in malwares, which
make them more difficult to be detected by signature recognition and virtual emulation
methods.

Model checking based approaches for malware dection attract many attention.
The binary executable is analyzed to infer an abstract model, such as Control Flow Graphs
(CFG), and then analysis techniques based on model checking can be adopted [2, 3, 4, 5].
However, constructing CFG for a malware binary program is also a challenge due to the
confusion of obfuscation techniques.

There are various model generation tools from binary executables, such as BIRD [6],
CodeSurfer/x86 [7], BINCOA/OSMOSE [8, 9], Renovo [10], and Syman [11]. However,
only Syman supports system calls with a Window API emulator.

BE-PUM (Binary Emulation for PUshdown Model generation) is a binary analyzer
[12]. Currently, BE-PUM focuses on malware programs. BE-PUM applies symbolic exe-
cution to execute a program, and output Control Flow Graph for input binary executable
file. API stub is used to handle system API calls. Each Windows API call is treated as
a single instruction, and after that the environments is updated as the technical docu-
ment from Microsoft Developer Network. However, by observation, API stub does not
affect the path condition. API stub is a proxy object that can invoke API native function
and update the simulation environment after API call. It makes flexibility in symbolic
execution, and avoids the cost of manual APIs approximation.

There remain several problems need to be solved. For instance, loop handling in effi-
ciency, huge engineering effort for implementation in symbolic execution. We are taking
on the last problem, where there are about 1000 x86 instruction and more than 4000
Windows API. BE-PUM implementation requires binary emulation for the former and

4

API stub for the latter. Currently, there are about 400 APIs implemented manually,
and the lack of APIs stub may lead the unexpected termination of BE-PUM. To reduce
manual effort and increase the ability of BE-PUM, our target is to automatically generate
Windows API Stub from Windows APIs description in natural language.

Contribution

We observes that Windows API stub generation from natural language description re-
quires limited API specifications. Besides, testing with executable environments can be
applied to avoid ambiguity in specification extracted from natural language description.
Currently, we have constructed a system for API stub generation.

• The system can automatically collect API and structure descriptions from Microsoft
Developer Network (MSDN). Currently, we have collected about 1800 API descrip-
tion.

• The system can extract API specification and generate API stub. There are about
1200 API stubs that were generated. It is more than three times the number of
manual API stubs in current BE-PUM.

• The generated API stubs allow BE-PUM to interpret more system APIs call, and
analysis malwares that are unsupported by the current BE-PUM.

Thesis Outline

The thesis is organized in 8 chapters: Introduction, Preliminaries, BE-PUM System,
Observation, Specification Extraction, Stub Generation, Implementation and Conclusion.
Chapter 2 introduces the background knowledge related to the research. Chapter 3 briefly
presents BE-PUM system. Chapter 4 expresses important observations to decide our
implementation choice. Chapter 5 and Chapter 6 describe our methodology to extract
API specification and generate API stub. Chapter 7 presents our implementation and
experiments. Finally, Chapter 8 describes current limitations and future works.

5

Chapter 2

Preliminaries

2.1 Windows API

Application Programming Interface (API) is a set of instructions, functions, ob-
jects and protocols, which allow a user to build software applications or interact with an
external system 1.

Windows application programming interface (Windows API) is a set of system
APIs in the Microsoft Windows operating systems 2 . The name Windows API covers its
root in 16-bit Windows and extension to 64-bit Windows 3. However, in this thesis we
focus on x86 binary executable files over 32-bit Windows operating system.

A dynamic-link libraries (DLL) is a library containing code and data that can be
used by more than one program at the same time, and the link between the program and
library are linked at running time 4. Windows API are distributed in DLLs (without source
code) that are part of the Windows operating system 5. In the research, we collect about
1800 APIs in 25 DLLs, and focus on kernel32.dll (containing about 700 APIs), gdi32.dll
(containing about 270 APIs), user32.dll (containing about 170 APIs) and advapi32.dll
(containing about 160 APIs).

Windows API descriptions are the documents, which contain the definitions and
explanation of functions, variable types or data structures for software developers. They
are published online by Microsoft Developer Network (MSDN) 6. The description is in
HTML document, and often follows a similar style: the purpose of API, the API function
prototype (in C programming language), the explanation of each parameter and the return

1API Definition
http://techterms.com/definition/api

2Windows API
https://en.wikipedia.org/wiki/Windows_API

3Windows API Index
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

4What is a DLL?
https://support.microsoft.com/en-us/kb/815065

5Walkthrough: Calling Windows APIs
https://msdn.microsoft.com/en-us/library/172wfck9.aspx

6https://msdn.microsoft.com/en-us

6

http://techterms.com/definition/api
https://en.wikipedia.org/wiki/Windows_API
https://support.microsoft.com/en-us/kb/815065
https://msdn.microsoft.com/en-us/library/172wfck9.aspx
https://msdn.microsoft.com/en-us

value, the connection to related APIs or data structure description, and other information
(e.g., version and DLL). For example, figure 2.1 shows the description of GetDateFormat
function 7:

Figure 2.1: GetDateFormat description

7https://msdn.microsoft.com/en-us/library/windows/desktop/dd318086(v=vs.85).aspx

7

https://msdn.microsoft.com/en-us/library/windows/desktop/dd318086(v=vs.85).aspx

2.2 Java Native Access (JNA)

BE-PUM replies on Java Native Access (JNA) 8 library to invoke Windows APIs.
JNA is a community-developed library that provides Java programs easy access to na-

tive shared libraries containing native codes compiled for a specific system (e.g., Windows
x86), and JNA allows native functions to be called directly by using natural Java method
invocation 8.

In Be-PUM project, the JNA is choosen to invoke Windows API due to several reasons.
Firstly, JNA does not require any additional non-Java or native code. This simplicity is an
advantage, compared to Java Native Interface (JNI) 9. Secondly, there is a package, which
provides further supports for Window platform and calling Windows APIs. Furthermore,
JNA is supported, maintained and recommended by a large Java developer community.

An example of Windows API call is used to present how to invoke a Windows API
function via JNA. The code below shows how to call GetDateFormat function..

// Java code

public interface Kernel32DLL extends StdCallLibrary {

// Library mapping

Kernel32DLL INSTANCE = (Kernel32DLL) Native.loadLibrary("kernel32",

Kernel32DLL.class);

// Function mapping

public int GetDateFormat(int Locale, int i, SYSTEMTIME lpDate,

String lpFormat, char[] lpDateStr, int cchDate);

}

public static void main(String[] args){

Kernel32DLL kernel32 = Kernel32DLL.INSTANCE;

char date[] = new char[100];

WString dFormat = new WString("dd : MMMM : yyyy");

int ret = kernel32.GetDateFormat(2048, 0, null, dFormat, date, 100);

// Output: ret = 17, and date = "31 : July : 2016"

}

Library Mapping is the step to declare the DLL containing a target API, and a
class corresponding to this library need to be created. When a native library interface is
instantiated by method Native.loadLibrary(), JNA creates a proxy object for this library.
The proxy provides a mechanism to looks up and invoke the appropriate function object,
which represents the corresponding function exported by the native library 10 .
In the above example, the proxy object for Windows Kernel32 DLL is created.

8 JNA HomePage
https://github.com/java-native-access/jna

9Java programming with JNI
http://www.ibm.com/developerworks/java/tutorials/j-jni/j-jni.html

10Functional Overview
https://github.com/java-native-access/jna/blob/master/www/FunctionalDescription.md

8

https://github.com/java-native-access/jna
http://www.ibm.com/developerworks/java/tutorials/j-jni/j-jni.html
https://github.com/java-native-access/jna/blob/master/www/FunctionalDescription.md

Function Mapping is the step to declare methods corresponding to native functions
in DLL. The method signature needs to be defined in Java interface, and it figures out
function name, input parameters and return type. Native libraries, such as DLLs, often
contains a lot of API functions, but only API functions actually used in the program need
to be declared. JNA handles the run-time mapping of the method to the DLL function
transparently, and the function is mapped directly from its method interface name to the
the native library. Therefore the match between method name and function name must
be ensured exactly.
Figure 2.2 shows the process of invoking GetDateFormat function.

Figure 2.2: Sequence diagram for invoking GetDateFormat call

Passing parameters to native stack is taken by JNA. In Java Virtual Machine
(JVM), the memory model includes stacks (thread stacks and native stacks) and the heap
memory area. The thread stack stores local primitives variables and references. The
native stack is used to invoke native methods. The heap memory area contains objects
created in the program. JNA takes care the process: copying the value of parameters
from Java stack to the native stack, invoking the API function, coming back Java stack
and the next instruction in Java code. The results of native API function call are the
return value stored in EAX register, and the changes occurred in the heap memory.

From the perspective of binary level, there are two kinds of parameters: primitive (the
value of parameter is stored in stack) and pointer (the value of parameter is a memory
area pointed by a pointer).

Principle. Type matching rule is to correctly invoke Windows API. Parameters from
Java program must match the same size as native parameters (in C) and keep the same
kind (primitive or pointer).

API method signature is defined in a DLL proxy class only tells JNA how to copy
parameters into the native stack. The native function will use the parameters in native
stack by its original definition. The native instructions were compiled from C, therefore

9

input parameters are treated in same way they were defined in C. This is the reason why
the size and kind of parameter must be kept.

In Java programs, each parameter need to have its type identification which enable it
to satisfy principles in binary level. In Java programs, the parameters haves their type
identification as “byte, short, char, int, boolean, long, double, float”, then the value of
them are stored in stack in binary level. The other parameters are objects whose value of
them are stored in memory area pointed by a pointer. In the example of GetDateTime
function, the type identification of parameters are “int, int, SYSTEMTIME, WString,
char[], int”. Figure 2.3 shows the memory model for GetDateFormat call.

Figure 2.3: Memory model for GetDateFormat call via JNA

Figure 2.3 also shows assembly pseudo code, which stand for x86 assembly instructions
in a real program. The left-hand side instructions stand for instructions in the program.
Because GetDateFormat is called via JNA, each push instruction not only pushes a pa-
rameter into the Java stack but also copies it to the native stack. The jump instruction
jumps to the first address of GetDateFormat instructions (outside the program). The
next instructions of GetDateFormat are worked with the native stack. In the end of
GetDateFormat function, the return value is stored in the EAX register, jump back the
next instruction of main program by the value in EPS register. In summary, JNA lets
compiler copy parameters into the native stack, and identify the address of API for the
jump instruction.

2.3 Bayesian Learning and Sentence Similarity

We apply supervised machine learning and natural language processing techniques to
extract API specification from its description.

10

• Machine learning: A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E [13]. The input of
a machine learning algorithm is existing data, and the output is often a model
(target function). The learning process is the execution of a program to optimize
the function’s parameters to fit training data.
For example:

– Task T: predicting the price of house in Kanazawa

– Performance measure P: the difference between the real price and predicted
price is lower than a threshold (e.g., lower than 10.000 Yen)

– Training data E: data from 1000 houses in Kanazawa City over 10 years, data
about each house includes house price, its area (x ∈ N), its age (y ∈ N) and
the number of rooms (z ∈ N)

– Target function: Price : N3 → R

– Target function representation: Price(x, y, z) = w0 + w1x + w2y + w3z and
parameters are w0, w1, w2, w3

• Supervised learning is the machine learning task of producing a inferrence func-
tion from labeled training data, and the function can be used to predict the class
labels for unseen input instance [14]. The labeled training data includes a set of
training examples, and each example is a pair of an input object (e.g., a feature
vector) and a observed output value.

• Natural language processing are techniques to enable computer to interact with
and natural languages. Computers traditionally only understand precise, unam-
biguous and highly structured language such as programming language; but natural
language is often ambiguous in words, grammar structure and social context 11.

In the research, we compute sentence similarity to distinguish cell and buffer pointer.
In addition, Bayesian learning is applied to predict memory length parameter (see 5.3).

Bayesian Learning

Bayesian Learning provides a probabilities inference approach to existing data by com-
puting hypothesis’s probabilities explicitly. [13]

• Bayes Theorem

P (h|D) =
P (D|h)P (h)

P (D)
(2.1)

D is the observed training data
H is the hypothesis space, which is the set of all possible outputs.

11natural language processing (NLP)
http://searchcontentmanagement.techtarget.com/definition/natural-language-processing-NLP

11

http://searchcontentmanagement.techtarget.com/definition/natural-language-processing-NLP

h(∈ H) is a hypothesis (output)
P (h) is the initial probability that hypothesis h holds, in supervised machine learn-
ing context P (h) is the probability of h in the observing data D
P (D) is the prior probability that training data D will be observed
P (D|h) is the initial probability of observing data D given the hypothesis h
P (h|D) is the probability of hypothesis h given the observing data D
With a new instance, the most probable hypothesis can be inferred from the ob-
serving data, by the maximum a posterior.

hMAP = argmax
h∈H

P (h|D) = argmax
h∈H

P (D|h)P (h)

P (D)
= argmax

h∈H
P (D|h)P (h) (2.2)

P (D) can be removed because it is constant by the training data and independent
of h.

• Naive Bayes Classifier is the application of Bayesian learning to classification tasks.
Instance X is described by a tuple of feature values 〈a1, a2 . . . an〉
the most probable output of X is

hXMAP = argmax
h∈H

P (h|a1, a2 . . . an)

= argmax
h∈H

P (a1, a2 . . . an|h)P (h)

P (a1, a2 . . . an)

= argmax
h∈H

P (a1, a2 . . . an|h)P (h)

(2.3)

To rewrite this formula, we assume that the attribute values are conditionally
independent given the target value.

hXMAP = P
h∈H

(h)
n∏
i

P (ai|h) (2.4)

For illustrative example, a restaurant try to predict whether the local children like
a new candy or not. The data is collected in one year, and each data record is
described by 4 features (shape, color, size, taste) and its label (like or dislike). The
new candy has features: circle(shape), blue(color), big(size) and sweet(taste). From
the data set, the likelihood for each class:
P (like)P (circle|like)P (blue|like)P (big|like)P (sweet|like)
= 0.64 ∗ 0.25 ∗ 0.33 ∗ 0.33 ∗ 0.44 = 0.0077
P (dislike)P (circle|dislike)P (blue|dislike)P (big|dislike)P (sweet|dislike)
= 0.36 ∗ 0.6 ∗ 0.4 ∗ 0.8 ∗ 0.6 = 0.0414
Furthermore, conversion into a probability by normalization:
P (like) = 0.0077/(0.0077 + 0.0414) = 0.1568
P (dislike) = 0.0414/(0.0077 + 0.0414) = 0.8432
We can conclude that the children don’t like the new candy.

12

Cosine Similarity

• Vector Space Model is the presentation of text as a vector, and a vector comprises
dimensions that are terms used to index it [15]. The definition and value of term
depend on particular applications. For example, the vector model of a sentence:

s = (w1, w2 . . . wn) (2.5)

with s is a sentence which is presented as an high dimensional vector. Terms pre-
defined keywords and values of terms are the weight of keywords. Keywords is a set
of words: “parameter, point, to, buffer”. If the sentence is “The parameter points
to a buffer”, the vector model of this sentence is sent = (1, 3, 2, 3)

• Cosine similarity is used as a measure of similarity between two vectors, and its value
is the cosine of the angle between them 12 . Given two vectors A = (a1, a2 . . . an)
and B = (b1, b2 . . . bn)

similarity(A,B) = cos(A,B) =
A.B

|A|.|B|
=

∑n
i=1 ai.bi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(2.6)

Cosine similarity measure is a good approach to compute the similarity between two
sentences, particular in cases that there is no big different between the expression
of the same content. In the research, the value of sentence similarity is also used
in two tasks: buffer or cell pointer classifier, and as a feature in predicting memory
length parameter.

For example, the vector of “the parameter points to a buffer” is [1, 3, 2, 3] , and the
vector of “pointer to a memory in which this function retrieves the formatted date
string” is [0, 3, 2, 3] (how to convert from sentence to its vector, see 5.3)

simil(sen1, sen2) =
1.0 + 3.3 + 2.2 + 3.3√

12 + 32 + 22 + 32.
√

02 + 32 + 22 + 32
=

22√
23.
√

22
≈ 0.98

12Cosine similarity
https://en.wikipedia.org/wiki/Cosine_similarity

13

https://en.wikipedia.org/wiki/Cosine_similarity

Chapter 3

BE-PUM System

3.1 What is BE-PUM

BE-PUM (Binary Emulation for PUshdown Model generation) is a binary analyzer [12].
Currently, BE-PUM focuses on malware, which are often small and obfuscated. BE-PUM
receives a x86/Win32 file binary executable and returns its control flow graph (CFG),
which is constructed by symbolically execute the program on-the-fly manner.

BE-PUM adapts an on-the-fly-construction of CFG due to 2 reasons.

• In the binary level, there are no difference between data and instructions in memory.
Therefore, instructions may be modified during the execution of the binary.

• The location of the next instruction is determined by both current instruction and
environment (e.g., indirect jump eax, then the next instruction depends on the value
in the eax register)

BE-PUM applies symbolic execution to execute programs. Symbolic execution is a
technique to symbolically execute a program, and it maintains a symbolic state (l, pc)
with l is the location of instruction and pc is the path condition from program entry
to current instruction l [16]. The path condition pc expresses the precondition of the
execution path to l, and if it is satisfiable, the execution path is feasible. In BE-PUM,
the next instruction is decided by concolic testing (testing with a instance of pc). For
stepwise executions, a virtual simulation is required.

BE-PUM restricts its binary emulator to the user process due to two reasons.

• Firstly, it allows BE-PUM to handle malware in a more flexible way, particular in
trigger-based malwares. For example, a malware only executes on New Year’s Day.
In this case, the simulation of entire system (e.g., OllDbg or Intel/Pin) may fail to
discover the real intended action, because the current date may not New Year’s Day.
BE-PUM gives choices on the return value of an API either symbolic or concrete.
For instance, trigger-based behavior can be handled by symbolic execution, then
discover the real behavior of malware.

• Secondly, in implementation aspect, it is heavy to implement a full simulation.

14

3.2 BE-PUM Architecture

BE-PUM is implemented on Java. Here, we borrow the figure and description of BE-
PUM from [12] to briefly explain about BE-PUM architecture. It applies Jakstab 0.8.3
as a disassembler to determine a single-step disassembly, and SMT Z3.4.3 as the backend
engine to generate a instance for concolic testing.

Figure 3.1: BE-PUM architecture

Figure 3.1 shows the architecture of BE-PUM with three components: symbolic exe-
cution, binary emulation and CFG storage. The symbolic execution picks up one from
the frontiers (symbolic states at the ends of explored execution paths), and it tries to
extend one step. If the instruction is a data instruction (i.e., only environment is updated
and the next location is statically decided), it will disassemble the next instruction. If
the instruction is a control instruction (e.g., conditional instruction jumps), the concolic
testing is applied to decide the next location. After that, either a new CFG node or a new
CFG edge is found, they are stored in CFG storage and a configuration is added to the
frontiers. This procedure continues until either the exploration has converged, or coming
to unknown instructions, system calls or addresses.

3.3 API Stub in BE-PUM

BE-PUM symbolically executes programs, and the path condition (on the symbolic value)
and environment (the mapping between variables and their values) are separated in im-
plementation. The environment (Env) is presented by a tuple (EnvR, EnvS, EnvM),
with EnvR is the register values, EnvS is the stack values, EnvM is the memory values
(excluding stack values). API Stub is used to handle system API calls. Each Windows
API call is treated as a single instruction, and update the environments following the

15

technical document from MSDN. However, BE-PUM keeps the path condition based on
observation (see 4.1).

Stub is the piece of code simulating the behavior of other code 1. In BE-PUM imple-
mentation, API stub is a proxy object that can invoke API native function and update
the simulation environment after API call. It makes flexibility in symbolic execution, and
avoids the cost of manual APIs approximation. Current BE-PUM covers 400 APIs, which
were implemented manually. However, there are about more than 4000 published APIs,
and the lack of APIs stub may lead the unexpected termination of BE-PUM. Therefore,
we aim to automatically generate Windows APIs Stub in order to reduce manual effort
and increase the ability of BE-PUM.

The flow process of API stub is described through GetDateTime stub. Figure 3.2
shows the flow process of GetDateTime call.

Figure 3.2: GetDateFormat Flow Process

The flow of an API stub can be divided into 5 stages.

• Based on the number of parameters, the values are popped from the stack of simu-
lation environment to variables in API Stub program.

• Depending on the API specification, if the parameter is a pointer, the values of the
pointed memory area also copied to variables in API stub program.

• In the API stub, JNA passes the variables as input parameters to the native stack
in the real environment and invoke API native function.

1What is a Stub?
http://www.tutorialspoint.com/software_testing_dictionary/stub.htm

16

http://www.tutorialspoint.com/software_testing_dictionary/stub.htm

• JNA comes back Java stack and converts results back to appropriate variables in
API stub program.

• Depending on the API specification, API stub copies the value of variables to ap-
propriate EAX register and Memory objects in the simulation environment.

Almost Windows API and kernel-level structures are implemented and compiled from
C programming code2. The environment after Windows API call is updated as following.

On x86 platforms, after a Windows API call:

1. The return value is always widened to 32 bits and stored in the EAX register 3.
For example, the return type can be int, long (32 bits in x86 platform), boolean, a
structure wide 32 bits (e.g. COORD structure), pointer to a memory address, or
void (no return value, the value of eax register is kept as before API call).

For example, as GetDateFormat function and parameters figure 3.2, the return value
is 0x001116(= 1710) stored in EAX register after GetDateFormat call.

2. The value of memory area pointed by a pointer parameter can be updated. Pa-
rameters are passed by value to Windows API function 4. The copies of actual
parameters are passed into a function, therefore the changes of parameters inside
the function have no effect on actual parameters. However, even the value of pointer
parameter doesn’t change, the memory area are pointed by a pointer parameter can
be modified.

Furthermore, Microsoft source-code annotation language (SAL) is a set of annota-
tions to describe how a function uses its parameters 5. The SAL of a parameter
is described in the function prototype of API description. If SAL contains ”Out”,
such as “ Out ”, the function may write to the memory area pointed by pointer
parameters.

For example:

// Function prototype

int GetDateFormat(

In LCID Locale,

In DWORD dwFlags,

_In_opt_ const SYSTEMTIME *lpDate,

_In_opt_ LPCTSTR lpFormat,

_Out_opt_ LPTSTR lpDateStr, // can modify memory area

2Windows Programming/C and Win32 API
https://en.wikibooks.org/wiki/Windows_Programming/C_and_Win32_API

3Argument Passing and Naming Conventions
https://msdn.microsoft.com/en-us/library/984x0h58.aspx

4 stdcall Calling Conventions
https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx

5SAL Annotations
https://msdn.microsoft.com/en-us/library/ms235402(v=vs.100).aspx

17

https://en.wikibooks.org/wiki/Windows_Programming/C_and_Win32_API
https://msdn.microsoft.com/en-us/library/984x0h58.aspx
https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx
https://msdn.microsoft.com/en-us/library/ms235402(v=vs.100).aspx

In int cchDate

);

The memory area pointed by parameter “lpDate, lpFormat, lpDateStr” can be mod-
ified. However, from SAL notations we see that only the SAL of parameter “lpDat-
eStr” contains “Out”, then we know that memory area pointed by “lpDateStr” may
be updated after API call.

3. A new memory area is created and pointed by the return value. This situation
can occur by several techniques in C language, such as local static variable and
dynamic memory allocation techniques. We observe that such APIs are few, and
this specification requires deep understanding from natural description. We leave
this specification for future work, and assume the return value of API doesn’t point
to a new memory area.

18

Chapter 4

Observation

The our observations to decide our implementation choice are presented.

4.1 Stub and Path Condition

In Symbolic execution, the value of program variables are presented as symbolic values
or symbolic expressions instead of concrete input values [16]. For example, the value of
variable x is presented by a symbolic expression “α + 10”, and α is a symbolic constant.
The collection of all variables and their values is called a environment. The logical con-
straints on symbolic value from the entry of program to a specific instruction is called a
path condition. Both environment and path conditions are updated along an execution
path of the program. In theory, in each step execution both environment and symbolic
path constraint need to be maintain together, in other words the environment need to
keeping in each step.

In the implementation of symbolic execution, the path conditions and the en-
vironment often separated to reduce memory space and easier in updating environment.
BE-PUM also implements symbolic execution by separating path condition and environ-
ment.

When a program uses a stub to invoke a external function, we often know only input-
output and do not know the body of function. Once, an API is invoked, in normal
behavior there is no conditional branch based on symbolic values and its external action
is symbolic value. Except that, inputs causes errors, which lead exceptions. Particularly
in malware, we assume that input parameters for invoking API are correct. Therefore,
the stub only updates the environment, and the patch condition is kept.

For example of stub in real applications:

• Symbolic execution of programs uses SQL stubs to invoke query functions in mySQL
database that is outside of the Java programs.

• Symbolic execution of a mobile applications uses Google Map API stubs to invoke
functions in servers of Google that are outside of the application.

19

• In the context of research, symbolic execution of malwares uses Windows API stubs
to invoke Windows API functions in DLL files that are outside of the programs.

4.2 Required Windows API Specification

Each API function often contains various specifications, but we do not need to all of them
in the context of BE-PUM system. The required specifications are following.

• To implement API stub, we need to invoke API via JNA and update the environment
in BE-PUM, which requires the specification for API stub generation.

• To verify generated API stub, conformance testing needs to be applied. The idea
is to compare the memory values between a real simulator (e.g., Intel/Pin and
OllDbg) and BE-PUM. To do that, test programs containing target API call need
to be generated, which requires the specification for test case generation.

The required specification for Windows API stub generation is the information
how to initialize input values before an API call and how to update the environment after
an API call. For then, we need:

• The library (DLL) that an API belong to

• The function name of an API

• The numbers of input parameters

• The parameter type identification in Java and its definition (for structure only)

• The name of the parameter (it can be optional, but the original name of parameter
should be kept, which make generated program become friendly with developers)

• The memory length parameter of a buffer pointer.

The required specification for test case generation further requires two specifi-
cations as following.

• Conditions for the validity of input parameters : In a test case program, the input
parameters must have initial values before calling API function. However, the input
executable files to BE-PUM are malware programs, which usually can call system
API successfully. Therefore, in API stub generation the condition for valid input
can be ignored, but in test case generation it is required.

• The dependence between Windows APIs : Many APIs require input values that are
return values of another API. The values are often given by operating system at
running time. In an API stub generation, the dependence between Windows API
can be ignored, because the return value of preceding API have already stored
in the simulation environment. However, in test case generation the dependence
specification is required.

20

Extracting specifications for test case generation in conformance testing purpose is more
difficult, since the required specifications are embedded more deeply in natural language
description. They are left for future works.

4.3 Description Format of Windows API Specifica-

tion

The Windows API specifications are described in Windows API description. Wee see the
description formats with the example of GetDateFormat function.

Specifications for API stub generation

API requirements is described in table format, which also includes the information
about DLL. Figure 4.1 shows the requirement description for GetDateFormat call.

Figure 4.1: Requirement description in GetDateFormat

API function prototype is described in C. From the description, API function name,
the number of parameters, type identification of parameters, the name of parameters can
be obtained. Fortunately, Microsoft provides type name conventions 1 . For example, as
coding convention the prefix P- or LP- stands for pointer type (e.g., LPRECT is a pointer
to a RECT structure, LPRECT and RECT* are the same). The postfix -STR stands for
string types (pointers at binary level). Under such conventions, the parameter is whether
pointer or not can be inferred.

For instance, figure 4.2 shows that “lpDate, lpFormat and lpDateStr” are pointer pa-
rameters.

The parameter description is described in natural language. From the descrip-
tion, the type definition (may link to other documents), the relation between parameters
are obtained. The description of “lpDateStr” is “Pointer to a buffer in which this func-
tion retrieves the formatted date string”, which means “lpDateStr” parameter is a buffer

1Windows Coding Conventions
https://msdn.microsoft.com/en-us/library/windows/desktop/ff381404(v=vs.85).aspx

21

https://msdn.microsoft.com/en-us/library/windows/desktop/ff381404(v=vs.85).aspx

Figure 4.2: Prototype description of GetDateFormat

Figure 4.3: Parameter description in GetDateFormat

pointer. The description of “cchDate” is “Size, in characters, of the lpDateStr buffer”,
which means the length of memory pointed parameter “lpDateStr”.

Pointer of pointer parameter can be inferred from type name convention. For
example, the prefix P-* or LP-* stands for pointer of pointer type (e.g., LPINT* is a
pointer of int pointer, LPINT* and int** are the same). The stub generation system
recognizes such cases and copies the appropriate memory values in BE-PUM to API stub
program. We also observe that the number of APIs have pointer of pointer parameter is
small, and the maximum is 2 deep level.

Nested structure is the structure that has other structures inside it. To handle
these cases, the stub generation applies a recursive process until all fields of structure is
primitives. We observe that the maximum deep of nested structure is three, and these
cases are very rare. The most frequency is is non-nested structure.

22

Specifications for test cases generation

The parameter description is described in natural language. The condition for pa-
rameters are obtained from the description. Depending on API, the conditions for valid
inputs are whether required or not. If an parameter has conditions, which part, sentence
and format need to be determined. By observation, there are several formats used to de-
scribe the condition, such as natural language, table (various table formats), enum (can
be linked to other web-page). Besides, the number of possible conditions are also various.
Figure 4.4 shows that possible values for parameter “Locale” described in the other pages.

Figure 4.4: The description of parameter Locale in GetDateFormat

The API’s explanation is described in the natural language. From the descrip-
tion, the dependence between APIs can be obtained. Figure ?? shows that the value of

Figure 4.5: A part of the GetUserObjectInformation description

parameter “hObj ” should be obtained from other APIs, such as CreateWindowStation,
OpenWindowStation, CreateDesktop, or OpenDesktop function.

23

Chapter 5

Specification Extraction

5.1 API Identification

To map to a native API function via JNA, the library which API belong to, the function
name of API and the number of input parameters need to be identified. Such specifications
can be determined through the description of requirements and API prototype.

The library (DLL) which API belong to is determined through the description of
requirement. The requirement description is in table format, and it is often the last table
in an API document. The name of library is be extracted from the second cell in the row
DLL. The example of requirement description of GetDateFormat is showed as following.

In this example, “kernel32” is extracted from the sixth row.
The function name of API and the number of input parameters are deter-

mined through the description of API prototype. Because API prototype is described
in C, the information can be extracted easily. The API name is always the last word
in the first line, the number of parameters are the number of comma symbol plus one.
For example, GetDateFormat prototype is showed as following, and the name of API is
“GetDateFormat”, and there are six input parameters.

24

5.2 API Parameters

As mentioned in 2.2, passing parameters from Java stack to the native stack is taken by
JNA. However, to correctly invoke Windows API, parameters from Java program must
match the same size as native parameters (in C language) and keep the same kind of pa-
rameter (primitive or pointer). Therefore, in Java programs each parameter need to have
its type identification which enable it to satisfy type matching rule in 2.2. The parameter’s
type identification in Java can be inferred from the parameter’s type identification in C
by coding convention.

If the value of parameter is stored in stack, it is called a primitives parameter. The
parameter type identification in Java corresponding to the parameter type identification
are showed as below table 1.

Windows Type identification Size C primitive type Java primitive type
BYTE, TCHAR 8 bits char byte
WORD, TCHAR 16 bits short, wchar t short, char
DWORD, BOOL, LONG 32 bits int, long int, boolean, NativeLong

int64 64 bits long long long, double
float 32 bits float float
double 64 bits double double

If the real values of parameter is a memory area pointed by a pointer, the parameter is
called a pointer parameter. To easier analysis, we divide pointer parameter into several
kinds.

• Structure pointer: A structure in Java need to be corresponded to a structure in
C. The structure in Java is an object, which is a pointer at binary level. Further-
more, the memory size of object must be match the memory size of structure. To
satisfy this requirement,the class that is equivalent with original structure should
be defined. To allow JNA to process such kind of pointer correctly, the class for
structure must be extended from class jna.Structure, and all fields of class need
matching all fields of structure by principle rules.

1

https://github.com/java-native-access/jna/blob/master/www/Mappings.md

25

https://github.com/java-native-access/jna/blob/master/www/Mappings.md

〈Problems〉 JNA supports some common classes for Windows API’s structures,
however there remain many undefined structures.

〈Solution〉 We collect structure description, and generate corresponding classes.

• Cell or buffer pointer: A pointer variable can point to either only one element
(cell pointer) or sequence of elements (buffer pointer).
〈Problems〉 From API prototype, we don not know this information.

〈Solution〉 We apply cosine similarity between the first sentence of parameter de-
scription and the base sentence “the parameter points to a buffer” in order to classify
cell pointer or buffer pointer.

• Array and number of elements: Array is a sequence of variables. To pass array
to a function, we need to pass a pointer pointing to the first element of array and
the number of elements in array.

〈Problems〉 Based on parameter description in API description, we need to know
which parameter describes the number of elements in an array. In Windows API,
the immediate parameter after a buffer pointer parameter isn’t necessary to be the
number of elements in an array.

〈Solution〉 We apply cosine similarity between the first sentence of parameter de-
scription and the base sentence “the parameter points to a buffer” in order to classify
such cases.

• String is an array of characters, and is terminated by null character “/0”. Passing
String to a function doesn’t require the length of character array because compiler
can handle the termination of string by character “/0”.

〈Problems〉 From function prototype, we don’t known a parameter is a String or
array of characters, because both of them are defined as “char* or char[]”.

〈Solution〉 To distinguish such cases, the research applies cosine similarity to esti-
mate the similarity of the first sentence to a base sentence “the parameter points to
a buffer”.

The names of parameters are optional, and are kept for future convenience.

5.3 Buffer Pointer and Memory Length Parameter

As mention in the previous section, we apply sentence similarity to classify cell or buffer
pointer, and Naive Bayes classifier to predict memory length parameter. They are pre-
sented in detail in this section.

26

Sentence similarity

In the research, the similarity of two sentences is the cosine similarity between their
sentence vectors (see formula 2.6 in 2.3). The sentence similarity is used in 2 tasks: cell
or buffer pointer classifier, and as a feature in predicting memory length parameter.

• To classify cell or buffer pointer, we observe that we do not need entire parameter
description. We often understand whether cell or buffer pointer based on the first
sentence of parameter description. Therefore, the idea is computing the similarity
of the first sentence with a base sentence “the parameter points to a buffer” to
classify whether cell or buffer pointer. The base sentence is manually designed. If
a parameter is a pointer and its similarity is greater than 0.8, the parameter is
predicted as a buffer pointer.

• To predict memory length parameter, we also can understand whether cell or buffer
pointer based on the first sentence of parameter description. Therefore, the idea is
computing the similarity of the first sentence with a base sentence “the parameter
describes the length of buffer”, and the base sentence is manually designed. How-
ever, if predicting memory length parameter bases on only the sentence similarity,
the accurateness is not high by experiments. Therefore, we use the additional infor-
mation of parameter to increase the accurateness, which is discussed in more detail
in the part Naive Bayesian binary classifier.

The key point in computing sentence similarity is how to transfer from a sentence to
its vector, then the similarity is straightforward computation based on the formula 2.6.

• The sentence is presented by a n-dimensional vector (w1, w2 . . . wn). In this research,
the number of dimension is equal to the number of keywords for a specific tasks.

– In cell or buffer pointer classifier task, a sentence vector has 4 dimensions, and
the keywords include “parameter, point, to, buffer”.

– In memory length parameter task, a sentence vector has 5 dimensions, and the
keywords include “parameter, describe, length, of, buffer”.

In NLP, the similarity between two sentence can be computed by semantic parsing
technique. However, due to the lack of dictionary for software area and technical
words, this technique requires more effort. In vector model, pre-design keywords
implicitly determine the meaning of a sentence for a specific task. From experiments,
our approach requires less effort, but good efficiency.

• In sentence vector, each term “w1, w2 . . . wn” has a value corresponding to the weight
of a keyword. In other word, if a keyword appears in the sentence, the value of term
corresponding to this keyword is the weight of this keyword.

– In cell or buffer pointer classifier task, the weight of keywords as below.

27

Keyword parameter point to buffer

Weight 1 3 2 3

– In memory length parameter task, the weight of keywords as below.

Keyword parameter describe length of buffer

Weight 1 1 3 2 3

The weight of keywords is manually designed by observation about the important
of each keyword. In some other research contents, such as document similarity,
the value of term can be the multiply of its weight and its frequency. However,
in our research context, only one sentence is considered and the length of sentence
is short, then keywords often do not appear more than one time. In addition,
we consider the similarity between one description sentence with a designed base
sentence, instead of the similarity between arbitrary sentence, and word frequency
reduces the correctness because every keywords appear only one time in the base
sentence.

• The keywords can be expressed by their synonyms in the sentence. If the synonym
of a keyword appears in the sentence, it is equal to the appearance of this keyword.
The synonyms can be defined automatically by a dictionary (e.g., WordNet), but
due to the narrowness of research domain, the approach of pre-defined synonyms is
more efficient. The below table shows keywords and their synonyms.

Keyword Synonyms
parameter argument, the specific name of parameter
point points, pointer
describe describes, express, expresses, present, presents
length size, amount
buffer memory, array

An example of converting sentence to its vector in cell or buffer pointer classifier task
is showed as below.

----- Base sentence

sent1 = '''The parameter points to a buffer'''

keywords appear in sent1 are "parameter, points, to, buffer"

vect1 = [1, 3, 2, 3]

----- Description of parameter lpDateStr

sent2 = '''Pointer to a buffer in which this function retrieves the

formatted date string.'''

keywords appear sent2 are "pointer, to, buffer"

vect2 = [0, 3, 2, 3]

----- Description of parameter lpDate

28

sent3 = '''Pointer to a SYSTEMTIME structure that contains the date

information to format.'''

keywords appear sent3 are "pointer, to"

vect2 = [0, 3, 2, 0]

Apply formula 2.6

simil(sent1,sent2) = 0.98; simila(sen1,sent3) = 0.75

Therefore, lpDateStr is predicted as a buffer pointer.

Naive Bayesian binary classifier

When the buffer pointer parameter is determined in an API, we apply Naive Bayes learning
to classify whether a parameter is memory length parameter or not. As mention, memory
length parameter describes the length of buffer pointed by a buffer pointer.

As mention in 5.3, each parameter description need to be converted to a tuple of
features. In this task, there are 5 features.

• The first is the feature about parameter SAL annotation, and the possible values of
this feature are “Yes, No, Unknown”. If SAL annotation contains “Out”, then the
value of this feature is “Yes”. If SAL annotation contains “In”, then the value of
this feature is “No”. Otherwise, the value of this feature is “Unknown”.

• The second is the type’s identification of parameter, and the value of this feature is
a string. For example, int, long

• The third is whether the parameter name contains keywords “length, size” or not,
and the possible values of this feature are “Yes, No”.

• The fourth is the distance from buffer pointer parameter, and the value of this
feature is a integer number. This number is the subtraction between the index of
buffer pointer parameter and current parameter.

• The final is whether the sentence similarity is greater than 0.8 or not,and the possible
values of this feature are “Yes, No”. The sentence similarity is computed as the
method in the previous part.

By experiment, the third and fifth feature contributes much to the accurateness of algo-
rithm.

For example, the features of parameter cchDate in GetDateFormat function are ex-
tracted as below example.

In int cchDate (parameter description in prototype)

featr1 = Yes # because SAL = '_In_'

featr2 = 'int' # because the type of this parameter is 'int'

featr3 = No # because the name 'cchDate' does not contain keywords

featr4 = 1 # because buffer pointer is the fifth parameter, and

29

and current parameter is the sixth.

base sentence = 'parameter describes the size of buffer'

parameter sentence = 'Size, in characters, of the lpDateStr buffer'

featr5 = Yes # because cosine similarity = 0.95

In the research, the training data including the labeled description of 122 parame-
ters are manually prepared. The label of parameter description is “yes”(memory length
parameter) or “no”(not memory length parameter). Training process is computing all
conditional probability of feature values in given outputs (see formula 2.3). For example,
a part of model as below table, and each cell contains the probability of P (featr|output)

Feature values output = yes output = no
featr1 = yes 0.377 0.339
featr2 = ’int’ 0.150 0.0188
featr3 = no 0.113 0.603
featr4 = 1 0.283 0.037
featr5 = yes 0.320 0.012

Besides, from training data P (output = yes) = 0.396 and P (output = no) = 0.622.
For instance, the first cell contains 0.3.77, which means the proportion of the number of
parameters whose SAL contains “In” among memory length parameters.

To predict whether a parameter is a memory length parameter or not from its descrip-
tion. Firstly, we need to convert its description to a tuple of features, then apply formula
2.3 to compute the probability of output. For example, the probability of parameter
“cchDate” is whether memory length parameter or not as below.

• P (yes|yes, int, no, 1, yes) = 0.000229162025664/P (yes, int, no, 1, yes)

• P (no|yes, int, no, 1, yes) = 0.000001061324560/P (yes, int, no, 1, yes)

Therefore, the probability of memory length parameter is 99.5%; and the probability of
not memory length parameter is 0.05% after normalization. We can predict that the
parameter “cchDate” is the memory length parameter. In addition, if there are more
than one predicted memory length parameter, we choose the one which has the highest
probability.

30

Chapter 6

Stub Generation

In this chapter, the three kinds of generated code needed for API stub are going to
presented. They are classes corresponding to structures, library proxy interface, and
APIs stub.

6.1 Class for Structure Definition

The purpose of the class for structure is to let JNA understand this type as a Structure
in C. The class must satisfy the following conditions.

• The class is derived from the class jna.Structure.

• All fields of the class in Java need to match all fields of the structure in C by type
matching rule (in 2.2). If a structure is a nested structure, other classes of sub-
structure also need to be generated. Another approach is the use of inner class, but
it is more complex in implementation.

• The name of fields is kept as original name (optional).

• Method getFieldOrder() is override. This method return a list of field names. It is
the requirement from the design of JNA.

For example, SYSTEMTIME defines an structure for date and time, the definition of
structure SYSTEMTIME taken from MSDN is showed as below 1

// Struct SYSTEMTIME definition in C language

typedef struct _SYSTEMTIME {

WORD wYear;

WORD wMonth;

WORD wDayOfWeek;

WORD wDay;

1SYSTEMTIME structure
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724950(v=vs.85).aspx

31

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724950(v=vs.85).aspx

WORD wHour;

WORD wMinute;

WORD wSecond;

WORD wMilliseconds;

} SYSTEMTIME;

The SYSTEMTIME class is defined in Java as below.

// Class SYSTEMTIME in Java language

public class SYSTEMTIME extends Structure {

public short wYear;

public short wMonth;

public short wDayOfWeek;

public short wDay;

public short wHour;

public short wMinute;

public short wSecond;

public short wMilliseconds;

@Override

protected List<String> getFieldOrder() {

return Arrays.asList(new String[] {

"wYear", "wMonth", "wDayOfWeek", "wDay",

"wHour", "wMinute", "wSecond", "wMilliseconds"});

}

}

6.2 Interface for DLL proxy

The purpose of DLL proxy is to create a single access point to each file DLL by a JNA
proxy object. Interface DLL proxy must satisfy several following conditions:

• The interface is derived from jna.win32.StdCallLibrary.

• The DLL and function’s name is kept as original name.

• Parameters satisfy the type matching rule (see 2.2)

• The names of fields are kept as original name (optional).

For example, Kernel32.dll proxy interface is defined as below.

public interface Kernel32DLL extends StdCallLibrary {

Kernel32DLL INSTANCE = (Kernel32DLL)

Native.loadLibrary("kernel32",Kernel32DLL.class);

32

// API functions

public int GetDateFormat(int Locale, int i, SYSTEMTIME lpDate,

String lpFormat, char[] lpDateStr, int cchDate);

//

}

6.3 API Stub Class

API stub class is the core of generation task. In the constructor method, the number of
parameter is defined in a constant NUM OF PARMS. The method execute() plays central
role and handle four responsibilities.

• Getting original parameter values from stack and memory in BE-PUM.

• Coping the values of memory area in BE-PUM if parameters are structure pointer,
or strings or array. Then input parameter objects are instantiated.

• Invoking API function

• Updating the environment in BE-PUM by return value and updated value of pa-
rameters.

For example, GetDateFormat Stub class is defined as below.

public class GetDateFormat extends Kernel32API {

public GetDateFormat () {

super();

NUM_OF_PARMS = 6;

}

@Override

public void execute() {

// Step 1: get original parameter values from stack

long t0 = this.params.get(0);

long t1 = this.params.get(1);

long t2 = this.params.get(2);

long t3 = this.params.get(3);

long t4 = this.params.get(4);

long t5 = this.params.get(5);

// Step 2: instantiate input parameters

LCID Locale = new LCID (t0);

DWORD dwFlags = new DWORD (t1);

SYSTEMTIME lpDate = null;

if (t2 != 0L) {

lpDate = new SYSTEMTIME ();

33

lpDate.wYear = (short) ((LongValue)memory.getWordMemoryValue

(t2)).getValue();

lpDate.wMonth = (short) ((LongValue)memory.getWordMemoryValue

(t2+=2)).getValue();

lpDate.wDayOfWeek = (short)

((LongValue)memory.getWordMemoryValue (t2+=2)).getValue();

lpDate.wDay = (short) ((LongValue)memory.getWordMemoryValue

(t2+=2)).getValue();

lpDate.wHour = (short) ((LongValue)memory.getWordMemoryValue

(t2+=2)).getValue();

lpDate.wMinute = (short) ((LongValue)memory.getWordMemoryValue

(t2+=2)).getValue();

lpDate.wSecond = (short) ((LongValue)memory.getWordMemoryValue

(t2+=2)).getValue();

lpDate.wMilliseconds = (short) ((LongValue)memory.getWordMemoryValue

(t2+=2)).getValue();

}

String lpFormat = null;

if (t3 != 0L) lpFormat = memory.getText(this, t3);

char[] lpDateStr = null;

if (t4 != 0L) lpDateStr = new char[(int) t5];

int cchDate = (int) t5;

// Step 3: call API function

int ret = Kernel32DLL.INSTANCE.GetDateFormat (Locale, dwFlags,

lpDate, lpFormat, lpDateStr, cchDate);

// Step 4: update environment (memory & eax register)

long value = ret;

register.mov("eax", new LongValue(value));

memory.setText(this, t4, new String(lpDateStr));

}

}

34

Chapter 7

Implementation

The implementation of APIs stub generation is written by Python, Java and Velocity
script language in about 6000 lines. The current system divided into 3 modules: crawler,
extractor and generator. The conformance testing module is felt for future work.

7.1 Module Collector

The Windows API and structure description are published officially in the website of Mi-
crosoft Developer Network (MSDN). However, the collection of document is not prepared
beforehand, therefore data preparation and pre-processing stage are required.

Windows API documents

• MSDN website provides several pages, which contain a list of Windows API doc-
ument addresses 1 2. By observation, the list of APIs in such pages are not the
same, and there also exist API that are not listed. Even API descriptions exists
somewhere in MSDN website, collecting all published documents is not easy. There
are also Windows APIs whose document are left unpublished, and we ignore such
APIs.

• Current solution is starting from the web-page that contains the largest number of
APIs. The idea is applying web crawling technique (e.g., web auto navigation and
via Google Search API) to collect API documents, and pre-processing data tech-
nique (e.g., data cleaning and data transformation) to remove noise and transform
documents into appropriate forms for analysis.

• Further solution (future works) is crawling from multiple sources, and then data
integration approach is applied to combine/remove duplicate documents.

1Windows API Index
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

2Functions in Alphabetical Order
https://msdn.microsoft.com/en-us/library/aa383688%28VS.85%29.aspx

35

https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383688%28VS.85%29.aspx

Structure definition document

• The document for structure descriptions are collected from the structure’s URL
address in API’s parameter explanation of API description. However, this approach
may fail due to missing the link between structure’s document and API’s document.
There are many structure definitions do not have their document published in MSDN
website.

• Further solution is using header files in Windows Software Development Kits (Win-
dows SDK). The header files contains nearly complete Windows API prototypes,
type definition and constants. However, the number of header files are very big,
thousands of header files, millions of codes line and additional notation compared
to original C (the exactly quantity depends on version of SDK). To obtain all in-
formation from these files, the program which is similar to a compiler is required.
Moreover, head files contain API prototypes, but not other API descriptions.

In summary, this module takes three responsibilities: collecting Window’s API descrip-
tion, collecting structure description and cleaning noise data. The descriptions are stored
offline as HTML format files. We collected 1802 Windows API descriptions, 496 structure
descriptions and 1 description for renaming primitive types 3. This module is implemented
in Python language.

7.2 Module extractor

The aim of this module is to extract API information from HTML document (semi-
structure) and stored them into an structure format (hierarchical relationship format),
which is implemented as a nest-diction in Python.

Figure 7.1: API Information Format

3Windows Data Types
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx

36

https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx

Regular expression is used to extract DLL library’s name, API name, parameter’s name,
parameter’s SAL, parameter’s description.

Parameter type identification in Java is inferred from the parameter identification in
C and rules constructed by coding convention from MSDN. The rules are extracted from
explicit rules for primitives (e.g., #define long LONG) and implicit rules for pointers
(prefix P- or LP- stands for pointer).
For example,

• long = LONG = DWORD = LCID = LCTYPE = COLORREF = . . .

• int* = INT* = PINT = LPINT = . . .

In implementation, for analyzing easier and keeping consistency preservation, a weighted
directed graph to express relation between type identification is implemented.

Figure 7.2 shows a part of the graph.

Figure 7.2: Sample of type graph

Pointer parameter classifier : The parameter is determined whether or not based on pa-
rameter type identification in C. If the type’s identification is “P-, LP-, -*”, the parameter
is a pointer. To decide whether pointer parameter is buffer pointer, the cosine similarity
is used. We compute the similarity of the first sentence in parameter description with
base sentence “ the parameter points to a buffer”. If the similarity is greater than 0.83,
the pointer type is considered as a buffer pointer.

Memory length parameter classifier : Naive Bayes learning is used to build a model from
122 parameter instances with 5 features (see 5.3). Training data are prepared manually.
We observe that the document often follow a similar writing style, so data training set can
be assumed to have the same feature distribution as the entire database. The accuracy
of the model is about 95% by 3-cross validation in the training data.

7.3 Module generator

This module takes three responsibilities.

37

• Generating class for structure definition.

• Generating interface for DLL proxy

• Generating API Stub.

The approach of code generation is loading specifications from the extractor model into
objects, and filling specifications into a dynamic template. This module is implemented in
Java and Velocity script language. Velocity 4 is a template engine, which allow embedded
script into a template to control the code generation process.

For a very simple example with Beep function (generates simple tones on the speaker):

BOOL WINAPI Beep(

In DWORD dwFreq,

In DWORD dwDuration

);

Its template is defined as below.

// Template in velocity script language

public class $func.fname extends API {

public $func.fname () {

super();

NUM_OF_PARMS = $func.fargs.size();

}

@Override

public void execute() {

long t1 = this.params.get(0);

long t2 = this.params.get(1);

$func.fargs1.type $func.fargs1.name = t1;

$func.fargs2.type $func.fargs2.name = t2;

int ret = ($func.flib).$func.fname($func.fargs1.name,

$func.fargs2.name);

$register.mov("eax", new LongValue(ret));

}

}

In above template, $func stands for object API specification (e.g., $func.fargs.size()
stands for the number of paramters, $func.flib stands for the library name, $func.fargs1.name
stands for the first parameter name). The generated API stub is show as below.

4The Apache Velocity Project
http://velocity.apache.org/

38

http://velocity.apache.org/

public class Beep extends Kernel32API {

public Beep () {

super();

NUM_OF_PARMS = 2;

}

@Override

public void execute() {

long t0 = this.params.get(0);

long t1 = this.params.get(1);

int dwFreq = t0;

int dwDuration = t1;

int ret = Kernel32DLL.INSTANCE.Beep(dwFreq, dwDuration);

register.mov("eax", new LongValue(ret));

}

}

7.4 Experiments

We extend the current version of BE-PUM developed at HCMUT with the generated
API stub. The extended BE-PUM can analyze the malwares that are unsupported by the
current BE-PUM.

Generated APIs stub

Based on about 1800 APIs description, our system generates:

• About 450 type definition classes

• 25 interface proxies

• About 1300 APIs stub.

However, our automatic stub generation fails on about 500 APIs, due to the presence of
function pointers, void pointers and unknown parameters. In principle, function and void
pointer can be resolved by copying the whole enviroment in BE-PUM to the working area
of Windows API. However, this is heavy both in implementation and efficiency. Therefore,
the current implementation choice is to copy in an on-demand way to reduce the size of
copied data. For unknown parameters, we need to refine both module collector and NLP
on API descriptions.

39

Experiments in unsupported malwares

The experiments are conducted with the unsupported malwares and the extensive version
of BE-PUM. The unsupported malwares are real malware and unsupported by the current
BE-PUM. In the extensive version of BE-PUM, we add new generated APIs stub and
replaced current APIs stub. The result shows that the extensive BE-PUM can discover
more nodes and edges in CFG of the unsupported malwares than the current version.

Windows XP SP3 32 bits and 2GB RAM are used for the experiments. Table 7.1 below
compares the number of nodes, edges, running time between the extensive and current
BE-PUM. The current BE-PUM may fail due to unsupported APIs stub, unknown x86
instructions or timeout. The last column shows reasons why the explosion of nodes occur,
because the unsupported APIs are supported in the extensive version.

Virus
Extensive BE-PUM Current BE-PUM

New supported APIs
Time Nodes Edges Time Nodes Edges

0060e428f79cbe0408c1e4
6c8654ae10836d6d8883e
dc9279d9d32e48413e574

45165ms 6869 7086 8372ms 70 69
GetSystemTimeAsFileTime
MapVirtualKey

00787b7f34e8c30773903
6f03635f53d584f52ca632
b3598323405e6c5dd0984

116187ms 6617 7142 5698ms 64 63 RegisterWindowMessage

00b917d7a316390c1b995
e334628dcecdcfd6ae5f90
85994874fc331f5e3811f

46276ms 6996 7333 9624ms 69 68 CreatePen

00bcd33e9fb5ef7b9f2e54
b831d8166f46fbebf5b943
d827aa6dd59dec1358d7

245003ms 3315 3533 207528ms 186 209 HeapSetInformation

04542a21267a5fe668e42
af9b39d492e90889922fc
20453b7abfb9ffe128497b

5578ms 337 357 2113ms 34 34 VirtualLock

Table 7.1: Comparison of CFG construction

Experiments in supported malwares

The experiments are conducted with the supported malwares in both the extensive and
current version of BE-PUM. The supported malwares are real malware and supported by
the current BE-PUM. The purpose of the experiments is to verify whether the generated
APIs stub give the same result as the manual APIs stub.

40

Chapter 8

Summary and Future Work

8.1 Conclusion and Current Limitation

Void pointer: In C, a void pointer is a generic pointer, and a void pointer variable can
store the address of any kind of a variable. The compiler does not know what kind of
objects a void pointer really points to. To do pointer arithmetic, what kind of objects
pointed by pointer must be determined beforehand.

For example: general quick sort function is defined as below 1

void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

“base” is the address of an array, “nmemb” is the number of elements in the array,
“size” is the size of each element, and “compar” is a pointer to a function that compares
two elements. The qsort function (quick sort function) is considered as below.

int cmpfunc (const void * a, const void * b) {

return (*(int*)a - *(int*)b);

}

int main() {

int values[] = { 88, 56, 100, 2, 25 };

qsort(values, 5, sizeof(int), cmpfunc);

return 0;

}

The kind of objects pointed by the void pointer in the above example is an array of integers.
This occur in the same way with Windows API containing a void pointer parameter.
From a binary analysis, we do not know what kind of object is pointed by void pointer
parameter. Therefore, we do not know how many cells of simulation memory need to be

1C library function qsort()
http://www.tutorialspoint.com/c_standard_library/c_function_qsort.htm

41

http://www.tutorialspoint.com/c_standard_library/c_function_qsort.htm

copied to instantiate parameter objects for invoking API via JNA. For some APIs, even
if a parameter is a void pointer, what kind of objects pointed to can be understood from
its description.

Function pointer: Points to some code exists in a program. As in the above qsort
example, “compar” is a pointer to a function that compares two elements. However, from
binary analysis we do not know anything about the content of function pointed. As the
same situation with the void pointer, we do not know how many cells of simulation’s
memory need to be copied to instantiate parameter objects for invoking API via JNA.

Due to such difficulty, Windows API contains a void pointer or a function pointer (i.e.,
callback function) are not generated at the moment.

The number of APIs: There are more than 4000 published Windows API document,
however we collect only about 1800 APIs. Besides, the collected descriptions for structure
are not complete.

8.2 Related Works

Automatically transforming from natural language description to programs attracts many
attentions. Many approaches based on NLP to parse the semantic from natural language
to a specific programming language, such as commands to robots [17], legal sentences to
logic forms [18] and description to if-then-else code [19]. Another direction is programming
by based examples, program is generated based on specifications extracted from given
examples [20], and one of applications in real world is FlashFill function in Microsoft
Excel 2013.

In our research, API description has specific characteristic, such as technique words
and the mixture of natural language and C programming code. Furthermore, API stub
generation does not require a full understanding. Therefore, we approach APIs stub
generation by extracting API specifications from the its description, then fill specifications
into dynamic templates. Because of special properties, the approach applies simple NLP
techniques, but can achieve a good efficiency.

8.3 Future Work

To verify generated API stub, the conformance testing technique will be applied.

• Whether API specification extracted from API description is correct or not? Testing
technique can be used to dis-ambiguous the results from NLP process. For example,
to check whether memory length parameter is correct, we can generated programs,
and execute them to see the result. However, we need assumptions about valid
inputs of all parameters.

• Whether generated API stub is correct. We can compare the result after API call
between BE-PUM and a debugger (e.g., OllyDbg and Intel-Pin). However, there
are many difficulties, such as valid input condition and dependency between API

42

specifications. Besides, we have to obtain the value from a debugger at the time
after calling API as an engineering difficulty.

43

Bibliography

[1] P. Szor, The Art of Computer Virus Research and Defense. Addison-Wesley Profes-
sional, 2005.

[2] F. Song and T. Touili, “Pommade: Pushdown model-checking for malware detec-
tion,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software En-
gineering, ESEC/FSE 2013, (New York, NY, USA), pp. 607–610, ACM, 2013.

[3] A. Holzer, J. Kinder, and H. Veith, “Using verification technology to specify and
detect malware,” in Proceedings of the 11th International Conference on Computer
Aided Systems Theory, EUROCAST’07, (Berlin, Heidelberg), pp. 497–504, Springer-
Verlag, 2007.

[4] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting malicious code
by model checking,” in Proceedings of the Second International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, DIMVA’05, (Berlin,
Heidelberg), pp. 174–187, Springer-Verlag, 2005.

[5] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive detection of com-
puter worms using model checking,” IEEE Transactions on Dependable and Secure
Computing, vol. 7, pp. 424–438, Oct 2010.

[6] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh, “Bird: Binary interpretation using
runtime disassembly,” in Proceedings of the International Symposium on Code Gen-
eration and Optimization, CGO ’06, (Washington, DC, USA), pp. 358–370, IEEE
Computer Society, 2006.

[7] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum, “Codesurfer/x86—a plat-
form for analyzing x86 executables,” in Proceedings of the 14th International Confer-
ence on Compiler Construction, CC’05, (Berlin, Heidelberg), pp. 250–254, Springer-
Verlag, 2005.

[8] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent, “The bincoa
framework for binary code analysis,” in Proceedings of the 23rd International Con-
ference on Computer Aided Verification, CAV’11, (Berlin, Heidelberg), pp. 165–170,
Springer-Verlag, 2011.

44

[9] S. Bardin, P. Baufreton, N. Cornuet, P. Herrmann, and S. Labb, “Binary-level testing
of embedded programs,” in 2013 13th International Conference on Quality Software,
pp. 11–20, July 2013.

[10] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code extractor for
packed executables,” in Proceedings of the 2007 ACM Workshop on Recurring Mal-
code, WORM ’07, (New York, NY, USA), pp. 46–53, ACM, 2007.

[11] T. Izumida, K. Futatsugi, and A. Mori, “A generic binary analysis method for mal-
ware,” in Proceedings of the 5th International Conference on Advances in Informa-
tion and Computer Security, IWSEC’10, (Berlin, Heidelberg), pp. 199–216, Springer-
Verlag, 2010.

[12] N. M. Hai, M. Ogawa, and Q. T. Tho, Obfuscation Code Localization Based on CFG
Generation of Malware, pp. 229–247. Cham: Springer International Publishing, 2016.

[13] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc., 1 ed.,
1997.

[14] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning.
The MIT Press, 2012.

[15] P. J. Parag Kulkarni, Artificial Intelligence: Building Intelligent Systems. PHI Learn-
ing Pvt. Ltd., 1 ed., 2015.

[16] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,
pp. 385–394, July 1976.

[17] R. J. Kate, Y. W. Wong, and R. J. Mooney, “Learning to transform natural to formal
languages,” in Proceedings of the 20th National Conference on Artificial Intelligence
- Volume 3, AAAI’05, pp. 1062–1068, AAAI Press, 2005.

[18] M. Nakamura, S. Nobuoka, and A. Shimazu, “Towards translation of legal sentences
into logical forms,” in Proceedings of the 2007 Conference on New Frontiers in Arti-
ficial Intelligence, JSAI’07, (Berlin, Heidelberg), pp. 349–362, Springer-Verlag, 2008.

[19] C. Quirk, R. Mooney, and M. Galley, “Language to code: Learning semantic parsers
for if-this-then-that recipes,” in Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL-15), (Beijing, China), pp. 878–888, July
2015.

[20] S. Gulwani, “Programming by examples (and its applications in data wrangling),” in
Verification and Synthesis of Correct and Secure Systems (J. Esparza, O. Grumberg,
and S. Sickert, eds.), IOS Press, 2016.

45

	Introduction
	Preliminaries
	Windows API
	Java Native Access (JNA)
	Bayesian Learning and Sentence Similarity

	BE-PUM System
	What is BE-PUM
	BE-PUM Architecture
	API Stub in BE-PUM

	Observation
	Stub and Path Condition
	Required Windows API Specification
	Description Format of Windows API Specification

	Specification Extraction
	API Identification
	API Parameters
	Buffer Pointer and Memory Length Parameter

	Stub Generation
	Class for Structure Definition
	Interface for DLL proxy
	API Stub Class

	Implementation
	Module Collector
	Module extractor
	Module generator
	Experiments

	Summary and Future Work
	Conclusion and Current Limitation
	Related Works
	Future Work

