
Master’s Thesis

Automatically extracting the correspondence
between the natural language and the pseudo-code

descriptions of instruction set manuals

2010432 NGUYEN Thi Hai Yen

Supervisor Prof. Mizuhito Ogawa
Examiners Prof. Minh Le Nguyen

Prof. Kazuhiro Ogata
Associate Prof. Naoya Inoue

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

September, 2023

Abstract

Instruction set architecture defines a CPU and its execution. When an automated
assistant tool is considered for binary code, the formal semantics of an instruction set
is required as the fundamental basis. However, often the instruction set is large, which
requires heavy engineering efforts on specifying the formal semantics. For example, Intel
x86 is a CISC architecture and has several thousand instructions. ARM (Advanced RISC
Machine) is a RISC architecture that has few hundred instructions, but it has Cortex-A,
Cortex-M, and Cortex-R series and each has 10 to 20 variations of chipsets. To overcome
such a situation, one possibility is to automatically extract formal semantics from an
instruction set manual, written in English. For instance, x86 has Intel developer’s manual,
and each chipset of ARM has a reference manual, which is open to the public.
However, the interpretation of English description to a formal description, e.g., pro-

gramming language, is not easy to obtain, since there are no explicit data set to train
AI-related methods. Fortunately, often an instruction set manual has both English and
pseudo-code descriptions for specifying the same execution step of instruction.
This thesis proposes how to automatically find the correspondence between English

and pseudo-code descriptions in the instruction set manual, which will be the first step to
automatically obtain interpretation rules from English to a programming language. We
first limit ourselves to data processing and the load/store instructions since they are quite
uniform and cover 90% of instructions.
We first parse the English and the pseudo-code descriptions. For English sentences, we

use the Stanford parser. For pseudo-code descriptions, we design 48 grammar rules for
ANTLR. Next, we remove explanations in English and default declarations in pseudo-
code to extract essentially describing the operation and the flag update. Lastly, we find
the correspondence between the extracted parts of English and pseudo-code descriptions.
We mostly work on ARM and collect 2475 instruction descriptions over 39 chipsets, in

which 2251 instructions belong to either the data processing or the load/store instruction
groups. Among them, we randomly select the 30 results of each group instruction of the
detected correspondence and examine them manually. As far as our selection, our method
correctly extracts the correspondence.
Keywords— ARM Cortex-A, ARM Cortex-R, ARM Cortex-M, Instruction set, Cor-

respondence, ARM architecture

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Pro-
fessor Mizuhito Ogawa. Thanks for his dedicated guidance and help during my time
studying at Japan Advanced Institute of Science and Technology. In particular, during
the process of research and writing the thesis, he took the time to give me comments and
suggestions to prepare at the best. I greatly admire his careful and deliberate working
style.

Next, I would like to thank Professor Tu Minh Phuong is professor at Posts and Telecom-
munications Institute of Technology, who recommended me the the Collaborative Edu-
cation Program between PTIT and JAIST. He gave me useful advice while studying at
PTIT and at JAIST.

I would like to thank my friends at JAIST. Thank you to everyone who has helped
me have interesting experiences in studying and in everyday life.

Most significantly, I would like to thank my family from the bottom of my heart. My
family is a great source of motivation that makes me always strive harder and keeps me
working hard. They are everything to me.

1

Contents

List of Figures ii

List of Tables 0

1 Introduction 1

2 Instruction set manuals 5
2.1 Instruction set . 5
2.2 ARM instruction sets . 7

2.2.1 ARM architecture versions, variants and profiles 7
2.2.2 Hierachy of ARM Processors . 7

3 Natural language processing techniques 12
3.1 Syntactic parsing . 12
3.2 TF-IDF . 17
3.3 Cosine similarity measure . 18
3.4 Association Rule Mining . 19

3.4.1 Apriori Algorithm . 19
3.4.2 FP-Growth (Frequent Pattern Growth) Algorithm 19

4 Observation of automatically extracting the correspondence between
the natural language and the pseudo-code descriptions 20
4.1 Data collection . 20
4.2 ARM Specification . 22

4.2.1 Components of ARM Architecture 22
4.2.2 Instruction group . 24

4.3 Observation of automatically extracting the correspondence between the
natural language and the pseudo-code descriptions 26

5 Syntactic parsing 31
5.1 Syntax parsing of the natural language description 31
5.2 Syntax parsing of pseudo-code . 33

6 Automatic section extraction 38
6.1 Section definition . 38
6.2 Instruction analysis . 45

6.2.1 Natural language analysis . 45
6.2.2 Pseudo-code analysis . 47

7 Automatically extracting the correspondence 49
7.1 Identify correspondence between the natural language description and pseudo-

code . 49
7.2 Comprehensive example . 51

8 Experiments 58
8.1 Results . 58
8.2 Discussion . 64

9 Conclusion 65
9.1 Conclusion . 65
9.2 Future directions . 66

A Grammar rules 69

List of Figures

2.1 A part of ARM instruction set . 11

3.1 Example of a sentence syntax tree . 15
3.2 Example of Abstract Syntax Tree . 16

4.1 The approach of automatically extracting correspondence 27
4.2 Overview of automatically extracting correspondence process 29

5.1 Example of syntax tree of the description of ADC (immediate) instruction 33
5.2 Example of the syntax tree of pseudo-code of ADC (immediate) instruction

(execution section) . 37

6.1 Overview of automatic section extraction 39
6.2 Cluster instruction group . 40
6.3 Order of extraction of sections . 43
6.4 Illustrate the order in which sections are extracted of data processing in-

structions groups . 44
6.5 Illustrate the order in which sections are extracted of Load/store (multiple)

instructions group . 45

7.1 Process of correspondence . 50
7.2 Flag update section of pseudo-code of instruction ADC (immediate) 53
7.3 Main operation section of pseudo-code of instruction ADC (immediate) . . 54
7.4 Result section of pseudo-code of instruction ADC (immediate) 55
7.5 Execution section of pseudo-code of instruction ADC (immediate) 56
7.6 Example of the correspondence of instruction ADC (immediate) 57

List of Tables

2.1 Hierarchy of ARM Processors . 10

4.1 The specification of instruction Add with Carry (immediate) 22

5.1 Syntax notations in the syntax tree . 32

6.1 Common expressions for flags update section 47

7.1 The specification of instruction Add with Carry (immediate) 52

8.1 Number of collected instructions and selected instructions 59
8.2 Example a ignored instruction . 60
8.3 Inconsistency of flags update section . 61
8.4 Example a inconsistency case . 62
8.5 Example a inconsistency case . 63

Chapter 1

Introduction

Motivation

Instruction set architecture defines a CPU and its execution. When an automated as-
sistant tool is considered for binary code, the formal semantics of an instruction set is
required as the fundamental basis. Formal semantics is a method of studying meaning
that has its roots in logic, philosophy of language, and linguistics.[1]. However, often the
instruction set is large, which requires heavy engineering efforts on specifying the formal
semantics. For example, Intel x86 is a CISC architecture and has several thousand in-
structions. ARM (Advanced RISC Machine) is a RISC architecture that has few hundred
instructions, but it has Cortex-A, Cortex-M, and Cortex-R series and each has 10 to 20
variations of chipsets. To overcome such a situation, one possibility is to automatically
extract formal semantics from an instruction set manual, written in English. For instance,
x86 has Intel developer’s manual, and each chipset of ARM has a reference manual, which
is open to the public.

Almost all current smartphones and tablets, even some laptop computers use ARM pro-
cessors. ARM (Advanced RISC Machine) is a company owned by Arm Holdings, Ltd.
developed processors based on the RISC (Reduced Instruction Set Computer) architec-
ture. The ”R” in ARM stands for RISC - Simplified Instruction Set Computer. There
are several ARM variations in various lines, such as Cortex-A, Cortex-M, and Cortex-R.

Extracting ARM formal semantics refers to the process of formally and mathematically
capturing the meaning and behavior of ARM instructions to present the semantics of
ARM instructions clearly and without ambiguity using defined rules, logic, and mathe-
matical notation. The interpretation of English description to a formal description, e.g.,
programming language, is not easy to obtain, since there are no explicit data set to train
AI-related methods. Fortunately, often an instruction set manual has both English and
pseudo-code descriptions for specifying the same execution step of instruction.
This thesis proposes how to automatically find the correspondence between English and

1

pseudo-code descriptions in the instruction set manual, which will be the first step to au-
tomatically obtain interpretation rules from English to a programming language. Specif-
ically, the thesis extracts a sentence in the natural language description that corresponds
to any statement or block of statements in pseudo-code, and conversely, a pseudo-code
statement corresponds to one or more sentences in the natural language description. We
first limit ourselves to data processing and the load/store instructions since they are quite
uniform and cover 90 % of instructions.

After discovering the correspondence between description and pseudo-code, we can de-
velop research to automatically extract ARM formal semantics, especially Java source.
The goal of extracting ARM formal semantics is to reduce the tedious human effort in-
volved in tool development, which includes symbolic execution. In other words, use the
generated results of ARM formal semantics extraction to develop a dynamic symbolic ex-
ecution tool. Symbolic execution is a program analysis technique that allows a systematic
study of program behavior. Rather than running a program with specific inputs, sym-
bolic execution uses symbolic values to represent the possible range of input. Symbolic
execution can be used for various purposes, including software testing, verification, and
vulnerability detection. Using dynamic symbolic execution to reconstruct the control-flow
graph (CFG) to investigate indirect jumps and understand malware behavior.

Furthermore, the discovery of the mapping between natural language descriptions and
their corresponding pseudo-code representations promises tremendous potential for im-
proving the automation, optimization, and interpretation of instructions in a wide range
of computational domains. Since then, there has been a growing desire to equip machines
with the ability to read and interpret the complexity of human language.

Overview

The thesis proposes a method to find the correspondence between the natural language
description and pseudo-code of the instruction set, called automatic section extraction.
The thesis implemented on processors implementing the Cortex-M, Cortex-A, and Cortex-
R series architectures. We first parse the English and the pseudo-code descriptions. For
English sentences, we use the Stanford parser. For pseudo-code descriptions, we design
48 grammar rules for ANTLR. Next, we remove explanations in English and default
declarations in pseudo-code to extract essentially describing the operation and the flag
update. Lastly, we find the correspondence. The main idea of finding the correspondence
between the natural language description and the pseudo-code of the instructions is to
break the description and pseudo-code into sections, then label those sections, and finally
map them together. The first thesis applies techniques in natural language processing to
automatically extract the main operation section and the flag update section. From the
main operations section, the thesis further extracts the results section and the execution

2

section, and from the execution section, it further extracts some subsections, function
names, operators, etc., if possible.

We mostly work on ARM and collect 2475 instruction descriptions over 39 chipsets,
in which 2251 instructions belong to either the data processing or the load/store in-
struction groups. These instructions are collected from the Arm Developer Reference
Manuals. Among them, we randomly select the 30 results of the detected correspondence
and examine them manually. As far as our selection, our method correctly extracts the
correspondence. The work also aims to use a generalization method that can be deployed
on other architectures such as x86 and MIPS.

Thesis Outline

This thesis is composed of 9 chapters. The chapters are summarized as follows:

• Chapter 1 Introduction: Introduction to motivation, goals, and solution ideas.

• Chapter 2 Instruction set manuals: In this chapter, the thesis presents the defini-
tion of the instruction set, types of the instruction set and some processor architec-
tures or instruction set architectures (ISAs), especially ARM processor architecture.

• Chapter 3 Natural language processing techniques: This chapter presents some
existing natural language processing techniques used including Syntactic parsing,
methods to convert text into vectors, similarity measures between sentences, and
the library that uses them.

• Chapter 4 Observation of automatically extracting the correspondence between
the natural language and the pseudo-code descriptions: This chapter presents an
observation of automatically extracting the correspondence between the natural
language and the pseudo-code descriptions.

• Chapter 5 Syntactic parsing: In this chapter, the thesis presents a syntactic analysis
of the natural language description of instruction, as well as procedures for the
creation of grammar rules for abstract parsing that represent the structure of pseudo-
code.

• Chapter 6 Automatic section extraction: In this chapter, the thesis describes in de-
tail how sections of natural language description and pseudocode are automatically
extracted.

• Chapter 7 Automatically extracting the correspondence: In this chapter, the thesis
presents a method to identify the correspondence between natural language descrip-
tion and pseudo-code and some manual testing strategies. The thesis also gives a
comprehensive example to illustrate the steps of section extraction and correspond-
ing extraction.

3

• Chapter 8 Experiments: This chapter presents the results that the thesis has ex-
perimented. This chapter presents the results that the thesis has experimented. The
thesis experimented with the introduced method for three ARM Cortex processors.

• Chapter 9 Conclusion: In this chapter, the thesis summarizes the main contri-
butions of the thesis, and some future works are also mentioned to suggest some
directions to improve and extend our proposed method to other architecture such
as x86, MIPS, etc.

4

Chapter 2

Instruction set manuals

In this chapter, the thesis presents the definition of the instruction set, types of instruction
set and some processor architectures or instruction set architectures (ISAs), especially
ARM processor architecture.

2.1 Instruction set

Instruction set architecture (ISA) or computer architecture defines how the CPU is con-
trolled by the software[2]. The ISA specifies the supported data types, registers, how the
hardware manages main memory, key features, what instructions can be executed by a
microprocessor, and the input/output model of several ISA implementations. The ISA
can be expanded to include new instructions or other functions and to support larger
addresses and data values. Instruction set architecture refers to the overall design of the
CPU, including the instruction set, the registers, the memory model, and the interrupt
handling.

Some examples of instruction set architectures are x86, ARM, MIPS, PowerPC, SPARC.

There are many different types of instruction set architectures:

• Complex Instruction Set Computer (CISC): The instruction set in CISC
architectures is larger and more complex, with more operands. x86 is an example
of a CISC architecture.

• Reduced Instruction Set Computer (RISC): The instruction set in RISC ar-
chitectures is small and simple, with few operands. ARM and MIPS are examples
of RISC architectures.

• Very Long Instruction Word (VLIW): Some examples of VLIW architectures
include EPIC and MMX.

5

• Explicitly Parallel Instruction Computing (EPIC): Some examples of EPIC
architectures include Itanium and PA-RISC.

• Minimal Instruction Set Computers (MISC): Some examples of MISC archi-
tectures include CLU and PICO

The instruction set is a collection of machine-level instructions that a processor can un-
derstand and execute. It defines the operations that the processor can perform, the format
of the instructions, the encoding of the instructions, and the behavior of the processor
when executing each instruction. Instruction set refers to the specific set of commands
that a particular processor or computer architecture supports, including the opcodes (op-
eration codes), operands, and addressing modes.

There are some examples of instructions in the instruction set of x86 architectures [3]:

• Arithmetic instructions:

ADD: This instruction adds two values together.

SUB: This instruction subtracts one value from another.

MUL: This instruction multiplies two values.

• Logic instructions:

AND: This instruction performs a bitwise logical AND operation between two
values.

OR: This instruction performs a bitwise logical OR operation between two val-
ues.

XOR: This instruction performs a bitwise logical XOR operation between two
values.

NOT: This instruction performs a bitwise logical NOT operation on a value.

• Control Transfer Instructions:

JUMP: Jumps to a specified memory address or label.

CALL: Call a procedure or subroutine

• String instructions:

LODSB/W/D/Q.

STOSB/W/D/Q

MOVSB/W/D/Q

SCASB/W/D/Q

CMPSB/W/D/Q

6

2.2 ARM instruction sets

ARM architecture (Advanced RISC Machines) is a RISC architecture developed by ARM
Limited. The ARM architecture integrates key features commonly found in RISC archi-
tectures. These include a spacious and consistent register file, a load/store architecture
where data processing operations are performed exclusively on register contents rather
than memory contents, and straightforward addressing modes that rely on register values
and instruction fields for load/store addresses. Moreover, the ARM architecture offers
additional advantages such as instructions that combine shifts with arithmetic or logi-
cal operations, addressing modes that automatically increment or decrement to optimize
program loops, load and store multiple instructions to enhance data throughput, and the
ability to conditionally execute many instructions to maximize execution speed [4].

2.2.1 ARM architecture versions, variants and profiles

The ARM instruction set architecture has developed significantly. The instruction set
has nine major versions, the number versions 1 to 9. Some examples of ARM architec-
ture variants include ARMv4, ARMv4T, ARMv5T, ARMv5TE, ARMv5TEJ, ARMv6,
ARMv7M, ARMv7A, ARMv7R and more.

Since ARMv7, each profile refers to a subset of features and instructions designed to
specific application domains or system requirements. There are three profiles:

• Application profile (A-profile): This profile is designed for high-performance appli-
cations running on complex operating systems such as Linux and Android. Arm
Cortex-A processor family or Cortex-A series and Cortex-X series implement the
A-profile of ARM architecture.

• Real-time profile (R-profile): This profile is designed for high-performance real-time
applications such as hard disk controllers and networking equipment media players.
Arm Cortex-R processor family or Cortex-R series implements the R-profile of ARM
architecture.

• Microcontroller profile (M-profile): This profile is designed for low-power devices
embedded systems such as IoT devices. Arm Cortex-M processor family or Cortex-
M series implements the M-profile of ARM architecture.

2.2.2 Hierachy of ARM Processors

The ARM architecture has had various versions and profiles, each with its own set of
features and capabilities. Here is a summary of the different versions and profiles:

• ARMv1, ARMv2, and ARMv3: These are early architectures of the ARM processor.

7

• ARMv4, ARMv4T, ARMv5T, ARMv5TE, ARMv5TEJ, and ARMv6: These archi-
tectures are implemented by ARM classic processors. Starting with ARMv4, they
support the ARM instruction set. ARMv4T, ARMv5T, ARMv5TE, ARMv5TEJ,
and ARMv6 additionally support the Thumb instruction set. ARMv6-M is a sub-
set of ARMv7-M. From ARMv6 onwards, these architectures not only support the
ARM and Thumb instruction sets but also the Thumb-2 instruction set.[5]

• ARMv7: ARMv7 provides three profiles: ARMv7-A, ARMv7-R, and ARMv7-M.
These profiles are implemented by Cortex-A, Cortex-R, and Cortex-M processors,
respectively. ARMv7-M does not support the ARM instruction set (An ARMv7E-
M implementation is an ARMv7-M implementation that contains the DSP exten-
sion).[6]

• ARMv8: Similarly, ARMv8 also provides three profiles: ARMv8-A, ARMv8-R,
and ARMv8-M. Currently, ARMv9 provides ARMv9-A. ARMv8-A and ARMv8-R
support the A32 and T32 instruction sets. ARMv8-M supports the execution of
T32 instructions. Additionally, ARMv8-A and ARMv9-A support the A64 instruc-
tion set. Depending on the execution state (AArch64 or AArch32), ARMv8-A can
support A64, A32, or T32 instruction sets. The AArch64 state supports the A64
instruction set, while the AArch32 state supports the A32 and T32 instruction sets
[7].

The ARM instruction set comprises a collection of 32-bit instructions, while the Thumb
instruction set consists of 16-bit instructions and is a subset of the ARM instruction set.
The Thumb-2 instruction set is an extension of the original Thumb instruction set with
many 32-bit instructions. It combines the advantages of code density of Thumb code
with the performance of the full 32-bit ARM instruction set [4]. In previous versions of
the ARM architecture, the T32 and A32 instruction sets were referred to as the Thumb
instruction set and the ARM instruction set, respectively. The A64 and A32 instruction
sets use 32-bit instruction encodings, while the T32 instruction set uses both 16-bit and
32-bit instruction encodings.

There are also instruction set architecture extensions such as Jazelle, ThumbEE, Floating-
point, and Advanced SIMD.

The table 2.1 details the processors on which each architecture is implemented. [8] [9],
[10]

ARM ar-
chitecture

Profile Processor Instruction set

ARMv4 Classic ARM instruction set

8

ARMv4T Classic
ARM instruction set
Thumb instruction set

ARMv5T Classic
ARM instruction set
Thumb instruction set

ARMv5TE Classic
ARM instruction set
Thumb instruction set

ARMv5TEJ Classic
ARM instruction set
Thumb instruction set

ARMv6 Classic
ARM instruction set
Thumb instruction set
Thumb-2 instruction

ARMv6-M Microcontroller ARM Cortex-M0, ARM
Cortex-M0+, ARM Cortex-M1 Thumb instruction set

ARMv7-A Application ARM Cortex-A5, ARM
Cortex-A7, ARM Cortex-
A8, ARM Cortex-A9, ARM
Cortex-A12, ARM Cortex-A15,
ARM Cortex-A17

ARM instruction set
Thumb instruction set
Thumb-2 instruction

ARMv7-R Real-time ARM Cortex-R4, ARM
Cortex-R5, ARM Cortex-R7,
ARM Cortex-R8

ARM instruction set
Thumb instruction set
Thumb-2 instruction

ARMv7-M Microcontroller ARM Cortex-M3
Thumb instruction set
Thumb-2 instruction

ARMv7E-M Microcontroller ARM Cortex-M4, ARM
Cortex-M7 Thumb instruction set

Thumb-2 instruction

9

ARMv8-A Application Cortex-A32, ARM Cortex-
A34, ARM Cortex-A35, ARM
Cortex-A53, ARM Cortex-
A57, ARM Cortex-A72, ARM
Cortex-A73

A32 instruction set
T32 instruction

A64 instruction set

ARMv8.2-A Application Cortex-A55, ARM Cortex-
A65, ARM Cortex-A75, ARM
Cortex-A76, ARM Cortex-A77,
ARM Cortex-A78

A32 instruction set
T32 instruction

A64 instruction set

ARMv8-R Real-time ARM Cortex-R52, ARM
Cortex-R82

A32 instruction set
T32 instruction

A64 instruction set

ARMv8-M Microcontroller ARM Cortex-M23, ARM
Cortex-M33

T32 instruction

ARMv9-A Application Cortex-A510, A710 and A715
A32 instruction set
T32 instruction

A64 instruction set

ARMv9.2-A Application Cortex-A520 and A720
A32 instruction set
T32 instruction

A64 instruction set

Table 2.1: Hierarchy of ARM Processors

Figure 2.1 shows a part of the ARM instruction set [11].

10

Figure 2.1: A part of ARM instruction set

11

Chapter 3

Natural language processing
techniques

This chapter presents some existing natural language processing techniques used including
Syntactic parsing, methods to convert text into vectors, similarity measures between
sentences, and the library that uses them.

3.1 Syntactic parsing

Parsing involves analyzing the structure of a symbol sequence. This is possible with sim-
ple language, computer languages and data structures. Parsing is essential in many fields,
including natural language processing, programming language compilers, and data pro-
cessing systems. The purpose of parsing is to discover the meaning and syntactic validity
of a sequence of symbols using a specific formal grammar. In natural language processing,
parsing is used to examine sentence structure and interpret meaning. In programming
language compilers, parsing is a technique used to assess the syntactic correctness of pro-
grams and examine their overall structure. And in data processing systems, parsing is
used to analyze the structure of data and identify its meaning.

Parsing should follow the rules of formal grammar. Context-Free Grammar (CFG) is
the most common grammar formalism for expressing language syntax.

Definition 3.1.1. A context-free grammar (CFG) G is defined as a four component
G =< Σ, N, S,R >, where: [12]

• Σ: finite sets of terminal symbols

• N: finite sets of nonterminal symbols

• S ∈ N : the start symbol.

• R: a finite set of production rules of the form A → α

12

– A ∈ N : a nonterminal

– V = N ∪ Z, α ∈ V ∗: a sequence of symbols

Chomsky Normal Form (CNF) is a normal form of CFGs. It is a context-free grammar
consisting of two types of rules: A → α and A → BC. Any context-free grammar (CFG)
can be normalized to Chomsky Normal Form (CNF).
Phrase Structure Grammar is a context-free grammar that describes the structures of
natural languages. A syntax tree is a derivation tree generated by a Phrase Structure
Grammar.
Syntactic parsing is the determination of the grammatical structure of a sentence. It usu-
ally uses a phrase structure grammar. A sentence can have many parse trees that follow
a grammar.

There are common parsing algorithms: CKY Algorithm, Chart Parsing Algorithm, Earley
Algorithm, GLR Method, etc.

Parsing strategies are divided into 3 groups:

• Trial-and-false (backtracking): top-down, bottom-up

• Dynamic planning strategy: CYK, Earley, etc.

• Deterministic strategies: LL, LR, etc.

Types of parsers

Two types of parsing algorithms are top-down parsing and bottom-up parsing. These
methods apply various methodologies for analyzing and comprehending the structure of
sequences based on formal grammar rules.

Top-down parsing is an approach in which the parser starts with the top-level gram-
mar symbol (often the start symbol) and recursively expands the grammar rules to create
a parse tree. The goal is to find leftmost derivatives of an input stream by sequentially
applying the production rules from top to bottom. This method uses a recursive descent
strategy in which each non-terminal in the grammar corresponds to a parsing procedure
that matches and consumes input tokens. If a particular parsing path does not match the
input, backtracking can be used to explore alternative paths.[13]

Bottom-up parsing takes a different approach from top-down parsing. In bottom-up
parsing, the parse tree is built from the input tokens, starting with the terminal symbols
and going down to the non-terminal at the top level. It uses a shift-reduce strategy in
which the parser shifts input tokens onto a stack until a sequence of tokens matches the
right-hand side of a grammar rule.[13]

13

Probabilistic Context-Free Grammars (PCFG)

Probabilistic Context-Free Grammar (PCFG) is a technique for statistical parsing. In
parsing, ambiguity often occurs: A sentence can be parsed into different parse trees.
Therefore, we can select a tree using the Probabilistic Context-Free Grammar method.

For no annotated data, the inside-outside algorithm to train can be used. Grammar
learning is the concept of training a PCFG. We have a hidden data issue if a parsed
training corpus is not accessible. We can use the Inside-Outside approach to train the
parameters of PCFG using the unannotated phrases of language.

Syntax parsing for natural language

Every sentence in every language consists of part of speech. Parsing is a fundamental
problem in natural language processing because it has many applications for solving more
difficult problems. Several libraries are available for syntax parsing for natural language.
Some popular ones include:

• Stanford Parser 1

• spaCy 2

• Gensim 3

• NLTK 4

Example 1

A syntax tree of the sentence “There is an apple on the table.”

1https://nlp.stanford.edu/software/lex-parser.shtml
2https://spacy.io/
3https://pypi.org/project/gensim/
4https://www.nltk.org/

14

Figure 3.1: Example of a sentence syntax tree

Syntax parsing for programming language

An Abstract Syntax Tree (AST) is a data structure commonly used in computer pro-
gramming. It denotes the grammatical structure of programming source code. It is a
hierarchical tree-like representation that captures the logical structure of the code but
not the grammatical peculiarities. In most cases, Abstract Syntax Tree is used as an
intermediate representation during the compilation or interpretation process. Each node
in an AST represents a programming language construct, such as a function call, assign-
ment, if statement, loop, and so on. Edges link the nodes, representing the relationships
between the structures.

Several libraries are available for syntax parsing. These libraries provide tools to gen-
erate parsers for different languages and can also be used to create custom parsers. Some
popular ones include:

• ANTLR 5 is a parser generator written in Java that can also generate parsers for
many other languages. ANTLR is based on an LL algorithm.

• APG 6is a Superset Augmented BNF recursive-descent parser generator. ABNF is a
BNF version aimed to improve bidirectional communication protocol functionality.

• Lark 7

5https://www.antlr.org/
6https://sabnf.com/
7https://github.com/lark-parser/lark

15

• Lrparsing 8

• PLY 9

Example 2

Figure 3.2 is the Abstract Syntax Tree of this code.

if d == 15 then

{

ALUWritePC(result);

}

else

{

R[d] = result;

}

Figure 3.2: Example of Abstract Syntax Tree

8https://lrparsing.sourceforge.net
9https://github.com/dabeaz/ply

16

3.2 TF-IDF

TF-IDF (Term Frequency Inverse Document Frequency) calculates two things: term fre-
quency and inverse document frequency. TF-IDF weights are used to evaluate the impor-
tance of a word in a text.

TF (term frequency) is used to estimate the frequency of occurrence of words in the
text. The simplest method to calculate a raw count of instances a word appears in a
document.

TF(t, d) =
f(t, d)

max(f(w, d) : w ∈ d)

where:

• TF (t, d): frequency of occurrence of word t in the document d

• f(t, d): Number of occurrences of the word t in the document d

• max(f(w, d) : w ∈ d): Number of occurrences of the word with the highest number
of occurrences in the document d

IDF (Inverse Document Frequency) is used to estimate the importance of a word. This
means, how common or rare a word is in the entire document set. However, there are
some words that are often used but are not important to express the meaning of a passage
called stopwords.

IDF(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
where:

• IDF (t,D): IDF value of word t in the set D

• |D|: Total number of documents in the set D

• |d ∈ D : t ∈ d|: represents the number of documents in set D containing the word t.

So, these TF and IDF values of each word for a specific sample are multiplied to obtain
the feature vectors for that sample.

The formula for TF-IDF (Term Frequency-Inverse Document Frequency) can be rep-
resented as follows:

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D)

where:

17

• TF − IDF (t, d,D) represents the TF-IDF score of term t in document d relative to
the document set D.

• TF (t, d) represents the term frequency of term t in document d.

• IDF (t,D) represents the inverse document frequency of term t in the document set
D.

3.3 Cosine similarity measure

There are many methods used to measure the distance of two vectors, such as:

• 1. Euclidean Distance

• 2. Manhattan Distance

• 3. Chebyshev Distance

• 4. Minkowski

• 5. Cosine Similarity

• 6. Hamming Distance

• 7. Leveshtein Distance

In this thesis, we used the Cosine similarity measure to calculate the similarity of two
sentences.

Cosine similarity is often used to solve the problem of Euclidean distance in multidi-
mensional space. It is defined as the cosine of the angle between the two vectors, which
can be calculated as the dot product of the vectors divided by the product of their mag-
nitudes. 2 vectors in the same direction will have a cosine similarity of 1 and opposite
directions will have a value of -1.

Cosine similarity is frequently used in text analysis to measure the similarity between
two documents, where each document is represented as a vector of word frequencies or
TF-IDF values. The cosine similarity of the two documents ranges from 0 to 1, where 1
indicates they are identical and 0 indicates they have no words in common. The formula
to calculate the cosine similarity between two vectors A and B is as follows:

cosine similarity =
A⃗ · B⃗

∥A⃗∥∥B⃗∥
=

∑n
i=1 Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1 B

2
i

Where:

18

• n is the dimension of the vectors

• Ai and Bi are the i-th elements of vectors A⃗ and B⃗, respectively

• ∥A⃗∥ and ∥B⃗∥ are the magnitudes of vectors A⃗ and B⃗, respectively

3.4 Association Rule Mining

3.4.1 Apriori Algorithm

The Apriori algorithm is the algorithm used to compute the association rules between
two objects. It denotes the relationship between two or more items. The Apriori is used
to locate frequent itemsets in a transaction database which is a collection of items that
appear in transactions on a regular basis that exceeds a predetermined minimum support
threshold.

Support: The frequency with which an itemset appears in the dataset is measured by
support which is determined as the proportion of transactions containing the itemset to
total transactions.

Confidence: The possibility that an association rule is true is measured by confidence
which is determined as the ratio of X’s support to the support of the itemset including
both X and Y.

Lift: Lift quantifies how much more probable itemset Y is to be purchased when itemset
X is purchased, as opposed to when Y is purchased independently of X.
newline Following the identification of common itemsets, the Apriori method may be used
to build association rules. It produces rules based on minimal confidence for each frequent
itemset.

3.4.2 FP-Growth (Frequent Pattern Growth) Algorithm

Both FP-Growth and the Apriori Algorithm are used for mining frequent itemsets in
transactional databases or datasets.
The FP-Growth algorithm employs a unique data structure known as the frequent-

pattern tree (FP-tree), which stores item set association information. Each FP-tree node
represents an item from the item collection. The item sets are represented by the lower
nodes, whereas the root node represents null.

The key concept of the FP-Growth algorithm is its divide-and-conquer strategy. It
projects and partitions databases based on the currently discovered frequent patterns
and grows such patterns to longer ones in the projected databases[14].

19

Chapter 4

Observation of automatically
extracting the correspondence
between the natural language and
the pseudo-code descriptions

This chapter presents an observation of automatically extracting the correspondence be-
tween the natural language and the pseudo-code descriptions.

4.1 Data collection

In this section, the thesis provides comprehensive guidance on the essential techniques
and methods of the data collection process, as well as a step-by-step explanation of the
complexities and intricacies underlying the competent processing of the description and
pseudo-code of the instruction set.

The thesis follows three phases to extract instructions from the ARM architecture in-
struction set:

• Step 1: Collect the data from the PDF file of the document. The PDF file of the
document is downloaded from the ARM Developer Website official site.1. The thesis
collected data on the application level programmer’s model and main instruction
(Arm instruction and thumb instruction).

In the documentation for the ARM Architecture Reference Manual, in general, each
instruction description has a format that includes: the instruction section title, in-
troduction to the instruction, instruction encoding, assembler syntax, pseudo-code
describing how the instruction works and notes. Based on the general format of the

1https://developer.arm.com/documentation

20

document that the thesis has observed, the thesis extracts each block corresponding
to each instruction. Each block contains information about the instruction includ-
ing the instruction section title, introduction to the instruction, instruction encod-
ing, assembler syntax, pseudo-code that describes how the instruction operates and
notes. Based on the title and special characters, the thesis has identified the three
most important parts for the research: instruction section title, introduction to the
instruction, and pseudo-code.

• Step 2: Extract collected raw data and normalize data.

– Step 2.1: Process the natural language description of the instruction:

Different from website data extraction, extracting data from PDF files often en-
counters problems such as encoding issues, complex layouts, missing text, and
so on. After automatic data collection, we check random data and perform nor-
malized data such as removing special characters, removing information that
the thesis considers redundant, and removing error data. during the collection
process.

– Step 2.2: Process the pseudo-code of instruction:

Similar to processing the natural language description of the instruction, for
the pseudo-code of the instruction, the thesis also removes the error data due
to the collection process. However, to facilitate the construction of abstract
syntax trees, the thesis has added the braces { } to mark statements belonging
to the same conditional or repeating statement.

• Save data: The data from instructions after going through Step 2 has saved the infor-
mation of each instruction including description and pseudo-code. Each instruction
is stored information as in Table 4.1

21

Mnemonic ADC (immediate)

Description Add with Carry (immediate) adds an immediate value and the Carry flag
value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

Pseudo-
code

if ConditionPassed() then

EncodingSpecificOperations();

(result, carry, overflow) = AddWithCarry(R[n], imm32,

APSR.C);↪→

if d == 15 then // Can only occur for ARM

encoding↪→

ALUWritePC(result); // setflags is always FALSE

here↪→

else

R[d] = result;

if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

Table 4.1: The specification of instruction Add with Carry (immediate) .[4]

4.2 ARM Specification

4.2.1 Components of ARM Architecture

The ARM architecture is characterized as a load/store architecture in which only load and
store instructions have direct access to memory. The addressing range varies depending
on whether the 32-bit or 64-bit architecture is used. Data processing instructions, on the
other hand, work exclusively with register contents. Depending on the execution state
AArch64 or AArch32, the code has access to 32-bit general-purpose registers or 64-bit
general-purpose registers [15].

A ARM processor contains the following main components:

• Memory: The ARM processor uses a load-store architecture, loading data into
general-purpose registers before processing and returning it afterward. It supports
multiple memory access modes, including byte, half-word, and word access.

• Registers: The ARM processor utilizes a large set of general-purpose registers to

22

store temporary data and memory addresses during instruction execution. These
registers store processed data and memory addresses for accessing stored data in
memory. Some of the registers are reserved in each mode for the specific use of
the core. ARM processors provide general-purpose and special-purpose registers
including X registers in AArch64 and R registers in AArch32, other registers include
the Stack Pointer (SP), Link Register (LR), Program Counter (PC) Application
Program Status Register (APSR) and various special-purpose registers for specific
functionalities.

• Flags: The APSR (Application Program Status Register) in the ARM architecture
indeed holds the conditional flags (N, Z, C, V). In some versions of ARM, the
APSR also holds the GE (Greater than or Equal) flags and the Q (Saturation)
flag. APSR, the naming convention changed to PSTATE (Processor State) with the
introduction of the ARMv8-A architecture to reflect the wider range of status bits
and the introduction of a 64-bit execution state (AArch64). The condition flags in
the APSR are [11]:

– N flag (Negative condition flag): Set to 1 if the result of the last arithmetic
operation was negative, and 0 otherwise.

– Z flag (Zero condition flag): Set to 1 if the result of the last arithmetic operation
was zero, and 0 otherwise.

– C flag (Carry condition flag): Set to 1 if the last arithmetic operation resulted
in a carry, and 0 otherwise.

– V flag (Overflow condition flag): Set to 1 if the last arithmetic operation
resulted in an overflow and 0 otherwise.

In some specific ARM architectures, the APSR may also include additional flags:

– Q flag (The Overflow or saturation flag): indicates overflow or saturation. In
ARMv5TE, ARMv6, and later, the Q flag is set to 1 when saturation has
occurred in saturating arithmetic instructions, or when overflow has occurred
in certain multiply instructions.

– GE (The Greater than or Equal flags): indicate the results from individual
bytes or halfwords of an operation.

These flags can be updated based on the execution of instructions. The flags are
used by the processor to determine the outcome of conditional instructions. The
flags can also be used by software to track the results of arithmetic and logical
operations. It means, that when an instruction is conditionally executed, its effect
on the model operation of programmers, memory, and coprocessors is determined
by the state of the condition flags (N, Z, C, and V) in the APSR. If the condition
specified by the cond field is satisfied by the flags, the instruction performs its normal

23

operation. However, if the flags do not meet the specified condition, the instruction
behaves as a NOP (No-Operation). In this case, the execution flow advances to the
next instruction as usual, including any checks for exceptions, but the conditional
instruction itself has no further effect [4].

4.2.2 Instruction group

The thesis groups the instructions based on the functional grouping of the instructions to
aid in the identification of sections to be extracted. Different versions or documentation
of the ARM architecture may contain or organize information differently. Group the
instructions into the following groups [4]:

• Branch instructions

This group of instructions serves several purposes:

– 1. Branching to subprograms, which allows the program to call and return
from functions.

– 2. Facilitate loop constructions by branching backward.

– 3. Enable conditional branching forward based on specific conditions.

– 4. Modify the execution of the following instruction conditionally without
actual branching.

– 5. Switch the processor between A32 and T32 states for flexibility in instruction
set usage.

• Data Processing instructions

The Data Processing instructions primarily operate on the general-purpose reg-
isters. They provide a variety of operations that use the contents of two registers,
such as addition, subtraction, and bitwise logic. The result is then stored in a third
register. These instructions can also operate on the value within a single register or
combine a register value with an immediate value provided within the instruction.
In addition, the Long Multiply instructions provide a 64-bit result distributed across
two registers.

– Standard data-processing instructions.

– Shift instructions

– Multiply instructions

– Saturating instructions

– Saturating addition and subtraction instructions

24

– Packing and unpacking instructions

– Parallel addition and subtraction instructions

– Divide instructions

– Miscellaneous data-processing instructions

• Load/store instructions

Instructions in this group are designed to load or store the value of a single register
from or to memory. These operations may involve loading or storing a 32-bit word, a
16-bit half-word, or an 8-bit unsigned byte. In particular, byte and half-word loads
can be either sign-extended or zero-extended to fill the 32-bit register. Some specific
instructions are designed to facilitate the loading or storing of 64-bit double-word
values that span across two 32-bit registers.

• Load/store multiple instructions

Load/store multiple instructions allow the loading or storing of any subset of the
general-purpose registers directly from or to memory.

• Status register access instructions

Status register access instructions are responsible for moving the contents of a status
register to or from a general-purpose register. These status registers hold important
information about the current state of the processor, and these instructions enable
access to their contents for further processing or manipulation.

• Other instructions: Instructions that do not belong to the above instruction
groups

The thesis groups instructions into groups because the groups have different structures
for natural language description and the structure of pseudo-code description. A funda-
mental approach to effectively analyzing and understanding the complexity of different
instructions is to systematically classify them into different groups, each with its own
unique characteristics. This deliberate categorization is important because it allows for a
comprehensive understanding of the underlying patterns within each group and facilitates
the identification of correspondence of sections in both the natural language descriptions
and the pseudo-code.

25

4.3 Observation of automatically extracting the cor-

respondence between the natural language and

the pseudo-code descriptions

Methodology and Approach

The first step of extracting the correspondence between the natural language description
and the pseudo-code description of the instructions is to divide the natural language de-
scription and pseudo-code description into sections as templates, then label those sections,
and finally map them together. Figure 4.1 illustrates this.
The ARM instruction set is organized into groups of instructions that perform similar

operations, such as data processing, branch, or load/store instructions. The thesis rec-
ognizes that each group of instructions usually has some of the same natural language
description structures. In addition, the order of operations or sequence of steps that the
processor follows to execute each instruction is also somewhat similar within each group.
For example, the arithmetic instructions all involve performing an arithmetic or logical
operation on one or more register values and an optional immediate value and storing the
result in a destination register. The natural language description for these instructions
explains the operation performed, the operands used, and the result produced. The order
of operations for these instructions involves fetching the instruction and its operands,
performing the specified operation, and storing the result. The thesis selects the load/-
store instructions group, load/store multiple instructions and all sub-groups in the data
processing instructions group to implement. The reason is that these groups have quite
a large number of instructions, accounting for about 90 % of the instruction of the base
instruction of the application level programmer’s model.

Next, the thesis extracts the section for both the natural language description and the
pseudo-code description. Each section of the natural language description can consist of
one or more sentences. Each section of the pseudo-code description can be a statement or
a block of statements. For example, in the data processing instructions group, the thesis
has extracted the “Flags update section” and “Main operation section”. After obtaining
the main operation section, it proceeds to extract the ”result section” and ”execution sec-
tion”, etc. Sub-sections are further extracted if possible, e.g. extracting function names,
operators, etc.

Once the natural language description and pseudo-code description sections have been in-
dependently identified, the mapping process begins, wherein each section from the natural
language description is matched with its corresponding counterpart in the pseudo-code
description.

26

Figure 4.1: The approach of automatically extracting correspondence

27

Process of automatically extracting correspondence

The following figure 4.2 illustrates the steps to determine the correspondence of natural
language description and pseudo-code description. The next three chapters detail the
implementation steps using the NLP techniques discussed in Chapter 3.

28

Figure 4.2: Overview of automatically extracting correspondence process

29

In the chapter 5, the thesis presents a syntactic analysis of the natural language descrip-
tion of instruction, as well as procedures for the creation of grammar rules for abstract
parsing that represent the structure of pseudo-code.

In the chapter 6 Automatic section extraction: In this chapter, the thesis describes in
detail how sections of natural language description and pseudo-code are automatically
extracted.

In the chapter 7 Automatically extracting the correspondence: In this chapter, the thesis
presents a method to identify the correspondence between natural language description
and pseudo-code and some manual testing strategies. The thesis also gives a comprehen-
sive example to illustrate the steps of section extraction and corresponding extraction.

30

Chapter 5

Syntactic parsing

In this chapter, the thesis presents a syntactic analysis of the natural language description
of instruction, as well as procedures for the creation of grammar rules for abstract parsing
that represent the structure of pseudo-code.

5.1 Syntax parsing of the natural language descrip-

tion

In this section, the thesis presents the syntactic analysis of the natural language descrip-
tion of instruction.

A sentence can be parsed into different parse trees. In the process of parsing the de-
scription, the thesis approaches many different methods and libraries of parsing. The
main library used primarily for parsing is the Stanford Parser 1. The thesis randomly
selects the parsed results to check the accuracy of the parse tree.

Through the application of part-of-speech (POS) tags, each word is given a special label
that indicates its specific syntactic role in the sentence. These syntactic categories cover a
wide range of linguistic functions, including nouns, verbs, adjectives, adverbs, pronouns,
conjunctions, prepositions, etc., that form the grammatical structure of sentences. They
represent various syntactic categories for words and phrases in a sentence. Such a detailed
classification helps to understand the syntactic structure of sentences. Here are some
commonly used POS tags:

1https://nlp.stanford.edu/software/lex-parser.shtml

31

POS Tag Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating con-

junction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular

present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table 5.1: Syntax notations in the syntax tree

32

Example 3

According to the description of instruction ADC (immediate), “Add with Carry (imme-
diate) adds an immediate value and the Carry flag value to a register value, and writes
the result to the destination register. It can optionally update the condition flags based on
the result.” [4]. Figure 5.1 shows an example of a syntax tree of the description of ADC
(immediate) instruction, update flags section, “It can optionally update the condition flags
based on the result.”

Figure 5.1: Example of syntax tree of the description of ADC (immediate) instruction

5.2 Syntax parsing of pseudo-code

In this section, the thesis introduces abstract syntax parsing. The thesis used ANTLR
(ANother Tool for Language Recognition) 2 to generate a parser for the pseudo-code of
the instruction.

ANTLR (ANother Tool for Language Recognition) is a robust parser generator used to
create parsers, interpreters, compilers, and other language processing tools. It is widely
used in computer science, especially in the field of language processing, to automati-
cally generate parsers for various programming languages and domain-specific languages.
ANTLR takes a formal language grammar as input and generates a parser for it in a

2https://www.antlr.org/

33

variety of programming languages including Java, Python, C, and others. The generated
parser can then be used to parse and process input text that conforms to the grammar
rules defined in the input. Among the many features ANTLR offers are support for left
and right recursive grammars, lexer modes, semantic predicates, and error recovery mech-
anisms. It is highly customizable and allows developers to define complex grammars for
a variety of languages. ANTLR is commonly used in a variety of applications, including
building programming language compilers, parsing configuration files, processing domain-
specific languages, and a variety of other tasks that require analysis and understanding of
structured text input. It is an open-source tool that is actively maintained and improved
by the community.

The thesis has created an abstract syntax tree (AST) for pseudo-code for instruction
presented in the ARM architecture document. The construction of the AST requires an
iterative and rigorous methodology, wherein each pseudo-code representation is method-
ically parsed and translated into the corresponding abstract syntax tree nodes.

First, the thesis identifies the basic components required of the pseudo-code of the in-
struction. According to the ARM architecture documentation [4], these include:

• Data types

– General data type rules

– Bitstrings

– Integers

– Reals

– Booleans

– Enumerations

– Lists

– Arrays

• Expressions:

– General expression syntax

– Operators and functions - polymorphism and prototypes

– Precedence rules

• Operators and built-in functions

– Operations on generic types

– Operations on Booleans and prototypes

– Bitstring manipulation

34

– Arithmetic

• Statements and program structure

– Simple statements

– Compound statements

∗ if . . . then . . . else . . .

if <boolean_expression> then

<statement 1>

<statement 2>

...

<statement n>

elsif <boolean_expression> then

<statement a>

<statement b>

...

<statement z>

else

<statement A>

<statement B>

...

<statement Z>

∗ repeat . . . until . . .

repeat

<statement 1>

<statement 2>

...

<statement n>

until <boolean_expression>;

∗ while . . . do

while <boolean_expression> do

<statement 1>

<statement 2>

...

<statement n>

∗ for . . .

for <assignable_expression> = <integer_expr1> to <integer_expr2>

<statement 1>

35

<statement 2>

...

<statement n>

∗ case . . . of . . .

case <expression> of

when <constant values>

<statement 1>

<statement 2>

...

<statement n>

... more "when" groups ...

otherwise

<statement A>

<statement B>

...

<statement Z>

– Comments

In order to facilitate the construction of the abstract syntax tree, the braces { } have
been added to compound statements such as if, for and while statements to mark state-
ments belonging to the same conditional or repeating statement.

The thesis manually deduced and proposed a context-free grammar including 48 rules
for parsing pseudo-code to abstract syntax trees as Appendix A.

Example 4

Figure 5.2 shows an example of the syntax tree of pseudo-code of ADC (immediate)
instruction (execution section): statement

(result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);

36

if ConditionPassed() then

{

EncodingSpecificOperations();

(result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);

if d == 15 then // Can only occur for ARM encoding

{

ALUWritePC(result); // setflags is always FALSE here

}

else

{

R[d] = result;

if setflags then

{

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

}

}

}

Figure 5.2: Example of the syntax tree of pseudo-code of ADC (immediate) instruction
[4] (execution section)

37

Chapter 6

Automatic section extraction

In this chapter, the thesis describes in detail how sections of natural language description
and pseudo-code are automatically extracted. The thesis needs to identify the features of
each section to extract sections automatically.

6.1 Section definition

The groups have different structures for natural language description and the structure
of pseudo-code. Instructions belonging to the same group often have similar descriptions
and pseudo-code structures. As a result, the thesis divided the instructions into distinct
groups to handle each group. The thesis selects the load/store instructions group, load/-
store multiple instructions, and all sub-groups in the data processing instructions group
to implement.

Figure 6.1 shows the steps for automatically extracting sections.

According to ARM documentation [4], in the data processing instructions group there
are many subgroups. They are: [’Standard data-processing’, ’Shift instructions’, ’Multi-
ply instructions’, ’Unsigned multiply instructions’, ’Saturating instructions’, ’Saturating
addition and subtraction instructions’, ’Packing and unpacking instructions’, ’Parallel ad-
dition and subtraction instructions’, ’Divide instructions’, ’Miscellaneous data-processing
instructions’].

According to our preliminary survey, instructions in these same subgroups usually have
the same structure. However, to be sure, we will analyze each instruction subgroup to
find the general structure of an instruction subgroup. In an instruction subgroup, there
is more than one common structure. Figure 6.2 shows the subgroups and sections of
instructions.

38

Figure 6.1: Overview of automatic section extraction

39

Figure 6.2: Cluster instruction group

40

Section definition for data processing groups

As the thesis presented in chapter 5, each instruction group will have different functions,
so instructions belonging to different groups will be able to contain different sections.
Therefore, the thesis needs to define which sections of each instruction group need to be
extracted.

Based on the observation, the thesis defines the 3 main sections for data processing:
Execution Section, result section, and flag update section.

Definition 6.1.1. Execution Section: This section contains the actual pseudo-code or
assembly code that describes the operation performed by the instruction.

Definition 6.1.2. Result Section: This section describes the result of the data processing
operation and how it is stored or updated in the destination register.

Definition 6.1.3. Flag Update Section: This section indicates whether the instruction
updates the condition flags (such as N, Z, C, V) in the APSR, CPSR, or PSTATE based
on the result of the operation.

Example 5

Structure of pseudo-code with 3 sections:

if ConditionPassed() then

{

$ Execution Section

$ Result Section

$ Flag Update Section

}

Example 6

The sections of the natural language description and the pseudo-code of the ADC (im-
mediate) instruction [4] are as follows:

Execution Section

The natural language description: “Add with Carry (immediate) adds an immediate value
and the Carry flag value to a register value,”

The pseudo-code:

41

if ConditionPassed() then

{

EncodingSpecificOperations();

(result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);

}

Result section

The natural language description: “and writes the result to the destination register.”

The pseudo-code:

if d == 15 then // Can only occur for ARM encoding

{

ALUWritePC(result); // setflags is always FALSE here

}

else

{

R[d] = result;

}

Flag update section

The natural language description: “It can optionally update the condition flags based
on the result.”

The pseudo-code:

if setflags then

{

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

}

42

Section definition for load/store instruction groups and Load/s-
tore multiple instructions

Based on the observation, the thesis defines the 2 main sections for the load/store instruc-
tions group: Addressing Section, transfer section.

Definition 6.1.4. Address Section: The memory address is calculated based on the
addressing mode used in the instruction.

Definition 6.1.5. Transfer Section: These instructions load or store the value of a single
register from or to memory or these instructions load or store any subset of the general-
purpose registers from or to memory.

Strategies for extracting sections

The idea of extracting sections of the thesis is to extract the most identifiable sections first,
and the complex and ambiguous sections later. Figure 6.3 shows the order of extraction
of sections

Figure 6.3: Order of extraction of sections

Data processing instructions group

For the data processing instructions group, the first step in the thesis extracts the main
operation and the flags update section. After extracting the main operation section, our
next goal is to extract the executable code section and the result section. Here is an
overview of the steps to automatically extract sections.

43

Figure 6.4: Illustrate the order in which sections are extracted of data processing instruc-
tions groups

1. Extract flag update section: Flag update section is extracted first

2. Extract main operation section: After extracting the flag update section, the
remaining clauses of the description will belong to the main operation section. Simi-
larly, the remaining statements and block statements of pseudo-code will also belong
to the main operation section.

(a) Extract result section: After extracting two separate sections, the operation
section and the flags section, the thesis continues to extract two subsections of
the operation section, namely the execution section and the result section from
the operation section. Similar to the method of extracting the flag update
section and main operation section, the thesis identifies keywords and key
phrases of the result section.

(b) Extract execution section: After extracting the result section, the remain-
ing clauses of the description will belong to the execution section. Similarly,
the remaining statements and block statements of pseudo-code will also belong
to the execution section.

44

Load/store (multiple) instructions group

Similarly, For the Load/store (multiple) instructions group, the first step in the thesis
extracts the addressing section. After extracting the addressing section, our next goal is
to extract the transfer section.

Figure 6.5: Illustrate the order in which sections are extracted of Load/store (multiple)
instructions group

In the next section, the thesis focuses on how to identify keywords, phrases, and hidden
patterns for the data processing instructions group. The approach to identify keywords
and phrases for load/store (multiple) instructions group is similar.

6.2 Instruction analysis

6.2.1 Natural language analysis

In this section, the thesis presents the steps to normalize the natural language description
of the instruction to explore the data and find the feature of each section.

Extract simple clauses

The natural language description of the instruction consists of many sentences, in the
sentence there are many clauses describing the sequence of operations of the instruction.
Therefore, the thesis needs to separate the description into separate clauses. To do this,
the thesis uses the parse tree that was built in chapter 5. Besides, the thesis also uses the
spaCy 1 library to partially support it. However, the Spacy library only supports splitting
paragraphs into sentences. A simple sentence consists of only one clause. A compound

1https://spacy.io/

45

sentence consists of two or more independent clauses. The thesis uses a parse tree to
separate sentences into clauses, ”sub-sentence”. We take the highest nodes of the parse
tree labeled VP. If that sub-tree has more than one VP of the same level, we continue to
split that VP subtree into smaller subtrees.

Example 7

Instruction ADC (immediate) has the natural language description, “Add with Carry (im-
mediate) adds an immediate value and the Carry flag value to a register value, and writes
the result to the destination register. It can optionally update the condition flags based on
the result.” [4]

Split this description into:
“[’Add with Carry (immediate) adds an immediate value and the Carry flag value to a
register value, and .’,
’writes the result to the destination register’,
’It can optionally update the condition flags based on the result .’]”

Lemmatization

Lemmatization is the analysis of inflected forms of a word, grouped together by the word’s
lemma, to determine its lemma in computational linguistics. It links words with similar
meanings and is similar to stemming but requires correct identification of the intended
speech and meaning in a sentence and the larger context.

Remove the redundant explanations in natural language

First, we remove the redundant explanations in natural language. We speculate that
natural languages containing many clauses often contain the most redundant information
(the clause that does not have a corresponding in the pseudo-code). Therefore, for each
group, we select instructions whose natural language contains more than 10 clauses to
test. Indeed, these introductions all contain redundant information. Redundant clauses
often begin with phrases like: ”The field descriptions for”, ”It has encodings from the
following instruction sets”, or just contain ”for more information”. The propositions that
follow these redundant clauses are also redundant clauses. For example, the natural lan-
guage of the ADC, ADCS (immediate) instruction[16].

Identify keywords and phrase of flag update section

Not all instructions contain the update flags section. In case the description of the
instruction contains the update flags section, the thesis defines whether a flag is changed
or not. A flag that is changed is called a ”modified flags” case. A flag that is not changed is
called the ”unmodified flags” case. For the ”unmodified flags” case, the pseudo-code of the
instruction may not have the flag update section. However, there are also cases where the

46

description of instruction does not contain the update flags section, but the pseudo-code
of instruction still contains the update flag section, for example, instruction set ADD (SP
plus immediate) [4]. Based on observation, the flags section of the description can contain
the keyword ’flag’. The thesis extracted the keyword ”flag” from the description, then
used ”Cosine similarity measure” to determine ”update flags” and ”not update flags”.
There are two common phrases describing update flags and not update flags ”do not
affect the condition flags” and ”updates the condition flags based on the result”. They
also often contain sentence patterns such as: ”The Q flag is set if the operation saturates”,
”It updates the condition flags based on the result”, ”It sets the APSR.GE bits according
to the results of the additions” and ”The condition flags are not affected”.
The table 6.1 shows some common expressions for flags update section:

Type Common expression

update flag
The Q flag is set if the operation saturates
It updates the condition flags based on the result
It sets the APSR.GE bits according to the results of the additions

not affect The condition flags are not affected

Table 6.1: Common expressions for flags update section

The thesis uses the TF-IDF method to convert clauses into vectors. Then use the
Cosine similarity measure which is mentioned in chapter 3 to determine which clauses
belong to the flag update section.

6.2.2 Pseudo-code analysis

For example, the multiple instructions groups of the data processing group usually have
the form:

if ConditionPassed() then

EncodingSpecificOperations();

operand* = ***

addend = ***

result = ***

R[d] = ***

if setflags then

APSR.* = ***

Remove the default declarations in pseudo-code

First, we remove the default declarations in pseudo-code as ”if ConditionPassed()” then
and ”EncodingSpecificOperations();”. From the parse tree of pseudo-code, we remove

47

the subtree whose subtree’s root is ”function” and the node is ”ConditionPassed” and
”EncodingSpecificOperations”

Identify keywords and statement of flag update section

The APSR (Application Program Status Register) in the ARM architecture indeed holds
the flags (version 6, 7) (and alternatively called PTSATE in version 8.9). From this,
we deduce that the flag update section of pseudo-code contains the featured keyword:
”PSTATE”, ”APSR”, ”setflags” which contains syntax patterns such as the statement
”APSR.N = * ”, ”PSTATE.N = * ” or condition statement ”setflags”.

The thesis extracts the keyword ”PSTATE”, ”APSR” and ”setflags” from pseudo-code
which contains syntax patterns such as the statement ”APSR.N = * ”, ”PSTATE.N = *
” or condition statement ”setflags”. The thesis uses the parse tree built in the chapter 5
and the DFS/BFS algorithm to identify subtree which has node simple statements and
variable is ”APSR.*” or ”PSATE.*” (to the left of the assignment statement) or condition
statements containing the keyword ”setflags” .

Identify keywords and phases for other section

After extracting the flag update section, we remove this section to simplify extracting
other sections.

As we mentioned, for natural language description, we take the highest nodes of the
parse tree labeled VP. If that sub-tree has more than one VP of the same level, we con-
tinue to split that VP subtree into smaller subtrees. Then we extract all lowest level VB*,
and NP. For pseudo-code description, we extract all lowset nodes of the parse tree labeled
level variable, and function name. We combine these keywords into an array. Then we use
some frequent pattern mining algorithms to identify sections. For example a hidden
pattern: [(write, destination register), (R[d])]. This hidden pattern belongs result section.
The result section of the description usually contains the keyword ’write’ and ’destination
register’. The thesis also uses the TF-IDF method to convert clauses into vectors. Then
use the Cosine similarity measure which is mentioned in chapter 3 to determine which
clauses belong to the result section. Besides, the destination register, where the result is
located is usually R[d] which contains syntax patterns such as the statement ”R[d]* =
* ”. From this, we deduce that the result section of pseudo-code contains the featured
keyword: ”R[d]” which contains syntax patterns such as the statement ”R[d]* = * ”. The
thesis uses the parse tree built in the chapter 5 to identify subtrees which has node simple
statements and variable is ”R[d].*”

48

Chapter 7

Automatically extracting the
correspondence

In this chapter, the thesis presents a method to identify the correspondence between
natural language description and pseudo-code and some manual testing strategies. The
thesis also gives a comprehensive example to illustrate the steps of section extraction and
corresponding extraction.

7.1 Identify correspondence between the natural lan-

guage description and pseudo-code

Correspondence

This section of the thesis aims to identify and align the specific sections of the description
that correspond to the relevant sections of the pseudo-code, forming a cohesive and un-
ambiguous link between the two representations. The correspondence process is crucial,
establishing correspondences between natural language descriptions and pseudo-code rep-
resentations. It aligns language constructs with code elements, enabling machines to un-
derstand the underlying logic and intentions in both forms. A systematic mapping process
is used to establish a clear and coherent correspondence between the textual description of
instructions and their associated pseudo-code representations. Once the description and
pseudo-code sections have been independently identified, the matching process begins,
matching each section from the description to its corresponding pseudo-code counterpart.
The figure 7.1 shows the correspondence between description and pseudo-code.

49

Figure 7.1: Process of correspondence

Example 8

50

Conformance testing

To accurately assess the precision and effectiveness of the automated extraction process for
identifying different sections within the instruction set, the thesis uses a systematic ran-
dom selection approach, in which a specific number of instructions from different groups
are carefully hand-selected for subsequent manual testing. This methodical design en-
sures a representative sample of the instruction set and thus increases the reliability and
validity of the evaluation process.

Some manual testing strategies of the thesis are as follows:

• The thesis chooses instructions that update flags of the natural language descrip-
tion and the pseudo-code are not synchronized. For example, the natural language
description does not describe updating flags, but in pseudo-code, the update flags
section still appears after performing the ”automatic section extraction” step.

• Calculate the average length of phrases in the natural language description as update
flags and the average length of statements in the pseudo-code as update flags. To
find errors, compare the lengths of the update flags section of instructions to the
”average length” accordingly.

7.2 Comprehensive example

Example 9

Choose instruction ADC (immediate) [4] as a eexample, from which the thesis finds that:

51

Mnemonic ADC (immediate)

Description Add with Carry (immediate) adds an immediate value and the Carry flag
value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

Pseudo-
code

if ConditionPassed() then

EncodingSpecificOperations();

(result, carry, overflow) = AddWithCarry(R[n], imm32,

APSR.C);↪→

if d == 15 then // Can only occur for ARM

encoding↪→

ALUWritePC(result); // setflags is always FALSE

here↪→

else

R[d] = result;

if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

Table 7.1: The specification of instruction Add with Carry (immediate) .[4]

1. Extract main operation section and flag update section

(a) Extract main operation section and flag update section for the nat-
ural language description

i. Split the description into sentences, and split complex sentences into simple
clauses.
“[’Add with Carry (immediate) adds an immediate value and the Carry
flag value to a register value, and .’, ’writes the result to the destination
register’, ’It can optionally update the condition flags based on the result
.’]”

ii. Lemmatization
“[’add with carry (immediate) add an immediate value and the carry
flag value to a register value, and .’, ’write the result to the destination
register’, ’it can optionally update the condition flag base on the result .’]”

iii. The thesis uses the TF-IDF method to convert clauses into vectors. Then
use the cosine similarity measure to determine which clauses belong to
the flag update section.
“[’it can optionally update the condition flag base on the result .’]”

52

iv. The rest of the sentences are in the main operation section
“[’add with carry (immediate) add an immediate value and the carry
flag value to a register value, and .’, ’write the result to the destination
register’]”

(b) Extract main operation section and flag update section for the pseudo-
code

i. Syntax tree of the flag update section of the pseudo-code: From the parse
tree of the pseudo-code, get the sub-trees that belong to the flag update
section. Based on observation, the thesis extracted sub-trees that have the
keyword APSR or PSTATE in the pseudo-code.

Figure 7.2: Flag update section of pseudo-code of instruction ADC (immediate)

Recovering the pseudo-code from the syntax tree, obtained:

if setflags then

{

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

}

ii. Syntax tree of the main operation section of the pseudo-code: The rest of
the tree are in the main operation section.

53

Figure 7.3: Main operation section of pseudo-code of instruction ADC (immediate)

Recovering the pseudo-code from the syntax tree, obtained:

if ConditionPassed() then

{

EncodingSpecificOperations();

(result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);

if d == 15 then

{

ALUWritePC(result);

}

else

{

R[d] = result;

}

}

After extracting the main operation section and the flags section of instruction
ADC (immediate), the thesis continues to extract the execution section and the
result section from the main operation section.

2. Extract execution section and result section

(a) Extract execution section and result section for the natural language
description

54

i. Extract result section
“[’write the result to the destination register’]”

ii. Extract execution section
“[’add with carry (immediate) add an immediate value and the carry flag
value to a register value , and .’]”

(b) Extract execution section and result section for the pseudo-code

i. Syntax tree of the result section of the pseudo-code: From the syntax tree
of the main operation, get the sub-trees that belong to the result section

Figure 7.4: Result section of pseudo-code of instruction ADC (immediate)

Recovering the pseudo-code from the syntax tree, obtained:

if d == 15 then

{

ALUWritePC(result);

}

else

{

R[d] = result;

}

55

ii. Syntax tree of the execution section of the pseudo-code: The rest of the
tree are in the execution section

Figure 7.5: Execution section of pseudo-code of instruction ADC (immediate)

Recovering the pseudo-code from the syntax tree, obtained:

if ConditionPassed() then

{

EncodingSpecificOperations();

(result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);

}

Figure 7.6 illustrates the correspondence between the natural language description and

56

Figure 7.6: Example of the correspondence of instruction ADC (immediate)

pseudo-code of instruction ADC (immediate)

57

Chapter 8

Experiments

This chapter presents the results that the thesis has experimented. Thesis experimented
with the introduced method for three ARM Cortex processors.

8.1 Results

Collected instructions and Selected instructions

The thesis experimented with the introduced method with the following arm architectures:
ARMv6-M [17], ARMv7-M [18], ARMv7E-M, ARMv7-A [4], ARMv7-R [4], ARMv8-M
[19], ARMv8-A A32/T32 instruction set [16], ARMv8.2-A A32/T32 instruction set [20],
ARMv8-R [21], ARMv9-A A32/T32 instruction set [22], ARMv9.2-A A32/T32 instruc-
tion set [7].

Data is collected from the following groups: Branch instructions, Coprocessor instruc-
tions, Data processing, Exception-generating and exception-handling instructions, Load-
/store instructions, Load/store multiple instructions, Miscellaneous instructions, Status
register access instructions, excluding other instructions. However, the thesis selects the
load/store instructions group, load/store multiple instructions, and all sub-groups of the
data processing instructions group to implement.

Detailed information about the number of instructions that the thesis collects is shown
in column Number of collected instructionss of table 8.1. The column Number
of selected instructions represents the number of instructions that the thesis uses for
implementation.

• Collected instructions: Total instructions collected from the ARM manuals

• Selected instructions: Total instructions selected from the data processing instruc-
tions group and the load/store instructions group.

58

ARM ar-
chitecture

Processor Number of col-
lected instruc-
tions

Number of se-
lected instruc-
tions

ARMv6-M ARM Cortex-M0, ARM Cortex-
M0+, ARM Cortex-M1

71 56

ARMv7-A ARM Cortex-A5, ARM Cortex-
A7, ARM Cortex-A8, ARM
Cortex-A9, ARM Cortex-
A12, ARM Cortex-A15, ARM
Cortex-A17

263 233

ARMv7-R ARM Cortex-R4, ARM Cortex-
R5, ARM Cortex-R7, ARM
Cortex-R8

263 233

ARMv7-M ARM Cortex-M3 146 115
ARMv7E-M ARM Cortex-M4, ARM Cortex-

M7
257 184

ARMv8-A Cortex-A32, ARM Cortex-
A34, ARM Cortex-A35, ARM
Cortex-A53, ARM Cortex-
A57, ARM Cortex-A72, ARM
Cortex-A73

293 243

ARMv8.2-A Cortex-A55, ARM Cortex-
A65, ARM Cortex-A75, ARM
Cortex-A76, ARM Cortex-A77,
ARM Cortex-A78

294 243

ARMv8-R ARM Cortex-R52, ARM
Cortex-R82

294 243

ARMv8-M Cortex-M23, ARM Cortex-M33 293 213
ARMv9-A Cortex-A510, A710 and A715 301 244
ARMv9.2-A Cortex-A520 and A720 301 244

Table 8.1: Number of collected instructions and selected instructions

Ignored Cases

The thesis ignores instructions with excessively long descriptions. Instructions with insuf-
ficient description but excessive pseudo-code are also ignored. For example, the ignored
instruction WFE [4] contains the following data:

59

Mnemonic WFE

Description Wait For Event is a hint instruction that permits the processor to en-
ter a low-power state until one of a number of events occurs, including
events signaled by executing the SEV instruction on any processor in the
multiprocessor system. For more information, see Wait For Event and
Send Event on page B1-1199. In an implementation that includes the
Virtualization Extensions, if HCR.TWE is set to 1, execution of a WFE
instruction in a Non-secure mode other than Hyp mode generates a Hyp
Trap exception if, ignoring the value of the HCR.TWE bit, conditions
permit the processor to suspend execution. For more information see
Trapping use of the WFI and WFE instructions on page B1-1253.

Pseudo-
code

if ConditionPassed() then

{

EncodingSpecificOperations();

if EventRegistered() then

{

ClearEventRegister();

}

else

{

if HaveVirtExt() && !IsSecure() &&

!CurrentModeIsHyp() && HCR.TWE == '1' then↪→

{

HSRString = Zeros(25);

HSRString<0> = '1';

WriteHSR('000001', HSRString);

TakeHypTrapException();

}

else

{

WaitForEvent();

}

}

}

Table 8.2: Example a ignored instruction

The instructions that are ignored are usually instructions from the ”Miscellaneous in-
structions” group.

60

Inconsistency cases

Inconsistency cases: section of natural language description is not empty while its corre-
sponding pseudo-code section is empty or section of natural language description is empty
while its corresponding pseudo-code section is not empty.

Table 8.3 describes the inconsistency of the flag update section. The flag update section
of the natural language description and pseudo-code is inconsistent. Check for instruc-
tions that fall into this case, for example, the flag update section of the natural language
description is not empty while its corresponding pseudo-code update section flag is empty.

The absence of a one-to-one mapping between the description and the pseudo-code poses
a dilemma in the mapping process. Based on the testing strategy proposed by the thesis
in section 6, there are cases where the correct sections can be extracted but the corre-
spondence cannot be found because the natural language description does not describe
how to update flags.

Version Inconsistency of natural lan-
guage flags update section

Inconsistency of pseudocode
flags update section

ARMv6-M 0 8
ARMv7-A 18 2
ARMv7-R 18 2
ARMv7-M 5 2
ARMv7E-M 14 2
ARMv8-A 27 2
ARMv8.2-A 27 2
ARMv8-R 27 2
ARMv8-M 27 2
ARMv9.2-A 27 2

Table 8.3: Inconsistency of flags update section

The ADD (SP plus immediate) [4] instruction is an illustrative example.

61

Mnemonic ADD (SP plus immediate)

Description This instruction adds an immediate value to the SP value, and writes the
result to the destination register.

Pseudo-
code

if ConditionPassed() then

EncodingSpecificOperations();

(result, carry, overflow) = AddWithCarry(SP, imm32,

'0');↪→

if d == 15 then // Can only occur for ARM

encoding↪→

ALUWritePC(result); // setflags is always FALSE

here↪→

else

R[d] = result;

if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

APSR.V = overflow;

Table 8.4: Example a inconsistency case

In this instance, the approach presented by the thesis can still extract other portions
such as the result section and the execution section.

Another possible confusing case is the MVN (immediate)[4] instruction. In this case,
the execution section and the result section both belong to the same clause.

62

Mnemonic MVN (immediate)

Description Bitwise NOT (immediate) writes the bitwise inverse of an immediate value
to the destination register. It can optionally update the condition flags
based on the value.

Pseudo-
code

if ConditionPassed() then

EncodingSpecificOperations();

result = NOT(imm32);

if d == 15 then // Can only occur for ARM

encoding↪→

ALUWritePC(result); // setflags is always FALSE

here↪→

else

R[d] = result;

if setflags then

APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

APSR.C = carry;

Table 8.5: Example a inconsistency case

These are the instructions that the thesis chooses to test based on the proposed thesis
strategy:

• MVN (immediate), MVN (register), MOV (register), MOV (immediate). These
instructions have an execution section and a result section of natural language that
both belong to the same clause. For, example: MOV (immediate) Move (immediate)
writes an immediate value to the destination register. It can optionally update the
condition flags based on the value. [18]

• TST (immediate), TST (register): Does not specify which register the result is
written to.

• MLA: In pseudo-code, there is a flags section but in natural language, it is not
mentioned.

• SMULL, UMLAL, UMULL, SSAT, SSAT16, USAT, USAT16: No destination reg-
ister mentioned in natural language

63

8.2 Discussion

When identifying correspondences between the natural language descriptions and the
pseudo-code of instruction, Complex problems can be difficult to solve. When the de-
scription lacks a direct and unambiguous definition of specific portions or phrases that
perfectly match each statement in the pseudo-code, such a difficulty occurs. This dispar-
ity might be caused by a variety of variables, including the intrinsic diversity of natural
languages, variances in linguistic expressions, and the degree of information provided in
the description. Natural language descriptions, as opposed to pseudo-code, can be more
flexible, allowing for different modes of expression and conveying information in a more
narrative or contextual manner.

Limitation

1. Ambiguity and Variability: Natural language is not always clear, it also causes
ambiguity in understanding. A sentence can have many interpretations. In contrast,
many sentences express the same idea by using synonyms. This makes it difficult not
only for this research but also for the general field of natural language processing.

2. Incompleteness and redundancy: The natural language descriptions may not always
provide all the information commands in pseudo-code. In addition, much of the
information in the description is additional descriptive information, which does not
describe any commands in the pseudo-code. This can cause no correspondence
between the natural language description and the pseudo-code.

64

Chapter 9

Conclusion

In this chapter, the thesis summarizes the main contributions of the thesis, and some
future works are also mentioned to suggest some directions to improve and extend our
proposed method to other architecture such as x86, MIPS, etc.

9.1 Conclusion

In conclusion, the thesis proposed an automatic approach for extracting sections. This
thesis also proposed a method to find the correspondence between the natural language
description and the pseudo-code of the instruction set. The thesis implements the method
on processors that implement the ARM architecture.

The thesis has found correspondence for processors of A-profile, M-profile and R-profile
with Arm architectures: ARMv6-M, ARMv7-M, ARMv7E-M, ARMv7-A, ARMv7-R,
ARMv8-M, ARMv8-A A32/T32 instruction set, ARMv8.2-A A32/T32 instruction set,
ARMv9-A A32/T32 instruction set, ARMv9.2-A A32/T32 instruction set. Among 2475
collected ARM instructions, the thesis focuses on the 2251 instructions of the data pro-
cessing instructions group and load/store instructions group. Identifying correspondence
is an important step in extracting the formal semantics of the ARM architecture. The
thesis has contributed the following modules:

1. Thesis has collected and processed data format from pdf file, then extracted natural
language description and pseudo-code of ARM instruction set.

2. Thesis has created an abstract syntax tree to analyze the structure and meaning of
pseudo-code. The thesis manually deduced and proposed a context-free grammar
including 48 rules for parsing pseudo-code to abstract syntax trees.

3. Create a tool to split complex sentences into simple clauses.

4. Automatic section extraction: The thesis has successfully extracted the main oper-
ation section and flag update section. From the main operation section, the thesis

65

continues to extract the result section and execution section, and from the execu-
tion section, continues to extract some subsections. Currently, the thesis selects the
set of data processing instructions and the set of load/store data instructions for
extraction.

5. The thesis has determined the correspondence between the information provided in
the natural language description and the operations represented in the pseudo-code
of instruction.

Drawback

For the long and complex instructions, the thesis method cannot be adequately handled.
Nevertheless, the number of long and complex instructions represents only a small portion
of the entire base instructions.

9.2 Future directions

Currently, the thesis has found correspondence for processors of A-profile, M-profile, and
R-profile. In the future, we intend to continue this research to increase the capacity of
our method and make it able to cover more architectures.

Specifically, some of our future research plans are:

1. We intend to continue researching and improving the method of automatically ex-
tracting the formal semantics of the ARM architecture in order to implement other
sets of ARM instructions, even though the number of instructions in these groups
is not large. From there, we will build dynamic symbolic execution to reconstruct
the CFG in order to investigate indirect jumps and understand malware behavior
(for the ARM Cortex Architecture).

2. We plan to continue working on automatic extraction for many other architectures
and build a generalization system for them.

3. Previously, the correctness of the correspondence results was determined manually.
In the future, we will work on a method that can automatically validate the results.
In other words, we want to find benchmark and scoring standards, and an automated
way to validate the results of a match against those standards.

In conclusion, the future directions of finding promising correspondences between natural
language descriptions and pseudo-code

66

Bibliography

[1] B. H. Partee, “Formal semantics,” in The Cambridge Handbook of Formal Semantics
(Cambridge Handbooks in Language and Linguistics), M. Aloni and P. Dekker, Eds.,
Cambridge Handbooks in Language and Linguistics. Cambridge University Press,
2016, pp. 3–32. doi: 10.1017/CBO9781139236157.002.

[2] What is instruction set architecture (isa)? – arm®. [Online]. Available: https:
//www.arm.com/glossary/isa (visited on Jul. 8, 2023).

[3] Intel® 64 and ia-32 architectures software developer manual: Combined volumes
2a, 2b, 2c, and 2d: Instruction set reference, a-z, Intel Corporation, 2021. [Online].
Available: https://software.intel.com/content/dam/develop/external/us/
en/documents-tps/325383-sdm-vol-2abcd.pdf.

[4] Arm architecture reference manual armv7-a and armv7-r edition, https://developer.
arm.com/documentation/ddi0406/cd/, Accessed: 2023-07-08.

[5] Arm Developer, “ARM Architecture Reference Manual,” in ARM Architecture Ref-
erence Manual, Arm Developer, 1996, pp. 1021–1038.

[6] Armv7-m architecture reference manual, https://developer.arm.com/documentation/
ddi0403/ee, Accessed: 2023-07-08.

[7] Arm architecture reference manual for a-profile architecture, https://developer.
arm.com/documentation/ddi0487/ja/?lang=en, Accessed: 2023-07-08.

[8] Arm cortex-a processor comparison table. [Online]. Available: https://developer.
arm.com/documentation/102826/latest/ (visited on Jul. 8, 2023).

[9] Arm cortex-m processor comparison table. [Online]. Available: https://developer.
arm.com/documentation/102787/latest (visited on Jul. 8, 2023).

[10] Arm cortex-r processor comparison table. [Online]. Available: https://developer.
arm.com/documentation/102788/latest (visited on Jul. 8, 2023).

[11] Arm Developer, ARM Compiler armasm User Guide Version 5.06, Online, 2016.
[Online]. Available: https://developer.arm.com/documentation/dui0473 (vis-
ited on Jul. 8, 2023).

[12] N. Indurkhya and F. J. Damerau, Handbook of Natural Language Processing, 2nd.
Chapman & Hall/CRC, 2010, isbn: 1420085921, 9781420085921.

67

https://doi.org/10.1017/CBO9781139236157.002
https://www.arm.com/glossary/isa
https://www.arm.com/glossary/isa
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325383-sdm-vol-2abcd.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325383-sdm-vol-2abcd.pdf
https://developer.arm.com/documentation/ddi0406/cd/
https://developer.arm.com/documentation/ddi0406/cd/
https://developer.arm.com/documentation/ddi0403/ee
https://developer.arm.com/documentation/ddi0403/ee
https://developer.arm.com/documentation/ddi0487/ja/?lang=en
https://developer.arm.com/documentation/ddi0487/ja/?lang=en
https://developer.arm.com/documentation/102826/latest/
https://developer.arm.com/documentation/102826/latest/
https://developer.arm.com/documentation/102787/latest
https://developer.arm.com/documentation/102787/latest
https://developer.arm.com/documentation/102788/latest
https://developer.arm.com/documentation/102788/latest
https://developer.arm.com/documentation/dui0473

[13] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison Wesley, Aug. 2006, isbn: 0321486811.

[14] J. Han and J. Pei, “Pattern-growth methods,” in Frequent Pattern Mining, C. C.
Aggarwal and J. Han, Eds. Springer International Publishing Switzerland, 2014,
p. 65. doi: 10.1007/978-3-319-07821-2_3. [Online]. Available: https://link.
springer.com/content/pdf/10.1007/978-3-319-07821-2_3.pdf.

[15] Arm Developer, “About the Arm architecture,” in Arm Compiler armasm User
Guide, Arm Developer, 2023, p. 71. [Online]. Available: https://www.a.

[16] Armv8-a reference manual (issue a.k), https://developer.arm.com/documentation/
ddi0487/ak/?lang=en, Accessed: 2023-07-08.

[17] Armv6-m architecture reference manual, https://developer.arm.com/documentation/
ddi0419/e/?lang=en, Accessed: 2023-07-08.

[18] Arm v7-m architecture application level reference manual, https://developer.
arm.com/documentation/ddi0403/ee.

[19] Armv8-m architecture reference manual, https://developer.arm.com/documentation/
ddi0553/bv/?lang=en, Accessed: 2023-07-08.

[20] Arm architecture reference manual armv8, for armv8-a architecture profile, https:
//developer.arm.com/documentation/ddi0487/b/?lang=en, Accessed: 2023-07-
08.

[21] Arm architecture reference manual supplement - armv8, for the armv8-r aarch32
architecture profile, https://developer.arm.com/documentation/ddi0568/a/
?lang=en, Accessed: 2023-07-08.

[22] Arm architecture reference manual for a-profile architecture, https://developer.
arm.com/documentation/ddi0487/ha/?lang=en, Accessed: 2023-07-08.

68

https://doi.org/10.1007/978-3-319-07821-2_3
https://link.springer.com/content/pdf/10.1007/978-3-319-07821-2_3.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-07821-2_3.pdf
https://www.a
https://developer.arm.com/documentation/ddi0487/ak/?lang=en
https://developer.arm.com/documentation/ddi0487/ak/?lang=en
https://developer.arm.com/documentation/ddi0419/e/?lang=en
https://developer.arm.com/documentation/ddi0419/e/?lang=en
https://developer.arm.com/documentation/ddi0403/ee
https://developer.arm.com/documentation/ddi0403/ee
https://developer.arm.com/documentation/ddi0553/bv/?lang=en
https://developer.arm.com/documentation/ddi0553/bv/?lang=en
https://developer.arm.com/documentation/ddi0487/b/?lang=en
https://developer.arm.com/documentation/ddi0487/b/?lang=en
https://developer.arm.com/documentation/ddi0568/a/?lang=en
https://developer.arm.com/documentation/ddi0568/a/?lang=en
https://developer.arm.com/documentation/ddi0487/ha/?lang=en
https://developer.arm.com/documentation/ddi0487/ha/?lang=en

Appendix A

Grammar rules

Grammar rules for parsing pseudo-code

program: statement+;

statement:

compound_statement

| simple_statement

| special_statement

;

simple_statement:

assignment_statement SEMICOLON

;

compound_statement:

conditional_statement

| loop_statement

;

special_statement:

KEYWORDS SEMICOLON

;

conditional_statement:

IF (LEFT_PAREN)? expression (LEFT_PAREN)? THEN (LEFT_BRACE)?

statement+ (RIGHT_BRACE)? (ELSIF (LEFT_BRACE)?

statement+ (RIGHT_BRACE)?)? (RIGHT_BRACE)? (ELSE

(LEFT_BRACE)? statement+ (RIGHT_BRACE)?)?

↪→

↪→

↪→

| 'case' expression 'of' (LEFT_BRACE)? statement+

(RIGHT_BRACE)?↪→

| 'when' expression (LEFT_BRACE)? statement+ (RIGHT_BRACE)?

69

| 'otherwise' (LEFT_BRACE)? statement+ (RIGHT_BRACE)?

;

loop_statement:

FOR expression TO expression (DO)? (LEFT_BRACE)? statement+

(RIGHT_BRACE)?↪→

| 'repeat' (LEFT_BRACE)? statement+ (RIGHT_BRACE)? 'until'

simple_statement↪→

;

assignment_statement:

expression

;

expression :

factor

| (LEFT_PAREN)? factor(',' factor)* (RIGHT_PAREN)?

| (LEFT_BRACE)? factor(',' factor)* (RIGHT_BRACE)?

| expression binary_operator expression

| LEFT_PAREN expression RIGHT_PAREN

| 'assert' expression

| '!' (LEFT_PAREN)? expression (RIGHT_PAREN)?

;

binary_operator :

'+' | '-' | '*' | '/'

| '<=' | '>=' // | '<' | '>'

| 'IN'

| '==' | '!='

| '='

| '&&' | '||'

| 'AND' | 'EOR' | 'OR'

| '>>' | '<<'

| 'MOD' | 'DIV'

;

bits_range:

'<' (LEFT_PAREN)? INT (('+' | '-'| '*')+ INT)* (RIGHT_PAREN)? (COLON

(LEFT_PAREN)? INT (('+' | '-'| '*')+ INT)* (RIGHT_PAREN)?)? '>'↪→

70

| '<' (LEFT_PAREN)? ID (('+' | '-'| '*')+ ID)* (RIGHT_PAREN)? (COLON

(LEFT_PAREN)? ID (('+' | '-'| '*')+ ID)* (RIGHT_PAREN)?)? '>'↪→

| '[' (LEFT_PAREN)? ID (('+' | '-'| '*')+ ID)* (RIGHT_PAREN)? (COLON

(LEFT_PAREN)? ID (('+' | '-'| '*')+ ID)* (RIGHT_PAREN)?)? ']'↪→

| '[' (LEFT_PAREN)? ID (('+' | '-'| '*')+ ID)* (RIGHT_PAREN)? (COLON

(LEFT_PAREN)? ID (('+' | '-'| '*')+ ID)* (RIGHT_PAREN)?)? ']'↪→

;

factor // LHS RHS

: variable

| literal

| function

| factor bits_range+

| (DATATYPE)+ factor bits_range*

| (DATATYPE)* KEYWORDS

| ID '[' (expression (',' expression)?)? ']'

| ID '.' ID

| factor COLON factor

| (LEFT_PAREN)? IF expression THEN (LEFT_PAREN)? expression

(RIGHT_PAREN)? (ELSE (LEFT_PAREN)? expression (RIGHT_PAREN)?)?

(RIGHT_PAREN)?

↪→

↪→

;

literal :

'setflags'

| 'TRUE'

| 'FALSE'

| INT

| BINARY

;

variable:

ID

| REGISTER

| IMMEDIATE

| FLAGS

;

function:

ID LEFT_PAREN (arguments)? RIGHT_PAREN

| AARCH LEFT_PAREN (arguments)? RIGHT_PAREN

| COMMON_FUNCTION LEFT_PAREN (arguments)? RIGHT_PAREN

71

| BUILT_IN_FUNCION LEFT_PAREN (arguments)? RIGHT_PAREN

| MISCELLANEOUS_FUNCTION LEFT_PAREN (arguments)? RIGHT_PAREN

;

arguments

: factor(',' factor)* // Some arguments

| expression(',' expression)*

;

IF : 'if' ;

THEN : 'then' ;

ELSIF : 'elsif';

ELSE : 'else' ;

FOR : 'for' ;

TO : 'to' ;

DO : 'do' ;

LEFT_PAREN : '(' ;

RIGHT_PAREN : ')' ;

LEFT_BRACE : '{' ;

RIGHT_BRACE : '}' ;

SEMICOLON : ';' ;

ANGLE_BRACKETS: '<' | '>';

COLON: ':';

FLAGS :

'PSTATE.<N,Z,C,V>'

| 'PSTATE.'ID

| 'N Flag'

| 'Z Flag'

| 'C Flag'

| 'V Flag'

| 'APSR.'ID

;

REGISTER

: 'R[d]' // destination

| 'R[m]' // second

| 'R[n]' // first

| 'R[s]'

| 'R''['ID']'

;

72

IMMEDIATE

: 'imm'INT

;

KEYWORDS:

'UNPREDICTABLE'

| 'UNKNOWN'

| 'UNDEFINED'

;

COMMON_FUNCTION:

'ConditionPassed'

| 'EncodingSpecificOperations'

;

BUILT_IN_FUNCION:

'Len'

| 'Replicate'

| 'BitCount'

| 'IsZero'

| 'IsZeroBit'

| 'IsOnes'

| 'IsOnesBit'

| 'LowestSetBit'

| 'HighestSetBit'

| 'CountLeadingZeroBits'

| 'CountLeadingSignBits'

| 'ZeroExtend'

| 'SignExtend'

| 'Int'

| 'UInt'

| 'SInt'

| 'RoundDown'

| 'RoundUp'

| 'RoundTowardsZero'

| 'Align'

| 'Max'

| 'NOT'

;

MISCELLANEOUS_FUNCTION:

'EndOfInstruction'

73

| 'Hint_Debug'

| 'Hint_PreloadData'

| 'Hint_PreloadDataForWrite'

| 'Hint_PreloadInstr'

| 'Hint_Yield'

| 'IsExternalAbort'

| 'IsAsyncAbort'

| 'LSInstructionSyndrome'

| 'ProcessorID'

| 'RemapRegsHaveResetValues'

| 'ResetControlRegisters'

| 'ThisInstr'

| 'ThisInstrLength'

;

AARCH:

'AArch32.'ID

'AArch64.'ID

;

DATATYPE:

'bits''('INT')'

| 'boolean'

| 'bit'

| 'integer'

| 'MBReqDomain'

| 'MBReqTypes'

;

BINARY:

'\' ('0' | '1' | 'x'| ' ')+ '\'

;

ID

: [a-zA-Z_][a-zA-Z0-9_]*

| [a-zA-Z0-9_]+ ('.' [a-zA-Z0-9_]+)*

;

WS

: [\t\r\n]+ -> skip

;

74

INT

: [0-9]+

;

COMMENT

: '//' ~[\r\n]* -> skip

;

BLOCK_COMMENT

: '/*' .*? '*/' -> skip

;

SKIP_

: SPACES -> skip

;

fragment SPACES

: [\t]+

;

75

	List of Figures
	List of Tables
	Introduction
	Instruction set manuals
	Instruction set
	ARM instruction sets
	ARM architecture versions, variants and profiles
	Hierachy of ARM Processors

	Natural language processing techniques
	Syntactic parsing
	TF-IDF
	Cosine similarity measure
	Association Rule Mining
	Apriori Algorithm
	FP-Growth (Frequent Pattern Growth) Algorithm

	Observation of automatically extracting the correspondence between the natural language and the pseudo-code descriptions
	Data collection
	ARM Specification
	Components of ARM Architecture
	Instruction group

	Observation of automatically extracting the correspondence between the natural language and the pseudo-code descriptions

	Syntactic parsing
	Syntax parsing of the natural language description
	Syntax parsing of pseudo-code

	Automatic section extraction
	Section definition
	Instruction analysis
	Natural language analysis
	Pseudo-code analysis

	Automatically extracting the correspondence
	Identify correspondence between the natural language description and pseudo-code
	Comprehensive example

	Experiments
	Results
	Discussion

	Conclusion
	Conclusion
	Future directions

	Grammar rules

