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Abstract

For many years, vulnerabilities in software have posed significant security
risks, necessitating the development of effective detection methods. Various
approaches have been employed for vulnerability detection, including CNNs-
based, RNNs-based, autoencoder-based, and transformer-based techniques,
utilizing diverse datasets. Recently, graph kernel techniques have emerged as
a promising approach for detecting vulnerabilities, particularly for Original
Entry Point detection of packed code.

This thesis proposes a novel method for vulnerability detection at both
the function-level and line-level using graph kernels in combination with ma-
chine learning classifiers. By leveraging the structural properties of control
flow graphs (CFGs) and the power of machine learning, this approach aims
to improve the accuracy and robustness of vulnerability detection systems.
The methodology involves constructing CFGs from binary code, extracting
meaningful features from these graphs, and applying graph kernel techniques
such as the Weisfeiler-Lehman kernel and Shortest Path kernel to encode the
graphs into feature vectors.

Extensive experiments were conducted to evaluate the effectiveness of the
proposed method. The results indicate that combining Weisfeiler-Lehman
Optimal Assignment (WLOA) kernel with Shortest Path (SP) kernel signif-
icantly improves the detection performance.

This research contributes to advancing the field of software vulnerabil-
ity detection by offering a new perspective on utilizing graph kernels for
enhanced security analysis. The findings highlight the superiority of graph
kernel-based methods and suggest directions for future work, including fur-
ther refinement of kernel techniques and exploration of additional machine
learning models to further enhance detection accuracy.

Keywords: Vulnerability Detection, Graph Kernels, Machine Learning,
Control Flow Graphs, Weisfeiler-Lehman Kernel, Shortest Path Kernel, Bi-
nary Code Analysis, Function-level Detection, Line-level Detection, Software
Security.
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Chapter 1

Introduction

1.1 Motivation

The detection of vulnerabilities in binary code is a critical aspect of software
security, which ensures the protection of systems from malicious attacks. Two
of the most common methods used for this purpose are RNN-based models
using Recurrent Neural Networks (RNNs) and transformer-based models us-
ing transformer architectures. Binary code and assembly instructions can be
treated as sequences, and RNNs can process these sequences to learn patterns
associated with vulnerabilities. The self-attention mechanism in transform-
ers allows the model to weigh the importance of each token in the sequence,
enabling it to understand the context and relationships between instructions.
Both of these models have demonstrated high accuracy in detecting vulner-
abilities at the function level; however, they struggle with precision at the
line level, which is crucial for detailed vulnerability identification and reme-
diation.

In 2023, Mr. PHAM Thanh Hung using graph kernel for Original En-
try Point detection of packed code in his thesis. Therefore, the emergence
of graph kernel techniques presents a promising solution to this challenge.
Graph kernel approaches take advantage of the structural information inher-
ent in code representations, enabling more granular analysis and detection.
These techniques have the potential to revolutionize vulnerability detection
by improving precision and efficiency at the line level. By capturing intricate
relationships and dependencies within the code, graph kernel methods can
facilitate more accurate and efficient identification of vulnerabilities.

The motivation for this thesis is driven by the need to explore and op-
timize these emerging graph kernel techniques to address the existing lim-
itations of RNN-based and transformer-based models. By focusing on the

1



development and application of graph kernel approaches, this research aims
to contribute to the advancement of vulnerability detection methodologies,
making them more robust and effective in safeguarding software systems.

1.2 Problem Statement

In the context of subsection 1.1, the aim is to address the limitations of cur-
rent vulnerability detection methods in binary code. Existing models like
BVDetector and LineVul exhibit certain strengths in function-level vulner-
ability detection but also significant weaknesses in line-level vulnerability
detection.

This thesis starts by evaluating the feasibility of the LineVul model, which
employs a transformer architecture to detect vulnerabilities at the function
level. Although it achieves high accuracy at this level, its efficacy decreases
significantly when pinpointing vulnerabilities at the line level.

To address these limitations, the potential of graph kernel approaches in
vulnerability detection is explored. By leveraging the structural information
of code through graph representations, graph kernel techniques may offer a
more precise and efficient method for identifying vulnerabilities.

The performance of these graph kernel approaches is compared with the
LineVul model to determine its efficacy. Through this comparison, the aim
is to identify the most effective methodology for comprehensive and accurate
vulnerability detection in binary code.

1.3 Contributions

The main contributions of this thesis are as follows.

1. Binary Dataset with Line-Level Labeling: A binary dataset with
line-level labeling has been curated, providing a granular view of vul-
nerabilities within the code. This dataset serves as a valuable resource
for training and evaluating models aimed at pinpointing vulnerabilities
with high precision.

2. Application of graph kernel techniques for function-level vul-
nerability detection: A novel technique utilizing graph kernel ap-
proaches is introduced to detect vulnerabilities at the function level.
Using the structural information inherent in the representation of code
in graphs, this technique enhances the accuracy and effectiveness of
function-level vulnerability detection.
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3. Enhancing Line-Level Vulnerability Detection Using Control
Flow Graph (CFG) Features: A method that integrates features
derived from Control Flow Graphs (CFGs) is proposed to improve the
performance of vulnerability detection at the line level. This approach
combines the CFG-based features with existing detection methods to
achieve more precise and reliable identification of vulnerabilities within
individual lines of code.

1.4 Thesis outline

The remaining of this thesis is organized as follows:
Chapter 2: Reviews existing literature on various machine learning ap-

proaches for vulnerability detection, including CNNs, RNNs, autoencoders,
and transformer models. It also discusses commonly used datasets and the
significance of CWE and CVE reports in the context of vulnerability detec-
tion.

Chapter 3: Provides the foundational knowledge necessary for under-
standing the research, including the concepts of control flow graphs, graph
kernels, and various machine learning models used for classification tasks.

Chapter 4: Describes the datasets used, from obtaining binary code from
C/C++ source files to the detection of vulnerabilities at both function and
line levels. This includes the processes of CFG construction, labeling, and
classification.

Chapter 5: Details the methodological approach taken in this research.
Chapter 6: Discusses the evaluation metrics applied, the experimental

setup, and presents the results of the experiments. It also includes a dis-
cussion of the findings for both function-level and line-level vulnerability
detection.

Chapter 7: Summarizes the key findings of the research, discusses their
implications, and outlines potential directions for future work.
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Chapter 2

Related Works

2.1 CNN-based for vulnerability detection

Convolutional Neural Networks (CNNs) are a class of deep learning models
known for their effectiveness in image and spatial data processing. CNNs are
characterized by their ability to automatically and adaptively learn spatial hi-
erarchies of features through backpropagation using multiple building blocks,
such as convolution layers, pooling layers, and fully connected layers.CNNs
can be effectively used for vulnerability detection in binary code due to their
ability to capture and learn hierarchical patterns within the code. Binary
code can be represented in formats that maintain spatial relationships, such
as images or matrices, making it suitable for CNN processing.

Lee et al. (2017)[1] introduced a novel approach that merges an innovative
encoding technique for assembly language instructions, named Instruction2vec[2],
with a deep learning model referred to as ”Text-CNN” to detect vulnera-
bilities in binary code. This encoding technique converts each instruction
into a fixed-length vector. The instruction components, including opcodes
and operand fragments, are encoded using a specialized word2vec model[3].
Their method achieved a 96.1% accuracy in identifying CWE-121 (Stack
Overflow) vulnerabilities in the Juliet Test Suite, surpassing the 94.2% accu-
racy achieved with a conventional word2vec model.

2.2 RNN-based for vulnerability detection

Recurrent Neural Networks (RNNs) are a class of deep learning models de-
signed to recognize patterns in sequences of data, such as time series, text,
or code. Unlike feedforward neural networks, RNNs have connections that
form directed cycles, allowing information to persist. This feature makes
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them well-suited for tasks where the order of the data is essential. RNNs
are inherently designed to handle sequential data and maintain the order of
information, which is crucial for analyzing binary code. Vulnerabilities often
depend on the sequence of instructions, and RNNs can effectively capture
these dependencies. By maintaining a memory of previous inputs, RNNs can
understand the broader context within which a particular instruction or func-
tion operates. This contextual awareness is vital for accurately identifying
vulnerabilities that are influenced by preceding code segments.

BVDetector[4] functions using program slices that have been pre-extracted.
It uses word2vec encoding per token. The authors experiment with various
neural networks to categorize the encoded slices, discovering that a BGRU[5]
yields the best performance. They evaluated their technique on program
slices obtained from a portion of the Juliet test suite targeting vulnerabilities
related to memory corruption and numerical errors, reporting an accuracy of
96.7%.

The concept of program slices[6][7] is adapted to the assembly language
by Li et al.[8]. In addition, they propose a combined model of source code
and assembly termed ’hybrid slices’. This hybrid slice technique is tested on
an aggregated subset of Juliet, achieving 96.9% accuracy, surpassing BVDe-
tector’s 88.9%.

2.3 Autoencoder-based for vulnerability de-

tection

Although VulDeePecker primarily uses Bi-directional Long Short-TermMem-
ory (Bi-LSTM) networks, it also incorporates autoencoder techniques for fea-
ture extraction and dimensionality reduction. The system identifies vulnera-
bility patterns by analyzing code snippets and extracting features using deep
learning models, including autoencoders for preprocessing and denoising.

Le et al. introduce a Maximal Divergence Sequential Auto-Encoder[9]
and utilize a constant encoding for opcodes along with a histogram-based
encoding for operands to describe assembly language instructions, achieving
85% accuracy.
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2.4 Transfomer-based for vulnerability detec-

tion

In recent years, Transformer-based models have gained significant popularity
over RNNs for various Natural Language Processing (NLP) tasks, includ-
ing vulnerability detection in source code. Transformers use a self-attention
mechanism that allows the model to weigh the importance of different words
in a sentence (or tokens in code) when forming an output. This enables the
model to capture long-range dependencies and relationships between tokens
effectively.Due to their architecture, Transformers can process input data in
parallel, leading to faster training times and scalability to larger datasets.
Transformers can consider the entire sequence of input tokens at once, which
provides a comprehensive understanding of the context.

LineVul[10] is a Transformer-based approach specifically designed to pre-
dict vulnerabilities at the line level in C/C++ code. This approach addresses
limitations found in existing methods, such as IVDetect, by leveraging ad-
vanced deep learning techniques, including BERT architecture, pre-trained
CodeBERT[11] models, and attention mechanisms for precise vulnerability
localization.

LineVul’s methodology involves two key phases: function-level prediction
and line-level prediction. At the function level, Byte Pair Encoding (BPE)
is used for subword tokenization, and a stack of 12 Transformer encoder
blocks with a multi-head self-attention mechanism is employed. The pre-
trained CodeBERT model is fine-tuned to generate vector representations
of the code, capturing long-term dependencies and interactions within the
codebase.

For line-level prediction, LineVul utilizes self-attention scores from the
Transformer model to rank lines according to their likelihood of being vulner-
able. Attention scores are summarized to prioritize inspection lines, allowing
a more precise identification of vulnerabilities within individual lines of code.

The empirical evaluation of LineVul was conducted on a large-scale dataset
consisting of over 188,000 C/C++ functions, with line-level ground truths for
vulnerabilities. The results demonstrated that LineVul significantly improves
upon existing methods, achieving an F1 measure of 0.91 for function-level
predictions and a Top-10 accuracy of 0.65 for line-level predictions.
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2.5 Common Weakness Enumeration(CWE)

and Common Vulnerabilities and Expo-

sures(CVE) report

2.5.1 Common Weakness Enumeration

Common Weakness Enumeration (CWE) is a community-developed list of
common hardware and software weaknesses. These weaknesses are identified
and categorized to help developers, security practitioners, and organizations
understand and mitigate vulnerabilities in software and hardware systems.
The primary goal of CWE is to create a standardized taxonomy of weaknesses
to improve the development, acquisition, and operation of secure software
and hardware.

CWE includes detailed descriptions of each weakness, including exam-
ples, potential consequences, and mitigation strategies. The list is regularly
updated to reflect new findings and evolving security practices. The CWE
list is maintained by the MITRE Corporation and is widely used in various
security tools and frameworks for vulnerability detection and analysis.

Standardized Weaknesses: CWE provides a standardized way to iden-
tify and describe software and hardware weaknesses, making it easier for
organizations to communicate and address security issues.

Comprehensive Coverage: The CWE list covers a wide range of weak-
nesses, including coding errors, design flaws, and architectural issues.

Mitigation Strategies: Each CWE entry includes potential mitigation
strategies to help developers and security practitioners prevent and address
the identified weaknesses.

2.5.2 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) is a list of publicly disclosed
information security vulnerabilities and exposures. Each CVE entry includes
an identifier, a brief description of the vulnerability or exposure, and refer-
ences to related vulnerability reports and alerts. The CVE list is maintained
by the MITRE Corporation and is widely used by security professionals to
track and address vulnerabilities in software and hardware systems.

CVE identifiers are used by various security tools and databases to pro-
vide consistent and standardized information about vulnerabilities. This
standardization helps organizations quickly assess the impact of vulnerabili-
ties, prioritize remediation efforts, and improve overall security posture.
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Unique Identifiers: Each CVE entry is assigned a unique identifier,
making it easy to reference and track specific vulnerabilities.

Publicly Disclosed Vulnerabilities: CVE entries are based on pub-
licly disclosed information, ensuring that the list reflects real-world security
issues.

References and Advisories: Each CVE entry includes references to
related vulnerability reports, advisories, and patches, providing valuable con-
text and remediation information.

2.5.3 Integration of CWE and CVE in Vulnerability
Detection

The integration of CWE and CVE is crucial for effective vulnerability detec-
tion and management. While CWE focuses on identifying and categorizing
weaknesses, CVE provides detailed information about specific vulnerabilities
and exposures that exploit these weaknesses. Security tools and frameworks
often use CWE and CVE together to provide comprehensive vulnerability
assessments.

Examples of integration:
Static and Dynamic Analysis Tools: Security tools use CWE entries

to identify potential weaknesses in code during static and dynamic analysis.
When a weakness is detected, the tool may reference related CVE entries to
provide information about known vulnerabilities that exploit the weakness.
Figure 2.1 is an example of CWE-391: Unchecked Error Condition and Figure
2.2 is description of CWE-391.

Vulnerability Databases: Databases such as the National Vulnera-
bility Database (NVD) use CVE identifiers to catalog and provide detailed
information about vulnerabilities. These databases often include CWE map-
pings to help users understand the underlying weaknesses associated with
each vulnerability. Figure 2.3 is description of CWE-391 in CVE-2023-32871.

Security Best Practices: Organizations use CWE and CVE to inform
their security best practices, development guidelines, and incident response
strategies. By understanding common weaknesses and vulnerabilities, orga-
nizations can implement more effective security measures and improve their
overall security posture.
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Figure 2.1: An example of CWE-391: Unchecked Error Condition

Figure 2.2: Description of CWE-391
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Figure 2.3: Description of CWE-391 in CVE-2023-32871
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Chapter 3

Background Knowledge

3.1 Control Flow Graph of binary code

A Control Flow Graph (CFG) is a representation used in computer science
to depict all possible execution paths through a program. In the context
of binary code, a CFG is a directed graph where nodes represent basic
blocks—sequences of consecutive instructions with a single entry point and
a single exit point—and edges represent control flow paths between these
blocks. Each node in the CFG is labeled with the sequence of instructions it
represents. The primary purpose of a CFG is to illustrate the flow of control
within a program, making it a crucial tool for various program analysis tasks,
such as optimization, debugging, and vulnerability detection.

Formally, a CFG can be defined as a directed graph G = (V,E), where:

• V is a set of vertices (or nodes), each representing a basic block in the
binary code. Each node v ∈ V is labeled with a sequence of instruc-
tions.

• E is a set of directed edges, where each edge (bi, bj) ∈ E indicates that
there is a possible control flow transfer from basic block bi to basic
block bj.

3.2 Graph kernel

Accurately measuring graph similarity is crucial for numerous applications
across different fields. Recently, graph kernels have become a promising so-
lution to this challenge. GraKeL is a library offering implementations of
several established graph kernels, integrating them into a unified framework.
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Figure 3.1: Adjacency matrix and node labels of graph 1

Written in Python and inspired by scikit-learn’s philosophy, GraKeL simpli-
fies the creation of comprehensive machine learning pipelines for tasks like
graph classification and clustering.

A graph kernel is a symmetric, positive semidefinite function on the set
of graphs G. Once we define such a function k : G × G → R on the set G, it
is known that there exists a map ϕ : G → H into a Hilbert space[16] H, such
that:

k(Gi, Gj) = ⟨ϕ(Gi), ϕ(Gj)⟩H
for all Gi, Gj ∈ G where ⟨·, ·⟩H is the inner product in H. Roughly

speaking, a graph kernel is a function that measures the similarity of two
graphs.1

Example:
Figure 3.1 and 3.2 show adjacency matrixes and node labels of graph 1

and graph 2.

3.2.1 Shortest Path Kernels

Shortest Path Kernels compute the similarity between two graphs by com-
paring the shortest paths within each graph. The kernel considers the length

1https://ysig.github.io/GraKeL/0.1a8/documentation/introduction.html
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Figure 3.2: Adjacency matrix and node labels of graph 2

Figure 3.3: The kernel matrixes using the Shortest Path Kernels of graph 1
and graph 2

and labels of the shortest paths, capturing the global structure of the graphs.
This approach is effective in tasks where the relationships between nodes are
crucial for understanding the graph’s properties. Example: Figure 3.1 shows
the kernel matrixes using the Shortest Path Kernels of graph 1 and graph 2.

3.2.2 Weisfeiler Lehman Framework

The Weisfeiler-Lehman (WL) Framework is a method for graph isomorphism
testing that iteratively refines the labels of nodes in a graph based on the
labels of their neighbors. Initially, each node is assigned a label based on
its attributes. At each iteration, the label of a node is updated to reflect
the multiset of labels of its neighboring nodes. This process continues for

13



Figure 3.4: The kernel matrixes using the Weisfeiler Lehman Framework of
graph 1 and graph 2

a predefined number of iterations, resulting in a refined label for each node
that captures its local neighborhood structure.

The WL Framework is widely used for enhancing the discriminative power
of graph kernels by creating more informative node representations that con-
sider the graph’s topology.

Example: Figure 3.1 shows the kernel matrixes using the Weisfeiler
Lehman Framework of graph 1 and graph 2.

3.2.3 Weisfeiler-Lehman Optimal Assignment

Valid Assignment Kernels
Valid Assignment Kernels are a class of graph kernels that compute the

similarity between two graphs by finding an optimal assignment of nodes
between the graphs. The goal is to match nodes in a way that maximizes the
similarity between their labels while respecting the structural properties of
the graphs. This involves solving an optimization problem to find the best
alignment of nodes that produces the highest overall similarity score.

Weisfeiler-Lehman Optimal Assignment he Weisfeiler-Lehman Op-
timal Assignment (WLOA) Kernel combines the Weisfeiler-Lehman Frame-
work with the concept of valid assignment kernels. In the WLOA Kernel, the
node labels are first refined using the Weisfeiler-Lehman Framework. Once
the node labels are updated, the kernel computes the optimal assignment
between the nodes of two graphs by solving an assignment problem. This
process ensures that the similarity measure captures both the local neighbor-
hood structures (through WL refinement) and the best possible node-to-node
correspondence (through optimal assignment).

The WLOA Kernel provides a robust measure of graph similarity by
integrating the iterative label refinement of the WL Framework with the
flexibility of optimal node assignments, making it effective for various graph
classification and similarity tasks.

Example: Figure 3.1 shows the kernel matrixes using the WLOA Kernel
of graph 1 and graph 2.
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Figure 3.5: The kernel matrixes using using the WLOA Kernel of graph 1
and graph 2

3.3 Machine learning for classification

3.3.1 Random forest

A Random Forest is an ensemble learning method for classification, regres-
sion, and other tasks, which operates by constructing a multitude of decision
trees during training time and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of the individual trees.
This method was introduced by Breiman (2001)[17] and is known for its ro-
bustness and accuracy in handling various types of data.

The concepts of Random Forests algorithm:

1. Ensemble Learning: Random Forests belong to ensemble methods
that combine multiple models to improve overall performance and ro-
bustness compared to individual models.

2. Bootstrap Aggregating (Bagging): This technique involves creat-
ing multiple subsets of the original dataset by sampling with replace-
ment (bootstrap sampling) and training a model on each subset. Bag-
ging helps reduce variance and prevent overfitting.

3. Random Feature Selection: At each split in the decision tree, a ran-
dom subset of features is considered, ensuring diversity among the trees
and reducing correlation between them, which improves generalization.

4. Majority Voting/Averaging: The final prediction is made by ag-
gregating the predictions from all individual trees in the forest, either
by majority voting (for classification) or averaging (for regression).

3.3.2 Support Vector Machine

A Support Vector Machine (SVM) is a supervised learning algorithm used
for classification and regression tasks. The SVM algorithm aims to find
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the hyperplane that best separates the data into different classes with the
maximum margin. Introduced by Cortes and Vapnik (1995)[18], SVMs are
effective in high-dimensional spaces and are known for their versatility in
handling various types of data.

The concepts of SVM:

1. Hyperplane: A hyperplane is a flat affine subspace of the feature
space that separates different classes. In a two-dimensional space, it is
a line, while in higher dimensions, it becomes a plane or a hyperplane.

2. Support Vectors: Support vectors are the data points closest to the
hyperplane, which are critical in defining the position and orientation
of the hyperplane. These points directly affect the margin, and thus
the classification boundary.

3. Margin: The margin is the distance between the hyperplane and the
nearest data points of each class. SVM aims to maximize this margin,
resulting in a more robust classifier.

4. Kernel Trick: The kernel trick allows SVM to handle non-linearly
separable data by mapping the input features into a higher-dimensional
space where a linear hyperplane can be used to separate the classes.
Common kernels include the polynomial kernel, radial basis function
(RBF) kernel, and sigmoid kernel.

5. Regularization Parameter (C): The parameter C controls the trade-
off between achieving a large margin and minimizing classification error.
A smaller C value encourages a larger margin with more misclassifica-
tions, while a larger C value prioritizes minimizing misclassification
errors.

3.3.3 XGBoost

XGBoost (eXtreme Gradient Boosting) is an optimized distributed gradi-
ent boosting library designed to be highly efficient, flexible, and portable. It
implements machine learning algorithms under the Gradient Boosting frame-
work. XGBoost is known for its speed and performance, making it a popular
choice for structured or tabular data. It was introduced by Tianqi Chen and
Carlos Guestrin in their 2016 paper ”XGBoost: A Scalable Tree Boosting
System” (Chen & Guestrin, 2016)[19].

The concepts of XGBoost:
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1. Gradient Boosting: XGBoost uses the gradient boosting framework,
where new models are added to correct the residual errors made by
existing models. It iteratively fits new models to the negative gradient
of the loss function.

2. Regularization: Regularization in XGBoost helps prevent overfitting
by penalizing the complexity of the model. It includes both γ (penalty
for the number of leaves) and λ(penalty for the sum of squared leaf
weights).

3. Tree Pruning: XGBoost employs a technique called ”maximum depth
pruning” in which it grows trees up to a specified maximum depth. This
helps control the complexity of the model and prevents overfitting.

4. Handling Missing Values: XGBoost can automatically handle miss-
ing values by learning the best imputation strategy during the training
process.

5. Parallel and Distributed Computing: XGBoost is designed to be
highly efficient and scalable. It supports parallel processing and can be
distributed across multiple machines to handle large-scale datasets.

6. Weighted Quantile Sketch: XGBoost uses a weighted quantile sketch
algorithm to handle weighted data and approximate the split points for
continuous features efficiently.

7. Cross Validation: XGBoost supports built-in cross-validation, which
allows for the evaluation of the model’s performance and helps in tuning
hyperparameters to avoid overfitting.

3.3.4 Multilayer perceptron

A Multilayer Perceptron (MLP) is a type of artificial neural network that
consists of multiple layers of nodes, including an input layer, one or more
hidden layers, and an output layer. Each node in one layer connects with a
certain weight to every node in the next layer. MLPs use a supervised learn-
ing technique called backpropagation for training. They are used for various
tasks such as classification, regression, and pattern recognition, due to their
ability to model complex non-linear relationships. (Rosenblatt, 1961)[20]

The concepts of MLP:

1. Feedforward Architecture: In an MLP, the data flows in one di-
rection, from the input layer to the output layer, through the hidden
layers. There are no cycles or loops in the network.
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2. Activation Functions: Activation functions introduce non-linearity
into the network, allowing it to learn complex patterns. Common acti-
vation functions include the sigmoid function, tanh, and ReLU. ReLU
is widely used due to its simplicity and efficiency.

3. Backpropagation: Backpropagation is the learning algorithm used
to train MLPs. It involves calculating the gradient of the loss function
with respect to each weight by the chain rule, then updating the weights
to minimize the loss function. This process is repeated iteratively until
the network converges.

4. Loss Function: The loss function measures the difference between
the predicted output and the actual target values. Common loss func-
tions include mean squared error (MSE) for regression tasks and cross-
entropy loss for classification tasks.

5. Weight Initialization: Proper weight initialization is crucial for the
convergence of the network. Common initialization methods include
random initialization, Xavier initialization, and He initialization.

6. Learning Rate: The learning rate determines the size of the steps
taken during the optimization process. It is a critical hyperparameter
that affects the convergence speed and stability of the training process.

7. Regularization: Regularization techniques, such as L1 and L2 reg-
ularization or dropout, are used to prevent overfitting by penalizing
large weights or randomly dropping units during training.

8. Optimization Algorithms: Various optimization algorithms, such as
Stochastic Gradient Descent (SGD), Adam, and RMSprop, are used to
update the weights based on the computed gradients. These algorithms
differ in how they adjust the learning rate and handle the gradients.

3.3.5 Convolutional neural network

A Convolutional Neural Network (CNN) is a class of deep neural networks
that is most commonly applied to analyze visual images. CNNs are charac-
terized by their use of convolutional layers that apply a convolution operation
to the input, passing the result to the next layer. This architecture allows
CNNs to effectively capture spatial hierarchies in data. CNNs are widely
used for image classification, object detection, and various other tasks that
involve spatial data[21].

The typical structure of a CNN includes:
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1. Convolutional Layers: Convolutional layers use filters (kernels) to
perform convolution operations on the input data, extracting local fea-
tures. Each filter detects specific patterns, such as edges or textures,
in the input image.

2. Activation Functions: Activation functions introduce non-linearity
into the network, enabling it to learn complex patterns. The ReLU
(Rectified Linear Unit) activation function is commonly used in CNNs
due to its simplicity and effectiveness.

3. Pooling Layers: Pooling layers perform down-sampling operations,
such as max pooling or average pooling, to reduce the spatial dimen-
sions of the feature maps. This helps in making the network invariant
to small translations and reduces computational load.

4. Fully Connected Layers: Fully connected layers are used at the end
of the network to combine the extracted features and perform the final
classification. Each neuron in these layers is connected to all neurons
in the previous layer, similar to traditional neural networks.

5. Dropout: Dropout is a regularization technique used to prevent over-
fitting by randomly setting a fraction of the input units to zero during
training. This forces the network to learn more robust features.

6. Batch Normalization: Batch normalization normalizes the input of
each layer to have a mean of zero and a standard deviation of one.
This helps in accelerating training and improving the stability of the
network.

7. Strides and Padding: Strides determine the step size with which
the filter moves across the input. Padding is used to add extra pixels
around the input image, allowing the filter to fully cover the edges of
the input.

8. Backpropagation and Optimization: The network is trained us-
ing backpropagation, where the gradients of the loss function with re-
spect to the network parameters are computed and used to update the
weights through an optimization algorithm like Stochastic Gradient
Descent (SGD) or Adam.
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Chapter 4

Translation of C/C++
vulnerability dataset to x86
binary code

4.1 Datasets for vulnerability detection

Various datasets have been developed and utilized for vulnerability detection
in source code. These data sets differ in terms of programming languages,
types of vulnerabilities, and scale of data.

The Juliet C/C++ 1.3 Test Suite is a collection of test cases in the
C/C++ language. It contains examples organized under 118 different Com-
mon Weakness Enumeration(CWE). It includes 64,099 test cases. The suite
is often used as a benchmark for evaluating static analysis tools and vul-
nerability detection models. In particular, Yamaguchi et al.[12] utilized the
Juliet Test Suite to assess their vulnerability discovery approach in source
code through graph mining, while Russell et al. (2018)[13] used it in the
development of a deep learning model to detect vulnerabilities in C / C++
code. Figures 4.1 and Figure 4.2 show 2 test cases of the Juliet C/C++ 1.3
Test Suite.

The Big-Vul dataset is a large-scale collection of real-world vulnerabili-
ties from various open-source projects, with commit-level information that
allows researchers to track how vulnerabilities are introduced and fixed. This
dataset primarily includes C/C++ code and is suitable for training machine
learning models for vulnerability detection and studying the evolution of
vulnerabilities. Fan et al. (2020)[14] introduced Big-Vul to support the de-
velopment of deep learning-based vulnerability detection models.

The Romeo dataset[15] is a binary vulnerability detection benchmark
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Figure 4.1: CWE-253: Incorrect check of function return value

Figure 4.2: CWE-252: Unchecked return value
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Figure 4.3: The process of CFGs construction and labeling

dataset based on the Juliet Test Suite (version 1.3), with approximately
41,812 test cases according to 91 Common Weakness Enumeration (CWE)
categories. The dataset provides a simple text representation of disassembled
binaries suitable for various sequence classifiers, incorporating context for
cross-function vulnerabilities and preserving semantics to identify API calls
while preventing label leakage.

4.2 Obtain binary code from C/C++

4.2.1 Adding Flags in C/C++ Files

The Juliet Test Suite is an extensive collection of synthetic test cases de-
signed to evaluate the security of software programs. Each test case in the
suite includes a pair of functions: one that is vulnerable (bad function) and
one that has been corrected to remove the vulnerability (good function). The
vulnerable function demonstrates a specific software weakness, while the cor-
rected function shows the appropriate fix. The process of CFGs construction
and labeling is illustrated in the Figure 4.3.

To accurately locate the instructions responsible for the introduction of
vulnerabilities, flags are inserted into the C/C++ source files. These flags act
as markers, identifying the precise locations in the code where vulnerabilities
are present. By doing this, the analysis tools can more easily pinpoint the
critical sections of the code that need to be examined. The flagged sections
are then used to guide the construction of the CFGs, ensuring that the re-
sulting graphs accurately reflect the presence of vulnerabilities. Figures 4.4
and Figure 4.5 illustrate the C code before and after adding the flags.
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Figure 4.4: The original C file

Figure 4.5: The C file after adding flags
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Figure 4.6: The assembly code of bad function

4.2.2 Compiling C/C++ Files to object Files

Once the flags have been added, the modified C/C++ files are compiled into
object files (.o files) using the GNU Compiler Collection (gcc). This step
converts the high-level source code into machine code, which is a lower-level
representation that can be directly executed by a computer. The compilation
process involves several stages, including preprocessing, parsing, optimiza-
tion, and code generation. The resulting object files contain the machine
code instructions corresponding to the original C/C++ source code, struc-
tured in a way that is suitable for further analysis. Figure 4.6 and Figure
4.7 are assembly codes of bad function and good function after compiling
process.

Compiler Optimization Compiler optimization refers to the process of
improving the performance and efficiency of the code generated by a compiler.
The goal is to produce machine code that runs faster, uses fewer resources,
or both. Compiler optimization techniques can be applied at various stages
of the compilation process, including during the parsing, intermediate code
generation, and final code generation phases.

There are many types of compiler optimization, and some of them can
automatically correct vulnerabilities during the compiling process.

Examples:
Buffer Overflows and Stack Canaries: Some compilers include op-

tions to add stack canaries, which can detect buffer overflow attempts. For
example, GCC has the -fstack-protector option, which inserts guard variables
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Figure 4.7: The assembly code of good function

to detect stack smashing in Figure 4.8.

void vu l n e r ab l e f un c t i on (char ∗ input ) {
char bu f f e r [ 1 0 ] ;
s t r cpy ( bu f f e r , input ) ; // Po t en t i a l b u f f e r ove r f l ow

}
With stack protection enabled:

gcc −f s tack−pro t e c t o r −O2 −o program program . c

In assembly code without stack protection (a):

1. Function Setup and Buffer Allocation:

• push %rbp: Saves the old base pointer on the stack. This is stan-
dard for preserving the caller’s frame context.

• mov %rsp, %rbp: Sets up the new frame pointer for the current
function.

• sub $48, %rsp: Allocates 48 bytes on the stack for local vari-
ables, including the buffer. This space is reserved directly from
the stack, reducing the stack pointer.

2. Function Call to strcpy:

• mov %rdi, -40(%rbp)
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Figure 4.8: The example of Buffer Overflows and Stack Canaries, (a) Assem-
bly code without stack protection, (b) Assembly code with stack protection
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• mov %fs:40, %rax

• mov %rax, -8(%rbp)

• leaq -18(%rbp), %rax

• mov %rdx, %rsi

• mov %rax, %rdi

• call strcpy@PLT: Calls the strcpy function, which copies the
string from input (source) to buffer (destination). This is where
the vulnerability to buffer overflow exists, as strcpy does not
check the length of the input against the buffer size.

3. Standard Function Exit:

• leave: Restores the previous stack frame (equivalent to mov %rbp,

%rsp followed by pop %rbp).

• ret: Returns control to the calling function by popping the return
address from the stack.

In assembly code with stack protection (b):

1. Function Setup and Buffer Allocation:

• push %rbp: Saves the old base pointer on the stack. This is stan-
dard for preserving the caller’s frame context.

• mov %rsp, %rbp: Sets up the new frame pointer for the current
function.

• sub $48, %rsp: Allocates 48 bytes on the stack for local vari-
ables, including the buffer. This space is reserved directly from
the stack, reducing the stack pointer.

2. Function Call to strcpy:

• mov %rdi, -40(%rbp)

• mov %fs:40, %rax

• mov %rax, -8(%rbp)

• leaq -18(%rbp), %rax

• mov %rdx, %rsi

• mov %rax, %rdi
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• call strcpy@PLT: Calls the strcpy function, which copies the
string from input (source) to buffer (destination). This is where
the vulnerability to buffer overflow exists, as strcpy does not
check the length of the input against the buffer size.

3. Standard Function Exit:

• leave: Restores the previous stack frame (equivalent to mov %rbp,

%rsp followed by pop %rbp).

• ret: Returns control to the calling function by popping the return
address from the stack.

4. Assembly Code with Stack Protection (Panel b)

5. Function Setup and Canary Implementation:

• endbr64: An instruction used in newer versions of GCC for in-
direct branch tracking, part of Intel’s Control-Flow Enforcement
Technology.

• sub $40, %rsp: Allocates 40 bytes on the stack for the buffer and
possibly the canary. The exact allocation might slightly differ,
showing a different focus in how space is managed due to the
canary.

• mov %fs:40, %eax

• xor %eax, %eax: These lines are involved in setting and later
checking the canary value. %fs:40 typically holds the canary
value, and xor is used for validation.

6. Function Call with Protection:

• leaq 14(%rsp), %rdi

• call strcpy@PLT: Similar direct call to strcpy, but now under
the protection of the canary mechanism.

7. Check Canary and Error Handling:

• xor %eax, %eax

• test %eax, %eax

• jne .L5: These instructions check if the canary value has been
altered (specifically, xor would set flags based on whether the
canary is unchanged; jne jumps if not equal, indicating a change).
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• .L5:

• call stack chk fail@PLT: If the canary check fails, this call
to stack chk fail is triggered, which handles the error by typi-
cally terminating the program or invoking other security measures.

8. Enhanced Exit Sequence:

• add $40, %rsp: Corrects the stack pointer, undoing the earlier
subtraction.

• ret: Returns control to the caller, similar to the unprotected
version but only after safely verifying the integrity of the stack.

Bounds Checking: Higher-level optimizations can sometimes include
bounds checking for arrays. Compilers like GCC and Clang offer options
to enable these checks, although they might not be enabled by default for
performance reasons. The example in Figure 4.9

void vu l n e r ab l e f un c t i on ( int index ) {
int array [ 1 0 ] ;
array [ index ] = 0 ; // Po t en t i a l out−of−bounds acces s

}
With stack protection enabled:

gcc −f s tack−protec to r−a l l −O2 −o program program . c

In assembly code without stack protection (a):

1. Function Setup and Buffer Allocation:

• push %rbp: Saves the old base pointer on the stack. This is stan-
dard for preserving the caller’s frame context.

• mov %rsp, %rbp: Sets up the new frame pointer for the current
function.

• sub $48, %rsp: Allocates 48 bytes on the stack for local vari-
ables, including the buffer. This space is reserved directly from
the stack, reducing the stack pointer.

2. Function Call to strcpy:

• mov %rdi, -40(%rbp)

• mov %fs:40, %rax
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Figure 4.9: The example of Bounds Checking, (a) Assembly code without
stack protection, (b) Assembly code with stack protection

30



• mov %rax, -8(%rbp)

• leaq -18(%rbp), %rax

• mov %rdx, %rsi

• mov %rax, %rdi

• call strcpy@PLT: Calls the strcpy function, which copies the
string from input (source) to buffer (destination). This is where
the vulnerability to buffer overflow exists, as strcpy does not
check the length of the input against the buffer size.

3. Standard Function Exit:

• leave: Restores the previous stack frame (equivalent to mov %rbp,

%rsp followed by pop %rbp).

• ret: Returns control to the calling function by popping the return
address from the stack.

In assembly code with stack protection (b):

1. Function Setup and Canary Implementation:

• endbr64: An instruction used in newer versions of GCC for in-
direct branch tracking, part of Intel’s Control-Flow Enforcement
Technology.

• sub $40, %rsp: Allocates 40 bytes on the stack for the buffer and
possibly the canary. The exact allocation might slightly differ,
showing a different focus in how space is managed due to the
canary.

• mov %fs:40, %eax

• xor %eax, %eax: These lines are involved in setting and later
checking the canary value. %fs:40 typically holds the canary
value, and xor is used for validation.

2. Function Call with Protection:

• leaq 14(%rsp), %rdi

• call strcpy@PLT: Similar direct call to strcpy, but now under
the protection of the canary mechanism.

3. Check Canary and Error Handling:

• xor %eax, %eax
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• test %eax, %eax

• jne .L5: These instructions check if the canary value has been
altered (specifically, xor would set flags based on whether the
canary is unchanged; jne jumps if not equal, indicating a change).

• .L5:

• call stack chk fail@PLT: If the canary check fails, this call
to stack chk fail is triggered, which handles the error by typi-
cally terminating the program or invoking other security measures.

4. Enhanced Exit Sequence:

• add $40, %rsp: Corrects the stack pointer, undoing the earlier
subtraction.

• ret: Returns control to the caller, similar to the unprotected
version but only after safely verifying the integrity of the stack.

In this task, our goal is to preserve the vulnerabilities in the binary code to
accurately detect and analyze them. Therefore, we do not use optimization
during the compilation process. Compiler optimizations, such as constant
folding or dead code elimination, can inadvertently correct or remove vulner-
abilities, which would defeat the purpose of our analysis.

To ensure that the vulnerabilities remain intact, we compile the code
with no optimization using the -O0 flag. This flag instructs the compiler
to disable all optimization passes, preserving the original code structure and
any existing vulnerabilities.

4.2.3 Removing flags in CFGs

First, build blocks of cfg Figure 4.10a then remove flags instruction in label of
block Figure 4.10b. In this section, we describe the process of removing flag
instructions from the labels of blocks in the Control Flow Graphs (CFGs).
This involves two main steps: first building the blocks of the CFG and then
removing the flag instructions.

1. Building Blocks of CFG:

To build the blocks of the CFG, we start by analyzing the binary code to
identify basic blocks and their connections. A basic block is a sequence
of instructions with a single entry point and a single exit point. The
CFG is constructed by identifying these blocks and the control flow
paths between them.
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Figure 4.10: The blocks of bad function CFG,(a) The blocks of bad function
CFG with flags, (b) The blocks of bad function CFG without flags
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Figure 4.10a illustrates an example of a CFG with flag instructions
included in the basic blocks. These flags were initially added to mark
the presence of vulnerabilities in the source code.

2. Removing Flag Instructions:

Once the CFG is built, the next step is to remove the flag instructions
from the labels of the blocks. The flag instructions were used to localize
vulnerabilities during the analysis phase but are not needed for the final
model training and evaluation. Removing these flags ensures that the
labels reflect only the functional instructions of the code.

Figure 4.10b shows the CFG after the flag instructions have been re-
moved. The blocks now contain only the original assembly instructions
without any additional markers. This cleaned-up CFG is used for fur-
ther analysis and classification of vulnerabilities.

The process of removing the flag only deletes the marked instructions
in the labels of the nodes. As a result, it does not alter the executable
code, and the structure of the CFG remains unchanged.

After completing the dataset construction process, our dataset contains
a total of 35,687 test cases spanning 81 different CWE categories.
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Chapter 5

Methodology

5.1 Vulnerability detection in function level

5.1.1 CFGs construction and labeling

The process of constructing and labeling CFG for vulnerability detection at
the function level involves a series of steps that ensure accurate identification
and analysis of vulnerable and non-vulnerable functions. This section elab-
orates on the steps taken to achieve this.The process of CFGs construction
and labeling is illustrated in the Figure 4.3

1. Building CFGs with Angr: Angr is a versatile binary analysis
framework that supports the construction and analysis of CFG from
compiled binaries. In this methodology, Angr is used to analyze the
compiled .o files and generate CFGs for each function. The steps in-
volved in this process are as follows:

• Loading the Object Files: Angr loads the .o files, parsing the
machine code instructions and organizing them into a structured
representation that it can work with.

• Constructing Basic Blocks: Angr identifies basic blocks within
each function. A basic block is a sequence of consecutive instruc-
tions with a single entry point and a single exit point. The in-
structions within a basic block are executed sequentially without
any branching, making it a fundamental unit of the CFG.

• Labeling the Basic Blocks: In this step, each basic block is
labeled using only the opcodes of the instructions it contains. This
means that the labels represent the sequence of operation codes,
which are the portion of the instruction that specifies the operation
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to be performed. By focusing on opcodes, we capture the essential
actions of each block without extraneous details.

• Building the CFGs: Once the basic blocks are identified, Angr
constructs the CFG by connecting these blocks based on the con-
trol flow paths. Edges in the CFG represent possible transitions
between basic blocks due to branch, jump, or call instructions.
This results in a directed graph that represents all possible exe-
cution paths within each function.

• Labeling the Functions: After the CFGs are constructed, each
function is labeled based on its vulnerability status. Functions
identified as bad (containing vulnerabilities) are labeled with a 1,
indicating the presence of vulnerabilities. Functions identified as
good (corrected to remove vulnerabilities) are labeled with a 0,
indicating the absence of vulnerabilities. These labels are crucial
for training machine learning models, as they provide the ground
truth needed for supervised learning.

5.1.2 CFGs classification

The classification of CFGs involves using advanced graph kernel methods to
distinguish between vulnerable and non-vulnerable functions based on their
CFG representations. In this methodology, two specific graph kernels—Weisfeiler-
Lehman optimal assignment kernel and shortest path kernel—are combined
to enhance the classification performance.

1. Weisfeiler-Lehman Optimal Assignment Kernel: The WL ker-
nel enhances the discriminative power by capturing local neighborhood
structures and their evolution over multiple iterations.

• Node Label Refinement: The WL algorithm iteratively up-
dates node labels by aggregating the labels of neighboring nodes,
creating more informative labels that capture the local graph
structure.

• Optimal Assignment: The optimal assignment part of the ker-
nel focuses on matching nodes from two graphs in a way that
maximizes the similarity between the refined node labels, result-
ing in a more accurate graph similarity measure.

2. Shortest Path Kernel: The shortest path kernel computes the sim-
ilarity between graphs by comparing the shortest paths within them.
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This kernel is effective at capturing the global structure of graphs by
considering the distances between all pairs of nodes.

• Path Enumeration: The kernel enumerates all shortest paths in
the graph, effectively summarizing the graph’s structure in terms
of the distances between nodes.

• Path Comparison: The similarity between graphs is then cal-
culated by comparing the lengths and labels of the shortest paths,
providing a comprehensive measure of graph similarity.

3. Combining the Weisfeiler-Lehman optimal assignment kernel
and the shortest path kernel: These combination leverages the
strengths of both methods, leading to a more robust and discriminative
kernel for CFG classification.

• Local and Global Structure: The WL kernel excels at captur-
ing local neighborhood structures and their evolution, while the
shortest path kernel captures the global structure of the graph.
By combining them, the resulting kernel can effectively analyze
both local and global patterns within CFGs.

• Enhanced Discriminative Power: Each kernel captures differ-
ent aspects of graph similarity. The WL kernel focuses on node
label refinement and optimal matching, whereas the shortest path
kernel emphasizes distances between nodes. Combining these per-
spectives results in a richer representation of the graph’s structural
properties.

• Improved Classification Accuracy: Empirical studies have
shown that combining multiple graph kernels can lead to improved
classification performance. The complementary nature of the WL
optimal assignment and shortest path kernels provides a more
comprehensive similarity measure, enhancing the ability to distin-
guish between vulnerable and non-vulnerable CFGs.

The combined kernel is constructed by computing the similarity scores from
both the WL optimal assignment kernel and the shortest path kernel and then
integrating these scores. The integration can be achieved through techniques
such as kernel addition or concatenation, where the final similarity score is a
weighted combination of the individual scores from each kernel.

By combining these two powerful graph kernels, the classification process
benefits from a more holistic analysis of CFGs, leading to more accurate and
reliable detection of vulnerabilities at the function level.
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Figure 5.1: The process of node labeling

5.2 Vulnerability detection in line level

5.2.1 Nodes features extraction and labeling

For vulnerability detection at the line level, it is essential to extract and label
features from the nodes of the CFGs. This process involves identifying vul-
nerable nodes based on flagged instructions and extracting relevant features
from each node to facilitate accurate classification. This process is illustrated
by Figure 5.1

1. Node Labeling: In the vulnerable CFGs, nodes are labeled based
on the presence of flagged instructions, which were previously identi-
fied and marked in the C/C++ source files before being compiled into
object files. The labeling process is as follows:

• Nodes built from instructions flagged as vulnerable in the C/C++
file are labeled as vulnerable nodes (label 1).

• Remaining nodes, which do not contain flagged instructions, are
labeled as non-vulnerable nodes (label 0).
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2. Nodes Features Extraction: For each node in the CFG, various
features are extracted to represent the characteristics of the instruc-
tions and their context within the graph. These features are crucial
for training machine learning models to detect vulnerabilities. The
features extracted for each node are as follows:

• Length: The number of assembly instructions in the node. This
feature helps in understanding the complexity and size of the basic
block.

• Instruction Type: The ASCII value of the first character of the
first instruction type. This feature provides an initial categoriza-
tion of the instruction type.

• Registers Used: The count of registers (e.g., eax, ebx) used
in the instructions. This feature indicates the level of register
utilization.

• Constants: The count of constants (numeric values) used in the
instructions. This feature highlights the presence of hard-coded
values in the code.

• Is Jump: A boolean feature indicating whether the node contains
any jump instructions (e.g., jmp, je, jne, jg, jl). This feature is
essential for identifying control flow changes.

• Memory Address: A boolean feature indicating whether the
node references any memory addresses. This feature helps in iden-
tifying instructions that interact with memory.

• Is Function Call: A boolean feature indicating whether the node
contains a function call. This feature is crucial for detecting po-
tential vulnerability points where external functions are called.

• In-Degree: The in-degree of the node in the CFG, representing
the number of edges entering the node. This feature provides
information about the node’s connectivity and significance in the
control flow.

• Out-Degree: The out-degree of the node in the CFG, repre-
senting the number of edges exiting the node. This feature also
provides information about the node’s connectivity and control
flow impact.

By extracting and labeling these features, the nodes in the CFGs are trans-
formed into a structured representation that can be used to train machine
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learning models for line-level vulnerability detection. The detailed and com-
prehensive feature set ensures that the models can accurately distinguish
between vulnerable and non-vulnerable nodes, improving the overall effec-
tiveness of the vulnerability detection process.

5.2.2 Nodes classification

The classification of nodes within CFGs is a critical step in detecting vulner-
abilities at the line level. In this approach,we employ several classifiers for
this task, including Random Forest, XGBoost, CNN, and MLP.
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Chapter 6

Experiments

6.1 Vulnerability detection in function-level

6.1.1 Dataset

The dataset for vulnerability detection in function level after was construct
to CFGs contain 71,374 CFGs which present for 71,374 functions. We ex-
perimentally evaluate our models by dividing the dataset as shown in Table
6.2.

6.1.2 Evaluation matrix

In evaluating function-level vulnerability predictions, we compare our graph
kernel model with the LINEVUL model, which serves as a baseline. Similar
to LINEVUL, we assess our model using three binary classification measures:
Precision, Recall, and F1-score. These metrics provide a comprehensive eval-
uation of the model’s performance in identifying vulnerabilities.

Precision: Precision is the ratio of correctly predicted positive observa-
tions to the total predicted positives. It measures the accuracy of the positive
predictions made by the model.

Precision =
TP

TP + FP

Label Number of functions
1 0 35,687
2 1 35,687

Table 6.1: Label and number of functions of labels in dataset
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Label Number of functions
1 train 70%
2 valid 10%
3 test 20%

Table 6.2: The data splits of functions

where:

• TP (True Positives) is the number of correctly predicted vulnerable
functions.

• FP (False Positives) is the number of non-vulnerable functions incor-
rectly predicted as vulnerable.

Recall: Recall, also known as Sensitivity or True Positive Rate, is the
ratio of correctly predicted positive observations to the actual positives. It
measures the model’s ability to identify all relevant instances of vulnerabili-
ties.

Recall =
TP

TP + FN

where:

• TP (True Positives) is the number of correctly predicted vulnerable
functions.

• FN (False Negatives) is the number of vulnerable functions incorrectly
predicted as non-vulnerable.

F1-score:
The F1-score is the harmonic mean of Precision and Recall.

6.1.3 Setup

To evaluate the effectiveness of our approach for function-level vulnerability
detection, we have utilized three graph kernels: Weisfeiler-Lehman Opti-
mal Assignment (WLOA), Shortest Path, and a combination of WLOA and
Shortest Path. These kernels are compared with the baseline model, LINE-
VUL.

Implementation:
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• We use the weisfeiler lehman, shortest path, and

weisfeiler lehman optimal assignment classes from the GraKel li-
brary to implement these graph kernels.

• For classification, we use the svc (Support Vector Classifier) from the
sklearn.svm module.

6.1.4 Result and discussion

1. Result

Models F1 Precision Recall
WLOA 0.79 0.79 0.78
Shortest path 0.80 0.79 0.79
WLOA + SP 0.81 0.81 0.81
LINEVUL 0.99 0.98 0.99

Table 6.3: The results for vulnerability detection in function level

Table 6.3 shows the results on test data. Among the three graph
kernels, the combination of Weisfeiler-Lehman Optimal Assignment
(WLOA) and Shortest Path (SP) achieves the highest results. However,
these results are still lower compared to the LINEVUL model.

2. Discussion

(a) Reasons for LineVul’s effectiveness at the function level

The LineVul model incorporates several techniques such as tok-
enization and utilizes the BERT architecture which includes self-
attention layers. These layers excel in capturing long-term depen-
dencies within lengthy sequences through dot-product operations.
Rather than relying on project-specific training data, we make use
of the CodeBERT pre-trained language model to produce vector
representations of source code. CodeBERT underwent training on
a substantial dataset comprising 20GB of code, employing a Ro-
bustly Optimized BERT pre-training methodology. As a result,
LineVul can comprehend a greater breadth of lexical and logical
semantics from the given code input, thereby producing a more
insightful vector representation.

(b) The drawback of graph kernel
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Label Number of nodes
1 0 843,900
2 1 35,687

Table 6.4: Label and number of nodes of labels in dataset

Label Number of nodes
1 train 70%
2 valid 10%
3 test 20%

Table 6.5: The data splits of nodes

Graph kernels primarily focus on the structure of graph, often
ignoring node features. They integrate node labels or attributes,
but they do not naturally handle complex node features, such as
high-dimensional vectors. In this case, they only processed strings
of node labels.

Graph Kernels often rely on pre-defined and hand-crafted features
based on graph topology (such as walks, cycles, and subgraphs).
While effective at capturing local and basic structural informa-
tion, these features may not adequately represent high-order in-
teractions that involve complex relationships and dependencies
between nodes over larger graph regions. In the context of code
representation, they fail to capture high-order interactions among
instructions.

6.2 Vulnerability detection in line-level

6.2.1 Dataset

The dataset for vulnerability detection in line level after extraction of CFG
nodes contains 879,587 nodes that represent 879,587 sequences of instruc-
tions. We experimentally evaluate our models by dividing the dataset as
shown in Table 6.5.

6.2.2 Evaluation matrix

To evaluate LineVul approach for line-level vulnerability localization, they
use the top-15 Accuracy measure. This metric assesses the percentage of
vulnerable functions where at least one actual vulnerable line appears in the
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top-15 ranking of predicted lines. The intuition behind this metric is that
security analysts are likely to prioritize lines that rank highly in vulnerability
predictions, similar to how users interact with recommendations in other
systems. By focusing on the top-15 lines, this metric provides a practical
measure of the approach’s effectiveness in guiding security analysts towards
the most critical code sections. Top-15 accuracy measures the ability of the
model to correctly identify at least one vulnerable line within the top-15
predicted lines for each vulnerable function. The steps to calculate top-15
accuracy are as follows:

Function-Level Prediction: The model is trained for function-level
vulnerability detection and used to predict which functions are vulnerable.

Line-Level Attention Scores: For each correctly predicted vulnerable
function, the model calculates an attention score for each line within the
function. Attention scores indicate the likelihood that each line is vulnerable.

Top-15 Line Ranking: The lines within each correctly predicted vul-
nerable function are ranked based on their attention scores. The top-15 lines
with the highest attention scores are selected.

Correct Line-Level Prediction: If at least one actual vulnerable line
appears in the top-15 ranked lines, it is considered a correct line-level pre-
diction. The model does not consider how many vulnerable lines are present
in the top-15, only whether at least one is correctly identified.

Top-15 Accuracy Calculation: Top-15 Accuracy is calculated as the
ratio of the total number of correct line-level predictions to the total number
of correctly predicted vulnerable functions.

Top-15 Accuracy =
Total Correct Line-Level Predictions

Total Correct Vulnerable Functions

The average count of instructions within a vulnerability node is 15. Con-
sequently, to evaluate four classification models—random forest, Xgboost,
CNN, and MLP—we employ these models to identify which node in a CFG
represents a vulnerability node.

6.2.3 Setup

We have utilized four classification models: random forest, Xgboost, CNN,
MLP compare with baseline - LineVul for line-level vulnerability detection.

Implementation:

• We use the RandomForestClassifier from the sklearn.ensemble module
to implement the Random Forest classifier.
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• The XGBoost classifier is implemented using the XGBClassifier from
the xgboost library.

• CNN and MLP models, we use the PyTorch library. The torch.nn
module is used to build the neural network layers, and the torch.optim
module is used for optimization.

6.2.4 Result and discussion

1. Result

Models Top-15 accuracy
Random forest 0.93
XGboost 0.91
CNN 0.48
MLP 0.43
LineVul 0.76

Table 6.6: The results for vulnerability detection in line level

Table 6.6 shows the results on test data. The Random Forest model
achieves the highest top-15 accuracy of 0.93, significantly outperform-
ing the baseline LineVul model, which has an accuracy of 0.76. XG-
Boost also performs exceptionally well, with a top-15 accuracy of 0.91.
In contrast, the CNN and MLP models achieve lower accuracies of 0.48
and 0.43, respectively.

2. Discussion

(a) The characteristic of data

Complexity and Dimensionality: Our data is technically complex
as it encompasses numerous fine details about the operation of
assembly code and the relationships between code blocks.

Non-linearity: The relationships between features (such as jump
instructions and control flows) are not linear and require complex
machine learning models to accurately understand and predict.

Imbalance: Our data is imbalanced, for example, the number of
samples in class 0 is more than number of of samples in class
1, the number of jump instructions is less than other types of
instructions.
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Diversity in Features: Our data comprises a variety of different
features, from quantities to types of data, necessitating the use of
complex machine learning techniques for effective processing.

Our data is a typical example where ensemble classifiers can be
very effective, especially in reducing the impact of noise and de-
tecting complex patterns through the combination of various mod-
els.

(b) Reasons for effectiveness of RF and XGBoost for our data

Both RF and XGBoost are types of ensemble classifiers.

Random Forest is an example of bagging (Bootstrap Aggregating).
In this method, multiple decision trees are independently trained
on different subsets of the data, which are randomly sampled with
replacement from the original data set.

XGBoost is an example of boosting. This is an ensemble method
in which models are built sequentially to improve upon previous
models.

(c) Reasons for limited results of CNN and MLP

CNNs and MLPs are not ensemble classifiers. They both construct
a single model that computes the output based on a specific neural
network architecture. Although there may be multiple layers in
each network, each layer is not an independent model and cannot
function independently; instead, it must work in close conjunction
with the other layers.
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Chapter 7

Conclusion and Future Work

Conclusion
In this thesis, we explored various methods for vulnerability detection

in binary code at both the function and line levels. Our approach involved
constructing and analyzing Control Flow Graphs (CFGs) from binary code,
extracting meaningful features from these graphs, and employing multiple
machine learning models to detect vulnerabilities. The models compared
include graph kernel, Random Forest, XGBoost, Convolutional Neural Net-
works, Multi-Layer Perceptrons , and the LineVul model.

Our experimental results indicate that ensemble methods such as Ran-
dom Forest and XGBoost outperform deep learning models like CNN, MLP
and LineVul in terms of top-15 accuracy for line-level vulnerability detection.
These ensemble methods leverage the diverse and high-dimensional features
extracted from CFG nodes more effectively, providing robust and accurate
predictions. Despite the lower performance of graph kernel methods com-
pared to the LineVul model at the function-level, they offer valuable insights
and demonstrate the potential for further improvement.

Future Work
To enhance the effectiveness of our vulnerability detection approach, sev-

eral areas for future work are identified:

• Expanding the dataset with a larger number of test cases can signifi-
cantly improve the training and evaluation of machine learning models.

• Integrating graph kernel methods with deep learning approaches. For
example, KerGNNs: Interpretable Graph Neural Networks with Graph
Kernels[22].
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