Formal Semantics of Core SQL Language based on the K Framework

By Pakakorn Sitthisak

A project paper submitted to School of Information Science, Japan Advanced Institute of Science and Technology, in partial fulfillment of the requirements for the degree of Master of Information Science Graduate Program in Information Science

Written under the direction of Professor Mizuhito Ogawa

December, 2014
Formal Semantics of Core SQL Language based on the K Framework

By Pakakorn Sitthisak (1210207)

A project paper submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Professor Mizuhito Ogawa

and approved by
Professor Mizuhito Ogawa
Associate Professor Nao Hirokawa
Professor Kazuhiro Ogata

November, 2014 (Submitted)
Abstract

There are lots of SQL dialects, e.g., MySQL, various versions of Oracle, and Microsoft SQL Server, ProgresQL, and more. They share common semantics on standard table operations (with slight syntax differences), which appear in a textbook of Relational database management systems (RDBMSs). However, detailed semantics with non-regular operations, e.g., `SELECT 1 + "1a"`, varies in details, and most of programmers in development do not aware of such differences. They are typically coercion, NULL, the name space, and error handling. Even a standard operation JOIN varies depending on types (including bit-width) of arguments.

This thesis investigates detailed semantics of the core of SQL, specifically on MySQL and Oracle11. First, we observe their formal semantics by testing queries on boundary cases. Next, the semantics of the core of MySQL is implemented on the K framework. We call it KSQL, which covers basic table operations, like selection, creation, deletion, update, and insertion. They are defined with the features of coercion, NULL, and the name space convention. Lastly, we discuss on current limitations and difficulties in KSQL implementation.
Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Mizuhito Ogawa. He gave me an invaluable opportunity to study abroad. Without his support, encouragement, and kind advices, I could not complete my master course.

Beside my supervisor, I would like to thank Associate Professor Nao Hirokawa for his great guidance on writing thesis and precious lessons from his experience.

My sincere thanks also goes to Dr. Min Zhang for his kind tutorial on my research.

I thank my fellow for stimulation, worth discussion, and plentiful help.

Lastly, I would like to express special thanks to my family. They always give me financial support, continuous love, and great morale throughout my life.
Contents

1 Introduction 1

2 Preliminaries 3
 2.1 Term rewriting system 3
 2.2 Algebraic specification 5

3 K framework 8
 3.1 Basic description in K 8
 3.2 Example of K 12
 3.3 Support environment of the K framework 14

4 SQL semantics 17
 4.1 SQL table operations and treatments 17
 4.2 Coercion 18
 4.3 Interpretation of NULL value 22
 4.4 Name space 24

5 KSQL description of standard table operations 26
 5.1 Syntax 26
 5.2 Configuration 28
 5.3 Rewrite rules 28

6 KSQL descriptions of coercion, NULL, and name space in MySQL 34
 6.1 Coercion in arithmetic and boolean operations 34
 6.2 Treatment of NULL value 36
 6.3 Name space 41
 6.4 Limits and difficulties in KSQL 41

7 Related work 44
 7.1 Formal semantics of SQL language 44
 7.2 Other formal semantics 44
Chapter 1

Introduction

Formal semantics of a programming language is required in many views. For instance, understanding detailed behaviour of languages reduces bugs of implementation. Automatic support by verification / analysis tools is constructed on formal semantics. Although formal semantics is often embedded into algorithms and/or implementation of such tools, there are several attempts to define formal semantics alone, e.g., Java [4], ANSI-C [3], PHP [11], Verilog [6], Scheme [5], x86 [2], and HTML5 [7]. Among them, for Java, ANSI-C, Verilog, and Scheme are implemented on K framework, thus executable.

Our aim is to give formal semantics of SQL, and clarify their differences among SQL dialects, e.g., MySQL, various versions of Oracle, Microsoft SQL Server, ProgresSQL, and more. They share common semantics on standard table operations (with slight syntax differences), like selection, insertion, deletion, creation, update, and join which are popular in a textbook of relational database management systems (RDBMSs). However, consider the following query. What do MySQL and Oracle11 return?

MySQL query: SELECT 1 + "";
Oracle query: SELECT 1 + '"' FROM DUAL;

One possibility is simply an error, because the addition + accepts numbers as its arguments. However, the addition of integer and string is valid in MySQL and Oracle11, and they return 1 and ' ' (empty string), respectively.

In this thesis, formal semantics of the core (a subset) of SQL is investigated. We first compare detailed semantics of MySQL and Oracle11, and next, the semantics of the core of MySQL is implemented on K-framework. We call it KSQL, which covers basic table operations, like selection, creation, deletion, update, and insertion.

In our study, we found two main issues to cause semantic differences between MySQL and Oracle11.

- Operations on boundary values, e.g., coercion, NULL, the name space convention, and error handling.
Two different layers, logical and physical models of data types. Dialects have their own design of data types. For example, Oracle11 has NUMBER type, which allows users to specify the precision and the scale factor, while MySQL has predefined data types, such as TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT corresponding to 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit integers, respectively.

In this thesis, we investigate the first issue, specifically, coercion, NULL, and the name space management, over basic operations. They are implemented on K framework [9], which is constructed on Maude, a programming language based on algebraic specification. Algebraic specification consists of rewriting rules (equations) over terms with sorts. We describe states of SQL as terms and SQL (small step) operational semantics of SQL as rewriting rules.

Lastly, we discuss on current limitations and difficulties in KSQL implementation.

Contributions

Our contributions are:

- The formal semantics of the core SQL language including selection, insertion, creation, deletion, and update statements.
- Differences between MySQL and Oracle11: coercion, NULL, and the name space convention.
- Semantics definition on K framework of detailed behaviour: coercion, NULL, and the name space convention in MySQL.
- Explanation and analysis of difficulties for defining semantics of SQL.

This thesis is organized as follows:

- Chapter 2 provides technical background about term rewriting systems and algebraic specification.
- Chapter 3 provides a brief introduction of K framework.
- Chapter 4 explains differences and choices among SQL semantics, based on observation on boundary cases.
- Chapter 5 describes basic description of semantics of MySQL on K framework.
- Chapter 6 describes semantics of coercion, NULL, and the name space convention of MySQL on K framework.
- Chapter 7 discusses on related work.
- Chapter 8 concludes the thesis and mentions future direction.
Chapter 2

Preliminaries

In this chapter, we explain term rewriting in the first section and algebraic specification in the second section.

2.1 Term rewriting system

Definition 2.1. Let \mathcal{V} be a countable set of variables, and \mathcal{F} a set of function symbols associated with an arity mapping $\text{ar} : \mathcal{F} \rightarrow \mathbb{N}$. We call \mathcal{F} a signature and $f \in \mathcal{F}$ has arity n if there exists $n \in \mathbb{N}$ which satisfies $\text{ar}(f) = n$. We call a function f constant if $\text{ar}(f) = 0$.

Definition 2.2. The set $T(\mathcal{F}, \mathcal{V})$ of terms over the signature \mathcal{F} is the smallest set satisfying the following conditions:

- if $x \in \mathcal{V}$ then $x \in T(\mathcal{F}, \mathcal{V})$,
- if $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}$ which has arity n then $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$.

Example 2.3. Let $\mathcal{V} = \{x, y\}$ and $\mathcal{F} = \{0, s, +\}$ with $\text{ar}(0) = 0$, $\text{ar}(s) = 1$, and $\text{ar}(+) = 2$. Then the following terms are members of $T(\mathcal{F}, \mathcal{V})$: $0, s(0), s(x), s(s(x)), 0 + s(0)$, and $x + s(y)$.

Definition 2.4. Let $t \in T(\mathcal{F}, \mathcal{V})$. We inductively define the set $V(t)$ of variables occurring in t as follows:

$$V(t) = \begin{cases} \{t\} & \text{if } t \in \mathcal{V} \\ \bigcup_{i=1}^{n} V(t) & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$$
Definition 2.5. A position is a sequence of positive integers. The position of empty sequence is denoted by ϵ and the concatenation of positions p and q is $p.q$. The set $\text{Pos}(t)$ of positions of a term t is

$$\text{Pos}(t) = \begin{cases} \{\epsilon\} & \text{if } t \in \mathcal{V} \\ \{\epsilon\} \cup \bigcup_{1 \leq i \leq n}\{i.p \mid p \in \text{Pos}(t_i)\} & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$$

Definition 2.6. A subterm $t|_p$ of t at the position p is inductively defined as follows:

$$t|_p = \begin{cases} t & \text{if } p = \epsilon \\ t_i|_q & \text{if } t = f(t_1, \ldots, t_n) \text{ and } p = i.q \end{cases}$$

Definition 2.7. If t' is a term, a term $t[t']_p$ denotes a term that is obtained from t by replacing the subterm at the position p with t':

$$t[t']_p = \begin{cases} t' & \text{if } p = \epsilon \\ f(t_1, \ldots, t_i[t']_q, \ldots, t_n) & \text{if } t = f(t_1, \ldots, t_n) \text{ and } p = i.q \end{cases}$$

Example 2.8 (Continued from Example 2.3). Let $t = (0+s(x))+(y+s(x))$. Then we have $\text{Pos}(t) = \{\epsilon, 1, 11, 12, 121, 2, 21, 22, 221\}$. We have $t|_{11} = 0, t|_{221} = x$ and $t|_{2}[0]_1 = 0+s(x)$.

Definition 2.9. A rewrite rule is a pair (l, r) of terms that $l \notin \mathcal{V}$ and $V(r) \subseteq V(l)$. A rewrite rule (l, r) is denoted by $l \rightarrow r$. A term rewriting system (TRS) \mathcal{R} is a set of rewrite rules over the signature \mathcal{F}.

Example 2.10 (Continued from Example 2.3). We can define the term rewriting system \mathcal{R} as below:

$$0 + y \rightarrow y$$

$$s(x) + y \rightarrow s(x+y).$$
2.2 Algebraic specification

Sort is a set of values. Ordered sorts are sorts with partial relation between them, called subsort relation. We use sorts to define a domain and range of functions. Partial relation gives the benefit of sort inheritance, such that if A is subsort of B, then every variable or constant of A is also variable or constant of B. Moreover, ordered sorts are useful for overloading of functions. Since the SQL language has many data types, sets of values, throughout this thesis, we adopt order-sorted term rewriting. In this section we recall the notations for order-sorted terms.

Let S be a set of sorts equipped with a subsort relation \sqsubseteq on S.

Definition 2.11. Let F be a set of pairs (f, τ) with a function symbol f and $\tau \in S^+$. The set F is an order-sorted signature if the implication

$$\frac{\tau_1 \sqsubseteq \tau'_1 \quad \cdots \quad \tau_n \sqsubseteq \tau'_n}{\tau_0 \sqsubseteq \tau'_0}$$

holds for all $(f, \tau_1 \cdots \tau_n \tau_0), (f, \tau'_1 \cdots \tau'_n \tau'_0) \in F$. A pair $(f, \tau_1 \cdots \tau_n \tau_0)$ is denoted by $f : \tau_1 \times \cdots \times \tau_n \rightarrow \tau_0$ where n is an arity of f.

Example 2.12. Let $S = \{\text{Int, NeList, List}\}$ and \subseteq its subsort order on relation with $\text{Int} \sqsubseteq \text{NeList} \sqsubseteq \text{List}$. The set F consisting of

- $\text{nil} : \text{List}$
- $\text{cons} : \text{List} \times \text{List} \rightarrow \text{List}$
- $\text{head} : \text{NeList} \rightarrow \text{Int}$
- $\text{cons} : \text{NeList} \times \text{List} \rightarrow \text{NeList}$
- $\text{tail} : \text{NeList} \rightarrow \text{List}$

forms an order-sorted signature.

We extend term with sorted terms. Let F be an order-sorted signature and V a set of variables resulting from the disjoint union of infinite sets V_τ for all sorts $\tau \in S$.

Definition 2.13. The sort judgement $t : \tau$ is defined by the next inference rules:

$$\frac{x \in V_\tau}{x : \tau} \quad \frac{f : \tau_1 \times \cdots \times \tau_n \rightarrow \tau \in F}{t_i : \tau_i \text{ for all } i} \quad \frac{t : \tau' \quad \tau' \sqsubseteq \tau}{t : \tau}$$

The set \{ t \mid $t : \tau$ for some τ \} is denoted by $T(F, V)$ and its elements are called (well-sorted) terms.

Example 2.14. Let $S = \{\text{Nat, Bool}\}$ and F a set of S-sorted signature consisting of the following:

- $\text{eq} : \text{Nat} \times \text{Nat} \rightarrow \text{Bool}$
- $+ : \text{Nat} \times \text{Nat} \rightarrow \text{Nat}$
- $\text{true} : \text{Bool}$
- $\text{s} : \text{Nat} \rightarrow \text{Nat}$
- $\& : \text{Bool} \times \text{Bool} \rightarrow \text{Bool}$
- $\text{false} : \text{Bool}$
- $0 : \text{Nat}$
Let $\mathcal{V}^{Nat} = \{x, y\}$ and $\mathcal{V}^{Bool} = \{p, q\}$. Then sorted terms $x, y, 0, s(0), s(x), s(y), s(s(x))$, and $\text{eq}(s(x), s(y))$, $\text{true} \& p$, $p \& q$ are members of $\mathcal{T}(\mathcal{F}, \mathcal{V})$ while $\text{true} + s(0)$, $1 \& \text{false}$, and $\text{eq}(\text{true}, 0)$ are not.

Definition 2.15. A substitution σ is a map from \mathcal{V} to $\mathcal{T}(\mathcal{F}, \mathcal{V})$ if the following conditions hold:

- If $x : \tau$ and $\sigma(x) : \tau'$ are the sort judgements of terms x and $\sigma(x)$, then $\tau = \tau'$
- the domain of σ is finite, where the domain of σ is given by $\text{dom}(\sigma) = \{x \in V \mid \sigma(x) \neq x\}$

We extend substitution definition to a term t as follow:

$$\sigma(t) = \begin{cases} t' & \text{if } t \text{ is a variable and } (t, t') \in \sigma \\ f(\sigma(t_1), \ldots, \sigma(t_n)) & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$$

We write t_σ for $\sigma(t)$.

Example 2.16. Consider the substitution $\sigma = \{x \mapsto \rightarrow x + z, y \mapsto \rightarrow x\}$. If $t = x + (s(y) + (z + x))$, then $t_\sigma = (x + z) + (s(x) + (z + (x + z)))$.

Definition 2.17. An equality is a pair denoted by $l \approx r$ where l, r are order-sorted terms which satisfy $l : \tau$ and $r : \tau'$, and then $\tau = \tau'$. We call a set of equalities \mathcal{E} an equation system. We define $\approx_\mathcal{E}$ the smallest equivalence relation which $C[l_\sigma] \approx_\mathcal{E} C[r_\sigma]$ holds for all equations $l \approx r \in \mathcal{E}$, contexts C, and substitution σ.

Definition 2.18. An order-sorted rewrite rule is a rewrite rule $l \rightarrow r$ which satisfies: $l : \tau$ and $r : \tau'$, and then $\tau' \subseteq \tau$. We call a set of order-sorted rewrite rules \mathcal{R} an order-sorted term rewriting system.

Definition 2.19. Given an order-sorted rewriting system \mathcal{R} and an order-sorted equation system \mathcal{E}. A term t rewrites to t' with a rewrite relation $\rightarrow_{\mathcal{R}/\mathcal{E}}$, in rewriting modulo equations, if there exists a rewrite rule $l \rightarrow r \in \mathcal{R}$, a term C, a position p, and a substitution σ such that $t \approx_\mathcal{E} C[\sigma(l)]_p$, and $t' \approx_\mathcal{E} C[\sigma(r)]_p$. We write $t \rightarrow_{\mathcal{R}/\mathcal{E}} t'$ and call it a rewrite step. When \mathcal{E} is empty, we simply write $\rightarrow_\mathcal{R}$ instead of $\rightarrow_{\mathcal{R}/\mathcal{E}}$.
Example 2.20 (Continued from Example 2.14). We can define the sorted term rewriting system R as below:

\[
\begin{align*}
\text{eq}(0, 0) & \rightarrow \text{true} \\
\text{eq}(0, s(0)) & \rightarrow \text{false} \\
\text{eq}(s(0), 0) & \rightarrow \text{false} \\
\text{eq}(s(x), s(y)) & \rightarrow \text{eq}(x, y) \\
0 + y & \rightarrow y \\
\text{s}(x) + y & \rightarrow \text{s}(x + y). \\
\text{false} & \& \ p & \rightarrow \text{false} \\
\text{true} & \& \ false & \rightarrow \text{false} \\
\text{true} & \& \ true & \rightarrow \text{true}
\end{align*}
\]

For instance, computation of $s(0) + s(0)) + s(0)$ is done by the following rewrite steps:

\[
\begin{align*}
\text{eq}(s(0) + s(0), s(0)) & \& \ true \rightarrow_{R} \text{eq}(0 + s(s(0)), s(s(0))) \& \ true \\
& \rightarrow_{R} \text{eq}(s(s(0)), s(s(0))) \& \ true \\
& \rightarrow_{R} \text{eq}(s(0), s(0)) \& \ true \\
& \rightarrow_{R} \text{eq}(0, 0) \& \ true \\
& \rightarrow_{R} \text{true} \& \ true \\
& \rightarrow_{R} \text{true}.
\end{align*}
\]

Example 2.21. Given a sorted term rewriting system R and an equation system E as below:

\[
\begin{align*}
\mathcal{R} &= \left\{ \begin{array}{c}
x \cdot x \rightarrow x \\
e \cdot x \rightarrow x
\end{array} \right\} \\
\mathcal{E} &= \left\{ \begin{array}{c}
x \cdot y \approx y \cdot x \\
(x \cdot y) \cdot z \approx x \cdot (y \cdot z)
\end{array} \right\}
\end{align*}
\]

Then the rewrite step $(((1 \cdot 2) \cdot 1) \cdot 3) \rightarrow_{R/E} ((3 \cdot 2) \cdot 1)$ holds by the following sequence: $(((1 \cdot 2) \cdot 1) \cdot 3) \approx_{E} (((1 \cdot 1) \cdot 2) \cdot 3) \rightarrow_{R} ((1 \cdot 2) \cdot 3) \approx_{E} ((3 \cdot 2) \cdot 1)$ while $(((1 \cdot 2) \cdot 1) \cdot 3) \rightarrow_{R} ((3 \cdot 2) \cdot 1)$ does not hold.
Chapter 3

K framework

The K framework is an executable framework of the language definition. Formalizing a language in the K framework automatically supplies the K analysis tools. K defines a TRS \mathcal{R} and an equation system \mathcal{E} together with their (sorted) signature. In this chapter, we will explain basic definitions using in the K framework, and show a simple example, called language SIMPLE, to show the use in the K framework.

3.1 Basic description in K

Syntax

We can define syntax definition of sorts of a language as follows:

$$\tau ::= f(\tau_1, \ldots, \tau_n)$$

which stands for

$$f : \tau_1 \times \cdots \times \tau_n \to \tau$$

where τ_1, \ldots, τ_n and τ are sorts of the language and f is a function symbol of the language. In the K framework, such a syntax is declared by the keyword syntax. We can extend the syntax of sort τ by overwriting new BNF definitions. For instance, we want the sort τ to have terms $\tau_1 \cdots \tau_n$, we can overwrite the BNF syntax of sort τ as follows:

$$\tau ::= \tau_1 \cdots \tau ::= \tau_n$$

This is equivalent to $\tau ::= \tau_1 | \ldots | \tau_n$. In addition, when we define the structure of sort τ as follows:

$$\tau ::= \tau_1 | \ldots | \tau_n$$

where τ_1, \ldots, τ_n are sorts, this yields subsort relations $\tau_1 \sqsubseteq \tau, \ldots, \tau_n \sqsubseteq \tau$.

Definition 3.1. Let \mathcal{W} is a set of context variables denoted by $\{\square_1, \ldots, \square_n\}$. An n-hole context is a term in $\mathcal{T}(\mathcal{F}, \mathcal{V} \cup \mathcal{W})$ with the constraint that each hole $\square \in \mathcal{W}$ is appeared only once. Given a substitution $\sigma = \{\square_1 \mapsto t_1, \ldots, \square_n \mapsto t_n\}$ we write $C[t_1, \ldots, t_n]$ for $C\sigma$.

We prepare new syntactical notations of rewrite rules.

Notation 3.2. Let C be an n-hole context. A single step rewrite rule of form $C[l_1, \ldots, l_n] \rightarrow C[r_1, \ldots, r_n]$ is denoted by

$$C \left[\frac{l_1}{r_1}, \ldots, \frac{l_n}{r_n} \right]$$

In the K framework such a rule is declared as a keyword rule.

Example 3.3. Consider a rewrite system \mathcal{R} written by the new syntactical form:

\[
\begin{array}{ccc}
\text{eq}(0, 0) & & \text{eq}(0, s(0)) \\
\text{true} & & \text{false} \\
\text{eq}(s(x), s(y)) & & \text{eq}(s(0), 0) \\
\frac{x}{y} & & \frac{y}{s(+(x, y))} \\
\end{array}
\]

These rules are corresponding to normal rewrite rules as follows:

- $\text{eq}(0, 0) \rightarrow \text{true}$
- $\text{eq}(0, s(0)) \rightarrow \text{false}$
- $\text{eq}(s(0), 0) \rightarrow \text{false}$
- $\text{eq}(s(x), s(y)) \rightarrow \text{eq}(x, y)$
- $+(0, y) \rightarrow y$
- $+(s(x), y) \rightarrow s(+(x, y))$.

The variables in \mathcal{W} are used to identify the positions where rewriting takes place. The notation above specifies the subterms to be rewritten and write the rewritten terms underneath.

The K framework provides several (predefined) sorts together with related rewrite rules.

Definition 3.4. A list, map, and bag are defined as follows:

- $\text{List ::= \epsilon | List :: List | \tau}$
- $\text{Map ::= \epsilon | Map :: Map | Binding}$
- $\text{Bag ::= \epsilon | Bag * Bag | \tau}$
where Binding ::= \(\tau_1 \mapsto \tau_2 \) and \(\tau, \tau_1, \) and \(\tau_2 \) are sorts.

A list of sort \(\tau \) is a term of concatenation, denoted by ::, of sorts \(\tau \) in \(\mathcal{T}(F) \) equipped with a term rewriting system \(\mathcal{R}_L \) and a map of binding is a term of concatenation of Binding, denoted by ::, equipped with a term rewriting system \(\mathcal{R}_M \) where:

\[
\mathcal{R}_M = \{ \epsilon_L :: x \rightarrow x \} \quad \mathcal{R}_M = \{ \epsilon_L :: x \rightarrow x \}
\]

Remark. The parametric polymorphism is not supported. Therefore we have to explicitly declare the sorts of elements. However, in the most of cases the ordered sort of element is clear from the context, we will omit the sort information.

A cell of sort \(\tau \) is a term denoted by:

\[
\text{Cell ::= } \langle \tau \rangle_{\text{Label}}
\]

where Label can be any string. A bag of sort \(\tau \) is a term of the AC operator * of sorts \(\tau \) in \(\mathcal{T}(F) \) equipped with a term rewriting system \(\mathcal{R}_B \) and an equation system \(\mathcal{E}_B \) where:

\[
\mathcal{R}_B = \{ \epsilon_B * x \rightarrow x \} \quad \mathcal{E}_B = \left\{ \begin{array}{l}
\epsilon * y \approx y * x \\
(x * y) * z \approx x * (y * z)
\end{array} \right\}
\]

In this thesis we denote

\[
\begin{align*}
x_1 :: \cdots :: x_n :: \epsilon_L & \quad \text{by} \quad [x_1, \ldots, x_n], \text{ or } (x_1, \ldots, x_n) \\
(x_1 \mapsto y_1) :: \cdots :: (x_n \mapsto y_n) :: \epsilon_M & \quad \text{by} \quad \{ x_1 \mapsto y_1, \ldots, x_n \mapsto y_n \}, \text{ and} \\
x_1 * \cdots * x_n * \epsilon_B & \quad \text{by} \quad \{ x_1, \ldots, x_n \}.
\end{align*}
\]

For any list \(L = [x_1, \ldots, x_i, \ldots, x_n] \), we denote \(i \)-th element \(x_i \) of list \(L \) as \(L[i] \). A parallel product of lists is a function \(\otimes : \text{List} \times \text{List} \) which is defined as follows:

\[
[x_1, \ldots, x_2] \otimes [y_1, \ldots, y_n] = [(x_1, y_1), \ldots, (x_n, y_n)]
\]

Given a list \(A = [(x_1, y_1), \ldots, (x_n, y_n)] \), we write \(A(x_i) \) for \(y_i \). Configuration is a bag of cells.

Computation

Computation is a top-level sort which extends all defined sorts in the language definition. We call the sort of computation \(K \). We consider the structure of sort \(K \) as follows:

\[
K ::= \epsilon_K \mid K \bowtie K \mid \Diamond
\]

Sort \(K \) is the smallest sort which respects to \(\sqsubseteq \) among sorts defined in \(K \). We can consider sort \(K \) as a list of any sort , in which the concatenation operator is represented by \(\bowtie \). \(\Diamond \) is a predefined constant of sort \(K \) used for sequencing the \(K \) terms to be executed. Sort \(K \) is equipped with the next rewriting system \(\mathcal{R} \):

\[
\mathcal{R} = \{ \epsilon_K \bowtie x \rightarrow x \}
\]
Strictness Attribute

Strictness attribute is an attribute on a function symbol to define its evaluation strategy. For function \(f : \tau_1 \times \cdots \times \tau_n \), evaluation strategy of \(f \) is a list of integers \(i \) where \(1 \leq i \leq n \). The K framework will automatically generate rewrite rules depending on the strictness attribute. The \textit{strict} attribute is corresponding to non-deterministic evaluation strategy. The attribute \textit{seqstrict} shows an sequential ordering of evaluation among arguments.

Example 3.5. We set a function \(_+_- \) to evaluate its arguments from the left-to-right manner. We annotate \textit{seqstrict} attribute of \(_+_- \) which is equivalent to the evaluation strategy \((1, 2)\). The K framework automatically generates the following four rewrite rules (taken from [10]).

\[
\begin{align*}
 a_1 + a_2 &\rightarrow a_1 \bowtie (\diamond + a_2) \\
 i_1 \bowtie (\diamond + a_2) &\rightarrow i_1 + a_2 \\
 i_1 + a_2 &\rightarrow a_2 \bowtie (i_1 + \diamond) \\
 i_2 \bowtie (i_1 + \diamond) &\rightarrow i_1 + i_2
\end{align*}
\]

where \(a_1, a_2 \) are variables of sort \(K \), and \(i_1, i_2 \) are variables of sort \(\text{Int} \). The evaluation of \((1 + 2) + (3 + 4)\) is the following rewrite steps:

\[
(1 + 2) + (3 + 4) \rightarrow (1 + 2) \bowtie (\diamond + (3 + 4)) \\
\rightarrow 3 \bowtie (\diamond + (3 + 4)) \\
\rightarrow 3 + (3 + 4) \\
\rightarrow (3 + 4) \bowtie (3 + \diamond) \\
\rightarrow 7 \bowtie (3 + \diamond) \\
\rightarrow 3 + 7 \\
\rightarrow 10
\]

Configurations

The K framework represents a state of program by a configuration. Configuration contains terms of a program and the state environments. In the K definition, we have to specify an initial configuration for initial state when we run a program for a language.

Example 3.6. The initial configuration of program \(x = 1; y = 2; \) in the language \textit{SIMPLE} (see section 3.2) is defined by the following term constructed by three cells.

\[
\left< x = 1; y = 2; \right>_K \ast \left< \epsilon_M \right>_{env} \ast \left< 0 \right>_{loc}
\]
Notation 3.7. The K framework provides notations, defined by ‘⊥’ and ‘⋯’, to represent an anonymous, unnamed, variable in the rewrite rules. Symbol ‘⊥’ is used when a variable is appeared only in the left-hand side of the rule. Symbol ‘⋯’ is used when a variable is appeared both in the left-hand side and right-hand side of the rule. When we use ‘⋯’ in a cell, we usually omit ‘,’ (comma) and brackets for List notation and ‘↷’ for sort K.

The K framework represents an empty value ϵ_{τ} by \cdot_{τ}.\(\tau\) (dot followed by the sort name).

Example 3.8. The rewrite rule

$$\langle V = I; \epsilon_{\tau} \cdots \rangle_{K} \langle \cdots V \mapsto z \cdots \rangle_{env}$$

in the language SIMPLE definition can be defined as

$$\langle V = I; \epsilon_{\tau} \mapsto k \rangle_{K} \langle [e_1, V \mapsto i, e_2] \rangle_{env}$$

As long as we use cells on the top level we may omit cells that we do not touch.

3.2 Example of K

We briefly describe the K framework by using a simple example to show how we can define a language in K.

Figure 2.1 shows the definitions in K of the language SIMPLE. There are three parts we have to define: syntax, configuration, and rewrite rules.

Syntax of SIMPLE

For syntax definition, we define two new sorts which are Exp, expression, and Stmt, statement. Exp is formed by Int, Integer, or construct of plus, Exp + Exp. The plus construct is associated with strict attribute which means that its arguments must be evaluated before applying any rule to the construct. Stmt is formed by assignment from expression to variable name, Id, or is formed by sequencing of statements. In assignment construct, it is associated with strict(2) which means Exp terms must be evaluated before applying any rule to assignment construct. Additionally, the associativity is associated to the syntax definition, for sequencing statement we associate left, which means left associativity.

Initial configuration of SIMPLE

For the language SIMPLE, we define the initial configuration as:

$$\langle \$PGM : K \rangle_{K} \langle \epsilon_{M} \rangle_{env}.$$
module SIMPLE

syntax Exp ::= Int
 | Exp "+" Exp [strict]
syntax Stmt ::= Id "=" Exp ";" [strict(2)]
 | Stmt Stmt [left]
syntax KResult ::= Int

configuration
 <k> $PGM:K </k>
 <env> .Map </env>

rule I1:Int + I2:Int => I1 +Int I2
rule <k> V = I:Int ; => . . . </k>
 <env> ... V |-> (_ => I) ... </env>
rule <k> V = I:Int ; => . . . </k>
 <env> => V |-> I ... </env>
rule S1 S2 => S1 ~> S2
endmodule

Figure 3.1: Definition of the language SIMPLE in K
K cell contains a term (abstract syntax tree) of the input language, denoted by PGM. The env cell contains an empty map.

Rules of SIMPLE

In simple language, there are four rewrite rules which are corresponding to the following rewrite rules:

1. $\frac{I_1 + I_2}{I_1 + \text{Int} \cdot I_2}$
2. $\frac{S_1 S_2}{S_1 \rightsquigarrow S_2}$
3. $\langle \frac{V = I; \cdots}{\epsilon_k} \rangle_K \langle \cdots V \mapsto I \cdots \rangle_{env}$
4. $\langle \frac{V = I; \cdots}{\epsilon_k} \rangle_K \langle \cdots \frac{\epsilon_M}{V \mapsto I} \rangle_{env}$

The first rule says that the operator of plus with two integer arguments are rewritten to the primitive operator $+$ for the addition (on integers), which is predefined function in the K framework. The second rule manages statements S_1 and S_2 to be ordered in terms of sort K. The third rule is an assignment rule which rewrites the assignment statement into empty unit of sort K and change the value in env map when map already has index V. The fourth rule is an assignment rule which rewrites the assignment statement into the empty unit of sort K and inserts a new pair of $V \mapsto I$ to env.

Suppose that we have a program TEST as below:

$\$PGM \equiv x=3; y=5; x=3 + 5;$

If we run the input program using K interpreter then we get the following rewrite steps:

If we run the input program using K interpreter then we get the following rewrite steps:

$\langle [x=3; y=5; x=3 + 5] \rangle_{\epsilon_L} \langle \epsilon_L \rangle_{env}$

3.3 Support environment of the K framework

Based on formal semantics definition, the K framework provides analysis/verification tools [9] which are automatically derived as in figure 3.2.

Once we compile ("kompile" command) the definition in the K framework, it is translated into Maude in which analysis tools are prepared.
Parser
The K framework uses SDF for parser generation. SDF generates the abstract-syntax tree from a grammar described in algebraic specification.

Interpreter
This is an immediate benefit of the language definition in the K framework. The K framework interprets K term by transforming it to Maude and Maude interprets it by rewriting.

Compiler
The K framework prepares a compiler written in Maude. It transforms K definition into Maude code. It has been replacing from Maude compiler to equivalent transformation in Java which is currently operating in some part of compilation.

Debugger
The K framework adopts Maude debugger by inserting a break point into K description. It is then translated into Maude code tagged with the break point. Maude debugger traces the execution and stop at each break point until the entire execution is done.
Model checker

The K framework supports for concurrent programming which can have non-deterministic behaviours. Maude provides search command to see all possible behaviours and the K framework makes use of it for model checking. The model checker in the K framework adopts linear temporal logic (LTL) benefited from a (model-checker) built-in provided by Maude.

For example, when we can compile this language SIMPLE by using K compiler and run the program by K interpreter, and then we get the following result as Figure 3.3.

Figure 3.3: Result after running the program TEST with SIMPLE language
Chapter 4

SQL semantics

4.1 SQL table operations and treatments

In SQL database system, all data are stored in the tables. The following are basic definitions.

- A field, attribute, and column refer to a data value.
- A data type of field is a domain of value.
- A record is a composition of values.
- A table is a collection of records.
- A database is a set of tables.

Typically table operations include

- Selection: SELECT fields FROM list_of_tables WHERE predicate;
 This statement defines what column to be retrieved in fields, which table in list_of_tables, and condition for filtering in predicate.

- Creation: CREATE TABLE table_name (list_of_column_definition);
 This statement creates the table with name given by table_name and the column definitions in list_of_column_definition with the type, the column name, the key assignment, etc.

- Insertion: INSERT INTO table_name (column_definition) VALUE (values);
 This statement inserts a new record to the table name table_name. Such a new record has the fields as list_of_column and its values as values.
• Deletion: DELETE FROM table_name WHERE predicate;
This statement deletes elements in the table table_name such that the predicate predicate are satisfied.

• Update: UPDATE table_name SET assignments WHERE predicate;
This statement updates records of the table table_name with the assignment assignments which satisfied predicate.

Standard table operations among SQL dialects share similar semantics described in a textbook except for variations of syntax. However they vary in details, especially non-regular operations such as:

• (1) Treatment of NULL value The treatment of NULL is one of the most important issues. The differences come from the meaning of this value. This different meanings bring confusion to the definition of semantics.

• (2) Coercion among types Coercion are implicitly conversion of types of arguments, e.g., 1 + "1a" requires coercion from string to integer.

• (3) Boolean data types SQL dialects have different representation of the boolean data type. Some simply uses zero and non-zero like MySQL. Some omits the like Oracle11.

• (4) Error handling The ways of error handling can be the following: error constant, explicit error messages, and replacing with possible values. Normally, we can see error handling by printing error messages, but in real SQL dialects, they have their own specific purposes to use the error constant for error representation.

• (5) Name space When we want to refer to an specific object, such as a column name in SQL language, we have to identify the name space or path direct to such a column. The name space is designed differently among SQL dialects. This leads difference among SQL dialects.

Among these differences we focus on coercion, NULL, and the name space by comparison between MySQL and Oracle11.

4.2 Coercion

Data type represents a set of values, e.g., 32-bit integer (denoted by INT) and text string (denoted by TEXT) in MySQL. SQL has types of arguments of operations. However, for flexibility, it converts types to fit an operation by coercion. Coercion consists of rules to convert one type of an object to a new object/value with a different type.
Example 4.1. MySQL executes the statement `SELECT 1 + "1";`. The result of the this statement is 2. Basically, operator `+` takes two arguments of integers, but MySQL extends the definition to cover other types. MySQL treats Int + String as Int + Int by applying implicit type conversion from String to Int which converse "1" to 1.

Here we show some possible choices of coercion.

Coercion to boolean type

- Non-zero values are converted to `TRUE` and 0 is converted to `FALSE`,
- Any string is converted to `FALSE`,
- Any string is converted to integer and then converted to boolean by the first choice.

Coercion to integer type

- `FALSE` is converted to 0 and `TRUE` is converted to 1,
- `FALSE` and `TRUE` are converted to errors,
- Numbered string is converted to corresponded integers otherwise an error,
- Mixed-content string is converted to number content of maximum-length numbered substring starting at first character otherwise zero.

Coercion to string type

- Number is converted to numbered string,
- Number is converted to an error.

MySQL considers `TRUE` and `FALSE` as aliases of 1 and 0, respectively. We start from examples in table 4.1 and their results to observe the semantics definition of the operator `+`. For testing queries, we use selection syntax `"SELECT Exp ;"` in MySQL. However, Oracle11 does not allow selection of boolean expressions `BExp` as the colunnn we need to distinguish queries on `miBexp` such that `"SELECT 1 FROM DUAL WHERE BExp;"`. Table 4.1, 4.2, and 4.3 show comparison between MySQL and Oracle11 on `+`, `<=`, and `&&`, respectively. Here are our observation.

- In MySQL `TRUE` is considered as 1 and `FALSE` is considered as 0.
- Application of `<=` with two string is considered as string comparison.
- In Oracle, we can see that all queries confirm coercion from integer to string. However, coercion can accept only numbered content and does not accept `TRUE` and `FALSE`.
- In Oracle11 all queries result errors. This confirms us that Oracle11 does not allow 1, 0, `TRUE`, and `FALSE` for the arguments.
<table>
<thead>
<tr>
<th>No.</th>
<th>Exp in MySQL</th>
<th>result (MySQL)</th>
<th>result (Oracle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 + 1 ;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1 + 2 ;</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1 + "1" ;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>"1" + 1 ;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>"1" + "1" ;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>"1" + "2" ;</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>TRUE + 1 ;</td>
<td>2</td>
<td>error</td>
</tr>
<tr>
<td>8</td>
<td>FALSE + 1 ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>9</td>
<td>TRUE + FALSE ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>10</td>
<td>0 + "a" ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>11</td>
<td>1 + "a" ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>12</td>
<td>0 + "1a" ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>13</td>
<td>1 + "2a" ;</td>
<td>3</td>
<td>error</td>
</tr>
<tr>
<td>14</td>
<td>1 + "1a1" ;</td>
<td>2</td>
<td>error</td>
</tr>
<tr>
<td>15</td>
<td>0 + "-1" ;</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>16</td>
<td>0 + "-1a" ;</td>
<td>-1</td>
<td>error</td>
</tr>
<tr>
<td>17</td>
<td>"-1a" + "-1a" ;</td>
<td>-2</td>
<td>error</td>
</tr>
<tr>
<td>18</td>
<td>TRUE + "-1a" ;</td>
<td>0</td>
<td>error</td>
</tr>
</tbody>
</table>

Table 4.1: Testing queries for coercion of + in MySQL and Oracle
<table>
<thead>
<tr>
<th>No.</th>
<th>Exp in MySQL</th>
<th>result (MySQL)</th>
<th>result (Oracle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 <= 1 ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 <= 0 ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 <= "1" ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>"1" <= 1 ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 <= "0" ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 <= "a" ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 <= "1a" ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TRUE <= 0 ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TRUE <= 1 ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2 <= TRUE ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>FALSE <= 1 ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TRUE <= FALSE ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>"1" <= "2" ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>"2" <= "1" ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>"-1" <= "1" ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>"-2" <= "-1" ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>"a" <= "b" ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>"b" <= "a" ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>"a" <= "ab" ;</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>"bb" <= "ac" ;</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>"-" <= "-2" ;</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: Testing queries for of ≤ coercion in MySQL and Oracle
<table>
<thead>
<tr>
<th>No.</th>
<th>Exp in MySQL</th>
<th>result (MySQL)</th>
<th>result (Oracle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 && 1 ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>2</td>
<td>1 && 0 ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>3</td>
<td>1 && "1" ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>4</td>
<td>"1" && 1 ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>5</td>
<td>"1" && "1" ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>6</td>
<td>"1" && "0" ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>7</td>
<td>TRUE && 1 ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>8</td>
<td>FALSE && 1 ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>9</td>
<td>TRUE && FALSE ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>10</td>
<td>1 && "a" ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>11</td>
<td>1 && "1a" ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>12</td>
<td>1 && "1a1" ;</td>
<td>1</td>
<td>error</td>
</tr>
<tr>
<td>13</td>
<td>"a" && "a" ;</td>
<td>0</td>
<td>error</td>
</tr>
</tbody>
</table>

Table 4.3: Testing queries for coercion of && in MySQL and Oracle11

Next we give our hypothesis.

- MySQL uses zero and non-zero to represent \texttt{FALSE} and \texttt{TRUE}.
- In MySQL coercion from string to integer type will return numbered content of maximum-length numbered substring starting at first character otherwise it returns zero.
- In Oracle, we guess that boolean primitive data are implicit values which Oracle11 does not provide users for direct usage. We can use boolean expression only in condition expression and there is no coercion from other types to boolean type. For coercion from string to integer type, Oracle11 can convert only numbered content of string.

4.3 Interpretation of NULL value

SQL has a special value \texttt{NULL}, which is treated differently among SQL dialects. There are choices on handling \texttt{NULL}:

- \texttt{NULL} is an undefined (missing) value,
- \texttt{NULL} is an error,
- \texttt{NULL} is the empty string,
Table 4.4: Testing queries for NULL (undefined) treatment in MySQL and Oracle

- NULL is FALSE.

For example, consider queries in Table 4.4.

<table>
<thead>
<tr>
<th>No.</th>
<th>Exp in MySQL</th>
<th>result (MySQL)</th>
<th>result (Oracle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 + 1 ;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1 + NULL ;</td>
<td>NULL</td>
<td>''</td>
</tr>
<tr>
<td>3</td>
<td>NULL + 1 ;</td>
<td>NULL</td>
<td>''</td>
</tr>
<tr>
<td>4</td>
<td>NULL + NULL ;</td>
<td>NULL</td>
<td>''</td>
</tr>
<tr>
<td>5</td>
<td>NULL</td>
<td></td>
<td>TRUE ;</td>
</tr>
<tr>
<td>6</td>
<td>TRUE</td>
<td></td>
<td>NULL ;</td>
</tr>
<tr>
<td>7</td>
<td>NULL && FALSE ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>8</td>
<td>FALSE && NULL ;</td>
<td>0</td>
<td>error</td>
</tr>
<tr>
<td>9</td>
<td>concat('1',NULL) ;</td>
<td>NULL</td>
<td>'1'</td>
</tr>
</tbody>
</table>

When we execute SELECT * FROM Student, we cannot decide whether we should present the row containing NULL value. If we present, one might have a question that what name of the student number one is. If we do not present, one might have a question that why the table has the number one. MySQL regards NULL as:

- NULL means a missing or undefined value,
- NULL means an error (when it occurs),

whereas Oracle11 regards it as the empty string. We observe them by examples. The expression of operator +, ||, &&, and concat (OR, AND, and || in Oracle11) to investigate how MySQL and Oracle11 treat (in table 4.4). In MySQL, we observe that if + is strict on NULL as well as other arithmetic and comparison operators. For boolean operations NULL as an unknown value of Kleene’s three value logic is observed in MySQL. They are shown in queries 5-9 in table 4.4. In Oracle, NULL is considered as the empty string. The
<table>
<thead>
<tr>
<th>No.</th>
<th>Exp in MySQL</th>
<th>result (MySQL)</th>
<th>result (Oracle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NULL</td>
<td>NULL</td>
<td>' '</td>
</tr>
<tr>
<td>2</td>
<td>CONCAT(NULL, 1) ;</td>
<td>NULL</td>
<td>'1'</td>
</tr>
<tr>
<td>3</td>
<td>CONCAT(NULL, "1") ;</td>
<td>NULL</td>
<td>'1'</td>
</tr>
<tr>
<td>4</td>
<td>NULL IS NULL ; (BExp)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>"" IS NULL ; (BExp)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5: Testing queries for NULL (undefined) treatment in string expression in MySQL and Oracle

<table>
<thead>
<tr>
<th>No.</th>
<th>Exp in MySQL</th>
<th>result (MySQL)</th>
<th>result (Oracle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/0 ;</td>
<td>NULL</td>
<td>error</td>
</tr>
<tr>
<td>2</td>
<td>1%0 ;</td>
<td>NULL</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.6: Testing queries for NULL (error) treatment in MySQL and Oracle

query 9 in Table 4.4 and Table 4.5 show the contrast. For MySQL, the queries in Table 4.5 show that even NULL in string behaves as an unknown value and is not equal to the empty string. As NULL is also used as failure of the evaluation in Table 4.6. In Oracle11, an error is shown by the error messages (“error”) and NULL is the empty string. Thus, 1 + NULL contains coercion on 1 from Int to (null) string where MySQL treats it as the sum with an undefined value (then NULL is returned).

The execution of 1/0 and 1%0 (zero-divisor) should return errors, but MySQL returns NULL for an error. While Oracle11 does not use NULL for an error, but an error message is returned.

4.4 Name space

MySQL and Oracle11 have the name space depending on how to handle table names. For instance, an operation with the same table, like the self join and product, how to make them unique. Possible choices of the name space are:

- Name conflict is not allowed,

- Identifying an object by prefixes of the database name and the table name (as in MySQL),
Table 4.7: Testing queries for treatment conflict name space in MySQL

<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT 1 FROM T JOIN T</td>
<td>error</td>
</tr>
<tr>
<td>2</td>
<td>SELECT 1 FROM T JOIN T AS T2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Identifying an object by prefixes of the account name and the table name (as in Oracle),
- Identifying an object by prefixes of the database name, the schema name, and the table name (as in PostgreSQL).

These designs of the name space are to make identification of each object unique.

We observe the behaviour in MySQL in Table 4.7. The query 1 shows that both MySQL and Oracle do not accept self join operation due to ambiguity of names. However, they solve such a problem by allowing user to give alias as in the query 2.

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A\INT</td>
<td>A\INT</td>
</tr>
<tr>
<td>B\TEXT</td>
<td>B\INT</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>"a"</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>"b"</td>
<td></td>
</tr>
</tbody>
</table>

What if we execute `SELECT A FROM T1 JOIN T2`? This query causes an error because both MySQL and Oracle do not know which attribute A we refer from tables T1 and T2. We can make the attribute A clear by providing a name space as `SELECT T1.A FROM T1 JOIN T2` or `SELECT D.T1.A FROM T1 JOIN T2`. We call such multiple parts of identifier as qualifier. Oracle11 does similarly but with a different name space, `SELECT T1.A FROM T1 JOIN T2` or `SELECT U.T1.A FROM T1 JOIN T2`.

Form out observation we expect that MySQL accesses one object by identifying the database name and the object name, like `DatabaseName.TableName`. In contrast, Oracle11 accesses one object by identifying the user name and the object name, like `Owner.TableName`, and PostgreSQL does with the database name, the schema name, and the table name, like `DatabaseName.SchemaName.TableName`.
Chapter 5

KSQL description of standard table operations

We present our formalization of database systems, which we named KSQL. Typical SQL queries are creation, update, and retrieval of tables in a database. First we formalize tables. In KSQL, we prepare three sorts \(\text{Int} \), \(\text{Bool} \), and \(\text{String} \). \(\text{Int} \) literal value represents an integer. \(\text{Bool} \) values are represented by zero and one. Our semantics stays at logical level and ignores bit-length at physical level. Here we have the subsort relation \(\text{Bool} \subseteq \text{Int} \). \(\text{String} \) values are represented by starting and ending with double quote (""') which contain text in between. We simply call fields for terms of sort \(\text{Field} \), values for those of \(\text{Val} \), data types for those of \(\text{DataType} \), and (table) identifiers for terms of \(\text{Id} \). In KSQL, we omit the physical level variations of data types, and then we denote \(\text{INT} \) for the integer data type and \(\text{TEXT} \) for the string data type. In this chapter we present basic definition of its syntax, configuration, and rewrite rules.

5.1 Syntax

Definition 5.1. A Field element is a tuple of field and data type. A Schema is a list of field elements, and a record is a tuple of values. We denote a set of schemas by \(\text{Schema} \) and a set of lists of records by \(\text{Record} \). We define a table as the triple \((T, S, R)\) of an identifier \(T \), a schema \(S \), and a list \(R \) of records, denoted by \(T[S : R] \).

Example 5.2. Consider the two tables \(T_1[S_1 : R_1] \) and \(T_2[S_2 : R_2] \) with

\[
\begin{align*}
S_1 &= [(A, \text{INT}), (B, \text{TEXT})] \\
R_1 &= [(1, "a"), (2, "b"), (3, "c")]
\end{align*}
\]

\[
\begin{align*}
S_2 &= [(A, \text{INT}), (B, \text{INT})] \\
R_2 &= [(1, \text{TRUE}), (2, \text{TRUE}), (2, \text{FALSE})]
\end{align*}
\]
Note that TRUE and FALSE are aliases of 1 and 0 respectively. These tables are visualized as follows:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"a"</td>
</tr>
<tr>
<td>2</td>
<td>"b"</td>
</tr>
<tr>
<td>3</td>
<td>"c"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRUE</td>
</tr>
<tr>
<td>2</td>
<td>TRUE</td>
</tr>
<tr>
<td>3</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Intuitively, a database is a set of tables. However, SQL supports aliases for table identifiers in order to solve name conflict problem. We address this functionality by separating identifiers from their entities.

We formalize the core part of syntax for SQL queries.

Definition 5.3. Queries or statements in KSQL are defined as follows:

\[
\text{Query ::= CREATE TABLE } Id (\text{FieldDcl}^*) ; \\
| \text{INSERT INTO } Id (\text{Field}^*) \text{VALUES } (\text{Val}^*) ; \\
| \text{SELECT } \text{ProjectionExp} \text{ FROM } Id \text{ WHERE } \text{Exp} ; \\
| \text{Query Query}
\]

In KSQL we do not care the data types, thus in creation of table semantics we omit to do data type checking of values. We assume that expression Exp and ProjectionExp are defined as follows:

\[
\text{Exp ::= Id | Int | String | Exp } \circ \text{Exp } \\
\text{ProjectionExp ::= } \ast | \text{Field} (, \text{Field})^* \\
\text{FieldDcl ::= Field } \text{DataType} \\
\text{DataType ::= INT | TEXT}
\]

where \(\circ \in \{+, -, =, <\}\). Field (, Field)* stands for a non-empty list.

For convenience, we use \(T\) for a table identifier, \(n\) for a natural number, \(S\) and \(S'\) for schemas, \(R\) for a list of records, \(r\) for a record, and \(f\) for a field. We start with syntax of \text{store} definition which is a function will be used in the semantics of \text{CREATE}.

Definition 5.4. Syntax of \text{store} is given by the next grammar:

\[
K ::= \ldots | \text{store Table}
\]

Then we define auxiliary functions \text{doGetTable}, \text{doCondition}, and \text{doProjection} which will be used in the semantics of \text{SELECT}.
Definition 5.5. The syntax of doGetTable, doCondition, and doProjection are given by:

\[
Table ::= \text{doGetTable}(Id) \\
| \text{doCondition}(Table, Exp) \\
| \text{doProjection}(Table, ProjectionExp)
\]

5.2 Configuration

Definition 5.6. Let \(\bar{S}\) be a set of schemas, and \(\bar{R}\) a set of lists of records. A (database) configuration is term of the form:

\[
\text{Configuration} ::= \langle K \rangle_K \langle M_e \rangle_{\text{env}} \langle M_s \rangle_{\text{schema}} \langle M_r \rangle_{\text{records}} \langle \text{Nat} \rangle_{\text{loc}}
\]

where \(M_e : Id \rightarrow \text{Nat}, M_s : \text{Nat} \rightarrow \bar{S},\) and \(M_r : \text{Nat} \rightarrow \bar{R} .\)

Example 5.7 (Continued from Example 5.2). We define a configuration for the database consisting of the tables \(T_1\) and \(T_2\) as below:

\[
\begin{align*}
\langle \epsilon_K \rangle_K \\
\langle [T_1 \mapsto 0, T_1 \mapsto 1] \rangle_{\text{env}} \\
\langle [0 \mapsto [(A, \text{INT}), (B, \text{TEXT})], 1 \mapsto [(A, \text{INT}), (C, \text{INT})]] \rangle_{\text{schema}} \\
\langle [0 \mapsto [(1, "a"), (2, "b"), (3, "c")], 1 \mapsto [(1, 1), (2, 1), (3, 0)]] \rangle_{\text{records}} \\
\langle 2 \rangle_{\text{loc}}
\end{align*}
\]

5.3 Rewrite rules

Before we define the semantics of table creation, we need to define the evaluation of \textit{store}. \textit{store} function moves a table content from the cell of \(K\) into the cells of \(\text{env}, \text{schema},\) and \(\text{records}\) in the configuration.
Definition 5.8. The semantics of \texttt{store} is given by the following two rules:

1. \[
\begin{align*}
\left(\begin{array}{c}
\text{store } T[S : R] \\
\epsilon_K
\end{array} \right)_{\text{env}} \quad \left(\begin{array}{c}
\epsilon_M \\
\left[[S], R \right]_{\text{records}}
\end{array} \right)_{\text{schema}} \quad \left(\begin{array}{c}
\epsilon_K \\
\epsilon_M \\
n \mapsto n + 1
\end{array} \right)_{\text{loc}}
\end{align*}
\]

2. \[
\left(\begin{array}{c}
\epsilon_M \\
n \mapsto S
\end{array} \right)_{\text{schema}} \quad \left(\begin{array}{c}
\epsilon_M \\
n \mapsto R
\end{array} \right)_{\text{records}} \quad \left(\begin{array}{c}
\epsilon_K \\
n \mapsto n
\end{array} \right)_{\text{env}}
\]

There are two rewrite rules for \texttt{store} evaluation. The first rule is applied when we already have identifier \(T \) in the \texttt{env} cell. In contrast, the second rule is applied when we have no identifier \(T \) in the \texttt{env} cell. We will use \texttt{store} to define the semantics of \texttt{CREATE}.

\texttt{CREATE} query is used to create table together with a list of fields declaration.

Definition 5.9. The evaluation of \texttt{CREATE} is defined as follows:

\[
\left(\begin{array}{c}
\text{CREATE TABLE } T(Fd) ; \\
T[\text{createSchema}(Fd) : \epsilon_L] \bowtie \text{store} \diamond \ldots
\end{array} \right)_{\text{K}}
\]

where \text{createSchema} is a function defined as below:

\[
\text{createSchema}(Fd) = \{ f \mid f \in Fd \text{ for some data type } d \}
\]

Here we use the comprehension notation \([\ldots | \ldots]\). The K framework does not support it but we can easily translate such a notation to corresponding recursive definitions in the K framework. We briefly explain the evaluation of table creation. The evaluation of table creation creates structure of the table \(T \) containing fields from a list of field declaration \(Fd \) and then use \texttt{store} evaluation to store the table in the configuration.

The evaluation of insertion is to insert a new record to configuration.

Definition 5.10. The evaluation of \texttt{INSERT} is defined as follows:

\[
\left(\begin{array}{c}
\text{INSERT INTO } T(S) \text{ VALUES}(Vs) ; \\
\epsilon_K \\
n \mapsto n
\end{array} \right)_{\text{env}} \quad \left(\begin{array}{c}
\left[[Vs], R \right]_{\text{records}}
\end{array} \right)_{\text{schema}}
\]

where we assume that list \(Vs \) of values and the schema \(S \) have the same number of elements.
When inserting a new record, KSQL first finds the location in the \textit{env} cell and then stores schema and a new record of values in \textit{schema} and \textit{records} cells respectively.

Selection is the most complicated. As its syntax indicates, it consists of three ingredients. It begins with the table retrieval part, the condition part, and the projection part. Their semantics is defined by auxiliary functions \texttt{doGetTable}, \texttt{doCondition}, and \texttt{doProjection}.

Definition 5.11. The semantics of \texttt{doGetTable} is defined as follows:

\[
\begin{align*}
\langle \texttt{doGetTable}(T) \rangle_K &= T[S : R] \ldots \\
\langle \ldots T \mapsto L \ldots \rangle_{\textit{env}} &= \langle \ldots L \mapsto S \ldots \rangle_{\textit{schema}} \\
\langle \ldots L \mapsto R \ldots \rangle_{\textit{records}}
\end{align*}
\]

Before we define \texttt{doCondition}, we need two more auxiliary functions \texttt{eval} and \texttt{filter}. The function \texttt{eval} is to evaluate an expression using data in a record which specific to a schema. The function \texttt{filter} is to filter a list of records, which satisfy the condition for a specific schema.

Definition 5.12. For an identifier \(I\), integers \(n\) and \(m\), a string \(s\), and a value \(v\), we inductively define the \texttt{eval} function as follows:

\[
\begin{align*}
\texttt{eval} : \text{Schema} \times \text{Record} \times \text{Exp} &\rightarrow \text{Exp} \\
\texttt{eval}(S, r, I) &= (S \otimes r)(I) \\
\texttt{eval}(S, r, n) &= n \\
\texttt{eval}(S, r, s) &= s \\
\texttt{eval}(S, r, n + m) &= \texttt{eval}(S, r, n) + \texttt{eval}(S, r, m) \\
\texttt{eval}(S, r, n - m) &= \texttt{eval}(S, r, n) - \texttt{eval}(S, r, m) \\
\texttt{eval}(S, r, n = m) &= \texttt{eval}(S, r, n) = \texttt{eval}(S, r, m) \\
\texttt{eval}(S, r, n < m) &= \texttt{eval}(S, r, n) < \texttt{eval}(S, r, m)
\end{align*}
\]

Definition 5.13. The definition of \texttt{filter} for a schema \(S\), a list \(R\) of records, and an expression \(E\) is defined by:

\[
\begin{align*}
\texttt{filter} : \text{Schema} \times \text{Records} \times \text{Exp} &\rightarrow \text{Records} \\
\texttt{filter}(S, R, E) &= [r \in R \mid \texttt{eval}(S, r, E) = 1]
\end{align*}
\]
Definition 5.14. The semantics of doCondition is defined as follows:

\[
\left\{ \begin{array}{l}
doCondition(T[S : R], E) \\
T[S : filter(S, R, E)] \end{array} \right. \quad \cdots \quad \langle \rangle_K
\]

The last auxiliary function is doProjection. Similar to doCondition, we need one more auxiliary function project, to project only attributes that we need.

Definition 5.15. The definition of project for a schema S, a R list of records, and a new schema S′ is defined as follows:

\[
\text{project: } \text{Schema} \times \text{Records} \times \text{Schema} \rightarrow \text{Records}
\]

\[
\text{project}(S, R, S′) = [[(S \otimes r)(f) \mid f \in S′] \mid r \in R]
\]

Definition 5.16. The semantics of doProjection is defined as follows:

\[
\left\{ \begin{array}{l}
doProjection(T[S : R], *) \\
T[S : R] \end{array} \right. \quad \cdots \quad \langle \rangle_K
\]

\[
\left\{ \begin{array}{l}
doProjection(T[S : R], S′) \\
\text{project}(S, R, S′) \end{array} \right. \quad \cdots \quad \langle \rangle_K
\]

The first rule contains *, which means all of attributes, return table without change. The second rule projects only needed attributes, defined by S′, from the table.

Selection query executes table name to get the table content (doGetTable), then filters its records that satisfy expression (doCondition), and finally projects only needed specific attributes (doProjection).

Definition 5.17. The semantics of SELECT is defined as follows:

\[
\langle \begin{array}{l}
\text{SELECT } P \text{ FROM } T \text{ WHERE } E; \\
\text{doGetTable}(T) \sim \text{doCondition}(\diamond, E) \sim \text{doProjection}(\diamond, P) \end{array} \rangle_K
\]

In addition to the definition above, we need structural rules, which instantiates a value to \(\diamond\) and change the sequence of queries into the list of K terms.

Definition 5.18. The structural rules for an instantiation of table to \(\diamond\) by tables are defined as follows:

\[
\left\{ \begin{array}{l}
T[S : R] \sim \text{store } \diamond \\
\text{store } T[S : R] \end{array} \right. \quad \cdots \quad \langle \rangle_K
\]

\[
\left\{ \begin{array}{l}
T[S : R] \sim \text{doCondition}(\diamond, E) \\
\text{doCondition}(T[S : R], E) \end{array} \right. \quad \cdots \quad \langle \rangle_K
\]

\[
\left\{ \begin{array}{l}
T[S : R] \sim \text{doProjection}(\diamond, P) \\
\text{doProjection}(T[S : R], P) \end{array} \right. \quad \cdots \quad \langle \rangle_K
\]
Definition 5.19. The structural rule for transforming a term of a sequence of queries into a list of K terms is defined as follows:

$$\langle \frac{Q_1 Q_2 \cdots}{Q_1 \bowtie Q_2} \rangle_K$$

The rule above gets a term formed by Q_1 and Q_2 and then rewrite it into a K term $Q_1 \bowtie Q_2$. This is because the K framework will try to rewrite the first argument of K terms until it reaches normal form, it then unifies the first term to the next term.

We have done the minimal semantics of selection, creation, and insertion queries. Now we introduce an example which we will use the above semantics to evaluate.

Example 5.20. Let $Q = S_1, \ldots, S_5$ with for convenience, we first introduce statement variables S_1, \ldots, S_5 where

1. $S_1 = \text{CREATE TABLE T1(A INT, B TEXT)}$;
2. $S_2 = \text{INSERT INTO T1(A, B) VALUES(1, "a")}$;
3. $S_3 = \text{INSERT INTO T1(A, B) VALUES(2, "b")}$;
4. $S_4 = \text{INSERT INTO T1(A, B) VALUES(3, "c")}$;
5. $S_5 = \text{SELECT * FROM T1 WHERE A > 1}$;

The query Q is evaluated as follows:
\[\langle S_1 S_2 S_3 S_4 S_5 \rangle_K C_1 \text{ where } C_1 = \langle \epsilon_M \rangle_{\text{env}} \langle \epsilon_M \rangle_{\text{schema}} \langle \epsilon_M \rangle_{\text{records}} \langle 0 \rangle \rangle_{\text{loc}} \]

\[\rightarrow^* \langle S_1 \bowtie S_2 \bowtie S_3 \bowtie S_4 \bowtie S_5 \rangle_K C_1 \]

\[\rightarrow^* \langle T_1 \bowtie \text{store } \bowtie S_2 \bowtie S_3 \bowtie S_4 \bowtie S_5 \rangle_K C_1 \]

\[\rightarrow^* \langle \text{store } T_1 \bowtie S_2 \bowtie S_3 \bowtie S_4 \bowtie S_5 \rangle_K C_1 \]

\[\rightarrow^* \langle S_2 \bowtie S_3 \bowtie S_4 \bowtie S_5 \rangle_K C_2 \text{ where } C_2 = D \langle 0 \mapsto \epsilon_L \rangle_{\text{records}} \]

\[\text{and } D = \langle [T1 \mapsto 0] \rangle_{\text{env}} \langle 0 \mapsto [(A, \text{INT}), (B, \text{TEXT})] \rangle_{\text{schema}} \langle 1 \rangle \rangle_{\text{loc}} \]

\[\rightarrow^* \langle S_3 \bowtie S_4 \bowtie S_5 \rangle_K C_3 \text{ where } C_3 = D \langle 0 \mapsto [(1, "a") \rangle_{\text{records}} \]

\[\rightarrow^* \langle S_4 \bowtie S_5 \rangle_K C_4 \text{ where } C_4 = D \langle 0 \mapsto [(1, "a", (2, "b") \rangle_{\text{records}} \]

\[\rightarrow^* \langle S_5 \rangle_K C_5 \text{ where } C_5 = D \langle 0 \mapsto [(1, "a", (2, "b", (3, "c") \rangle_{\text{records}} \]

\[\rightarrow^* \langle \text{doGetTable(T1)} \bowtie \text{doCondition(\bowtie A > 1)} \bowtie \text{doProjection(\bowtie \bowtie *)} \rangle_K C_5 \]

\[\rightarrow^* \langle T_2 \bowtie \text{doCondition}(\bowtie A > 1) \bowtie \text{doProjection}(\bowtie \bowtie *) \rangle_K C_5 \]

\[\rightarrow^* \langle \text{doCondition}(T_2, A > 1) \bowtie \text{doProjection}(\bowtie \bowtie *) \rangle_K C_5 \]

\[\rightarrow^* \langle \text{doProjection}(T_2, \bowtie \bowtie *) \rangle_K C_5 \]

\[\rightarrow^* \langle \text{doProjection}(T_3, \bowtie \bowtie *) \rangle_K C_5 \]

\[\rightarrow^* \langle T_3 \rangle_K C_5 \]

<table>
<thead>
<tr>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A\text{_INT}</td>
<td>B\text{_TEXT}</td>
<td>A\text{_INT}</td>
</tr>
<tr>
<td>A\text{_INT}</td>
<td>B\text{_TEXT}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>"a"</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>"b"</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>"c"</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6

KSQL descriptions of coercion, NULL, and name space in MySQL

6.1 Coercion in arithmetic and boolean operations

We define semantics of coercion on K framework as we have observed in the section 4. First we recall the structure of expressions as show below:

\[Exp ::= \cdots \mid Exp \circ Exp \mid \text{NOT} \ Exp \]

where \(\circ \in \{+, -, *, /, \%, =, >, >, >=, <, <=, !=, ||, &&\} \) and \(Exp \) is an expression which refers to an integers or string value.

K framework provides functions that take one literal value and convert it from one type to string and from string to another type.

Definition 6.1. The K framework provides functions for types conversion as follow:

\[
\begin{align*}
\text{tokenToString} &: \text{Token} \to \text{String} \\
\text{parseToken} &: \tau \times \text{String} \to \text{Token}
\end{align*}
\]

where \(\text{Token} \) is a set of literal values (string and integer). The function \(\text{tokenToString} \) converts the value into corresponded string and \(\text{parseToken} \) returns the literal value corresponds to the sort \(\tau \) that its value is described in the String.

From the two functions above, we construct a new function by combining them as follows:

\[C : \tau_1 \times \tau_2 \times \text{Token}_{\tau_1} \to \text{Token}_{\tau_2} \]
which convert the value v of the sort τ_1, corresponding to the value of the sort τ_2. We simply denote $C_{\tau_1 \rightarrow \tau_2}(v)$ for $C(\tau_1, \tau_2, v)$. We call C a coercion function and we denote the coercion function for operator f by C^f.

In MySQL, \texttt{TRUE} and \texttt{FALSE} are aliases of 1 and 0 respectively.

Definition 6.2. The coercion function from Int to Bool is defined as follows:

$$C_{\text{Int} \rightarrow \text{Bool}}(i) = \begin{cases} 0 & \text{if } i = 0 \\ 1 & \text{otherwise} \end{cases}$$

where i is an integer.

Conversion from \texttt{String} to \texttt{Int} is more complicated.

Definition 6.3. The coercion function from String to Int is defined as follows:

$$C_{\text{String} \rightarrow \text{Int}}(s) = \begin{cases} n & \text{if } s \text{ is } [+][-][0-9]^{\wedge}[0-9]?(.*) \\ 0 & \text{otherwise} \end{cases}$$

where n is an integer.

Now, we define the semantics of arithmetic and boolean operators with support coercion.

Definition 6.4. Let i, i_1, and i_2 be integers and s, s_1, and s_2 strings. The semantics of arithmetic operator \circ is defined as:

1. $\frac{i_1 \circ i_2}{m}$
2. $\frac{i \circ s}{i \circ C_{\text{String} \rightarrow \text{Int}}(s)}$
3. $\frac{s \circ i}{C_{\text{String} \rightarrow \text{Int}}(s) \circ i}$
4. $\frac{s_1 \circ s_2}{C_{\text{String} \rightarrow \text{Int}}(s_1) \circ C_{\text{String} \rightarrow \text{Int}}(s_2)}$

where $\circ \in \{+, -, \ast, /, \%\}$ and m is the value after execution of normal arithmetic of integers i_1 and i_2.

35
Definition 6.5. Let \(b, b_1, \) and \(b_2 \) be boolean values, let \(i, i_1, \) and \(i_2 \) be integers, and let \(s, s_1, \) and \(s_2 \) be strings. The semantics of logical operator \(\circ \) is defined as:

\[
\begin{align*}
1: & \quad b_1 \circ b_2 \\
2: & \quad b \circ i \\
3: & \quad i \circ b \\
4: & \quad i_1 \circ i_2 \\
5: & \quad i \circ s \\
6: & \quad s \circ i \\
7: & \quad s_1 \circ s_2 \\
\end{align*}
\]

where \(\circ \in \{ \&\& , || \} \) and \(m \) is the value after execution of normal boolean operation of \(b_1 \) and \(b_2 \).

Next we formalize the semantics of comparison operators.

Definition 6.6. Let \(i, i_1, \) and \(i_2 \) be integers and let \(s, s_1, \) and \(s_2 \) be strings. The semantics of comparison operator \(\diamond \) is defined as follows:

\[
\begin{align*}
1: & \quad i_1 \diamond i_2 \\
2: & \quad i \diamond s \\
3: & \quad i \diamond b \\
4: & \quad s \diamond i \\
5: & \quad s \diamond i \\
6: & \quad s_1 \diamond s_2 \\
\end{align*}
\]

where \(\diamond \in \{ =, <, \leq, >, \geq, \neq \} \), \(m = 1 \) if \(i_1 \diamond i_2 \) holds, and \(m = 0 \) otherwise and \(\diamond_{\text{lex}} \) is string comparison corresponds to lexicographical ordering on strings.

The type coercion function \(C^\circ_{\text{String} \rightarrow \text{Int}} \) is defined as same as \(C^\circ_{\text{String} \rightarrow \text{Int}} \). Table 6.1, 6.2, and 6.3 show testing results between KSQL and MySQL.

6.2 Treatment of NULL value

Definition 6.7. \textbf{NULL} is a constant of sort Val.

As we have observed behaviour of \textbf{NULL} in section 4 we could see that \textbf{NULL} is bottom data type which we consider an error constant. \textbf{NULL} follows to strict semantics.

Definition 6.8. For each operator \(f : \tau_1 \times \cdots \times \tau_{\text{NULL}} \times \cdots \times \tau_n \rightarrow \tau \), the semantics of \textbf{NULL} is defined as follows:

\[
\begin{align*}
1: & \quad f(e_1, \ldots, \text{NULL}, \ldots, e_n) \\
\end{align*}
\]

where \(e_1, \ldots, e_n \) are expressions and \(\tau_{\text{NULL}} \).
<table>
<thead>
<tr>
<th>No.</th>
<th>query</th>
<th>result (MySQL)</th>
<th>result (KSQL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT 1 + 1;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SELECT 1 + 2;</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>SELECT 1 + "1";</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>SELECT "1" + 1;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>SELECT "1" + "1";</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>SELECT "1" + "2";</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>SELECT TRUE + 1;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>SELECT FALSE + 1;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>SELECT TRUE + FALSE;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>SELECT 0 + "a";</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>SELECT 1 + "a";</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>SELECT 0 + "1a";</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>SELECT 1 + "2a";</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>SELECT 1 + "1a1";</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>SELECT 0 + "-1";</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>16</td>
<td>SELECT 0 + "-1a";</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>17</td>
<td>SELECT "-1a" + "-1a";</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>18</td>
<td>SELECT TRUE + "-1a";</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.1: Comparison of coercion testing of + between MySQL and KSQL
<table>
<thead>
<tr>
<th>Number</th>
<th>Query</th>
<th>result (MySQL)</th>
<th>result (KSQL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT 1 <= 1 ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>SELECT 1 <= 0 ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SELECT 1 <= "1" ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>SELECT "1" <= 1 ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>SELECT 1 <= "0" ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>SELECT 1 <= "a" ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>SELECT 1 <= "1a" ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>SELECT TRUE <= 0 ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>SELECT TRUE <= 1 ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>SELECT 2 <= TRUE ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>SELECT FALSE <= 1 ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>SELECT TRUE <= FALSE ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>SELECT "1" <= "2" ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>SELECT "2" <= "1" ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>SELECT "-1" <= "1" ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>SELECT "-2" <= "-1" ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>SELECT "a" <= "b" ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>SELECT "b" <= "a" ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>SELECT "a" <= "ab" ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>SELECT "bb" <= "ac" ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>SELECT "-" <= "-2" ;</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6.2: Comparison of coercion testing of ≤ between MySQL and KSQL
Table 6.3: Comparison of coercion testing of && between MySQL and KSQL

The semantics of NULL in MySQL is two fold.

- Description of an error, which obeys strict semantics (Def. 6.7)
- The bottom constant in three-valued logic (Def. 6.8)

If a function is boolean operation, NULL behaves as the bottom constant. Otherwise NULL is an error constant.

Definition 6.9. The semantics of boolean operators

- \text{NOT} : \text{Bool} \quad && : \text{Bool} \times \text{Bool} \rightarrow \text{Bool} \quad || : \text{Bool} \times \text{Bool} \rightarrow \text{Bool}

are defined as follows:

| && | TRUE | NULL | FALSE | || | TRUE | NULL | FALSE | NOT |
|----|------|------|-------|----|------|------|-------|-----|
| TRUE | TRUE | NULL | FALSE | TRUE | TRUE | TRUE | TRUE |
| NULL | NULL | NULL | FALSE | NULL | TRUE | NULL | NULL |
| FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | NULL | FALSE |

Lastly we have two special rules for zero-divisor in / and \% operators.

Definition 6.10. The semantics of zero-divisors of operators / and \% are defined as

\[e / 0 \rightarrow \text{NULL} \quad e \% 0 \rightarrow \text{NULL} \]

The other errors for other operators are defined similarly using NULL representation. However, we cannot generalize NULL semantics for each operator.

The tables 6.4, 6.5, and 6.6 show testing results on NULL between MySQL and KSQL.
<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
<th>result (MySQL)</th>
<th>result (KSQL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT 1 + 1 ;</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SELECT 1 + NULL ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>3</td>
<td>SELECT NULL + 1 ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>4</td>
<td>SELECT NULL + NULL ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>5</td>
<td>SELECT NULL</td>
<td></td>
<td>TRUE ;</td>
</tr>
<tr>
<td>6</td>
<td>SELECT TRUE</td>
<td></td>
<td>NULL ;</td>
</tr>
<tr>
<td>7</td>
<td>SELECT NULL && FALSE ;</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>SELECT FALSE && NULL ;</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.4: Comparison of NULL (undefined) execution between MySQL and KSQL

<table>
<thead>
<tr>
<th>No.</th>
<th>MySQL query</th>
<th>result (MySQL)</th>
<th>result (KSQL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT NULL ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>2</td>
<td>SELECT CONCAT(NULL, 1) ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>3</td>
<td>SELECT CONCAT(NULL, "1") ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>4</td>
<td>SELECT NULL IS NULL ;</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>SELECT "" IS NULL ;</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.5: Comparison of NULL (undefined) of string function between MySQL and KSQL

<table>
<thead>
<tr>
<th>No.</th>
<th>Query</th>
<th>result (MySQL)</th>
<th>result (KSQL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SELECT 1 / 0 ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>2</td>
<td>SELECT 1 % 0 ;</td>
<td>NULL</td>
<td>NULL</td>
</tr>
</tbody>
</table>

Table 6.6: Comparison of NULL (error) execution between MySQL and KSQL
6.3 Name space

KSQL supports the name space (only table name). We keep field name in the form TableName.FieldName and schema is the set of those form. The semantics is modified to support this field name extension.

Definition 6.11. The evaluation of CREATE is defined as follows:

\[
\begin{align*}
\langle & \text{CREATE TABLE } T(Fd) ; \\
& T[\text{createSchema}(T, Fd) : \epsilon_L] \leadsto \text{store} \diamond \ldots \rangle_K
\end{align*}
\]

where \(T \) is a table identifier and createSchema is a function defined as below:

\[
\text{createSchema}(T, Fd) = [T.f \mid f \in Fd \text{ for some data type } d]
\]

MySQL allows a user to identify a field by either by field name or by the table name with the field name. We define a function to unify them to the latter form, i.e., TableName.FieldName.

Definition 6.12. The function uniform is defined as follows:

\[
\text{uniform}(T, S) = [T.f \mid f \in S \lor T.f \in S]
\]

Corresponding to this function, each operation is redefined.

Definition 6.13. The semantics of SELECT is redefined as follows:

\[
\begin{align*}
\langle & \text{SELECT } P \text{ FROM } T \text{ WHERE } E ; \\
& \text{doGetTable}(T) \leadsto \text{doCondition}(\diamond, E) \leadsto \text{doProjection}(\diamond, \text{uniform}(T, P)) \ldots \rangle_K
\end{align*}
\]

For other rules, we need to redefine in a similar way.

6.4 Limits and difficulties in KSQL

Coercion

To support type coercion, we need to define many rewrite rules. For instance the semantics of + and \(\leq \) operators are four rewrite rules for each, instead of one. This is to support coercion from string to integer.

Our basic implementation of coercion in KSQL is case analysis. If \(f \) has \(n \)-arguments and consider coercion from sort \(\tau_i \) to \(\tau_i' \) (\(1 \leq i \leq n \)). Then direct encoding

\[
f(t_1, \ldots, t_n) \rightarrow f(C_{\tau_1 \rightarrow \tau_1'}(t_1), \ldots, C_{\tau_n \rightarrow \tau_n'}(t_n))
\]
(if $C_{\tau_i \rightarrow \tau'_{\downarrow}}(t_i) \neq t_i$ for some i) is $2^n - 1$ rules.

Furthermore, if we have m different sorts, Each combination requires such rewrite rules and the total number of rewrite rules is $(m - 1)(2^n - 1)$.

Furthermore, if there are p operators f_1, \ldots, f_p in a language, each of them has n_1, \ldots, n_p arguments respectively. Then the number of rewrite rules becomes

$$\sum_{i=1}^{p} (m - 1)(2^{n_i} - 1).$$

In current KSQL of coercion among types section, there are 13 operators and 2 sorts. Each operator has 2 arguments thus we need 39 rules (instead of 13 rules).

This exponential growth prohibits to apply our current method to a practical languages. There are several possibility to reduce the number of rules First idea is to separate operators into groups of operators, which usually have the same type of argument. For example, arithmetic operators and string operators have certain similar structure in each category. By defining new structure of expressions as below:

$$Op ::= + | - | * | / | \%$$

$$AExp ::= AExp Op AExp$$

The type of these operators’ arguments is integer type. Then we can simply define semantics of coercion as rules 2, 3, 4 in Definition 6.5 by replacing \circ with Op. This can reduce the number of rules from 15 to 3.

Second idea would be to use inheritance of ordered sort. But we have not investigate so far.

Treatment of NULL

As we have seen that the semantics to support NULL requires many rewrite rules.

For an operator f that is not NULL-handling function, e.g., IS NULL, IS NOT NULL, or IFNULL, has multiple arguments. If n-arguments, n-rules are required. Suppose that there are p operators f_1, \ldots, f_p with n_1, \ldots, n_p arguments, respectively. Then the number of rewrite rules is

$$\sum_{i=1}^{p} n_i.$$

Additionally, we have to define rules for error handling. It is difficult to observe all behaviours of error handling exactly.

Although the number of rewrite rules for NULL treatment is not important because it is not exponential. Still it is difficult because MySQL has many error-handling solutions. Further investigation will be required.
Logical and physical model of data types

For integer and string data types, KSQL supports unbounded integers and unbounded strings. In fact, MySQL has variation of data types. For example, the integer data type varies TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT for 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit integers, respectively. Current implementation of KSQL does not support for such variation of data types. This is because when we insert a datum into a field of integer, MySQL solves overflow and underflow of such integer by bounding theirs value to the maximum and minimum values. Hence, for each operation of integers, we need more complex semantics to support such variations.

Uniqueness of primary key

Oracle11 and MySQL do not allow duplication of the primary key. When the primary key has duplicated values, Oracle11 and MySQL return errors. In current implementation of KSQL, each record has a product type and thus allows duplicated records. This difficulty can be simply solved by defining a function type. For instance, consider a record that contains three integer columns, A, B, and C. Suppose that primary key contains only attribute A. Then a record (1, 2, 3) is a relation represented by (1, [2, 3]) instead of a list [1, 2, 3]. We can define a type of records as \(\text{Int} \rightarrow (\text{Int} \times \text{Int}) \) instead of \(\text{Int} \times \text{Int} \times \text{Int} \).
Chapter 7

Related work

There are several existing works on giving explicit formal semantics. We overview such works in three views.

- Formal semantics of SQL [8]
- Formal semantics of other programming languages: PHP [11], DATALOG [1], self-modifying x86 [2].
- Executable formal semantics on K framework: JAVA [4], Verilog [6], Scheme [5], and C [3].

7.1 Formal semantics of SQL language

The semantics of it is based on first-order-logic (FOL) and this leads to the problem of NULL definition.

Negri, Pelagatti, and Sbattella (1991) gave a formal semantics of SQL queries [8]. The work starts with translation of SQL to a formal model consisting a set of rules in first order logic. The formal model is called Extended Three Valued Predicate Calculus (E3VPC). However, their semantics is still missing the real semantics, e.g. NULL. First, an undefined value NULL in MySQL is in Kleene’s three valued logic and notion standard FOL. Secondly, their semantics focuses on the selection query only while ours semantics additionally define creation, deletion, update, and insertion.

7.2 Other formal semantics

PHP Tozawa, Tatsubori, Onodera and Minamida (2009) gave the definition of a copy-on-write semantics of PHP language [11]. The semantics is used to solve copy-on-assignment,
which causes copy overhead. Copy-on-write model is formalized by using graph rewriting.

DATALOG Alpuente, Feliu, Joubert, and Villanueva (2010) formalized the definition of DATALOG in rewriting logic using Maude for implementation [1]. DATALOG is also a relational query language, beyond RDB like SQL. It is a subset of Prolog (Prolog with only predicates and constants) and allow recursive expressions. Their focus is more on standard operations, but not on boundary cases.

x86 Bonfante, Marion, and Reynaud-Plantey (2009) gave the formal semantics for self-modifying x86 programs [2]. A self-modifying binary program can be constructively rewritten to a non-modifying program.

7.3 Executable formal semantics on K framework

There are several programming languages being defined on the K framework. They have motivated a core SQL language in the K framework.

Java Farzan, Chen, Meseguer, and Rosu (2004) gave the semantic of a program analysis framework for Java [4]. The semantics can be applied to model-checker provided by K framework.

Scheme Meredith, Hills, and Rosu (2007) defined an equational semantics of Scheme [5]. The semantics includes the support for macros.

Verilog Meredith, Katelman, Meseguer, and Rosu (2010) gave a formal executable semantics of Verilog [6]. Their semantics is used to emulate programs and search on its behaviours.

C Ellison and Rosu (2012) gave of an executable formal semantics of C [3]. Contributions of this work are not only the formal semantics itself, but also illustrating away to discover bugs and the use of K framework for defining non-deterministic behaviours of a C program.
Chapter 8

Conclusion

In this thesis, we investigated formal semantics of the core of SQL dialects, specifically MySQL and Oracle11. The former is implemented in the K framework.

We found semantics differences on coercion of types, interpretation of NULL, the name space management, error handling, and logical/physical model of data types. Among the differences, we focus on the first three parts. We observe differences between MySQL and Oracle11:

• Consider coercion from a string to an integer. Oracle returns errors if a string contains non-digit characters, while MySQL tries to conceal this problem.

• NULL is an undefined value for inputs of operations. However, NULL is also used as the return of an error like zero divisor. Surprisingly, MySQL farther accepts NULL IS NULL as 1 (TRUE). We feel that these behaviour is quite confusing. Oracle11 has more reasonable behaviour. It interprets NULL as the empty string. An error is reported by an error message, not resulting NULL as an output.

• Oracle11 and MySQL adopt different name space. The name space is the matter when the table with the same name appears repeatedly. For instance, self-join and self-product are such cases. Both MySQL and Oracle refuse them.

Our work is just to open possibility of formal semantics of SQL. There are several obstructions to be tackled as future work.

• Current implementation of coercion is based on case analysis, which explodes with an exponentially many number of rewrite rules. (NULL requires similar case analysis, but the number of rules is fixed.) It can be reduced by unifying similar cases. Other possibility is to use inheritance among ordered sorts.

• Currently a table is defined to have a product type, and the uniqueness of the primary key is not easy to guarantee. This can be solved by applying a function type for a table.
• Currently KSQL ignores physical models (bit-length) of data types, which affects the semantics of JOIN operator.
Appendices
Appendix A

SQL semantics in K-framework

A.1 Expression Syntax

```k
module EXP-SYNTAX
syntax Boolean ::= "TRUE" | "FALSE"
syntax Null ::= "NULL"
syntax Val ::= Int | Bool | Float | String | Null | Boolean
syntax Vals ::= List{Val, ","}
syntax Exp ::= Val | Id
syntax KResult ::= # Int | # Bool | Id | # String | # Float | Null
syntax Exp ::= "(" Exp ")" [bracket]
| > "-" Exp [strict]
| > Exp "+" Exp [strict, left]
| | Exp "/" Exp [strict, left]
| | Exp "DIV" Exp [strict, left]
| | Exp "MOD" Exp [strict, left]
| | Exp "/" Exp [strict, left]
| | Exp "+" Exp [strict, left]
| | Exp "-" Exp [strict, left]
syntax Exp ::= "(!" Exp ")" [bracket]
| > "!" Exp [strict]
| > Exp "+" Exp [strict, non-assoc]
| | Exp "+=" Exp [strict, non-assoc]
| | Exp "+" Exp [strict, non-assoc]
| | Exp "$<" Exp [strict, non-assoc]
| | Exp "$<=" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "$<=" Exp [strict, non-assoc]
| | Exp "$<" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "$<=" Exp [strict, non-assoc]
| | Exp "$<" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "+" Exp [strict, non-assoc]
| | Exp "$<" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "$!=" Exp [strict, non-assoc]
| | Exp "IS" "TRUE" [strict]
| | Exp "IS" "FALSE" [strict]
| | Exp "IS" "NULL" [strict]
| | Exp "IS" "UNKNOWN" [strict]
| | Exp "IS" "NOT" "TRUE" [strict]
| | Exp "IS" "NOT" "FALSE" [strict]
| | Exp "IS" "NOT" "NULL" [strict]
| | Exp "IS" "NOT" "UNKNOWN" [strict]
| | "NOT" Exp [strict]
| > Exp "&" Exp [strict(1), left]
| | Exp "AND" Exp [strict(1), left]
| | Exp ":" Exp [strict, left]
| | Exp "OR" Exp [strict, left]
```
A.2 Expression Semantics

```plaintext
module EXP
imports EXP-SYNTAX
rule TRUE[Boolean] => 1 [anywhere]
rule FALSE[Boolean] => 0 [anywhere]
rule true[Boolean] => 1
rule false[Boolean] => 0
rule ! 0 => 1
rule ! I: Int => 0 when I = Int 0
rule ! NULL => NULL
rule - I: Int => 0 -Int I
rule I: Int * I2: Int => I1 *Int I2
rule I: Int / I2: Int => I1 /Int I2 when I2 /=K 0
rule I: Int / I2: Int => NULL when I2 ==K 0
rule I: Int DIV I2: Int => I1 /Int I2 when I2 /=K 0
rule I: Int DIV I2: Int => NULL when I2 ==K 0
rule I: Int MOD I2: Int => I1 %Int I2 when I2 /=K 0
rule I: Int MOD I2: Int => NULL when I2 ==K 0
rule I: Int % I2: Int => I1 %Int I2 when I2 /=K 0
rule I: Int % I2: Int => NULL when I2 ==K 0
rule I: Int + I2: Int => I1 +Int I2
rule I: Int - I2: Int => I1 -Int I2
endmodule
```
rule I1: Int >= I2: Int => 1 when I1 >= Int I2
rule I1: Int >= I2: Int => 0 when I1 < Int I2
rule I1: Int > I2: Int => 1 when I1 > Int I2
rule I1: Int > I2: Int => 0 when I1 <= Int I2
rule I1: Int <= I2: Int => 1 when I1 <= Int I2
rule I1: Int <= I2: Int => 0 when I1 > Int I2
rule I1: Int < I2: Int => 1 when I1 < Int I2
rule I1: Int < I2: Int => 0 when I1 >= Int I2

rule S: String + I: Int => convertsi(S) + I [anywhere]
rule I: Int + S: String => I + convertsi(S) [anywhere]
rule S1: String + S2: String => convertsi(S1) + convertsi(S2) [anywhere]
rule S: String - I: Int => convertsi(S) - I [anywhere]
rule I: Int - S: String => I - convertsi(S) [anywhere]
rule S1: String - S2: String => convertsi(S1) - convertsi(S2) [anywhere]
rule S: String * I: Int => convertsi(S) * I [anywhere]
rule I: Int * S: String => I * convertsi(S) [anywhere]
rule S1: String * S2: String => convertsi(S1) * convertsi(S2) [anywhere]
rule S: String / I: Int => convertsi(S) / I [anywhere]
rule I: Int / S: String => I / convertsi(S) [anywhere]
rule S1: String / S2: String => convertsi(S1) / convertsi(S2) [anywhere]
rule S: String DIV I: Int => convertsi(S) DIV I [anywhere]
rule I: Int DIV S: String => I DIV convertsi(S) [anywhere]
rule S1: String DIV S2: String => convertsi(S1) DIV convertsi(S2) [anywhere]
rule S: String % I: Int => convertsi(S) % I [anywhere]
rule I: Int % S: String => I % convertsi(S) [anywhere]
rule S1: String % S2: String => convertsi(S1) % convertsi(S2) [anywhere]

rule F1: Float * F2: Float => F1 * Float F2
rule I1: Int * F2: Float => Int2Float(I1) * F2
rule F1: Float * I2: Int => F1 * Int2Float(I2)
rule F1: Float / F2: Float => F1 / Float F2 when F2 /= K 0
rule F1: Float / F2: Float => NULL when F2 == K 0
rule F1: Float DIV F2: Float => F1 / Float F2 when F2 /= K 0
rule F1: Float DIV F2: Float => NULL when F2 == K 0

rule I1: Int / F2: Float => Int2Float(I1) / F2
rule F1: Float / I2: Int => F1 / Int2Float(I2)
rule I1: Int DIV F2: Float => Int2Float(I1) DIV F2
rule F1: Float DIV I2: Int => F1 DIV Int2Float(I2)
rule F1: Float MOD F2: Float => F1 % Float F2 when F2 /= K 0
rule F1: Float MOD F2: Float => NULL when F2 == K 0
rule F1: Float % F2: Float => F1 % Float F2 when F2 /= K 0
rule F1: Float % F2: Float => NULL when F2 == K 0

rule I1: Int MOD F2: Float => Int2Float(I1) MOD F2
rule F1: Float MOD I2: Int => F1 MOD Int2Float(I2)
rule I1: Int % F2: Float => Int2Float(I1) % F2
rule F1: Float % I2: Int => F1 % Int2Float(I2)
rule F1: Float + F2: Float => F1 + Float F2
rule I1: Int + F2: Float => Int2Float(I1) + F2
rule F1: Float + I2: Int => F1 + Int2Float(I2)
rule F1: Float - F2: Float => F1 - Float F2
rule I1: Int - F2: Float => Int2Float(I1) - F2
rule F1: Float - I2: Int => F1 - Int2Float(I2)
rule F1: Float >= F2: Float => 1 when F1 >= Float F2
rule F1: Float >= F2: Float => 0 when F1 < Float F2
rule I1: Int => F2: Float => Int2Float(I1) >= F2
rule F1: Float >= I2: Int => F1 >= Float I2
rule F1: Float > F2: Float => 1 when F1 > Float F2
rule F1: Float > I2: Int => Int2Float(I1) > F2
rule F1: Float <= F2: Float => 1 when F1 <= Float F2
rule F1: Float <= I2: Int => F1 <= Int2Float(I2)
rule F1: Float < F2: Float => 1 when F1 < Float F2
rule F1: Float < I2: Int => F1 < Int2Float(I2)
rule F1: Float < F2: Float => 0 when F1 >= Float F2
rule F1: Float < I2: Int => F1 < Int2Float(I2)
rule F1: Float <= F2: Float => 0 when F1 > Float F2
rule F1: Float <= I2: Int => F1 <= Int2Float(I2)
rule S: String = I: Int => convertsi(S) = I [anywhere]
rule I: Int = S: String => I = convertsi(S) [anywhere]
rule S: String < I: Int => convertsi(S) < I [anywhere]
rule I: Int < S: String => I < convertsi(S) [anywhere]
rule S: String <= I: Int => convertsi(S) <= I [anywhere]
rule I: Int <= S: String => I <= convertsi(S) [anywhere]
rule S: String > I: Int => convertsi(S) > I [anywhere]
rule I: Int > S: String => I > convertsi(S) [anywhere]
rule S: String >= I: Int => convertsi(S) >= I [anywhere]
rule I: Int >= S: String => I >= convertsi(S) [anywhere]
rule S: String != I: Int => convertsi(S) != I [anywhere]
rule I: Int != S: String => I != convertsi(S) [anywhere]
rule S: String <> I: Int => convertsi(S) <> I [anywhere]
rule I: Int <> S: String => I <> convertsi(S) [anywhere]
rule I1: Int = I2: Int => 1 when I1 = Int I2 [anywhere]
rule I1: Int = I2: Int => 0 when I1 /= Int I2 [anywhere]
rule I1: Int != I2: Int => 1 when I1 /= Int I2 [anywhere]
rule I1: Int != I2: Int => 0 when I1 = Int I2 [anywhere]
rule F1: Float = F2: Float => 1 when F1 == Float F2 [anywhere]
rule F1: Float = F2: Float => 0 when F1 /= Float F2 [anywhere]
rule F1: Float != F2: Float => 1 when F1 /= Float F2 [anywhere]
rule F1: Float != F2: Float => 0 when F1 == Float F2 [anywhere]
rule S1: String >= S2: String => 1 when strcmp(S1, S2) >= Int 0 [anywhere]
rule S1: String >= S2: String => 0 when strcmp(S1, S2) = Int -1 [anywhere]
rule S1: String > S2: String => 1 when strcmp(S1, S2) = Int 1 [anywhere]
rule S1: String > S2: String => 0 when strcmp(S1, S2) <= Int 0 [anywhere]
rule S1: String < S2: String => 1 when strcmp(S1, S2) = Int -1 [anywhere]
rule S1: String < S2: String => 0 when strcmp(S1, S2) <= Int 0 [anywhere]
rule S1: String <= S2: String => 1 when strcmp(S1, S2) <= Int 0 [anywhere]
rule S1: String <= S2: String => 0 when strcmp(S1, S2) = Int 1 [anywhere]
rule S1: String != S2: String => 1 when strcmp(S1, S2) =/= Int 0 [anywhere]
rule S1: String != S2: String => 0 when strcmp(S1, S2) = Int 0 [anywhere]
rule S1: String != S2: String => 1 when strcmp(S1, S2) = Int 0 [anywhere]
rule S1: String != S2: String => 0 when strcmp(S1, S2) =/= Int 0 [anywhere]
rule (N1 <> N2) => N1 != N2 [anywhere]
rule NULL + _ => NULL
rule _ + NULL => NULL
rule NULL - _ => NULL
rule _ - NULL => NULL
rule NULL * _ => NULL
rule _ * NULL => NULL
rule NULL / _ => NULL
rule _ / NULL => NULL
rule NULL DIV _ => NULL
rule _ DIV NULL => NULL
 rule NULL MOD _ => NULL
 rule _ MOD NULL => NULL
 rule NULL % _ => NULL
 rule _ % NULL => NULL
 rule NULL <= _ => NULL
 rule _ <= NULL => NULL
 rule NULL < _ => NULL
 rule _ < NULL => NULL
 rule NULL = _ => NULL
 rule _ = NULL => NULL
 rule NULL != _ => NULL
 rule _ != NULL => NULL
 rule NULL <> _ => NULL
 rule _ <> NULL => NULL
 rule NULL <= _ => NULL
 rule _ <= NULL => NULL
 rule NULL < _ => NULL
 rule _ < NULL => NULL
 rule NULL = _ => NULL
 rule _ = NULL => NULL
 rule NULL != _ => NULL
 rule _ != NULL => NULL
 rule NULL <> _ => NULL
 rule _ <> NULL => NULL
 rule I: Int IS TRUE => 1 when I /= K 0
 rule 0 IS TRUE => 0
 rule NULL IS TRUE => 0
 rule A IS TRUE => 0 when A == Int 0
 rule I: Int IS FALSE => 0 when I /= K 0
 rule 0 IS FALSE => 1
 rule NULL IS FALSE => 0
 rule A IS FALSE => 1 when A == Int 0
 rule I: Int IS UNKNOWN => 0 when I /= K 0
 rule 0 IS UNKNOWN => 0
 rule NULL IS UNKNOWN => 1
 rule A IS UNKNOWN => 1 when A == K NULL
 rule I: Int IS NULL => 0 when I /= K 0
 rule 0 IS NULL => 1
 rule NULL IS NULL => 1
 rule A IS NULL => 0 when A == K NULL
 rule I: Int IS NOT TRUE => 0 when I /= K 0
 rule 0 IS NOT TRUE => 1
 rule NULL IS NOT TRUE => 1
 rule A IS NOT TRUE => 0 when A == Int 0
 rule I: Int IS NOT FALSE => 1 when I /= K 0
 rule 0 IS NOT FALSE => 0
 rule NULL IS NOT FALSE => 1
 rule A IS NOT FALSE => 1 when A == Int 0
 rule I: Int IS NOT UNKNOWN => 1 when I /= K 0
 rule 0 IS NOT UNKNOWN => 1
 rule NULL IS NOT UNKNOWN => 0
 rule A IS NOT UNKNOWN => 0 when A == K NULL
 rule I: Int IS NOT NULL => 1 when I /= K 0
 rule 0 IS NOT NULL => 0
 rule NULL IS NOT NULL => 0
 rule A IS NOT NULL => 0 when A == K NULL
 rule 0 && 0 => 0
 rule 0 && 1 => 0
 rule 0 && NULL => 0
 rule I: Int && 0 => 0 when I /= K 0
 rule I: Int && 1 => 1 when I /= K 0
 rule I: Int && NULL => NULL when I /= K 0
 rule NULL && 0 => 0
 rule NULL && I: Int => NULL when I /= K 0
rule NULL && NULL => NULL

rule I1: Int && S2: String => I1 && convertsi(S2)

rule S1: String && I2: Int => convertsi(S1) && I2

rule S1: String && S2: String => convertsi(S1) && convertsi(S2)

rule 0 || 0 => 0

rule 0 || I: Int => 1 when I /= K 0

rule 0 || NULL => NULL

rule I: Int || 0 => 1 when I /= K 0

rule I: Int || I => 1 when I /= K 0

rule I: Int || NULL => 1

rule NULL || 0 => NULL

rule NULL || I: Int => 1 when I /= K 0

rule NULL || NULL => NULL

rule I1: Int || S2: String => I1 || convertsi(S2)

rule S1: String || I2: Int => convertsi(S1) || I2

rule S1: String || S2: String => convertsi(S1) || convertsi(S2)

rule I: Int && B => B when I /= K 0

rule 0 && B => 0

rule I: Int || B => 1 when I /= K 0

rule B || B => B

rule NULL || B => B

rule I: Int OR B => 1 when I /= K 0

rule 0 OR B => B

rule I1 OR I2 => I1 && I2

rule NULL OR I2 => I2 || I2

rule NOT 0 => 1

rule NOT I: Int => 0 when I /= Int 0

rule NOT NULL => NULL

rule B1: Bool || B2: Bool => B1 orBool B2

rule B1: Bool OR B2: Bool => B1 orBool B2

rule CONCAT(. Vals) => ""

rule CONCAT(S: String) => S

rule CONCAT(S: String, Vs: Vals) => CONCAT(Vs) ~> S + String HOLE

rule S2: String ~> S1 + String HOLE => S1 + String S2 [structural]

rule NULL ~> S1 + String HOLE => NULL [structural]

rule CONCAT(NULL, Vs: Vals) => NULL

rule CONCAT(I: Int, Vs: Vals) => CONCAT(Int2String(I),Vs)

rule CONCAT(F: Float, Vs: Vals) => CONCAT(Float2String(F),Vs)

rule ELT(1, S: String , Ss: Strings) => S

rule ELT(N: Int, S: String, Ss: Strings) => ELT(N - Int 1, S)

rule FIELD(S: String, Ss: Strings) => 0 when notBool in(S, Ss)

rule FIELD(F: String, .Strings) => 0

rule FIELD(S: String, S2: String, Ss: Strings) => 1 when S == String S2

rule FIELD(S: String, S2: String, Ss: Strings) => 1 + FIELD(S, Ss) when notBool (S == String S2)

rule INSERT(S1: String, P: Int, L: Int, S2: String) => (substring(S1, 0, P - Int 1) + String S2) + String (substring(S1, (P - Int 1) + Int L, lengthString(S1)))
rule INSTR(S1: String, S2: String) => findString(S1, S2, 3) + Int 1
rule LENGTH(S: String) => lengthString(S)
rule LOCATE(Sub: String, S: String) => findString(S, Sub, 0) + Int 1
rule LOCATE(Sub: String, S: String, P: Int) => findString(S, Sub, P) + Int 1
rule POSITION(Sub: String IN S: String) => findString(S, Sub, 0) + Int 1
rule TRIM(S: String) => trim(S)
rule LTRIM(S: String) => ltrim(S)
rule RTRIM(S: String) => rtrim(S)
rule REPEAT(S: String, N: Int) => REPEAT(S, N - Int 1) ~> S + String HOLE
rule REPLACE(S: String, FromS: String, ToS: String) => replaceAll(S, FromS, ToS)
rule LEFT(S: String, L: Int) => substrString(S, 0, L)
rule RIGHT(S: String, L: Int) => substrString(S, lengthString(S) - Int L, lengthString(S))
rule SPACE(0) =>"
rule SPACE(N: Int) => SPACE(N - Int 1) ~> HOLE + String "
rule SUBSTRING(S: String, StartP: Int) => substrString(S, StartP - Int 1, lengthString(S))
rule SUBSTRING(S: String FROM StartP: Int) => substrString(S, StartP - Int 1, lengthString(S))
rule SUBSTRING(S: String, StartP: Int, Len: Int) => substrString(S, StartP - Int 1, (StartP - Int 1) + Int Len)
rule SUBSTRING(S: String FROM StartP: Int FOR Len: Int) => substrString(S, StartP - Int 1, (StartP - Int 1) + Int Len)
rule in(S: String, . Strings) => false [anywhere]
rule in(S: String, S2: String, Ss: Strings) => true when S == String S2 [anywhere]
rule in(S: String, S2: String, Ss: Strings) => in(S, Ss) when S /= String S2 [anywhere]
rule strcmp("", ") => 0
rule strcmp("", S: String) => -1 when lengthString(S) > Int 0
rule strcmp(S: String, ") => 1 when lengthString(S) > Int 0
rule strcmp(S1: String, S2: String) => strcmp(substrString(S1, 1, lengthString(S1)), substrString(S2, 1, lengthString(S2))) when ordChar(substrString(S1, 0, 1)) == Int ordChar(substrString(S2, 0, 1))
rule strcmp(S1: String, S2: String) => cmpChar(substrString(S1, 0, 1), substrString(S2, 0, 1)) when ordChar(substrString(S1, 0, 1)) /= Int ordChar(substrString(S2, 0, 1))
rule cmpChar(S1: String, S2: String) => -1 when ordChar(S1) < Int ordChar(S2)
rule cmpChar(S1: String, S2: String) => 0 when ordChar(S1) == Int ordChar(S2)
rule cmpChar(S1: String, S2: String) => 1 when ordChar(S1) > Int ordChar(S2)
rule intToChar(I: Int) => chrChar(I)
rule charToInt(S: String) => ordChar(S)
rule convertsi(S: String) => 0 when notBool (# isDigit(substrString(S, 0, 1)) orBool substrString(S, 0, 1) == String "+" orBool substrString(S, 0, 1) == String "-"))
rule convertsi(S: String) => 0 when (substrString(S, 0, 1) == String "+" orBool substrString(S, 0, 1) == String "-")) andBool (notBool # isDigit(substrString(S, 1, 2)))
rule convertsi(S: String) => String2Int(substrString(S, 1, (1 + Int firstLetterAt(substrString(S, 1, lengthString(S)))))) when substrString(S, 0, 1) == String "+" andBool # isDigit(substrString(S, 1, 2))
rule convertsi(S: String) => String2Int(substrString(S, 0, (1 + Int firstLetterAt(substrString(S, 1, lengthString(S)))))) when substrString(S, 0, 1) == String "-" andBool # isDigit(substrString(S, 1, 2))
rule convertsi(S: String) => String2Int(substrString(S, 0, 1 + Int firstLetterAt(substrString(S, 1, lengthString(S)))))) when # isDigit(substrString(S, 0, 1))
rule firstLetterAt("") => 0
A.3 Table Syntax

module TABLE-SYNTAX

imports EXP

syntax DataType ::= "INT" | "BOOL" | "TEXT" | "FLOAT"

syntax TableElement ::= "e(" Vals ")" [strict]
syntax TableElements ::= List(TableElement,"",) [strict]
syntax #Record ::= "r[" TableElements "]" [strict]
syntax Record ::= #Record

syntax #Field ::= "f(" String "," DataType "," Bool "," Bool ")"
syntax Field ::= #Field

syntax Fields ::= List(Field,"",) [strict]
syntax #Schema ::= "s[" Fields "]" [strict]
syntax Schema ::= #Schema

syntax #Table ::= Id ":[" Schema ":," Record "]" [strict]
syntax Table ::= #Table

syntax Val ::= FieldRep

syntax FieldRep ::= FieldRep1 | FieldRep2

syntax FieldRep1 ::= Id | "'" Id "'"
syntax FieldRep1s ::= List { FieldRep1 ,","} [strict]
syntax FieldRep2 ::= Id "." Id

syntax Collumn ::= FieldRep

syntax Collums ::= List { FieldRep ,","}

syntax KResult ::= #Record | #Field | #Schema | #Table | #TableElement

syntax Table ::= union (Table , Table) [strict]
syntax Table ::= difference (Table , Table) [strict]
syntax Table ::= intersect (Table , Table) [strict]
syntax Table ::= catesian (Table , Table) [strict]
syntax Table ::= join (Table , Table) [strict]
syntax Table ::= join (Table , Table , Exp) [strict (1 ,2)]
syntax Table ::= leftJoin (Table , Table , Exp) [strict (1 ,2)]
syntax Table ::= rightJoin (Table , Table , Exp) [strict (1 ,2)]
syntax Table ::= select (Table , Exp) [strict (1)]
syntax Table ::= leftJoin2 (Schema , Schema , Record , Record , Exp)
syntax Table ::= unionLeftJoin (Schema , Schema , TableElement , Record)
syntax Table ::= rightJoin2 (Schema , Schema , Record , Record , Exp)
syntax Table ::= unionRightJoin (Schema , Schema , TableElement , Record)
A.4 Table Semantics

module TABLE

imports TABLE-SYNTAX

//**** Main function ****/****/

rule T1: Table cartesian T2: Table => cartesian(T1, T2) [anywhere]
rule T1: Table union T2: Table => union(T1, T2) [anywhere]
rule T1: Table difference T2: Table => difference(T1, T2) [anywhere]
rule T1: Table intersect T2: Table => intersect(T1, T2) [anywhere]

// Union
rule union(Id1: Id[S1: Schema : R1: Record], Id2: Id[S2: Schema : R2: Record]) => union(R1, R2) =⇒ tmp[S1 : HOLE] when checkUnionCompatible(S1, S2) [structural]
rule union (R, r[. TableElements]) => R [anywhere, structural]

rule union (r[. TableElements], R) => R [anywhere, structural]

rule union (r[T: TableElement, Ts: TableElements], R) => union (r[Ts], R) when consistOf (R, T) [anywhere]

rule union (r[T1: TableElement, Ts1: TableElements], r[T2: TableElement, Ts2: TableElements]) => union (r[Ts1], r[T2, Ts2]) ~> addElement (T1, HOLE) when notBool consistOf (r[T2: TableElement, Ts2: TableElements], T1) [anywhere]

// Difference

rule difference (Id1:Id[S1: Schema : R1: Record] , Id2:Id[S2: Schema : R2: Record]) => difference (R1, R2) ~> tmp [S1 : HOLE] when checkUnionCompatible (S1, S2)

rule difference (r[. TableElements], R) => r[. TableElements] [structural]

rule difference (r[T: TableElement, Ts: TableElements], R) => difference (r[Ts], R) when notBool consistOf (R, T)

rule difference (r[T: TableElement, Ts: TableElements], R) => difference (r[Ts], R) ~> addElement (T, HOLE) when notBool consistOf (R, T)

// Intersect

rule intersect (Id1:Id[S1: Schema : R1: Record] , Id2:Id[S2: Schema : R2: Record]) => intersect (R1, R2) ~> tmp [S1 : HOLE] when checkUnionCompatible (S1, S2)

rule intersect (r[. TableElements], R) => r[. TableElements] [structural]

rule intersect (r[T: TableElement, Ts: TableElements], R) => intersect (r[Ts], R) when notBool consistOf (R, T)

rule intersect (r[T: TableElement, Ts: TableElements], R) => intersect (r[Ts], R) ~> addElement (T, HOLE) when notBool consistOf (R, T)

// Cartesian

rule catesian (r[. TableElements], _) => r[. TableElements] [structural]

rule catesian (r[E1: TableElement, Es1: TableElements], r[Es2: TableElements]) => concat (appendElementToRecord (E1, r[Es2]), catesian (r[Es1], r[Es2]))

rule catesian (T1:Id[S1: Schema : R1: Record], T2:Id[S2: Schema : R2: Record]) => tmp [concat (S1, S2) : catesian (R1, R2)]

rule T1: Table cartesian T2: Table => catesian (changeFieldNameCorrespondToTable (T1), changeFieldNameCorrespondToTable (T2)) [anywhere]

// Renaming

rule rename (T1:Id[S: Schema : R: Record], T2:Id) => T2[S : R] [anywhere]

rule rename (f(_, T1, B1, B2), S2: String) => f(S2, T1, B1, B2) [anywhere]

rule concatFieldName (s[. Fields], T1:Id) => . Fields [anywhere]

rule concatFieldName (s[f(F: String, DT: DataType, B1: Bool, B2: Bool), Fs: Fields], T1:Id) => rename (f(F, DT, B1, B2), (# tokenToString (T1) + String "." + String F), concatFieldName (s[Fs], T) [anywhere]

// Cross Join

rule join (T1: Table, T2: Table) => T1 cartesian T2

rule join (T1: Table, T2: Table, E: Exp) => T1 cartesian T2 ~ select (HOLE , E) [anywhere]

rule T: #Table ~> select (HOLE , E) => select (T, E) [structural]

// Left Join

rule leftJoin (T1:Id[S1: Schema : R1: Record], T2:Id[S2: Schema : R2: Record], E: Exp) => tmp [concat (S1, S2) : leftJoin2 (S1, S2, R1, R2, E)]

rule leftJoin2 (S1:Schema, S2:Schema, r[. TableElements], R:Record, E:Exp) => r[. TableElements]

rule leftJoin2 (S1:Schema, S2:Schema, r[TE1:TableElement, TE2:TableElements], R:Record, E:Exp) => filter (concat (S1, S2), catesian (r[TE1], R), E) ~> unionLeftJoin (S1, S2, TE1, HOLE) ~> union (HOLE, leftJoin2 (S1, S2, r[TE2], R, E))

rule Result: #Record ~> unionLeftJoin (S1:Schema, S2:Schema, T: TableElement, HOLE) =>
unionLeftJoin (S1, S2, T, Result) [structural]

54 rule Result : #Record ~> union (HOLE, leftJoin2 (S1, S2, R1: Record, R2: Record, E: Exp)) ~> union (Result, leftJoin2 (S1, S2, R1, R2, E)) [structural]

55 rule unionLeftJoin (S1: Schema, S2: Schema, T: TableElement, Result: Record) ~> numberOfElementInRecord (Result) = 0 ~> if (HOLE, r[addNullElementOnBottom (T, numberOfFields (S2))], Result)

57 // right join
58 rule rightJoin (T1: Id[S1: Schema, R1: Record], T2: Id[S2: Schema, R2: Record], E: Exp) ~> tmp[concat (S1, S2) : rightJoin2 (S1, S2, R1, R2, E)]
59 rule rightJoin2 (S1: Schema, S2: Schema, R: Record, r[. TableElements], E: Exp) ~> r[. TableElements]
60 rule rightJoin2 (S1: Schema, S2: Schema, R: Record, r[TE1: TableElement, TEs: TableElements], E: Exp) ~> filter (concat (S1, S2), catesian (R, r[TE1]), E) ~> unionRightJoin (S1, S2, TE1, HOLE) ~> union (HOLE, rightJoin2 (S1, S2, R, r[TEs], E))
62 rule Result : #Record ~> unionRightJoin (S1, S2, T, Result) [structural]
63 rule Result : #Record ~> union (HOLE, rightJoin2 (S1, S2, R1, R2, E)) ~> union (Result, rightJoin2 (S1, S2, R1, R2, E)) [structural]
64 rule unionRightJoin (S1: Schema, S2: Schema, T: TableElement, Result: Record) ~> numberOfElementInRecord (Result) = 0 ~> if (HOLE, r[addNullElementOnTop (T, numberOfFields (S2))], Result)

66 // **** Auxiliary function ****//
67 rule getIndex (s[. Fields], S2: String) ~> NULL [anywhere]
68 rule getIndex (s[f(S1: String, _, _, _), Fs: Fields], S2: String) ~> 0 when S1 == String S2 [anywhere]
69 rule getIndex (s[f(S1: String, _, _, _), Fs: Fields], S2: String) ~> (getIndex (s[Fs], S2) + 1) when notBool S1 == String S2 [anywhere]
71 rule getIndex2 (s[. Fields], S2: String) ~> NULL [anywhere]
72 rule getIndex2 (s[f(S1: String, _, _, _), Fs: Fields], S2: String) ~> 0 when substring (S1, (findChar (S1, ".", 0) + int 1), lengthString (S1)) == String S2 [anywhere]
73 rule getIndex2 (s[f(S1: String, _, _, _), Fs: Fields], S2: String) ~> (getIndex2 (s[Fs], S2) + 1) when substring (S1, (findChar (S1, ".", 0) + int 1), lengthString (S1)) /= String S2 [anywhere]
74 rule excludeFields (S: Schema, . FieldRep1s) ~> S [anywhere]
75 rule excludeFields (S: Schema, F: FieldRep1, Fs: FieldRep1s) ~> excludeFields (excludeField (S, F), Fs) [anywhere]
76 rule changeFieldRepIntoStringName (I1: Id , I2: Id) ~> ((#tokenToString (I1) + String ".") + String #tokenToString (I2)) [anywhere]
77 rule changeFieldRepIntoStringName (T: Id , F: Id) ~> ((#tokenToString (T) + String ".") + String #tokenToString (F)) [anywhere]
79 rule excludeField (s[. Fields], I: Id) ~> s[. Fields] [anywhere]
82 rule excludeField (s[f(FN: String, D: DataType, B1: Bool, B2: Bool), Fs: Fields], I: Id) ~> excludeField (s[Fs], I) when substring (FN, findChar (FN, ".", 0) + int 1), lengthString (FN) == String #tokenToString (I) [anywhere]
82 rule excludeField (s[f(FN: String, D: DataType, B1: Bool, B2: Bool), Fs: Fields], I: Id) ~> addElement (f(FN, D, B1, B2), excludeField (s[Fs], I)) when substring (FN, findChar (FN, ".", 0) + int 1), lengthString (FN) == String #tokenToString (I) [anywhere]
83 rule excludeField (s[f(FN: String, D: DataType, B1: Bool, B2: Bool), Fs: Fields], I: Id) ~> addElement (f(FN, D, B1, B2), excludeField (s[Fs], I)) when substring (FN, findChar (FN, ".", 0) + int 1), lengthString (FN) == String #tokenToString (I) [anywhere]
84 rule excludeField (s[f(FN: String, D: DataType, B1: Bool, B2: Bool), Fs: Fields], I: Id) ~> addElement (f(FN, D, B1, B2), excludeField (s[Fs], I)) when substring (FN, findChar (FN, ".", 0) + int 1), lengthString (FN) == String #tokenToString (I) [anywhere]
85 rule excludeField (s[f(FN: String, D: DataType, B1: Bool, B2: Bool), Fs: Fields], I: Id) ~> addElement (f(FN, D, B1, B2), excludeField (s[Fs], I)) when substring (FN, findChar (FN, ".", 0) + int 1), lengthString (FN) == String #tokenToString (I) [anywhere]
substrString(FN,(findChar(FN,","),0)+Int 1),lengthString(FN)) =/=String
#tokenToString(I) [anywhere]

rule getValue(_,NULL) => NULL
rule getValue(e(V:Val,_,0)) => V
rule getValue(e(_,Vs:Vals),I:Int) => getValue(e(Vs),I-Int 1)
rule getValue(s(.Fields),e(Vs:Vals),S2:String) => NULL [structural]
rule getValue(s[f(S1:String,D:DataType,B1,B2),Fs:Fields],e(V:Val,Vs:Vals),S2[String)
 => V when S1 =-= String S2
rule getValue(s[f(S1:String,D:DataType,B1,B2),Fs:Fields],e(V:Val,Vs:Vals),S2:String)
 => getValue(s[Fs],e(Vs),S2) when S1 =/= String S2

rule select(I:Id[S:Schema : R:Record],E:Exp) => filter(S,R,E) ~> I[S:HOLE]
rule R:Record ~> T[S:HOLE] => T[S:R] [structural]
rule r[Ts:TableElements] ~> s(0,T:TableElement) => r[Ts]
rule r[Ts:TableElements] ~> s(I:Int,T:TableElement) => r[Ts,Ts] when I /= Int 0
rule r[.TableElements] ~> s(I:Int,T:TableElement) => r[.TableElements]
rule r[.TableElements] ~> s(0,T:TableElement) => r[.TableElements]

rule filter(S,r[.TableElements],E) => r[.TableElements] [structural]
rule filter(S:Schema,r[T:TableElement,Ts:TableElements],E:Exp) =>
 eval(S,T,E) ~> s(HOLE,T1) ~> filter(S,r[Ts],E)
rule I:Int ~> s(HOLE,T:TableElement) => s(I,T)
rule S:SelectElement ~> R:Record => R ~> S [structural]

rule project(T:Id[S:Schema : R:Record],S2:Schema) => T[S2:project2(R,S1,S2)]
rule project2(r[.TableElements],S1,S2) => r[.TableElements]
rule project2(r[T:TableElement,Ts:TableElements],S1:Schema,S2:Schema) =>
 addElement(project3(T,S1,S2),project2(r[Ts],S1,S2))
rule project3(T:TableElement,S:Schema,s[.Fields]) => e(Vals)
rule project3(T:TableElement,S:Schema,s[f(FN:String,_,_,_),Fs:Fields]) =>
 getValue(T,getIndex(S,FN)) ~> addElementOnTop(project3(T,S,s[Fs]),HOLE)
rule NULL ~> addElementOnTop(T,HOLE) => addElementOnTop(T,NULL)
rule V:Val ~> addElementOnTop(T,HOLE) => addElementOnTop(T,V)

rule eval(_,T,NULL) => NULL
rule eval(_,T,B:Bool) => B
rule eval(_,T,I:Int) => I
rule eval(_,T,S:String) => S
rule eval(S:Schema,t:TableElement,I:Id) => getValue(T,getIndex2(S,#tokenToString(I)))
 ~> eval(S,T,HOLE)
rule eval(S:Schema,t:TableElement,I:Id) =>
 getValue(T,getIndex2(S,#tokenToString(I))) ~> eval(S,T,HOLE)
rule eval(S:Schema,t:TableElement,F:FieldRep) =>
 getValue(T,getIndexOf(S,changeFieldRepIntoStringName(F))) ~> eval(S,T,HOLE)
rule V:Val ~> eval(S,T,HOLE) => eval(S,T,V) [structural]
rule eval(S,T,-:Exp) => - eval(S,T,E)
rule eval(S,T,E1:Exp * E2:Exp) => eval(S,T,E1) * eval(S,T,E2)
rule eval(S,T,E1:Exp / E2:Exp) => eval(S,T,E1) / eval(S,T,E2)
rule eval(S,T,E1:Exp DIV E2:Exp) => eval(S,T,E1) DIV eval(S,T,E2)
rule eval(S,T,E1:Exp MOD E2:Exp) => eval(S,T,E1) MOD eval(S,T,E2)
rule eval(S,T,E1:Exp % E2:Exp) => eval(S,T,E1) % eval(S,T,E2)
rule eval(S,T,E1:Exp + E2:Exp) => eval(S,T,E1) + eval(S,T,E2)
rule eval(S,T,E1:Exp - E2:Exp) => eval(S,T,E1) - eval(S,T,E2)
rule eval(S,T,!,E:Exp) => ! eval(S,T,E)
rule eval(S,T,E1:Exp = E2:Exp) => eval(S,T,E1) = eval(S,T,E2)
rule eval(S,T,E1:Exp E2:Exp) => eval(S,T,E1) / eval(S,T,E2)
rule eval(S,T,E1:Exp DIV E2:Exp) => eval(S,T,E1) DIV eval(S,T,E2)
rule eval(S,T,E1:Exp MOD E2:Exp) => eval(S,T,E1) MOD eval(S,T,E2)
rule eval(S,T,E1:Exp % E2:Exp) => eval(S,T,E1) % eval(S,T,E2)
rule eval(S,T,E1:Exp + E2:Exp) => eval(S,T,E1) + eval(S,T,E2)
rule eval(S,T,E1:Exp - E2:Exp) => eval(S,T,E1) - eval(S,T,E2)
rule eval(S,T,!,E:Exp) => ! eval(S,T,E)
rule eval(S,T,E1:Exp = E2:Exp) => eval(S,T,E1) = eval(S,T,E2)
rule eval(S,T,E1:Exp E2:Exp) => eval(S,T,E1) / eval(S,T,E2)
rule eval(S,T,E1:Exp DIV E2:Exp) => eval(S,T,E1) DIV eval(S,T,E2)
rule eval(S,T,E1:Exp MOD E2:Exp) => eval(S,T,E1) MOD eval(S,T,E2)
rule eval(S,T,E1:Exp % E2:Exp) => eval(S,T,E1) % eval(S,T,E2)
rule eval(S,T,E1:Exp + E2:Exp) => eval(S,T,E1) + eval(S,T,E2)
rule eval(S,T,E1:Exp - E2:Exp) => eval(S,T,E1) - eval(S,T,E2)
137 rule eval(S,T, E: Exp IS TRUE) => eval(S,T, E) IS TRUE
138 rule eval(S,T, E: Exp IS FALSE) => eval(S,T, E) IS FALSE
139 rule eval(S,T, E: Exp IS NULL) => eval(S,T, E) IS NULL
140 rule eval(S,T, E: Exp IS UNKNOWN) => eval(S,T, E) IS UNKNOWN
141 rule eval(S,T, NOT E: Exp) => NOT eval(S,T, E)
142 rule eval(S,T, E1: Exp && E2: Exp) => eval(S,T, E1) && eval(S,T,E2)
143 rule eval(S,T, E1: Exp AND E2: Exp) => eval(S,T, E1) AND eval(S,T,E2)
144 rule eval(S,T, E1: Exp || E2: Exp) => eval(S,T, E1) || eval(S,T,E2)
145 rule eval(S,T, E1: Exp OR E2: Exp) => eval(S,T, E1) OR eval(S,T,E2)
146 rule eval(S,T, CONCAT (Vs: Vals)) => CONCAT (Vs)
147 rule eval(S,T, ELT (I:Int ,Ss: Strings)) => ELT (I,Ss)
148 rule eval(S,T, FIELD (S1: String ,Ss: Strings)) => FIELD (S1,Ss)
149 rule eval(S,T, INSERT (S1: String ,I1:Int ,I2:Int ,Ss: Strings)) => INSERT (S1,I1,I2,Ss)
150 rule eval(S,T, INSTR (S1: String ,S2: String)) => INSTR (S1,S2)
151 rule eval(S,T, LENGTH (S1: String)) => LENGTH (S1)
152 rule eval(S,T, LOCATE (S1: String ,S2: String)) => LOCATE (S1,S2)
153 rule eval(S,T, LOCATE (S1: String ,S2: String ,I: Int)) => LOCATE (S1,S2,I)
154 rule eval(S,T, TRIM (S1: String)) => TRIM (S1)
155 rule eval(S,T, LTRIM (S1: String)) => LTRIM (S1)
156 rule eval(S,T, LTRIM (S1: String)) => LTRIM (S1)
157 rule eval(S,T, POSITION (S1: String IN S2: String)) => POSITION (S1 IN S2)
158 rule eval(S,T, REPEAT (S1: String , I: Int)) => REPEAT (S1,I)
159 rule eval(S,T, LEFT (S1: String , I: Int)) => LEFT (S1,I)
160 rule eval(S,T, RIGHT (S1: String , I: Int)) => RIGHT (S1,I)
161 rule eval(S,T, SPACE (I: Int)) => SPACE (I)
162 rule eval(S,T, SUBSTRING (S1: String ,I: Int)) => SUBSTRING (S1,I)
163 rule eval(S,T, SUBSTRING (S1: String FROM I: Int)) => SUBSTRING (S1 FROM I)
164 rule eval(S,T, SUBSTRING (S1: String ,I1:Int ,I2: Int)) => SUBSTRING (S1,I1,I2)
165 rule eval(S,T, SUBSTRING (S1: String FROM I1: Int FOR I2: Int)) => SUBSTRING (S1 FROM I1 FOR I2)
166 rule getFieldFromSchema (I:Id ,s[f(FN2 ,T: DataType ,B1:Bool ,B2: Bool), Fs: Fields]) =>
167 f(FN2 ,T:DataType ,B1:Bool ,B2:Bool) when # tokenToString (I) == String
168 substrString (FN2,(findChar (FN2 ,"," ,0) + Int 1) , lengthString (FN2)) [anywhere]
169 rule getFieldFromSchema (' I:Id ',s[f(FN2 ,T: DataType ,B1:Bool ,B2: Bool), Fs: Fields]) =>
170 f(FN2 ,T:DataType ,B1:Bool ,B2:Bool) when # tokenToString (I) == String
171 substrString (FN2,(findChar (FN2 ,"," ,0) + Int 1) , lengthString (FN2)) [anywhere]
172 rule getFieldFromSchema (F:FieldRep1 ,s[f(FN2 ,T:DataType ,B1:Bool ,B2: Bool), Fs:Fields]) =>
173 f(FN2 ,T:DataType ,B1:Bool ,B2:Bool) when changeFieldRepIntoStringName (F) == String
174 FN2 [anywhere]
175 rule getFieldFromSchema (C:Collumn ,s[f(FN2 ,T:DataType ,B1:Bool ,B2: Bool), Fs:Fields]) =>
176 getFieldFromSchema (C,s[Fs]) [anywhere]
177 rule changeFieldNameCorrespondToTable (T:Id[S:Schema : R:Record]) =>
178 T:Id[s[concatFieldName (S,T) : R] when T /== K tmp [anywhere]
179 rule changeFieldNameCorrespondToTable (T:Id[S:Schema : R:Record]) => T:Id[R : S] when
180 T == K tmp [anywhere]
181 rule addNullElementOnBottom (T:TableElement ,0) => T [anywhere]
182 rule addNullElementOnBottom (T:TableElement ,1: Int) =>
183 addNullElementOnBottom (append (T,e(NULL)), I -Int 1) [anywhere]
184 rule addNullElementOnTop (T:TableElement ,0) => T [anywhere]
185 rule addNullElementOnTop (T:TableElement ,1: Int) =>
186 addNullElementOnTop (append (topElement (NULL),T), I -Int 1) [anywhere]
187 rule numberOfElementInRecord (r[.TableElements]) => 0 [anywhere]
rule numberOfElementInRecord(r[T: TableElement, Ts: TableElements]) => 1 + numberOfElementInRecord(r[Ts]) [anywhere]

rule addElementOnBottom(T: TableElement, V: Val) => append(T, e(V)) [anywhere]

rule addElementOnTop(e(Vs: Vals), V: Val) => e(V, Vs) [anywhere]

rule if(I: Int, K1, K2) => K1 when I =/= Int 0 [anywhere]

rule if(0, K1, K2) => K2 [anywhere]

rule I: # Int -> if(HOLE, K1: K, K2: K) => if(I, K1, K2) [anywhere]

rule addElement(F: Field, s[Fs: Fields]) => s[F, Fs] [anywhere]

rule concat(s[. Fields], S: Schema) => S [anywhere]

rule concat(s[F1: Field, Fs1: Fields], s[Fs2: Fields]) => concat(s[Fs1], s[Fs2]) ~> addElement(F1, HOLE) [anywhere]

rule concat(r[. TableElements], R: Record) => R [anywhere]

rule concat(r[T1: TableElement, T2: TableElements]) => addElement(T1, R) [anywhere]

rule S: # Schema ~> addElement(F: Field, HOLE) => addElement(F, S) [anywhere, structural]

rule R: # Record ~> tmp[S: HOLE] => tmp[S: R] [anywhere, structural]

rule R: # Record ~> addElement(T1: TableElement, HOLE) => addElement(T1, R) [anywhere, structural]

rule append(e(. Vals), e(Vs: Vals)) => e(Vs) [anywhere]

rule append(e(V: Val, Vs1: Vals), e(Vs2: Vals)) => append(e(Vs1), e(V, Vs2)) ~> addTopElement(V, HOLE) [anywhere]

rule addTopElement(V: Val, e(. Vals)) => e(V) [anywhere]

rule addTopElement(V: Val, e(Vs: Vals)) => e(V, Vs) [anywhere]

rule T: TableElement ~> addTopElement(T: TableElement, HOLE) => addTopElement(T, V, T) [structural]

rule addElement(E: TableElement, r[Es: TableElements]) => r[E, Es] [anywhere]

rule appendElementToRecord(E1, r[. TableElements]) => r[. TableElements] [structural]

rule appendElementToRecord(E1: TableElement, r[E2: TableElement, Es: TableElements]) => addElement(append(E1, E2), appendElementToRecord(E1, r[Es])) [anywhere]

rule numberOfFields(s[. Fields]) => 0 [anywhere, structural]

rule numberOfFields(s[_, Fs: Fields]) => 1 + Int numberOfFields(s[Fs]) [anywhere]

rule checkUnionCompatible(s[. Fields], s[. Fields]) => true [anywhere, structural]

rule checkUnionCompatible(s[. Fields], s[. Fields]) => false [anywhere, structural]

rule checkUnionCompatible(s[S1: String, T1: DataType, _, _], Fs1: Fields), s[S2: String, T2: DataType, _, _], Fs2: Fields)) => checkUnionCompatible(s[Fs1], s[Fs2]) when S1 ==K S2 andBool T1 ==K T2 [anywhere]

rule checkUnionCompatible(s[S1: String, T1: DataType, _, _], s[S2: String, T2: DataType, _, _]) => false when S1 =/= K S2 orBool T1 =/= K T2 [anywhere]

rule isEqualTableElementEqual(e(. Vals), e(. Vals)) => true [anywhere, structural]

rule isEqualTableElementEqual(e(V1: Val, Vs1: Vals), e(V2: Val, Vs2: Vals)) => false when V1 =/= K V2 [anywhere]

rule isEqualTableElementEqual(e(V1: Val, Vs1: Vals), e(V2: Val, Vs2: Vals)) => isEqualTableElementEqual(e(Vs1), e(Vs2)) when V1 ==K V2 [anywhere]

rule consistOf(r[. TableElements], E2) => false [anywhere, structural]

rule consistOf(r[E1: TableElement, Ts: TableElements], E2) => true when isEqualTableElementEqual(E1, E2) [anywhere]

rule in(S: String, _Ids) => false [anywhere]

rule in(S: String, Ids: Ids) => true when S ==String # toString(Ids) [anywhere]

rule in(S: String, Ids: Ids) => in(S, Ids) when S =/= String # toString(Ids) [anywhere]

rule num(_Ids) => 0

rule num(_Xs: Ids) => num(Xs) + Int 1

endmodule
A.5 SQL Syntax

```
module SQL-SYNTAX
  imports TABLE

syntax Table ::= Stm
syntax Stm ::= CreateStm | InsertStm | SelectStm | UpdateStm | DeleteStm | DropStm
syntax Stms ::= Stm | Stms Stms [left, structural]

syntax Table ::= doGetTableExp ( TableExp ) [strict]
syntax Table ::= doConditionExp ( Table, ConditionExp ) [strict]
syntax Table ::= doProjectionExp ( Table, ProjectionExp ) [strict]

// Store
syntax K ::= "store" Table

// Create
syntax CreateStm ::= "CREATE" "TABLE" Id "(" FieldDcls ")" ";" | "CREATE" "TABLE" Id "(" FieldDcls "," CreateOptionList ")" ";"
syntax ProjectionExp ::= "+" | AsClauseOrCollumns
syntax AsClauseOrCollumn ::= Collumn | AsClause
syntax AsClauseOrCollumns ::= List { AsClauseOrCollumn ,","}
syntax AsClause ::= Collumn "AS" Collumn
syntax ConditionExp ::= "WHERE" Exp

syntax FieldDcl ::= Id DataType
syntax FieldDcls ::= List { FieldDcl ,"" }
syntax CreateOption ::= "PRIMARY" "KEY" "(" Ids ")"
syntax CreateOptionList ::= List { CreateOption ,"" }
syntax K ::= doCreateOption ( CreateOptionList , Table )
syntax Schema ::= createSchemaFromCollumns ( AsClauseOrCollumns , Schema ) [strict]
syntax Fields ::= makeField ( FieldDcls ) [strict]
syntax Table ::= setPrimaryKey ( Ids , Table ) [strict]
syntax Schema ::= setPrimaryKey ( Ids , Schema ) [strict]

// Select
syntax SelectStm ::= "SELECT" Exp ";" | "SELECT" ProjectionExp TableExp ";" | "SELECT" ProjectionExp TableExp ConditionExp ";"

// Insert
syntax InsertStm ::= "INSERT" "INTO" Id "(" Ids ")" "VALUES" "(" Vals ")" ";"

// Delete
syntax DeleteStm ::= "DELETE" TableExp ConditionExp ";" | "DELETE" TableExp ConditionExp ";"
syntax Table ::= doDeleteRecords ( Table, Exp ) [strict(1)]
syntax Record ::= deleteAllWhere ( Schema, Record, Exp ) [strict(1,2)]
syntax Record ::= delete ( TableElement, Record ) [strict]

// Drop
syntax DropStm ::= "DROP" "TABLE" Ids ";"
syntax K ::= dropTable ( Ids ) [strict]

// Join
syntax Table ::= getTableFromId ( Id )
syntax Table ::= getTableFromIds ( Ids )
syntax TableExp ::= "FROM" Ids [strict]
  | "FROM" JoinExp [strict]
syntax JoinExp ::= Ids "JOIN" Ids [strict(1,2)]
```
A.6 SQL Semantics
/*

// **** Main function ****/

// Delete
rule DELETE FROM I:Id WHERE E:Exp ; => getTableFromId(I) ~> doDeleteRecords(HOLE,E) ~> store HOLE
rule T:#Table ~> doDeleteRecords(HOLE,E) => doDeleteRecords(T,E)
rule doDeleteRecords(I:Id[S:Schema : R:Record], E:Exp) => I[S : deleteAllWhere(S,R,E)]
rule deleteAllWhere(S,r[.TableElements], E) => r[.TableElements] [structural]
rule deleteAllWhere(S,r[T:TableElement , Ts:TableElements], E:Exp) => eval(S,T,E) ~> delete(T,deleteAllWhere(S,r[Ts], E))
rule true ~> delete(T,D) => D
rule false ~> delete(T,D) => addElement(T,D)

// Update
rule UPDATE I:Id SET A:AssignValue WHERE E:Exp ; => getTableFromId(I) ~> doUpdateValues(HOLE,E,A) ~> store HOLE
rule T:#Table ~> doUpdateValues(HOLE,E,A) => doUpdateValues(T,E,A)
rule doUpdateValues(I:Id[S:Schema : R:Record],E:Exp,As:AssignValues) => I[S : updateAllWhere(S,R,E,As)]
rule updateAllWhere(S,r[.TableElements],E,As:AssignValues) => r[.TableElements] [structural]
rule updateAllWhere(S,r[T:TableElement , Ts:TableElements],E:Exp ,As:AssignValues) => eval(S,T,E) ~> update(S,T,As) ~> addElement(HOLE,updateAllWhere(S,r[Ts],E,As)) [structural]
rule true ~> update(S,T,As) ~> addElement(HOLE, U) => addElement(update(S,T,As),U) [structural]
rule false ~> update(S,T,As) ~> addElement(HOLE, U) => addElement(T,U) [structural]
rule update(S:Schema , T:TableElement , A:AssignValue , As:AssignValues) => update(S,update2 (S,T,A),As)
rule update2 (_, e(. Vals), A) => e(. Vals) [structural]
rule update2(s[f(FName: String ,_,_,_), Fs:Fields], e(V:Val , Vs: Vals), F2Name :Id = VNew : Val) => e(VNew ,Vs) when FName == String #tokenToString (F2Name)
rule update2(s[f(FName: String ,_,_,_), Fs:Fields], e(V:Val , Vs: Vals), F2Name :Id = VNew : Val) => addTopElement(V, update2(s[Fs], e(Vs), F2Name = VNew)) when FName ==/=String #tokenToString (F2Name)

// Drop
rule DROP TABLE Ts:Ids ; => dropTable(Ts)
rule dropTable(. ids) => ...
rule <x> dropTable(I1:Id, Ids) => dropTable(Ids) </x>
 <env> ... ((I1 => NULL) |-> L:Int) ... </env>
 <store>
 <schema> ... (L |-> (S => NULL)) ... </schema>
 <record> ... (L |-> (R => NULL)) ... </record>
 </store>
// Get Table
rule <x> getTableFromId(I:Id) => I[S : R] ... </x>
 <env> ... (I |-> L:Int) ... </env>
 <store>
 <schema> ... (L |-> S) ... </schema>
 <record> ... (L |-> R) ... </record>
 </store>
rule getTableFromIds(I:Id) => getTableFromId(I) [structural, anywhere]
rule getTableFromIds(I:Id, Is:Ids) => join(getTableFromId(I)),getTableFromIds(Is)) [anywhere]

*/
// Store

rule <k> I:Id[S:#Schema : R:#Record] ~> store HOLE => </k>
<env> ... I |-> L ... </env>
<store>
 <schema> ... L |-> (_ => S) ... </schema>
 <record> ... L |-> (_ => R) ... </record>
</store>

rule <k> I:Id[S:#Schema : R:#Record] ~> store HOLE => </k>
<env> |-> I |-> L </env>
<store>
 <schema> => L |-> S </schema>
 <record> => L |-> R </record>
</store>

<nextloc> L:Int => L + Int 1 </nextloc>

rule store T:Table => T ~> store HOLE [structural]

// Create

rule S1:Stms S2:Stms => S1 ~> S2 [structural]
rule CREATE TABLE TNAME :Id (FDcls : FieldDcls) ; => changeFieldNameCorrespondToTable(TNAME[s[makeField(FDcls)] : r[.TableElements]]) ~> store HOLE
rule CREATE TABLE T (FDcls:FieldDcls , Opt:CreateOptionList) ; => changeFieldNameCorrespondToTable(doCreateOption(Opt(Id[s[makeField(FDcls)] : r[.TableElements]]))) ~> store HOLE

rule makeField (.FieldDcls) => .Fields [structural, anywhere]
rule makeField (I:Id T:DataType , Dcls : FieldDcls) => f(#tokenToString(I) , T ,false,false) , makeField(Dcls) [anywhere]
rule doCreateOption(.CreateOptionList , T) => T
rule doCreateOption(PRIMARY KEY (KIds : Ids) , Opt:CreateOptionList , T:Table) => doCreateOption(Opt, setPrimaryKey(KIds ,T))

// Insert

rule <k> (INSERT INTO I:Id(Fs:Ids) VALUES (Vs:Vals) ; => .) ... </k>
<env> ... I |-> L ... </env>
<store>
 <schema> ... L |-> S ... </schema>
 <record> ... (L |-> (r[Es] => concat(r[Es],r[e(Vs)]))) ... </record>
</store>

// Select

rule SELECT E:Exp ; => E
rule <k> SELECT P:ProjectionExp T:TableExp ; => doGetTableExp(T) ~> doProjectionExp(HOLE , P) ... </k>
rule <k> SELECT P:ProjectionExp T:TableExp C:ConditionExp ; => doGetTableExp(T) ~> doConditionExp(HOLE , C) ~> doProjectionExp(HOLE , P) ... </k>
rule T:#Table ~> doConditionExp(HOLE,C) ~> doConditionExp(T , C) [structural]
rule T:#Table ~> doProjectionExp(HOLE , P) => doProjectionExp(T,P) [structural]
rule doConditionExp(T:Table , WHERE E:Exp) => select(T,E) [anywhere]
rule doProjectionExp(T:Table, *) => T [anywhere]
rule doProjectionExp(T:Id[S:Schema : R:Record] , As:AsClauseOrCollumns) => project(T[S : R]),createSchemaFromCollumns(As,S) [anywhere]

//**** Auxiliary function ****///

rule changeFieldNameTo(f(FM1,D:DataType,B1:Bool,B2:Bool),FN2:String) => f(substrString(FM1,0,(findChar(FM1,"," ,0)+Int 1)) +String FN2,D,B1,B2) [anywhere]
rule createSchemaFromCollumns(.AsClauseOrCollumns , S:Schema) => s[.Fields] [anywhere,structural]
rule createSchemaFromColumns(C: Collumn, Cs: AsClauseOrColumns, S: Schema) =>
 addElement(getFieldFromSchema(C, S), createSchemaFromColumns(Cs, S)) [anywhere]
rule createSchemaFromColumns(C1: Collumn AS I:Id, Cs: AsClauseOrColumns, S: Schema) =>
 addElement(changeFieldNameTo(getFieldFromSchema(C1, S), #tokenToString(I)),
 createSchemaFromColumns(Cs, S)) [anywhere]
rule createSchemaFromColumns(C1: Collumn AS 'I:Id', Cs: AsClauseOrColumns, S: Schema) =>
 addElement(changeFieldNameTo(getFieldFromSchema(C1, S), #tokenToString(I)),
 createSchemaFromColumns(Cs, S)) [anywhere]
rule setPrimaryKey(KIds: Ids, TName: Id[S: R]) => TName[setPrimaryKeyKey(KIds, S): R] [anywhere]
rule setPrimaryKey(KIds: Ids, s[. Fields]) => s[. Fields] [anywhere]
rule setPrimaryKey(KIds: Ids, s[f(S: String, T: DataType, B1, B2), Fs: Fields]) =>
 addElement(f(S, T, true, B2), setPrimaryKeyKey(KIds, s[Fs]) when in(S, KIds)) [anywhere]
rule setPrimaryKey(KIds: Ids, s[f(S: String, T: DataType, B1, B2), Fs: Fields]) =>
 addElement(f(S, T, B1, B2), setPrimaryKeyKey(KIds, s[Fs]) when notBool in(S, KIds)) [anywhere]
rule doGetTableExp(FROM Is: Ids) => getTableFromIds(Is)
rule doGetTableExp(FROM Is1: Ids JOIN Is2: Ids) =>
 join(getTableFromIds(Is1), getTableFromIds(Is2))
rule doGetTableExp(FROM Is1: Ids JOIN Is2: Ids ON E: Exp) =>
 join(getTableFromIds(Is1), getTableFromIds(Is2), E)
rule doGetTableExp(FROM Is1: Ids JOIN Is2: Ids USING (Fs: FieldRep1s)) =>
 joinUsing(getTableFromIds(Is1), getTableFromIds(Is2),
 changeCommonCollumnToEqualExp(Is1, Is2, Fs), Fs)
rule doGetTableExp(FROM Is1: Ids INNER JOIN Is2: Ids) =>
 join(getTableFromIds(Is1), getTableFromIds(Is2))
rule doGetTableExp(FROM Is1: Ids INNER JOIN Is2: Ids ON E: Exp) =>
 join(getTableFromIds(Is1), getTableFromIds(Is2), E)
rule doGetTableExp(FROM Is1: Ids INNER JOIN Is2: Ids USING (Fs: FieldRep1s)) =>
 joinUsing(getTableFromIds(Is1), getTableFromIds(Is2),
 changeCommonCollumnToEqualExp(Is1, Is2, Fs), Fs)
rule joinUsing(T1: Id[S1: Schema: R1: Record], T2: Id[S2: Schema: R2: Record], E: Exp,
 Fs: FieldRep1s) =>
 join(T1: Id[S1: Schema: R1: Record], T2: Id[S2: Schema: R2: Record],
 E: Exp) ~> project(HOLE, concat(S1, excludeFields(S2, Fs)))
rule T:#Table ~> project(HOLE, S) => project(T, S) [structural]
rule doGetTableExp(FROM Is1: Ids LEFT JOIN Is2: Ids ON E: Exp) =>
 leftJoin(getTableFromIds(Is1), getTableFromIds(Is2), E)
rule doGetTableExp(FROM Is1: Ids LEFT JOIN Is2: Ids USING (Fs: FieldRep1s)) =>
 leftJoinUsing(getTableFromIds(Is1),
 getTableFromIds(Is2), changeCommonCollumnToEqualExp(Is1, Is2, Fs), Fs)
rule doGetTableExp(FROM Is1: Ids LEFT OUTER JOIN Is2: Ids ON E: Exp) =>
 leftJoin(getTableFromIds(Is1), getTableFromIds(Is2), E)
rule doGetTableExp(FROM Is1: Ids LEFT OUTER JOIN Is2: Ids USING (Fs: FieldRep1s)) =>
 leftJoinUsing(getTableFromIds(Is1),
 getTableFromIds(Is2), changeCommonCollumnToEqualExp(Is1, Is2, Fs), Fs)
rule leftJoinUsing(T1: Id[S1: Schema: R1: Record], T2: Id[S2: Schema: R2: Record],
 E: Exp, Fs: FieldRep1s) =>
 leftJoin(T1: Id[S1: Schema: R1: Record], T2: Id[S2: Schema: R2: Record],
 E: Exp) ~> project(HOLE, concat(S1, excludeFields(S2, Fs)))
rule doGetTableExp(FROM Is1: Ids RIGHT JOIN Is2: Ids ON E: Exp) =>
 rightJoin(getTableFromIds(Is1), getTableFromIds(Is2), E)
rule doGetTableExp(FROM Is1: Ids RIGHT JOIN Is2: Ids USING (Fs: FieldRep1s)) =>
 rightJoinUsing(getTableFromIds(Is1), getTableFromIds(Is2), changeCommonCollumnToEqualExp(Is1, Is2, Fs), Fs)
rule doGetTableExp(FROM Is1: Ids RIGHT OUTER JOIN Is2: Ids ON E: Exp) =>
 rightJoin
getTableFromIds(Is1), getTableFromIds(Is2),

rule doGetTableExp (FROM Is1:Id RIGHT OUTER JOIN Is2:Id USING(Fs:FieldRep1s)) =>
rightJoinUsing(
getTableFromIds(Is1), getTableFromIds(Is2), changeCommonColumnToEqualExp(Is1,Is2,Fs),Fs)

rule rightJoinUsing(T1:Id[S1:Schema : R1:Record], T2:Id[S2:Schema : R2:Record],
E:Exp, Fs:FieldRep1s) => rightJoin(T1:Id[S1:Schema : R1:Record], T2:Id[S2:Schema : R2:Record],
E:Exp) ~> project(NULL, concat(excludeFields(S1,Fs), S2))

rule doGetTableExp (FROM Is1:Ids CROSS JOIN Is2:Ids) => cartesian(
getTableFromIds(Is1), getTableFromIds(Is2))

rule doGetTableExp (FROM Is1:Ids CROSS JOIN Is2:Ids ON E:Exp) => join(
getTableFromIds(Is1), getTableFromIds(Is2), E)

rule doGetTableExp (FROM Is1:Id CROSS JOIN Is2:Id USING(Fs:FieldRep1s)) => joinUsing(
getTableFromIds(Is1), getTableFromIds(Is2), changeCommonColumnToEqualExp(Is1,Is2,Fs),Fs)

rule doGetTableExp (FROM Is1:Id NATURAL JOIN Is2:Id) =>
naturalJoin(getTableFromIds(Is1), getTableFromIds(Is2))

rule naturalJoin(T1:Id[S1:Schema : R1:Record], T2:Id[S2:Schema : R2:Record]) =>
joinUsing(T1[S1 : R1], T2[S2 : R2], changeCommonColumnToEqualExp(T1,T2, commonField(S1,S2)), commonField(S1,S2))

rule doGetTableExp (FROM Is1:Id NATURAL LEFT JOIN Is2:Id) =>
naturalLeftJoin(getTableFromIds(Is1), getTableFromIds(Is2))

rule doGetTableExp (FROM Is1:Id NATURAL LEFT OUTER JOIN Is2:Id) =>
naturalLeftJoin(getTableFromIds(Is1), getTableFromIds(Is2))

rule naturalLeftJoin(T1:Id[S1:Schema : R1:Record], T2:Id[S2:Schema : R2:Record]) =>
leftJoinUsing(T1[S1 : R1], T2[S2 : R2], changeCommonColumnToEqualExp(T1,T2, commonField(S1,S2)), commonField(S1,S2))

rule doGetTableExp (FROM Is1:Id NATURAL RIGHT JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds(Is1), getTableFromIds(Is2))

rule doGetTableExp (FROM Is1:Id NATURAL RIGHT OUTER JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds(Is1), getTableFromIds(Is2))

rule changeCommonColumnToEqualExp(T1:Id, T2:Id, Fs:FieldRep1s) => true [anywhere]

rule changeCommonColumnToEqualExp(T1:Id, T2:Id, F1:Id, Fs:FieldRep1s) =>
(((T1.F1 = T2.F1): Exp) && (changeCommonColumnToEqualExp(T1:Id, T2:Id,
Fs:FieldRep1s))) [anywhere]

rule changeCommonColumnToEqualExp(T1:Id, T2:Id, F1:Id, Fs:FieldRep1s) =>
(((T1.F1 = T2.F1): Exp) && (changeCommonColumnToEqualExp(T1:Id, T2:Id,
Fs:FieldRep1s))) [anywhere]

rule naturalLeftJoin(T1:Id[S1:Schema : R1:Record], T2:Id[S2:Schema : R2:Record]) =>
leftJoinUsing(T1[S1 : R1], T2[S2 : R2], changeCommonColumnToEqualExp(T1,T2, commonField(S1,S2)), commonField(S1,S2))

rule doGetTableExp (FROM Is1:Id NATURAL RIGHT JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds(Is1), getTableFromIds(Is2))

rule doGetTableExp (FROM Is1:Id NATURAL RIGHT OUTER JOIN Is2:Id) =>
naturalRightJoin(getTableFromIds(Is1), getTableFromIds(Is2))

rule changeCommonColumnToEqualExp(T1:Id, T2:Id, F1:Id, Fs:FieldRep1s) =>
(((T1.F1 = T2.F1): Exp) && (changeCommonColumnToEqualExp(T1:Id, T2:Id,
Fs:FieldRep1s))) [anywhere]

rule commonField(s[.Fields], S2:Schema) => .Ids [anywhere]

rule commonField(s[f(FN1: String, D, B1, B2), Fs:Fields], S2:Schema) =>
hasCommonField(S2,f(FN1:String,D,B1,B2)) ~> if(HOLE,String2Id(substrString(FN1,(findChar(FN1,\"\",0)+Int 1),lengthString(FN1)))
 , commonField(s[Fs],S2),commonField(s[Fs],S2)) [anywhere]

rule hasCommonField(s[. Fields], _) => false [anywhere]
rule hasCommonField(s[f(FN1:String,D,B1,B2), Fs:Fields],f(FN2:String_,_,_)) => true
 when substrString(FN1,(findChar(FN1,"\",0)+Int 1),lengthString(FN1)) ==String
 substrString(FN2,(findChar(FN2,"\",0)+Int 1),lengthString(FN2)) [anywhere]
rule hasCommonField(s[f(FN1:String,D,B1,B2), Fs:Fields],f(FN2:String,D2,B3,B4)) =>
 hasCommonField(s[Fs],f(FN2,D2,B3,B4)) when substrString(FN1,(findChar(FN1,"\",0)+Int 1),lengthString(FN1)) /=String
 substrString(FN2,(findChar(FN2,"\",0)+Int 1),lengthString(FN2)) [anywhere]
endmodule
Bibliography

