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Abstract

The antichain algorithm and bounded model checking (BMC) are well-known techniques

in finite model checking framework. However, they are less explored for pushdown model

checking. In this thesis, we combine them together in order to check universality of visibly

pushdown automata (VPAs). VPAs, introduced by Alur and Madhusudan in 2004, is a

subclass of pushdown automata whose stack behavior is determined by the partition of

input alphabet. VPAs have been applied to be useful in various contexts, e.g., processing

XML documents and checking context-sensitive properties. Due to its high complexity,

ExpTime-complete, the universality of VPAs is a challenge. We propose two approaches

to check universality of VPAs. We implement the proposed approaches in a prototype

tool and conduct experiments on randomly generated VPAs. Although the experimental

results show that our algorithms are inferior to the other algorithms, we can prove a huge

contribution of antichain algorithm in BMC.
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Chapter 1

Introduction

For a finite partially ordered set, an antichain in P is a set of pairwise incomparable

elements (i.e., no two different elements in subset of P are related). Antichains are also

called Sperner systems in literature [18].

In automata theory, antichains are used to get smaller objects to manipulate and to

reduce the number of computation by reducing an explicit determinization step. Recently,

antichains have been successfully applied to many decision problems related to automata:

universality and inclusion for finite word automata [19, 22], for Büchi automata [21],

and for non-deterministic bottom-up tree automata [13], In this research project, we

are focusing on uses of antichain for universality checking of visibly pushdown automata

[37].

Visibly pushdown automata (VPAs) [5], aka nested word automata [6], are pushdown

automata whose stack behavior (i.e., whether to push, pop, or no stack operation) is

determined by an input symbol according to a fixed partition of input alphabet. This

class of visibly pushdown automata enjoys many good properties similar to those of the

class of finite automata. It is closed under all boolean operations. The main reason

is that, each non-deterministic VPA can be transformed into an equivalent deterministic

one. As a result, VPAs appear to be useful in many contexts of model-checking framework

,e.g., as automaton models for processing XML streams [33, 30], as AOP protocols for

component-based systems [32], and as semantics of programming languages [2, 31] and

verification [3].

To check universality of a non-deterministic VPA M over the input alphabet Σ (i.e., to

check if L(M) = Σ∗) is EXPTIME-complete. The standard method faces a hardness

due to the expensive determinization process because determinization for VPA requires

exponential blowup [5].
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There are many attempts to tackle the universality problem of VPA. Nguyen [38] proposed

a better-than-standard algorithm. This algorithm simultaneously performs an on-demand

determinization and reachability checking by P-automaton [12, 27]. Later Nguyen and

Ohsaki [37] improved it by introducing antichains over transitions of P-automata, to gen-

erate the smallest number of reachable configurations. Bruyere, et al., [14] also proposed

an universality checking algorithm with antichains but their algorithm is alternative to

Nguyen’s. They do not use the regularity of the set of reachable configurations but they

observe on the bottom-up unranked trees. In [28], the authors provide a solution for

checking universality of VPAs over finite and infinite words. They avoid the determiniza-

tion and complementation steps, and use Ramsey-based universality checking algorithm.

Their algorithm do not seem to use antichains.

Bounded model checking (BMC) [9, 16] is a symbolic counter-example-finding method

that searches for a violation of a given property in a model structure. BMC approach

looks for counter-examples of bounded length. If no counter-examples are found, enlarge

a bound and repeat the search again. Theoretically, BMC may have high-level complexity,

but by combining SAT-encoding and recent SAT-solvers, it reduces the space complexity

a lot. In practice, BMC often outperforms the BDD-based symbolic model checking

[15, 10].

An important issue of BMC is to make it complete. Because at such a bounded length,

absence of counter-example is still unclear. From this reason, many attempts have been

tried to turn BMC into a complete method with the ability to guarantee the absence of

counter-example [9, 17]. Typically, the reachability diameter (length of longest shortest

path) and the reachability recurrence diameter (length of longest loop-free path) are used

to be the completeness threshold of many properties [29].

There is an example of using BMC in model-checking of pushdown automata. In [8],

Basler et al. proposed an algorithm for checking reachability of pushdown systems using

BMC to compute universal summaries [7].

The original contribution of this research consists in defining two BMC algorithms for

checking universality of VPAs. We call them BMCi and BMCp. These algorithms are

combinations of antichain and BMC by using antichain to reduce the size of search space,

and the number of variables and clauses of propositional formulae.

We ran tests on randomly generated VPAs. Although, the experimental results have

shown that our algorithms are still far from the original antichain algorithm in [37],

we can see a huge improvement when compare between BMC with antichain and BMC

without antichain.
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In Chapter 2 we recall basic notions and properties of VPAs, and P-automata technique

and correctness proof. Chapter 3 presents an antichain algorithm for checking universality

of VPA. Furthermore, the correctness proof of the algorithm is also given. We give some

approaches of BMC for VPA and analyze possibilities in Chapter 4. Based on Chapter

4, our BMC approaches for universality checking of VPAs are proposed in Chapter 5.

We implement and carry out some relevant experiments, the experimental results and

observation are presented in Chapter 6. We discuss some related works in Chapter 7.

Finally, we conclude the research and give suggestions for future works in Chapter 8.

3



Chapter 2

Preliminaries

2.1 Visibly pushdown automata (VPA)

Let Σ be the finite input alphabet, and let Σ = Σc ∪ Σi ∪ Σr be a partition of Σ where

Σc, Σi and Σr are the disjoint finite set of call (push) alphabets, internal alphabets and

return (pop) alphabets, respectively. Visibly pushdown automata are formally defined as

follows:

Definition 1 (VPA. [5]). A visibly pushdown automata (VPA) M over input alphabet

Σ is a tuple (Q,Q0,Γ, F,∆) where Q is a finite set of states, Q0 ⊆ Q is a set of initial

states, Γ is a finite stack symbols with a special symbol ⊥ (so-called bottom of stack),

F ⊆ Q is a set of final states, and ∆ = ∆c ∪ ∆i ∪ ∆r is the transition relation where

∆c ⊆ Q× Σc ×Q× (Γ \ {⊥}), ∆i ⊆ Q× Σi ×Q and ∆r ⊆ Q× Σr × Γ×Q

– A transition (q, c, q′, γ) ∈ ∆c where c ∈ Σc and γ 6= ⊥, is a push-transition where

on reading c regardless of stack, state changes from q to q′ and γ is pushed onto the

stack; we denote a transition by q
c/+γ−−−→ q′.

– A transition (q, i, q′) ∈ ∆i where i ∈ Σi, is a internal-transition where on reading i

regardless of stack, state changes from q to q′; we denote a transition by q
i−→ q′.

– A transition (q, r, γ, q′) ∈ ∆r where r ∈ Σr, is a pop-transition where on reading

input r and top of stack γ, state changes from q to q′ and γ is popped (if top is ⊥,

read but not popped); we denote a transition by q
r/−γ−−−→ q′ (or q

r/⊥−−→ q′).

A stack is a non-empty finite string over Γ ending with the bottom-of-stack symbol ⊥.

We write St for the set of all stacks. St is denoted as St = {w⊥ | w ∈ (Γ \ {⊥})∗}. A

configuration is a pair (q, σ) such that q ∈ Q and σ ∈ St. The transition relation of VPA
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can be used to define how the configuration of the machine changes in a single step: we

say (q, σ)
a
↪→ (q′, σ′) if one of the following holds:

– If a ∈ Σc, then there exists γ ∈ Γ \ {⊥} such that q
a/+γ−−−→ q′ and σ′ = γ · σ.

– If a ∈ Σi, then q
a−→ q′ and σ′ = σ

– If a ∈ Σr, then either there exists γ ∈ Γ \ {⊥} such that q
a/−γ−−−→ q′ and σ = γ · σ′ or

q
a/⊥−−→ q′ and σ′ = σ = ⊥

Acceptance. For a word w = a1 . . . an in Σ∗, a run of M on w is a sequence of configurations

(q0, σ0)
a1
↪→ (q1, σ1)

a2
↪→ . . .

an
↪→ (qn, σn) where each qi ∈ Q, σi ∈ St, q0 ∈ Q0 and σ0 = ⊥,

and is denoted by (q0, σ0)
w
↪→* (qn, σn). A run (q0, σ0)

w
↪→* (qn, σn) is accepting if the last

state is a final state, i.e. if qn ∈ F . A word w ∈ Σ∗ is accepted by a VPA M if there is

an accepting run of M on w. The language of M , L(M), is the set of words accepted by

M . The language L ⊆ Σ∗ is a visibly pushdown language (VPL) if there exists a VPA M

with L = L(M).

Definition 2 (deterministic VPA. [5]). A VPA M is deterministic if |Q0| = 1 and for

every state q ∈ Q:

– for every a ∈ Σc, there is at most one stack symbol γ ∈ Γ and at most one transition

of the form (q, a, q′, γ) ∈ ∆c

– for every a ∈ Σi, there is at most one transition of the form (q, a, q′) ∈ ∆i

– for every a ∈ Σr and γ ∈ Γ, there is at most one transition of the form (q, a, γ, q′) ∈
∆r

As shown in [5], any non-deterministic VPA can be transformed into an equivalent de-

terministic one. The main idea behind the construction is to do a subset construction

but store the call transitions and simulate them later, that is at the time of the corre-

sponding pop transition. The construction has two components: a set of summary edges

S, that keeps track of what transitions are possible from the last push transition to the

corresponding pop transition, and a set of path edges R, that keeps track of all possible

states reached from initial states (see [5] for more detail). However, this construction

contains unneccesary information, that is the set of summaries S may contain pairs that

are not truly reached from initial states. In [38], Nguyen has modified the algorithm

to make every pair (S,R) satisfy Π2(S) = R without disturbing the correctness of the

algorithm (where Π2(S) = {s′ | (s, s′) ∈ S} is the projection on the second component).

After this modification, the construction is able to keep information as small as possible,

that is every pair in S keeps only reachable states and the component R is no longer

needed.
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Algorithm 1: Determinization for VPA

Data: A non-deterministic VPA M = (Q,Q0,Γ, F,∆)

Result: An equivalent determinized VPA Md = (Q′, Q′0,Γ
′, F ′,∆′)

begin

Q′ = 2Q×Q

Q′0 = {IdQ0}
Γ′ = Q′ × Σc

F ′ = {S ∈ Q′ | Π2(S) ∩ F 6= ∅}
the transition relation ∆′ = ∆′c ∪∆′i ∪∆′r is given by:

– Push: For every a ∈ Σc, S
a/+(S,a)−−−−−→ IdR′ ∈ ∆′c where

R′ = {q′ | ∃q ∈ Π2(S) : q
a/+γ−−−→ q′ ∈ ∆c}

– Internal: For every a ∈ Σi, S
a−→ S ′ ∈ ∆′i where

S ′ = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S, q′′ a−→ q′ ∈ ∆i}
– Pop: For every a ∈ Σr,

- if stack is empty: S
a/⊥−−→ S ′ ∈ ∆′r where

S ′ = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S, q′′ a/⊥−−→ q′ ∈ ∆r}
- if stack is not empty: S

a/−(S′,a′)−−−−−−→ S ′′ ∈ ∆′r where

update = {(q, q′) | ∃q1, q2 ∈ Q : (q1, q2) ∈ S, q a′/+γ−−−→ q1 ∈ ∆c, q2
a/−γ−−−→ q′ ∈ ∆r}

S ′′ = {(q3, q
′) | ∃q ∈ Q : (q3, q) ∈ S ′, (q, q′) ∈ update}

end

For a finite set X, let IdX = {(q, q) | q ∈ X}. Let M = (Q,Q0,Γ, F,∆) be any non-

deterministic VPA. Let Md denotes an equivalent deterministic VPA of M such that

L(M) = L(Md). We will construct Md as in Algorithm 1. Remark that from this point,

every time we mention about determinization, it refers to this Algorithm 1.

Theorem 1. ([38]) For any VPA M over Σ, there is a deterministic VPA Md over Σ

such that L(Md) = L(M). Moreover, if M has n states, we can construct Md with at

most 2n
2

states and with stack symbols of size at most 2n
2 · |Σc|.

Example 1. We illustrate an example of determinization in Figure 2.1 where Σc = {a},
Σr = {b} and Σi = {c}. The unreachable states are omitted, for example, state {(1, 0)}
and {(0, 1), (1, 0)}. Note that in Md some transitions actually are not possible but can be

generated from the construction. For example, the transition {(0, 0), (1, 1)} b/⊥−−→ {(0, 1)}
would never happen because the configuration ({(0, 0), (1, 1)},⊥) is not reachable.
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(a) A non-deterministic VPA M

(b) A deterministic VPA Md of M

Figure 2.1: An example of determinization of VPA

2.2 P-automata

The purpose of P-automaton is to keep track of reachable configurations of pushdown

system. Bouajjani et al. [12] have introduced an efficient symbolic method to compute

reachable configurations of a pushdown system. The key of their technique is to use a

finite automaton so-called P-automaton to encode a set of infinite configurations of a

pushdown system. P-automata are classified into Post∗-automata and Pre∗-automata,

but we only use Post∗-automata. So, all P-automata mentioned in this work are Post∗-

automata.

Our definition of P-automaton here has been adjusted so that the concepts are easily

related to VPA, without disturbing the essential points in [12],

Definition 3 (P-automata). For a VPA M = (Q,Q0,Γ, F,∆) over Σ, a finite automaton

A = (P,Γ, P0, {fA},∇) is a P-automaton for M if

– A uses stack alphabet Γ as the input alphabet
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– P ⊆ Q ∪ {fA} is a finite set of states

– P0 ⊆ Q is a set of (multiple) initial states

– the final state is only an unique state fA

– ∇ ⊆ (Q× (Γ \ {⊥})×Q) ∪ (Q× {⊥} × {fA})) is the set of transitions

We write p
γ7→ p′ for (p, γ, p′) ∈ ∇ and 7→∗ for the reflexive transitive closure of 7→. A

P-automaton A accepts a configuration (q, σ) if q
σ7→* fA. A set of configurations accepted

by A is denoted by Conf(A).

Definition 4. Let A and A′ be P-automata of VPA M ,

1. we say A ⇒ A′ if A′ is obtained from A by one of the following saturation rules:

[c]
(P,Γ, P0, {fA},∇)

(P ∪ {q′},Γ ∪ {a}, P0 ∪ {q′}, {fA},∇∪ (q′, γ, q))
if q

a/+γ−−−→ q′ ∈ ∆c

[i]
(P,Γ, P0, {fA},∇)

(P ∪ {q′},Γ, P0 ∪ {q′}, {fA},∇∪ (q′, a′, q′′))
if q

a−→ q′ ∈ ∆i and q
a′−→ q′′ ∈ ∇

[r0]
(P,Γ, P0, {fA},∇)

(P ∪ {q′},Γ, P0 ∪ {q′}, {fA},∇∪ (q′,⊥, fA))
if q

a/⊥−−→ q′ ∈ ∆r and q
⊥−→ fA ∈ ∇

[r]
(P,Γ, P0, {fA},∇)

(P ∪ {q′},Γ, P0 ∪ {q′}, {fA},∇∪ (q′, γ′, q′′′))
if q

a/−γ−−−→ q′ ∈ ∆r and q
γ−→ q′′

γ′−→ q′′′ ∈ ∇

2. A P-automaton A is saturated if A = A′ whenever A ⇒ A′.

Let ⇒∗ denotes the reflexive transitive closure of ⇒. Remark that from definition above

a saturated P-automaton with A ⇒∗ A′ is always uniquely determined and we denote it

by Post∗(A).

For VPA M = (Q,Q0,Γ, F,∆), let C0 be a set of initial configurations of M (i.e.,

C0 = {(q0,⊥) | q0 ∈ Q0}), A0 denotes an initial P-automaton that accepting all configu-

rations in C0. Then A0 = (Q0 ∪{fA},Γ, Q0, {fA},∇0) where ∇0 = {(q0,⊥, fA) | q0 ∈ Q0}.
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Let post∗(C0) denotes all configurations reachable from C0 that is set of all reachable con-

figurations of M (i.e., post∗(C0) = {(q, σ) | ∃q0 ∈ Q0,∃w ∈ Σ∗.(q0,⊥)
w
↪→* (q, σ)}). Given

C0, we can compute post∗(C0) by constructing Post∗(A0) following Definition 4.

Lemma 1. Let M = (Q,Q0,Γ, F,∆) be a VPA, and let A0 be a P-automaton accepting

C0. Assume that p
σ7→* q in Post∗(A0) and p ∈ Q.

1. If q ∈ Q, (q, ε) ↪→∗ (p, σ).

2. If q = fA, there exists p′
σ′7→* fA in A0 and (p′, σ′) ↪→∗ (p, σ).

Proof. Assume the saturation procedure proceeds A0,A1,A2, . . .. Then p
σ7→* q is in

Ai for some i. We will prove by induction on steps of i. For i = 0, A0 = (Q0 ∪
{fA},Γ, Q0, {fA},∇0) where ∇0 = {(q0,⊥, fA) | q0 ∈ Q0}. Thus, only q = fA and the

second statement holds with p′ = p and σ′ = σ. Assume the above statements hold for

every p
σ7→* q in Ai and Ai+1 is constructed by adding new transitions (denoted by 7→i+1)

by one of the saturation rules in Definition 4. We will prove for p
σ7→* q in Ai+1.

Assume that p
σ7→* q contains 7→i+1 k-times, we prove by (nested) induction on k. If

k = 0, obviously the lemma holds from induction hypothesis. Let k > 0 and the leftmost

occurence of 7→i+1 in p
σ7→* q be p0

δ7→ p′0. Thus,

p
σ17→* p0

δ7→ p′0
σ27→* q

where σ = σ1δσ2 and p′0
σ27→* q contains 7→i+1 at most k − 1 times.

We will prove only the first statement of the lemma. The second statement follows

similarly. We have four cases according to which rule is applied when constructAi ⇒ Ai+1.

1. Rule [c] is applied.

2. Rule [i] is applied.

3. Rule [r0] is applied.

4. Rule [r] is applied.

By (both) induction hypothesis on p′0
σ27→* q and p

σ17→* p0, we have (q, ε) ↪→∗ (p′0, σ2) and

(p0, ε) ↪→∗ (p, σ1), respectively.

Case 1. By the saturation rule [c], we have (p′0, ε) ↪→ (p0, δ). Thus,

(q, ε) ↪→∗ (p′0, σ2) ↪→ (p0, δσ2) ↪→∗ (p, σ1δσ2)

Case 2. By the saturation rule [i], we have ∃p′ ∈ Q that (p′, γ) ↪→ (p0, γ) and p′
γ7→

p′0 in Ai. From induction hypothesis, we have (p′0, ε) ↪→∗ (p′, γ). Thus,

(q, ε) ↪→∗ (p′0, σ2) ↪→∗ (p′, γσ2) ↪→ (p0, γσ2) ↪→∗ (p, σ1γσ2)

9



Figure 2.2: An example of P-automaton construction

Case 3. By the saturation rule [r0], we have q = p′0 = fA, σ
′ = γ = ⊥, σ2 = ε. For rule

[r0], the lemma always holds by the second statement.

Case 4. By the saturation rule [r], we have ∃p′, q′ ∈ Q : (p′, γ) ↪→ (p0, ε), and p′
γ7→ q′

δ7→ p′0

in Ai. From induction hypothesis, we have (p′0, ε) ↪→ (q′, δ) and (q′, ε) ↪→ (p′, γ). Thus,

(q, ε) ↪→∗ (p′0, σ2) ↪→∗ (q′, δσ2) ↪→∗ (p′, γδσ2) ↪→ (p0, δσ2) ↪→∗ (p, σ1δσ2)

Lemma 1 shows that each accepted configuration of Post∗(AC) during the saturation

process is in post∗(C) (soundness). On the other hand, saturation rules put immedi-

ate successor configurations, and all configurations in post∗(C) are finally accepted by

Post∗(C) (completeness).

Theorem 2. post∗(C0) = Conf(Post∗(A0))

Example 2. Figure 2.2 shows the example of P-automaton construction of VPA M from

Figure 2.1(a). However, it saturates before all the transtion rules are applied. The initial

configuration of M is: C0 = {(0,⊥)}, and the reachable configurations are: Post∗(C0) =

{(0, γ∗⊥), (1, γ∗⊥)}.
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Chapter 3

Antichain algorithm for universality

checking

Recall that a non-deterministic VPA M = (Q,Q0,Γ, F,∆), and a determinized VPA Md

of M by Algorithm 1 (Section 2.1) is (Q′, Q′0,Γ
′, F ′,∆′).

3.1 Standard method

The standard algorithm for universality of VPA is to first determinize the automaton, and

then check for the reachability of a non-accepting state (or non-accepting configuration).

All reachable configurations of determinized VPA can be computed by using P-automaton

technique to compute Post∗(C0). A configuration c = (q, w) is non-accepting (or rejecting)

if q is not a final state. When a rejecting configuration is found, we stop and report that the

original VPA is not universal. Otherwise, if all reachable configurations of determinized

VPA are accepting, we report that the original VPA is universal.

Definition 5. For determinized VPA Md, let ReachableConf(Md) denotes the set of

all reachable configurations of Md and RejectingConf(Md) denotes the set of rejecting

configurations of Md. Let q ∈ Q′ and σ ∈ (Γ′ \ {⊥})∗ · ⊥ be a state and stack of Md,

respectively.

– ReachableConf(Md) = {(q, σ) | ∃w ∈ Σ∗ : (IdQ0 ,⊥)
w
↪→* (q, σ)}.

– RejectingConf(Md) = {(q, σ) | q 6∈ F ′}.

Recall that IdQ0 is an only single initial state of Md by Algorithm 1 (Section 2.1).

With the above algorithm and definition, we obtain the following theorem:
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Theorem 3. Let M be a non-deterministic VPA. M is not universal iff there exists a

rejecting configuration of Md, i.e., ReachableConf(Md) ∩RejectingConf(Md) 6= ∅.

3.2 Antichain algorithm

In this section, we present an antichain algorithm to check universality of VPAs [37].

An antichain algorithm is a combination between on-the-fly method and minimization.

On-the-fly method is used for finding a rejecting configuration more efficiently than the

standard method, and the minimization is used to reduce the number of computations

based on a partial ordering over states and stack symbols of Md.

3.2.1 On-the-fly method

In this subsection we propose an on-the-fly method to check universality of VPAs by

performing determinization and P-automaton construction simultaneously.

Simultaneous on-the-fly determinization and P-automaton construction. To

improve the efficiency, we perform simultaneously on-the-fly determinization and P-

automaton construction. There are two interleaving phases in this approach. First, we

determinize VPA M step by step (iterations). After each step of determinization, we

update the P-automaton. Second, using new configurations obtained from newly added

transitions of P-automaton, perform the determinization again, and so on. It is crucial

to note that this procedure terminates. This is because the size of Md is finite, and the

P-automaton is finally terminated. From standard method and Theorem 3, checking uni-

versality of M is finding a rejecting configuration of Md. In Algorithm 2, we present an

on-the-fly way to explore such a rejecting configuration (if there is any).

Example 3. We illustrate an example of on-the-fly algorithm in Figure 3.1 where Σc =

{a}, Σr = {b} and Σi = {c}.

The processes of the algorithm is performed as below:

1. At the first time, assume that an initial state of Md is state q1. If q1 is rejecting,

report that M is not universal immediately.

2. Then, the P-automaton AC0 is constructed with two states {q1, fA} and only one

transition q1
⊥7→ fA, where fA is an unique final state. For this time, APost∗(C0) is

representing a set of reachable configurations of Md {(q1,⊥)}.
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Algorithm 2: On-the-fly algorithm

Data: A non-deterministic VPA M = (Q,Q0,Γ, F,∆)

Result: Universality of M

begin

Create the initial state of determinized VPA Md

if the initial state of Md is not a final state then
return False;

end

Initiate P-automaton AC0 to present the initial configuration of Md

APost∗(C0) ←− AC0
Create transitions of Md departing from the initial state

while set of new transitions of Md is not empty do

Update APost∗(C0) using new transitions of Md

if a rejecting state is added to APost∗(C0) then
return False;

end

Update transitions of Md using new configurations from APost∗(C0)

end

return True;

end

3. Update Md departing from (q1,⊥). Suppose Md has new transitions {q1
a/+(q1,a)−−−−−→

q2, q1
b/⊥−−→ q3, q1

c−→ q4}.

4. Update APost∗(C0) using new transitions of Md. Now, APost∗(C0) is representing

{(q1,⊥), (q2, (q1, a)⊥), (q3,⊥), (q4,⊥)}. If one of q2, q3 and q4 is rejecting, report

that M is not universal.

5. We again update Md using new configurations {(q2, (q1, a)⊥), (q3,⊥), (q4,⊥)} of

APost∗(C0), and so on.

3.2.2 Minimization

Recall that state Q′ of Md belongs to 2Q×Q and stack symbols Γ′ belongs to Q′×Σc. We

define an ordering over states and stack symbols as follows:

Definition 6 (Partial ordering over states and stack symbols).

– Let S1 and S2 be states of Md, we say S1 ≤ S2 if S1 ⊆ S2.
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Figure 3.1: An example of on-the-fly algorithm

– Let a1, a2 ∈ Σc and let γ1 = (S1, a1) and γ2 = (S2, a2) be stack symbols of Md, we

say γ1 ≤ γ2 if S1 ⊆ S2 and a1 = a2.

From Definition 6, we extend the ordering to an ordering over configurations of the de-

terminized VPA Md.

Definition 7 (Partial ordering over configurations). Let c1 = (S1, γk . . . γ1⊥) and c2 =

(S2, γ
′
k . . . γ

′
1⊥) be configurations of Md. We say c1 ≤ c2 if S1 ≤ S2 and γi ≤ γ′i for all

1 ≤ i ≤ n.

Now we begin with establishing theoritical background for minimization in our algo-

rithm.

Lemma 2. Let S1
a/+(S1,a)−−−−−→ IdR′1 and S2

a/+(S2,a)−−−−−→ IdR′2 be push transitions of Md. If

S1 ≤ S2, then IdR′1 ≤ IdR′2.

Proof. By the determinization, we have:
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– S1
a/+(S1,a)−−−−−→ IdR′1 where R′1 = {q′ | ∃q ∈ Π2(S1) : q

a/+γ−−−→ q′ ∈ ∆c}

– S2
a/+(S2,a)−−−−−→ IdR′2 where R′2 = {q′ | ∃q ∈ Π2(S2) : q

a/+γ−−−→ q′ ∈ ∆c}

Thus, if S1 ≤ S2 then R′1 ≤ R′2, and obviously IdR′1 ≤ IdR′2.

Lemma 3. Let S1
a−→ S ′1 and S2

a−→ S ′2 be internal transitions of Md. If S1 ≤ S2, then

S ′1 ≤ S ′2.

Proof. By the determinization, we have:

– S1
a−→ S ′1 where S ′1 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S1, q

a−→ q′ ∈ ∆i}

– S2
a−→ S ′2 where S ′2 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S2, q

a−→ q′ ∈ ∆i}

Thus, if S1 ≤ S2 then S ′1 ≤ S ′2.

Lemma 4. Let S1
a/⊥−−→ S ′1 and S2

a/⊥−−→ S ′2 be return transitions with empty stack of Md.

If S1 ≤ S2, then S ′1 ≤ S ′2.

Proof. By the determinization, we have:

– S1
a/⊥−−→ S ′1 where S ′1 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S1, q

a/⊥−−→ q′ ∈ ∆r}

– S2
a/⊥−−→ S ′2 where S ′2 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S2, q

a/⊥−−→ q′ ∈ ∆r}

Thus, if S1 ≤ S2 then S ′1 ≤ S ′2.

Lemma 5. Let S1

a/−(S′1,a
′
1)

−−−−−−→ S ′′1 and S2

a/−(S′2,a
′
2)

−−−−−−→ S ′′2 be return transitions with non-empty

stack of Md. If S1 ≤ S2 and (S ′1, a
′
1) ≤ (S ′2, a

′
2), then S ′′1 ≤ S ′′2 .

Proof. By the determinization, we have:

– update1 = {(q, q′) | ∃q1, q2 ∈ Q : (q1, q2) ∈ S1, q
a′1/+γ−−−→ q1 ∈ ∆c, q2

a/−γ−−−→ q′ ∈ ∆r}
S ′′1 = {(q3, q

′) | ∃q ∈ Q : (q3, q) ∈ S ′1, (q, q′) ∈ update1}

– update2 = {(q, q′) | ∃q1, q2 ∈ Q : (q1, q2) ∈ S2, q
a′2/+γ−−−→ q1 ∈ ∆c, q2

a/−γ−−−→ q′ ∈ ∆r}
S ′′2 = {(q3, q

′) | ∃q ∈ Q : (q3, q) ∈ S ′2, (q, q′) ∈ update2}

Thus, if S1 ≤ S2 and a′1 = a′2, then update1 ⊆ update2. And plus S ′1 ≤ S ′2, then

S ′′1 ≤ S ′′2 .

Then, for configurations:

Lemma 6. Let c1 = (S1, γk . . . γ1⊥) and c2 = (S2, γ
′
k . . . γ

′
1⊥) be configurations of Md

such that c1 ≤ c2. For any word w ∈ Σ∗, if c1
w
↪→* c′1 and c2

w
↪→* c′2, then c′1 ≤ c′2.

Proof. We prove this lemma by induction on length |w| of w. For |w| = 1 = a, the lemma

holds immediately from Lemma 2, 3, 4 or 5 with regarding to type of input symbol |a|. For
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induction case, assume the lemma holds for w. We can prove for wa by using induction

hypothesis, and Lemma 2, 3, 4 or 5 with regarding to type of a.

Lemma 7. Let c1 and c2 be configurations of Md, If c2 is a rejecting configuration and

c1 ≤ c2, then c1 is also a rejecting configuration.

Proof. Let c1 = (S1, γk . . . γ1⊥) and c2 = (S2, γ
′
k . . . γ

′
1⊥) that c1 ≤ c2. Recall that c2 is a

rejecting configuration if S2 6∈ F ′ where F ′ is a set of final states of Md. From Algorithm

1 (Section 2.1), that means Π2(S2) ∩ F = ∅. Note that if c1 ≤ c2, then S1 ≤ S2. Thus,

Π2(S2) ∩ F = ∅.

From Lemma 6 and 7, we can conclude that it is sufficient to compute only minimal

reachable configurations to check for the existence of a rejecting configuration. Formally,

we define:

Definition 8. MinimalReachableConf(Md) = {(s, σ) ∈ ReachableConf(Md)|
¬∃(s′, σ′) ∈ ReachableConf(Md) : (s′, σ′) ≤ (s, σ)}

Theorem 4. Let M be a non-deterministic VPA. M is not universal iff there exists a

rejecting minimal configuration of Md, i.e., MinimalReachableConf(Md) ∩
RejectingConf(Md) 6= ∅.

Minimal P-automaton. Let C0 = {(IdQ0 ,⊥)} be the initial configuration of Md. Let

APost∗(C0) be the P-automaton presenting ReachableConf(Md) and let AminPost∗(C0) be the

P-automaton presenting MinimalReachableConf(Md). AminPost∗(C0) is computed by min-

imizing the APost∗(C0) as follows: “at each incremental expansion step” of constructing

APost∗(C0), for two configurations (S1, γ1σ) and (S2, γ2σ), we only need to compare the

states (i.e., S1 and S2) and top of stack (i.e., γ1 and γ2). Assume that S1 ≤ S2 and

γ1 ≤ γ2, then (S1, γ1σ) ≤ (S2, γ2σ). So, we only need to keep the “smaller” configuration

(S1, γ1σ). We formalize this observation in Algorithm 3.

Finally, an antichain algorithm which combines on-the-fly method and minimization is

shown in Algorithm 4. Note that the difference is only in the while-loop, we extract

P-automaton to be minimal before continue determinizing VPA.

Theorem 5 (Correctness of Algorithm 4). Let M be a non-deterministic VPA. Let Md
i

and Ai be determinized VPA and P-automaton AminPost∗(C0) obtained in the i-th iteration of

the while-loop in Algorithm 4. The VPA M is not universal if and only if Conf(Ai) ∩
RejectingConf(Md

i ) 6= ∅ for some i.

Proof. If Conf(Ai) ∩ RejectingConf(Md
i ) 6= ∅ for some i then of course M is not uni-

versal. Conversely, if M is not universal, there exists at least one rejecting reachable

configuration (S, σ) (i.e., Π2(S) ∩ F 6= ∅). If (S, σ) ∈ Conf(Ai) for some i, the theorem
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Algorithm 3: Extract minimal transitions of P-automaton

Data: A P-automaton A = (P,Γ, P0, {fA},∇)

Result: A P-automaton Amin = (P,Γ, P0, {fA},∇′)
begin

∇′ = ∇
for each state S ∈ P do

if (S1, γ1, S) ∈ ∇′ ∧ (S2, γ2, S) ∈ ∇′ ∧ S1 ≤ S2 ∧ γ1 ≤ γ2 then
∇′ ← ∇′ \ {(S2, γ2, S)}

end

end

end

Algorithm 4: Antichain algorithm

Data: A non-deterministic VPA M = (Q,Q0,Γ, F,∆)

Result: Universality of M

begin

Create the initial state of determinized VPA Md

if the initial state of Md is not a final state then
return False;

end

Initiate P-automaton AC0 to present the initial configuration of Md

AminPost∗(C0) ←− AC0
Create transitions of Md departing from the initial state

while set of new transitions of Md is not empty do

Update AminPost∗(C0) using new transitions of Md

if a rejecting state is added to AminPost∗(C0) then
return False;

end

Compute AminPost∗(C0) to be minimal by using Algorithm 3

Update transitions of Md using new configurations from AminPost∗(C0)

end

return True;

end

17



Figure 3.2: An example of antichain algorithm

holds. If (S, σ) 6∈ Conf(Ai) for any i (within a bound), it means that the configuration

(S ′, σ′) that (S ′, σ′)
w
↪→* (S, σ) for some w ∈ Σ∗ was taken out from Conf(Aj) for j ≤ i

by Algorithm 3. Thus there is at least one reachable configuration (S ′2, σ
′
2) ∈ Conf(Aj)

such that (S ′2, σ
′
2) ≤ (S ′, σ′) and (S ′2, σ

′
2)

w
↪→* (S2, σ2) ∈ Conf(Ai). From Lemma 6 and

7, we have (S2, σ2) ≤ (S, σ) and (S2, σ2) is a rejecting configuration. As a result, there

exists an i such that Conf(Ai) ∩RejectingConf(Md
i ) 6= ∅, the theorem holds.

Example 4. To describe how antichain algorithm work, we revisit Example 3. Assume

that in determinized VPA Md q1 ≤ q3 and q5 ≤ q2. With these assumption, after step 4

of updating P-automaton, we remove state and transition of q3. Plus, we do not need to

investigate farther from q3. And also after q5 appears, we can remove q2. The illustration

is shown in Figure 3.2.

Complexity. In the worst case (i.e., when the VPA is universal), the complexity of

antichain-base algorithm is the same as the standard method, that is O(23|Q|2) where
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|Q| is a number of state of M (this is because checking emptiness of pushdown system

is cubic time of number of state [12]). However, in the case of not universal VPA, the

antichain algorithm really outperforms the standard one.
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Chapter 4

Bounded model checking for VPA

Bounded model checking (BMC) is a SAT-based technique for symbolic model checking.

The main idea of BMC is to avoid the full state space generation and look for a violation

of a given property of bounded length. If no violation is found in that length, enlarge the

bound and repeat the search again, until either a violation is found, or we can guarantee

that no violation is lying beyond that length.

The basic idea of BMC for universality checking of VPA is to unroll the determinized VPA

Md for a fixed number of steps k, and check for universality of that k-step Md (denoted

by Md
k ). If Md

k is not universal, we can conclude that Md is also not universal. Otherwise

repeat the process with larger bound until Md
k = Md or we can guarantee that Md is

universal.

The question is how to unroll Md to be Md
k , what of Md should be represented in Md

k in

order to decide universality, and how to obtain Md
k+1 from Md

k .

We have considered many options to bound Md. Each step in bound k can be one step

of applying:

1. transition → of Md

2. transition 7→ of P-automaton of Md

3. transition ↪→ of configurations

4. transition ⇀ of P-automaton transition (will be defined later)

5. saturation rule ⇒ of P-automaton saturation process

In this chapter, we will explain each option and clarify a possibility of each option to be

used for BMC for universality checking. Note that our BMC algorithm BMCi is based on

the option 4 and BMCp is based on the option 5.
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(a) Md

(b) P-automaton of Md

Figure 4.1: An example of Md

4.1 Bounded transitions of Md (→)

This is the simplest way to unroll Md. Like BMC of finite automata, Md
k represents Md

by reachable states in k steps. Starting from k = 0, the starting point is an initial state

of Md IdQ0 . Each step within bound is a transition → of ∆′.

Example 5. From determinized VPA Md in Figure 4.1(a),

Md
0 = {IdQ0},Md

1 = {S1},Md
2 = {S2, S3}

However, unlike finite automata, this bounded method does not work because of at least

2 reasons. (i) Md
k does not contain any information about stack. From Md

k we can

compute Md
k+1 with call and internal transitions but not return transitions. For instance,

in Example 5 actually we cannot know whether from Md
1 we will have S2 in Md

2 because

we do not know whether stack is (IdQ0 , 1). (ii) To be able to compute Md
k+1 from length

Md
k , it requires a full set of transitions. That means we need to compute for a full ∆′
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of Md. If we do that successfully, we can just use P-automaton to check reachability of

rejecting configurations like in standard algorithm. It does not make sense to use BMC

in the first place.

4.2 Bounded transitions of P-automaton (7→)

Recall that the purpose P-automaton is to encode configurations of Md into a regular

expression. Each configuration (q, σ) is accepted by P-automaton if q
σ7→* fA. In this

method, each step within bound is a backward of transition 7→ of ∇. Starting point Md
0

is fA. For each k, Md
k represents states that can reach to fA in k steps of P-automaton.

That are states that can reach to stack height k in Md.

Example 6. From P-automaton of Md in Figure 4.1(b),

Md
0 = {fA},Md

1 = {IdQ0 , S2},Md
2 = {S1}

However, like finite automata, it requires a full set of transitions of P-automaton to

perform transitions like that. Again, it requires a full determinization of Md to construct

transitions of P-automaton.

4.3 Bounded transitions of configuration (↪→)

To keep information of states and stacks, we use Md
k to represent Md by reachable con-

figurations instead of reachable states. Starting point is an initial configuration of Md

(IdQ0 ,⊥). Each step within bound is a transition ↪→ according to ∆′.

Example 7. From determinized VPA Md in Figure 4.1(a),

Md
0 = {(IdQ0 ,⊥)},Md

1 = {(S1, (IdQ0 , 1)⊥)},Md
2 = {(S2,⊥), (S3, (S1, 1)(IdQ0 , 1)⊥)}

This approach does not require a full set of transitions ∆′ like the previous two approaches.

This is because if we do know current state and top of stack we can compute next state

using determinization algorithm (Algorithm 1 Section 2.1), and can compute stack based

on input alphabet. For instance, in Example 7 Md
1 = {(S1, (IdQ0 , 1)⊥)}, we can compute

for S2 using S1 and (IdQ0 , 1) follow Algorithm 1, and pop top of stack out. On the other

hand, we can compute S3 using S1 (ignore stack), and push (S1, 1) to stack.

However, even if it is possible to unroll Md without full computing determinization,

this approach is not considered to be used for checking universality of VPAs. Because
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configurations of Md have an uncertain length, stack of Md can be finitely any height. It

is difficult to encode to a propositional formula.

4.4 Bounded transitions of P-automaton transition

(⇀)

Before we talk about transitions of P-automaton transtion (⇀), we have a crucial obser-

vation of P-automaton of determinized VPA.

Remark. From the Definition 3 (Section 2.2) alphabet of P-automaton is equal to the

stack alphabet of VPA. The alphabet of P-automaton of Md must belong to Q′ × Σc.

However, it is a crucial observation that every transition of P-automaton, which does not

lead to the final state (i.e., p
γ−→ p′ ∈ Q′), the first component of input symbol is always

equal to the destination state (i.e., ∃a′ ∈ Σc : γ = (p′, a′)). This is because of behaviors of

the determinization process (Algorithm 1 Section 2.1) and P-automaton saturation rules

(Definition 4 Section 2.2). Therefore, we can cut out the alphabet of P-automaton of Md

from Q′ ×Σc to just Σc. For instance, as shown in Figure 4.1(b), actually the transitions

must be S1

(IdQ0
,1)

7→ IdQ0 and S3
(S1,1)7→ S1

We define transitions ⇀ between transitions of P-automaton of Md as follow:

Definition 9 (transitions between P-automaton transitions on Σ∗). For determinized

VPA Md = (Q′, Q′0,Γ
′, F ′,∆′) and P-automaton A = (P,Σc, P0, {fA},∇) accepting con-

figurations of Md, a set ∇′ of transitions of P-automaton transition is given by:

– [c] Call transition: For every a ∈ Σc, (S
a′7→ S ′′)

a
⇀ (IdR′

a7→ S) ∈ ∇′

if S
a/+(S,a)−−−−−→ IdR′ ∈ ∆′c

– [i] Internal transition: For every a ∈ Σi, (S
a′7→ S ′′)

a
⇀ (S ′

a′7→ S ′′) ∈ ∇′

if S
a−→ S ′ ∈ ∆′i

– [r0] Return transition with empty stack:

For every a ∈ Σr, (S
⊥7→ fA)

a
⇀ (S ′

⊥7→ fA) ∈ ∇′ if S
a/⊥−−→ S ′ ∈ ∆′r

– [r] Return transition: For every a ∈ Σr, (S
a′7→ S ′′)

a
⇀ (S ′

a′′7→ S ′′′) ∈ ∇′

if S
a/−(S′′,a′)−−−−−−→ S ′ ∈ ∆′r and S

a′7→ S ′′
a′′7→ S ′′′ ∈ ∇

We write ⇀* for the reflexive transitive closure of ⇀.

The starting point is an initial transition of P-automaton that is IdQ0

⊥7→ fA. For each k,

Md
k represents P-automaton transitions after reading input of length k.
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Example 8. From Figure 4.1, the set of transitions of P-automaton transition ∇′ is:

∇′ ={(IdQ0

⊥7→ fA)
1
⇀ (S1

17→ IdQ0),

(S1
17→ IdQ0)

2
⇀ (S2

⊥7→ fA),

(S1
17→ IdQ0)

1
⇀ (S3

17→ S1)}

and steps of unrolling Md are:

Md
0 = {IdQ0

⊥7→ fA},Md
1 = {S1

17→ IdQ0},

Md
2 = {S2

⊥7→ fA, S3
17→ S1}

This method does not require a full determinization of M . Because for each Md
k we

can compute Md
k+1 simultaneously with determinization and ∇′ construction (Similar

to on-the-fly algorithm in Algorithm 2 Section 3.2.1 but construct ∇′ instead of P-

automaton).

We can check universality of Md
k by checking whether Md

k contains a transition p
a7→ p′

that p 6∈ F ′. We will explain in the next chapter why tracking P-automaton transitions

can check universality of VPA.

One of our BMC algorithms called BMCi is developed based on this approach.

4.5 Bounded P-automaton saturation process

(⇒)

Let C0 be an initial configuration of Md and let A0 be a P-automaton accepting C0,

Assume that the saturation procedure to compute Post∗(A0) proceedsA0 ⇒ A1 ⇒ A2 . . ..

For each bound k, Md
k represents P-automaton of Md after applying saturation rules k

times.

Example 9. From Figure 4.1,

Md
0 = {IdQ0

⊥7→ fA},

Md
1 = {IdQ0

⊥7→ fA, S1
17→ S0},

Md
2 = {IdQ0

⊥7→ fA, S1
17→ S0, S2

⊥7→ fA, S3
17→ S1}

Note that this is different from the previous one. In bounded ⇀, Md
k represents P-

automaton transitions after reading input of length k. In bounded⇒, Md
k represents Ak,

a P-automaton that obtained by applying saturation rules k times.
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This method does not require a full determinization of M . Because we can perform

determinization and P-automaton construction simultaneously using on-the-fly algorithm

(Algorithm 2 Section 3.2.1).

We can check universality of Md
k by checking whether Md

k (= Ak) accepts any rejecting

configurations, i.e., checking whether there exists a transition p
a7→ p′ that p 6∈ F ′ in

Md
k .

One of our BMC algorithms called BMCp is developed based on this approach.
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Chapter 5

BMC and antichains for universality

checking of VPA

In the previous chapter, we talked about how to unroll Md for each bound k. In this

chapter, we will talk about our two BMC algorithms, called BMCi and BMCp. BMCi

unrolls Md based on transitions of P-automaton transition (⇀), and BMCp unrolls Md

based on P-automaton saturation process (⇒).

First of all, we will give an idea of how to check non-universality of VPAs (finding counter-

examples) using BMC, and how to apply antichain algorithm to BMC for checking non-

universality. Next we will explain our algorithms BMCi and BMCp and show differences

of them in non-universality checking. Then we will talk about universality checking, and

finally how to apply antichain to universality checking.

5.1 Encoding for non-universality checking of VPAs

In this section, we will first talk about how P-automaton transitions are used to check

non-universality. Next we will state the method for encoding transitions of P-automaton

transition (⇀) and non-universality checking to be propositional formulae.

5.1.1 Basic idea

We first clarify why transitions of P-automaton transition (⇀) relate to non-universality

checking. We start with the relation between configurations of Md and P-automaton

transitions. Recall that from the remark mentioned in Section 4.4, the input alphabet of

P-automaton of Md is Σc rather than Γ′,
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Definition 10. Let A = (P,Σc, P0, {fA},∇) be a P-automaton of a determinized VPA

Md = (Q′, Q′0,Γ
′, F ′,∆′), and let σ = (qn, an) . . . (q1, a1)⊥ be a stack of Md where qi ∈ Q′

and ai ∈ Σc. For a configuration of Md c = (q, σ), we define δc = q
an7→ q′ as the first

transition of accepting path of c in A (i.e., q
an7→ q′

an−17→ . . .
⊥7→ fA).

Definition 11. For any word w ∈ Σ∗, let w = a1 . . . ak and let δi are P-automaton

transitions for i ≥ 0.

– A run of Md on w is a sequence of configurations of Md on w starting from an

(unique) initial configuration, i.e., (q0,⊥)
a1
↪→ (q1, σ1) . . .

ak
↪→ (qk, σk) where q0 = IdQ0,

and is denoted by (q0,⊥)
w
↪→* (qk, σk).

– A run of δ on w is a sequence of P-automaton transitions on w obtained by Al-

gorithm 9 (Section 4.4), starting from an (unique) initial P-automaton transition,

i.e., δ0
a1⇀ δ1 . . .

ak⇀ δk where δ0 = q0
⊥7→ fA, and is denoted by δ0

w
⇀* δk.

Lemma 8. Let δi = qi
ai7→ q′i ∈ ∇ be transitions of P-automaton of Md. For input word

w ∈ Σ∗, let a run of Md on w be (q0,⊥)
w
↪→* (qk, σk) and let δ0

w
⇀* δk be a run of δ on w.

If δ0 = δ(q0,⊥), then δk = δ(qk,σk).

Proof. We prove it by induction on length of w. For |w| = 0, the statement holds

immediately. For induction case, assume above statement hold for |w| = k, and for wak+1

a run of Md is extended to (q0,⊥)
w
↪→* (qk, σk)

ak+1

↪→ (qk+1, σk+1), and a run of δ is extended

to δ0
w
⇀* δk

ak+1
⇀ δk+1. The proof of wak+1 is based on the case of transition of ak+1.

– ak+1 ∈ Σc. Following behaviors of VPA and determinization, we have (qk, σk)
ak+1

↪→
(Idqk , (qk, ak+1)σk). Following definition 9 (Section 4.4) [c], δk+1 = Idqk

ak+17→ qk, and

from induction hypothesis, qk
σk7→* fA. Thus, δ(qk+1,σk+1) = Idqk

ak+17→ qk = δk+1

– ak+1 ∈ Σi. Following behaviors of VPA and determinization, we have (qk, σk)
ak+1

↪→
(qk+1, σk). Following definition 9 [i], δk+1 = qk+1

ak7→ q′k, and from induction hypoth-

esis, qk
σk7→* fA with the first transition qk

ak7→ q′k. Thus, δk+1 is the first transition of

qk+1
σk7→* fA, then δk+1 = δ(qk+1,σk).

– ak+1 ∈ Σr and stack is empty. Following behaviors of VPA and determinization,

we have (qk,⊥)
ak+1

↪→ (qk+1,⊥). Following definition 9 [r0], δk+1 = qk+1
⊥7→ fA. Thus,

obviously, δk+1 = δ(qk+1,⊥).

– ak+1 ∈ Σr and stack is not empty. Following behaviors of VPA and determinization,

we have (qk, (q
′′, a′)σ′k)

ak+1

↪→ (qk+1, σ
′
k). Following definition 9 [r], δk+1 = qk+1

a′′7→ q′k+1

where qk
a′7→ q′′

a′′7→ q′k+1, and from induction hypothesis, there must be i < k that

qi = q′′ and qi
σi7→* fA. Thus, δk+1 = δ(qk+1,σ

′
k)
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We say a configuration c = (q, σ) of Md is rejecting if q 6∈ F ′, and we say a P-automaton

transition δ = p
a7→ p′ is rejecting if p 6∈ F ′.

Lemma 9. A configuration c of Md is rejecting iff δc is rejecting

Proof. Let c = (q, σ), from Definition 10 δc = q
a7→ q′, it is obvious that c is rejecting if

and only if δc is rejecting

From Lemma 8 and 9, suppose a run of Md on w is (q0,⊥)
w
↪→* (qk, σk) and suppose a run

of δ on w is δ0
w
⇀* δk. If w 6∈ L(Md), then (qk, σk) is rejecting, and also δk is rejecting.

We can conclude that we can use a run of δ to monitor a run of Md for non-universality

checking. This is important because a configuration of Md belongs to Q′×((Γ′\{⊥})∗ ·⊥)

that have an uncertain length but δ belongs to Q′ × Σc × (Q′ ∪ {fA}) that always has a

certain length. Therefore, encoding of δ (P-automaton transitions) is a lot easier than

encoding configurations directly.

Theorem 6. Md is not universal iff there exists k ∈ N that w ∈ Σk and a run of δ on w

is δ0
w
⇀* δk and δk is rejecting

5.1.2 Encoding of P-automaton transition

Each P-automaton transition δ = q
a7→ q′ is encoded to propositional variables as fol-

lows:

Definition 12. Let n = |Q| and m = blog(|Σc|)c + 1. We define three vectors of propo-

sitional variables:

– a = (a1,1, . . . , a1,n, a2,1, . . . , an,n)

– b = (bm, . . . , b1)

– c = (cf , c1,1, . . . , c1,n, c2,1, . . . , cn,n)

to represent each transition q
a7→ q′ of P-automaton of Md.

In particular, vector a represents a source state of transition (i.e., q), vector b represents

an alphabet of transition (i.e., a), and vector c represents a destination state of transition

(i.e., q′).

Length. Since states of P-automaton of Md belong to Q′∪{fA}, size of states |P | = 2n
2
+1.

But from the definition 3 (Section 2.2) there is always no transition from the final state

fA, length n2 is enough for vector a but length of c must be n2 + 1. For vector b, length

m = blog(|Σc|)c+ 1 is enough to encode the call alphabet.
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Intention. Because |Q| = n, one can easily encode the set of states Q = {1, . . . , n}. Each

state q of Md is a set of pair of integers (i.e., q ⊆ Q×Q). A vector a is a bit representation

of set q. Each propositional variable ai,j of vector a (1 ≤ i, j ≤ n) represents whether

a pair (i, j) is in q, i.e., ai,j is true denotes (i, j) ∈ q and false otherwise. Similarly, ci,j

represents whether a pair (i, j) is in q′. An additional variable cf is used to represent

whether the destination of transition is a final state fA. Either q′ ∈ Q′ then cf is false

and ci,j represent q′, or q′ = fA then cf is true and all ci,j are false. bm, . . . , b1 are just a

binary encoding of Σc. We reserve a special value of b that is bi are all false for ⊥.

We use vector ai, bi, ci to encode each δi (0 ≤ i ≤ k) in a run δ0 ⇀* δk. Note that

superscript is used to represent iteration index of vectors, and subscript is used to represent

index in vectors. For example, a propositional variable a0
1,1 represents whether a pair (1, 1)

is in q0 (δ0 = q0
⊥7→ fA), and a2

1,1 represents whether a pair (1, 1) is in q2 after reading a2

and a run of δ is δ0
a1⇀ δ1

a2⇀ δ2 and q2
a′7→ q′2.

5.1.3 Encoding of transitions of P-automaton transition

In previous subsection, we presented how to encode each transition of P-automaton. In

this subsection, we will present how to encode a run of δ on w δ0 ⇀* δk.

First, we define some notations:

Definition 13. For vector of propositional variables we define notations:

– ¬ of vector denotes a conjuction of negative of all indices.

– ⇐⇒ of vector with the same length denotes a conjunction of ⇐⇒ of all indices.

For example, ¬a denotes ¬a1,1∧ . . .∧¬an,n and a ⇐⇒ a′ denotes (a1,1 ⇐⇒ a′1,1)∧ . . .∧
(an,n ⇐⇒ a′n,n).

Then, we define a propositional formula:

[P(Md)]k := init(a0, b0, c0) ∧
k−1∧
l=0

T ((al, bl, cl), (al+1, bl+1, cl+1))

to represent δ0 ⇀* δk where init(a0, b0, c0) is an encoding of an initial P-automaton

transition, and each T ((al, bl, cl), (al+1, bl+1, cl+1)) represents a transition δl
al+1
⇀ δl+1. Note

that we introduced a variable l to run an iteration index of vectors, since i and j will be

used to run an index in vectors later.

The initial P-automaton transition δ0 is IdQ0

⊥7→ fA that represents an initial configuration
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Figure 5.1: An example VPA for checking universality

(IdQ0 ,⊥) of Md. The formula init is defined as follow:

init(a0, b0, c0) :=
n∧
i=1

n∧
j=1

finit(i, j) ∧ (¬b0) ∧ (c0 ⇐⇒ (true, false, . . . , false))

finit(i, j) :=

a0
i,j if i = j and i ∈ Q0

¬a0
i,j otherwise

The function finit represents an initial state IdQ0 by vector a0. Follow the definition, a0
i,j

is true iff (i, j) ∈ IdQ0 . Variables in vector b0 are all false to represent ⊥. Only cf is true

in vector c0 to represent fA.

Example 10. From VPA M in figure 5.1, |Q| = 2 so vector a has four indices that are

(a1,1, a1,2, a2,1, a2,2), b = (b2, b1) and c = (cf , c1,1, c1,2, c2,1, c2,2). Note that since |Σc| = 1,

actually we can define vector b with only one index, but for better intention and under-

standing we define b with two indices to be able to represent all alphabets 1, 2 and 3. The

initial state of Md is {(1, 1)}, so the initial transition of P-automaton is {(1, 1)} ⊥7→ fA.

The formula init(a0, b0, c0) is a0
1,1 ∧¬a0

1,2 ∧¬a0
2,1 ∧¬a0

2,2 ∧¬b0
2 ∧¬b0

1 ∧ c0
f ∧¬c0

1,1 ∧¬c0
1,2 ∧

¬c0
2,1 ∧ ¬c0

2,2 Therefore, a0, b0 and c0 are (true, false, false, false), (false, false) and

(true, false, false, false, false), respectively.

The formula T ((al, bl, cl), (al+1, bl+1, cl+1)) represents a transition δl
al+1
⇀ δl+1. T can be

divided into four cases based on type of ⇀.

T ((al, bl, cl), (al+1, bl+1, cl+1)) := Tc ∨ Ti ∨ Tr0 ∨ Tr

Note that the arguments of Tc, Ti, Tr0 and Tr are the same as T .

Let + denotes a concatenation of two vectors and for a ∈ Σ, let be(a) denotes a binary

encoding of a. We define formulae for transitions of P-automaton transition (⇀) as

follows:
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Call transition.

Tc :=
∨
a∈Σc

[
n∧
i=1

n∧
j=1

fc(i, j) ∧ (bl+1 ⇐⇒ be(a))] ∧ (cl+1 ⇐⇒ (false) + al)

fc(i, j) :=


al+1
i,j ⇐⇒

∨
j′

n∨
i′=1

ali′,j′ if i = j and ∃j′ ∈ Q : j′
a/+γ−−−→ i ∈ ∆c

¬al+1
i,j otherwise

The definition of Tc is an encoding of the case [c] of ⇀ (Definition 9 Section 4.4). The

definition of function fc is to compute state IdR′ from the determinization process. Note

that Tc has a disjunction of call alphabet because case [c] of ⇀ is for a call transition but

not for a specific call alphabet. Each al+1 ∈ Σc can cause [c] case of δl
al+1
⇀ δl+1, and the

next P-automaton transition δl+1 depends on al+1.

Internal transition.

Ti :=
∨
a∈Σi

[
n∧
i=1

n∧
j=1

fi(i, j)] ∧ (bl+1 ⇐⇒ bl) ∧ (cl+1 ⇐⇒ cl)

fi(i, j) :=


al+1
i,j ⇐⇒

∨
j′
ali,j′ if ∃j′ ∈ Q : j′

a−→ j ∈ ∆i

¬al+1
i,j otherwise

The definition of Ti is an encoding of the case [i] of ⇀ (Definition 9 Section 4.4). The

definition of function fi is to compute state S ′ from the determinization process. Follow

the definition of case [i] of ⇀, the only vector that changes is vector a (of source state in

δ). Vectors bl+1 and cl+1 are the same as bl and cl, respectively.

Return transition with empty stack.

Tr0 := (¬bl) ∧
∨
a∈Σr

[
n∧
i=1

n∧
j=1

fr0(i, j)] ∧ (¬bl+1) ∧ (cl+1 ⇐⇒ (true, false, . . . , false))

fr0(i, j) :=


al+1
i,j ⇐⇒

∨
j′
ali,j′ if ∃j′ ∈ Q : j′

a/⊥−−→ j ∈ ∆r

¬al+1
i,j otherwise

The definition of Tr0 is an encoding of the case [r0] of ⇀ (Definition 9 Section 4.4). First of

all, ¬bl (denotes ⊥) is a necessary condition to check whether the current stack is empty.

Case [r0] is really similar to case [i]. Vector al+1 is computed in the same way as case [i],

but bl+1 is all false to denote ⊥ and only cl+1
f in cl+1 is true to denote fA.

Return transition.

31



Let vector c′ be a vector c without a variable cf .

Tr :=
∨
a∈Σr

∨
a′∈Σc

[(bl ⇐⇒ be(a′)) ∧
n∧
i=1

n∧
j=1

fr(i, j)]∧

l∨
l′=0

[(c′l ⇐⇒ al
′
) ∧ (bl+1 ⇐⇒ bl

′
) ∧ (cl+1 ⇐⇒ cl

′
)]

fr(i, j) :=


al+1
i,j ⇐⇒

∨
i′

∨
j′′

∨
j′

[cli,j′′ ∧ ali′,j′ ] if ∃i′, j′, j′′ ∈ Q,∃γ ∈ Γ\ ⊥:

j′′
a′/+γ−−−→ i′ ∈ ∆c and j′

a/−γ−−−→ j ∈ ∆r

¬al+1
i,j otherwise

The definition of Tr is an encoding of the case [r] of ⇀ (Definition 9 Section 4.4). Return

transition is the most complicated. First, formula (bl ⇐⇒ be(a′)) is used to check top of

stack. Tr has two disjunctions, one of return alphabet and one of call alphabet which is the

top of stack. This is because case [r] does not depend on only alphabet but alphabet and

top of stack. The definition of function fr is to compute state S ′ from the determinization

process. Both current state and top of stack must be considered to compute next state.

This result in al+1 has to consider both al and cl. The disjunction over l′ on the second

line is used to find the condition “S
a′7→ S ′′

a′′7→ S ′′′ ∈ ∇” in the previous P-automaton

transition δ0 to current P-automaton transition δl.

Example 11. Recall the same example, from Figure 5.1, the encoding of transition are:

Tc := (al+1
1,1 ⇐⇒ al1,1 ∨ al2,1) ∧ ¬al+1

1,2 ∧ ¬al+1
2,1 ∧ (al+1

2,2 ⇐⇒ al1,1 ∨ al1,2 ∨ al2,1 ∨ al2,2) ∧
¬bl+1

2 ∧ bl+1
1 ∧ ¬cl+1

f ∧
(cl+1

1,1 ⇐⇒ al1,1) ∧ (cl+1
1,2 ⇐⇒ al1,2) ∧ (cl+1

2,1 ⇐⇒ al2,1) ∧ (cl+1
2,2 ⇐⇒ al2,2)

Ti := (al+1
1,1 ⇐⇒ al1,1) ∧ (al+1

1,2 ⇐⇒ al1,2) ∧ (al+1
2,1 ⇐⇒ al2,1) ∧ (al+1

2,2 ⇐⇒ al2,2) ∧
(bl+1

2 ⇐⇒ bl2) ∧ (bl+1
1 ⇐⇒ bl1) ∧ (cl+1

f ⇐⇒ clf ) ∧
(cl+1

1,1 ⇐⇒ cl1,1) ∧ (cl+1
1,2 ⇐⇒ cl1,2) ∧ (cl+1

2,1 ⇐⇒ cl2,1) ∧ (cl+1
2,2 ⇐⇒ cl2,2)

Tr0 := ¬bl2 ∧ ¬bl1 ∧
(al+1

1,1 ⇐⇒ al1,1 ∨ al1,2) ∧ ¬al+1
1,2 ∧ (al+1

2,1 ⇐⇒ al2,1 ∨ al2,2) ∧ ¬al+1
2,2 ∧

¬bl+1
2 ∧ ¬bl+1

1 ∧ cl+1
f ∧ ¬cl+1

1,1 ∧ ¬cl+1
1,2 ∧ ¬cl+1

2,1 ∧ ¬cl+1
2,2

Tr := (bl2 ⇐⇒ false) ∧ (bl1 ⇐⇒ true) ∧
¬al+1

1,1 ∧ (al+1
1,2 ⇐⇒ (al1,1 ∧ cl1,1) ∨ (al2,1 ∧ cl1,1) ∨ (al2,1 ∧ cl1,2)) ∧

¬al+1
2,1 ∧ (al+1

2,2 ⇐⇒ (al1,1 ∧ cl2,1) ∨ (al2,1 ∧ cl2,1) ∨ (al2,1 ∧ cl2,2)) ∧
[{(cl1,1 ⇐⇒ a0

1,1) ∧ (cl1,2 ⇐⇒ a0
1,2) ∧ (cl2,1 ⇐⇒ a0

2,1) ∧ (cl2,2 ⇐⇒ a0
2,2) ∧

(bl+1
2 ⇐⇒ b0

2) ∧ (bl+1
1 ⇐⇒ b0

1) ∧ (cl+1
f ⇐⇒ c0

f ) ∧
(cl+1

1,1 ⇐⇒ c0
1,1) ∧ (cl+1

1,2 ⇐⇒ c0
1,2) ∧ (cl+1

2,1 ⇐⇒ c0
2,1)∧ (cl+1

2,2 ⇐⇒ c0
2,2)} ∨

. . . (until l’ = l) ]
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where the [ ] bracket in Tr is the disjunction l′ part in the Tr defined above. Actually, it

must repeat the formula in {} l + 1 times from 0 to l.

Recall the vectors a0, b0, c0 from Example 10, when compute for a1, b1, c1:

– If Tc is chosen, then vectors a1, b1 and c1 will become (true, false, false, true),

(false, true) and (false, true, false, false, false) respectively that represent

P-automaton transition δ1 = {(1, 1), (2, 2)} 17→ {(0, 0)}.

– If Ti is chosen, then vectors a1, b1 and c1 will become (true, false, false, false),

(false, false) and (true, false, false, false, false) respectively that represent

P-automaton transition δ1 = {(0, 0)} ⊥7→ fA.

– If Tr0 is chosen, then vectors a1, b1 and c1 will become the same as internal case.

– Tr cannot be chosen because b0
2 and b0

1 are false. If Tr is chosen, the formula will

become unsatisfiable immediately.

5.1.4 Encoding of non-universality checking

In this subsection, we define a propositional formula that is satisfiable if δk from a run

δ0
w
⇀* δk is rejecting. That means the formula is satisfiable if Md is not universal.

[rej(Md)]k :=
n∧
i=1

∧
j∈F

¬aki,j

Because set of final states of Md is F ′ = {S ∈ Q′ | Π2(S) ∩ F 6= ∅}. Intuitively, state q

of Md is not a final state if every second component of pair in q is not in F regardless of

the first component. Extend to P-automaton transition δ, δ = p
a
⇀ p′ is rejecting if every

second component of pair in p is not in F regardless of the first component. Thus, to

check whether δk is rejecting, we need to check that every variable aki,j is false, for j ∈ F
regardless of i.

Finally, we sum all formulae above:

[notUniversal(Md)]k := [P(Md)]k ∧ [rej(Md)]k

This formula [notUniversal(Md)]k is used to check non-universality of VPAs. It is satis-

fiable if the given VPA is not universal. In particular, there exists w ∈ Σk that a run of

δ on w, δ0
w
⇀* δk, ends up with a rejecting P-automaton transition.

Note that because we start a bound from k = 0, if at some k, [notUniversal(Md)]k is

satisfiable, that means there exists a counter-example of input length |w| = k and of

course that counter-example is the shortest.
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Example 12. Recall the same example again, from figure 5.1, formula [rej(Md)]k :=

¬ak1,1 ∧ ¬ak1,2 ∧ ¬ak2,1 ∧ ¬ak2,2. This means the only state that is not a final state of Md is

q = ∅ (ai,j are all false).

For this VPA, the shortest counter-example is ‘1212’. The formula [notUniversal(Md)]k

is satisfiable if k = 4 with choice of transition Tc, Tr, Tc, Tr, respectively. Vectors a4, b4 and

c4 become (false, false, false, false), (false, false), (true, false, false, false, false) re-

spectively. This means δ4 = ∅ ⊥7→ fA which is a rejecting P-automaton transition.

5.2 Antichain for non-universality checking

In this section, we will explain theoritical backgrounds why we can apply antichain to

the transition formula T when checking for non-universality, and this results in replacing

some ⇐⇒ in T with =⇒ .

First, we define an ordering over P-automaton transition.

Definition 14 (Partial ordering over P-automaton transition of Md). Let δ1 = p1
a7→ p′1

and δ2 = p2
a7→ p′2 be transitions of P-automaton of determinized VPA Md, we say δ1 ≤ δ2

if p1 ≤ p2 and p′1 ≤ p′2 wrt ordering over states of Md from definition 6 (Section 3.2.2).

Note that if p′1 = p′2 = fA, we also say p′1 ≤ p′2.

From definition 14, we start with establishing theoritical background.

Lemma 10. Let δ1 = p1
a7→ p′1, δ′1 = p′1

a′7→ p′′1, δ2 = p2
a7→ p′2, and δ′2 = p′2

a′7→ p′′2

be transitions of P-automaton of Md. Let δ1
a′′
⇀ δ′′1 and δ2

a′′
⇀ δ′′2 be transitions of P-

automaton transtion follow definition 9 (Section 4.4). If δ1 ≤ δ2 and δ′1 ≤ δ′2, then

δ′′1 ≤ δ′′2 .

Proof. We have four cases.

– [c] transition: by definition, we have p1 = S1, p2 = S2, δ
′′
1 = IdR′1

a′′7→ S1 and δ′′2 =

IdR′2
a′′7→ S2 that S1 ≤ S2. From lemma 2 (Section 3.2.2), we have IdR′1 ≤ IdR′2 .

Thus, δ′′1 ≤ δ′′2 .

– [i] transition: by definition, we have p1 = S1, p2 = S2, δ
′′
1 = S ′1

a7→ p′1 and δ′′2 = S ′2
a7→

p′2 that S1 ≤ S2 and p′1 ≤ p′2. From lemma 3 (Section 3.2.2), we have S ′1 ≤ S ′2.

Thus, δ′′1 ≤ δ′′2 .

– [r0] transition: by definition, we have p1 = S1, p2 = S2, δ
′′
1 = S ′1

⊥7→ fA and δ′′2 =

S ′2
⊥7→ fA that S1 ≤ S2. From lemma 4 (Section 3.2.2), we have S ′1 ≤ S ′2. Thus,

δ′′1 ≤ δ′′2 .
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– [r] transition: by definition, we have p1 = S1, p
′
1 = S ′′1 , p2 = S2, p

′
2 = S ′′2 δ

′′
1 = S ′1

x′7→
p′′1 and δ′′2 = S ′2

x′7→ p′′2 that S1 ≤ S2, S ′′1 ≤ S ′′2 and p′′1 ≤ p′′2. From lemma 5 (Section

3.2.2), we have S ′1 ≤ S ′2. Thus, δ′′1 ≤ δ′′2 .

Now, we extend lemma to a run of δ.

Lemma 11. Let δ0 = q0
⊥7→ fA be an unique initial P-automaton transition. and let

δ0
w
⇀* δk be a run of δ on w. Suppose δ0

w
⇀* δ′k be a run of δ on w that δi ≤ δ′i for

every 1 ≤ i ≤ k. For any word w′ ∈ Σ∗, if a run of δ on ww′ are δ0
w
⇀* δk

w′
⇀* δm and

δ0
w
⇀* δ′k

w′
⇀* δ′m, then δi ≤ δ′i for every 1 ≤ i ≤ m.

Proof. We prove this lemma by induction on length |w′|. For |w′| = 1, the lemma holds

immediately from lemma 10. For induction case, assume the lemma holds for w, we can

prove for wa by using induction hypothesis and lemma 10 wrt type of a.

Lemma 12. Let δ1 and δ2 are P-automaton transition that δ1 ≤ δ2. If δ2 is rejecting,

then δ1 is also rejecting.

Proof. Let δ1 = p1
a7→ p′1 and δ2 = p2

a7→ p′2. Recall that δ2 is rejecting if Π2(p2) ∩ F = ∅.
Note that p1 ≤ p2, so Π2(p1) ∩ F = ∅.

From lemma 11 and lemma 12, we apply antichain to encoding of transitions of P-

automaton transition, i.e., apply to propositional formula T . We change the logical

operator ⇐⇒ (equivalence) in fc, fi, fr0 and fr to be just ⇐= (implication).
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Tc :=
∨
a∈Σc

[
n∧
i=1

n∧
j=1

fc(i, j) ∧ (bl+1 ⇐⇒ be(a))] ∧ (cl+1 ⇐⇒ (false) + al)

fc(i, j) :=


al+1
i,j ⇐=

∨
j′

n∨
i′=1

ali′,j′ if i = j and ∃j′ ∈ Q : j′
a/+γ−−−→ i ∈ ∆c

¬al+1
i,j otherwise

Ti :=
∨
a∈Σi

[
n∧
i=1

n∧
j=1

fi(i, j)] ∧ (bl+1 ⇐⇒ bl) ∧ (cl+1 ⇐⇒ cl)

fi(i, j) :=


al+1
i,j ⇐=

∨
j′
ali,j′ if ∃j′ ∈ Q : j′

a−→ j ∈ ∆i

¬al+1
i,j otherwise

Tr0 := (¬bl) ∧
∨
a∈Σr

[
n∧
i=1

n∧
j=1

fr0(i, j)] ∧ (¬bl+1) ∧ (cl+1 ⇐⇒ (true, false, . . . , false))

fr0(i, j) :=


al+1
i,j ⇐=

∨
j′
ali,j′ if ∃j′ ∈ Q : j′

a/⊥−−→ j ∈ ∆r

¬al+1
i,j otherwise

Tr :=
∨
a∈Σr

∨
a′∈Σc

[(bl ⇐⇒ be(a′)) ∧
n∧
i=1

n∧
j=1

fr(i, j)]∧

l∨
l′=0

[(c′l ⇐⇒ al
′
) ∧ (bl+1 ⇐⇒ bl

′
) ∧ (cl+1 ⇐⇒ cl

′
)]

fr(i, j) :=


al+1
i,j ⇐=

∨
i′

∨
j′′

∨
j′

[cli,j′′ ∧ ali′,j′ ] if ∃i′, j′, j′′ ∈ Q, ∃γ ∈ Γ\ ⊥:

j′′
a′/+γ−−−→ i′ ∈ ∆c and j′

a/−γ−−−→ j ∈ ∆r

¬al+1
i,j otherwise

Remark. This change from ⇐⇒ to =⇒ of a bit representation of set means that

when checking the satisfiability, for each δ p
a7→ p′′, SAT-solver can construct p′

a7→ p′′ that

p ≤ p′ instead. It is crucial to note that this is safe because if the formula is satisfiable

that means p′
a7→ p′′ can lead to the counter-example, from lemma 11 and 12 so does

p
a7→ p′′. Furthermore, if p′

a7→ p′′ is ‘too large’ to lead to the counter-example, SAT-solver

can construct it smaller and the smallest p′ that SAT-solver can construct is actually

p′ = p.

Although this change seems very little, it results in a big decrease of number of variables

and clauses when converse all formulae to CNF to be an input to SAT-solver (See Figure

6.1 and 6.2 in Chapter 6 for experimental results).
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5.3 BMCi and BMCp for non-universality checking

Recall that BMCi unrolls Md based on bounded transitions of P-automaton transi-

tion (⇀) but BMCp unrolled Md based on bounded P-automaton saturation process

(⇒).

BMCi

Since BMCi uses ⇀ to unroll Md, we can use the formula [P(Md)]k to encode tran-

sitions. Furthermore, checking non-universality process of BMCi can use the formula

[notUniversal(Md)]k directly.

We define an algorithm BMCi based on encoding above.

Algorithm 5: BMCi

Data: A non-deterministic VPA M = (Q,Q0,Γ, F,∆)

Result: Universality of M

begin

k ← 0

Construct [notUniversal(Md)]0 := init(a0, b0, c0) ∧ [rej(Md)]0

Check for satisfiability of [notUniversal(Md)]0

while [notUniversal(Md)]k is unsatisfiable do

k ← k + 1

Construct [notUniversal(Md)]k :=

init(a0, b0, c0) ∧
k−1∧
i=0

T ((ai, bi, ci), (ai+1, bi+1, ci+1)) ∧ [rej(Md)]k

Check for satisfiability of [notUniversal(Md)]k

end

return False
end

BMCp

BMCp transitions are based on P-automaton saturation process A0 ⇒ . . .⇒ Ak (denoted

by A0 ⇒∗k Ak), where A0 is an unique initial P-automaton of Md accepting the initial

configuration (IdQ0 ,⊥), A0 = ({IdQ0},Σc, {IdQ0}, {fA}, {(IdQ0 ,⊥, fA)}).
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Theorem 7. Md is not universal iff there exists k ∈ N that A0 ⇒∗k Ak and Ak contains

a rejecting state q 6∈ F ′

we define a new propositional formula:

[P ′(Md)]k := init(a0, b0, c0) ∧
k−1∧
l=0

T ′((Al,Bl,Cl), (al+1, bl+1, cl+1))

to represent A0 ⇒∗k Ak, and a formula for non-universality checking for BMCp is:

[notUniversal′(Md)]k := [P ′(Md)]k ∧ [rej(Md)]k

The formula init is the same as that in BMCi, since the initial P-automaton A0 contains

an initial P-automaton transition only.

The formula T ′ that represents a transition Al ⇒ Al+1, is defined as:

T ′((Al,Bl,Cl), (al+1, bl+1, cl+1)) := unionl(Al,Bl,Cl) ∧ T ((Al,Bl,Cl), (al+1, bl+1, cl+1))

Intuitively, we can look at the transition δ ⇀ δ′ as δ′ is an immediate successor of

δ, i.e., if δ ⇀ δ′ and δ is in Ai, then δ′ can be in Ai+1 (up to choice of saturation

rules [c], [i], [r0] or [r]). Therefore, we can extend the formula T to saturation pro-

cess ⇒ of P-automaton, with one condition that al+1, bl+1, cl+1 must be computed from

(a0, b0, c0), (a1, b1, c1), . . . , (al, bl, cl) (not only from al, bl, cl as in [P(Md)]k).

We define the formula unionl as:

unionl(Al,Bl,Cl) :=
l∨

i=0

[(Al ⇐⇒ ai) ∧ (Bl ⇐⇒ bi) ∧ (Cl ⇐⇒ ci)]

The new vectors Al,Bl,Cl and formula unionl are used to combine (a0, b0, c0) to (al, bl, cl)

in order to compute al+1, bl+1, cl+1. Intuitively, Al,Bl,Cl can choose to be ai, bi, ci for

0 ≤ i ≤ l in order to compute al+1, bl+1, cl+1.

Example 13. Recall VPA from figure 5.1, suppose k = 2 the formula [P ′(Md)]k is:

[P ′(Md)]2 := init0(a0, b0, c0) ∧ union(A0,B0,C0) ∧ T ((A0,B0,C0), (a1, b1, c1))∧

union1(A1,B1,C1) ∧ T ((A1,B1,C1), (a2, b2, c2))

where init0 and init1 are:

union0(A0,B0,C0) :=(A0 ⇐⇒ a0) ∧ (B0 ⇐⇒ b0) ∧ (C0 ⇐⇒ c0)

union1(A1,B1,C1) :=(A1 ⇐⇒ a0) ∧ (B1 ⇐⇒ b0) ∧ (C1 ⇐⇒ c0)

(A1 ⇐⇒ a1) ∧ (B1 ⇐⇒ b1) ∧ (C1 ⇐⇒ c1)

Note that union0 is not neccessary, because A0 has only one transition a0, b0, c0.
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Example 14. We show an example that [P(Md)] and [P ′(Md)]k are different. For a

VPA M in a Figure 5.2, the initial P-automaton transition δ0(= A0) is {(1, 1)} ⊥7→ fA. A

P-automaton transition {(1, 3)} 17→ {(1, 3)} is in [P(Md)]5 but [P ′(Md)]4. This is because

δ0
12112
⇀ * ({(1, 3)} 17→ {(1, 3)}) but {(1, 3)} 17→ {(1, 3)} appears since A4. {(1, 5)} ⊥7→ fA is in

[P(Md)]10 (input is ‘1211211222’) but [P ′(Md)]6, and {(1, 5)} 17→ {(1, 3)} is in [P(Md)]13

(input is ‘1211211211222’) but also [P ′(Md)]6,

Figure 5.2: An example of VPA that shows differences of [P(Md)]k and [P ′(Md)]k

5.4 BMCp for universality checking

Remark. It is crucial to note that if there exists a counter-example, BMCi method will

eventually find it. The formula [notUniversal(Md)]k will be satisfiable at some bound k.

But if the given VPA is universal, we need to enlarge bound k until we can confirm that

all reachable states of VPA are considered. The smallest k that has this property is called

reachability diameter [9, 29]. However, for a VPA with an infinite state space (infinite

configuration), there is no such finite reachability diameter [8]. Therefore, BMCi is not

complete. It will not terminate for universal cases. Therefore, for universality checking

only BMCp will be considered.

For a bound k, let a P-automaton saturation process proceeds A0 ⇒∗ Ak. We can

conclude that Md is universal if no counter-examples are found in Ak and Ak is saturated

(i.e., Ak = Ak−1).
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We define a propositional formula:

[notConverged(Md)]k :=
k∧
i=1

i−1∧
j=0

¬[(ai ⇐⇒ aj) ∧ (bi ⇐⇒ bj) ∧ (ci ⇐⇒ cj)]

This formula is satisfiable if Ak is not converged, that is Ai 6= Aj for every i ≤ k and

j ≤ i.

Finally, the formula for universality checking is:

[notSaturated(Md)]k := [P ′(Md)]k ∧ [notConverged(Md)]k

This formula is satisfiable if Ak is still not saturated, and unsatisfiable if Ak is saturated

and universal. Note that if [notSaturated(Md)]k is unsatisfiable we can conclude that

Md is universal immediately without checking [notUniversal′(Md)]k, since Ak = Ak−1

and Ak−1 does not have any rejecting P-automaton transition (if Ak−1 has rejecting P-

automaton transitions, we could already conclude that Md is not universal).

Example 15. We show an example for saturation (without considering universality). The

Md in Figure 5.2 is saturated in 7 steps with process:

∇0 = {((1, 1),⊥, fA)}

∇1 = ∇0 ∪ {({(2, 2)}, ((1, 1), 1), {(1, 1)})}

∇2 = ∇1 ∪ {({(1, 3)},⊥, fA)}

∇3 = ∇2 ∪ {({(1, 1)}, ((1, 3), 1), {(1, 3)})}

∇4 = ∇3 ∪ {({(1, 3)}, ((1, 3), 1), {(1, 3)})}

∇5 = ∇4 ∪ {({(1, 4)},⊥, fA), ({(1, 4)}, ((1, 3), 1), {(1, 3)})}

∇6 = ∇5 ∪ {({(1, 5)},⊥, fA), ({(1, 5)}, ((1, 3), 1), {(1, 3)})}

∇7 = ∇6

Thus, when i = 7, whatever a7, b7, c7 be, it will be equal to one of (a0, b0, c0) . . . (a6, b6, c6)

and [notConverged(Md)]7 and [notSaturated(Md)]7 are unsatisfiable.

5.5 Antichain for universality checking

From lemma 6 and 7 (Section 3.2.2), we conclude that it is sufficient to keep only minimal

configurations in order to check universality of VPA. In antichain algorithm, we also

keep only minimal configurations and remove the larger configurations from P-automaton

(algorithm 3 Section 3.2.2). We apply this to BMCp by changing (ai ⇐⇒ aj) in

[notConverged(Md)]k to (ai =⇒ aj).
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[notConverged(Md)]k :=
k∧
i=1

i−1∧
j=0

¬[(ai =⇒ aj) ∧ (bi ⇐⇒ bj) ∧ (ci ⇐⇒ cj)]

where =⇒ of two vectors with the same length denotes conjunction of =⇒ of all indices

(i.e., (ai1,1 =⇒ aj1,1) . . . (ain,n =⇒ ajn,n)).

Since we use a bit representation to represent sets, a logical operation =⇒ over two

vectors denotes a subset relation of two sets. In particular, ai =⇒ aj denotes qi ⊆
qj.

Now, the formula [notConverged(Md)]k is unsatisfiable if all P-automaton transitions in

Ak are not minimal. This is similar to an Algorithm 3 (Section 3.2.2). If all configura-

tions that we have to check are not minimal, we can discard them and P-automaton is

converged.

Although this change seems very little, it results in a decrease of number of bounds until

convergence when checking universal VPAs. (See Figure 6.3 in Chapter 6 for experimental

results).

Finally, we define an algorithm BMCp as below:

In conclusion, Differences of BMCi and BMCp are:

– how to bound Md, BMCi bounds Md based on transitions of P-automaton transition

but BMCp bounds Md based on P-automaton saturation process.

– encoding of transitions, BMCi uses the formula [P(Md)]k but BMCp uses [P ′(Md)]k

which has additional vectors and clauses.

– BMCp has to check for satisfiability of formulae two times for each bound k, that are

check for universality and for non-universality, but BMCi checks for non-universality

only.

– BMCi is not a complete method but BMCp is. BMCi can check for non-universality,

but cannot check for universality of VPAs.
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Algorithm 6: BMCp

Data: A non-deterministic VPA M = (Q,Q0,Γ, F,∆)

Result: Universality of M

begin

k ← 0

Construct [notUniversal′(Md)]0 := init(a0, b0, c0) ∧ [rej(Md)]0

Check for satisfiability of [notUniversal′(Md)]0

while [notUniversal′(Md)]k is unsatisfiable do

k ← k + 1

Construct [notSaturated(Md)]k := [P ′(Md)]k ∧ [notConverged(Md)]k

Check for satisfiability of [notSaturated(Md)]k

if [notSaturated(Md)]k is unsatisfiable then
return True

end

Construct [notUniversal′(Md)]k := [P ′(Md)]k ∧ [rej(Md)]k

Check for satisfiability of [notUniversal′(Md)]k

end

return False
end
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Chapter 6

Experimental results

We have implemented the algorithms BMCi and BMCp. The packages are implemented

in Java 1.7.0 on Windows 7 and we use the latest version of MiniSat [25, 26] (i.e., minisat-

2.2.0) for checking satisfiability of the formula. The coperation between Java and MiniSat

is that the Java program provides a CNF propositional formula as a text file to be an

input for MiniSat according to Algorithm 5 (Section 5.3) and 6 (Section 5.5). Then the

Java program calls MiniSat to solve for the satisfiability. After getting the result, either

reports whether the given VPA is universal or not universal, or enlarge the bound.

To compare efficiency between BMCi and BMCp, we run our implementations on ran-

domly generated VPA. All tests are performed on a laptop PC, which is equipped with

Intel R©CoreTM i5-2430M 2.4 GHz and 4 GB of memory.

During the experiments, we fix the size of input alphabet to |Σc| = |Σi| = |Σr| = 2 and

the size of stack symbol to |Γ| = 3. The density of final states f = |F |
|Q| (resp. density of

initial states i = |Q0|
|Q| ) is the ratio of number of final states (resp. initial states) over the

number of states of VPA.

Experiment1: non-universal r-random VPAs

We first set the parameters of the tests as follows:

Definition 15 (r-random). An r-random VPA is a VPA that is generated by: first ran-

domly generated transitions labeled with a input symbol (and stack symbol if the input

symbol is in return alphabet), then for each transition randomly select two states to be

source and destination of the transition. The density of transitions r = |∆|
|Q| is average

number of transitions for each state.
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number of states

BMCi w/ antichain 5 10 15 20 25 30

number of success 50 50 49 44 39 33

number of timeout 0 0 1 6 11 17

total time(sec) 5 79 54 158 474 442

number of states

BMCi w/o antichain 5 10 15 20 25 30

number of success 50 49 49 41 23 17

number of timeout 0 1 1 9 27 33

total time(sec) 6 45 219 354 447 378

number of states

BMCp w/ antichain 5 10 15 20 25 30

number of success 50 49 49 43 33 30

number of timeout 0 1 1 7 17 20

total time(sec) 9 50 110 228 501 637

number of states

BMCp w/ antichain 5 10 15 20 25 30

number of success 50 48 48 40 21 16

number of timeout 0 2 2 10 29 34

total time(sec) 11 82 327 439 499 512

Table 6.1: Universality checking for not universal VPA generated by r-random (50 au-

tomata for each sample)

We ran our tests on r-random VPAs. We set the density of final states and initial state

f = i = 0.6, and the density of transitions r = 20. This makes the number of transitions

|∆| = 20 × |Q|. We have tried VPA sizes from 5 to 30. We generated 50 VPAs for

each sample point and the timeout is set to 60 seconds. The results are shown in table

6.1.

We found that all VPAs are not universal, since r-random VPAs are almost always not

universal from random graph theory. The experimental results show that BMCi with

antichain algorithm is the best among 4 algorithms. Note that this is not a fair com-

parison for BMCp, since BMCp has to check for universal before checking non-universal.

However, even if BMCp has to check for universal before checking non-universal, BMCp

with antichain algorithm is still better than BMCi without antichain algorithm.

Figure 6.1 shows benefits of antichain algorithm in reducing the number of variables and

clauses. This is from testing instances with size 5. The maximal benefit appears in testing
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instances with size 30, as shown in Figure 6.2. The results show that in maximal case

(6th round of size 30 instances) antichain algorithm can reduce number of variables to

only 1.5 percent (approx. 0.8 million variables removed), and number of clauses decreases

to 58 percent (approx. 1.8 million clauses removed). All of the removed variables and

clauses are from conversion-to-CNF procedure [35] (using Tseitin conversion [36]). Since

antichain change the transition formula from ⇐⇒ to =⇒ (Section 5.2), the number of

fresh variables and clauses introduced by the conversion procedure decreases a lot.

(a) number of variables (b) number of clauses

Figure 6.1: number of variables and clauses from test cases r-random of size 5

(a) number of variables (b) number of clauses

Figure 6.2: number of variables and clauses from test cases r-random of size 30
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Experiment2: universal r-regular random VPAs

We define an r-regular random VPAs in order to test the universal cases as below:

Definition 16 (r-regular random). An r-regular random VPA is generated by: first gen-

erate states, add transitions labeled with every input symbol (and stack symbol in case of

return alphabet) to every state, and randomly generate destination for each transition.

The density of transitions r depends on state and input symbol, r(q, a) is a number of

transitions from state q reading input symbol a for a ∈ Σc and a ∈ Σi, and r(q, a, γ) is a

number of transitions from state q reading input symbol a and top of stack is γ for a ∈ Σr.

Intuitively, for VPAs generated with r-regular random, every state must have r transitions

with every input symbol (and stack symbol in case of return alphabet).

During the experiments, we set the density of final states and initial states f = i = 1, and

r(q, a) = r(q, b, γ) = r(q, c) = 2 for each a ∈ Σc, b ∈ Σr, c ∈ Σi and γ ∈ Γ. This means

each state q has totally 20 transitions from it.

VPAs generated by r-regular random parameters is always universal, since every state is

a final state and has transitions for every input symbol and stack symbol.

Table 6.2 shows experimental results on 50 r-regular random VPAs with the timeout set

to 300 seconds. We tested only BMCp, because BMCi is not complete. Unfortunately, our

current BMCp implementations can solve instances of only 2 and 3 states. Nevertheless,

we can see a benefit of antichain algorithm clearly. BMCp with antichain algorithm

outperforms BMCp without antichain algorithm.

number of states

BMCp w/ antichain 2 3

number of success 46 14

number of timeout 4 36

total time(sec) 56 1062

number of states

BMCp w/o antichain 2 3

number of success 36 0

number of timeout 14 0

total time(sec) 257 -

Table 6.2: Universality checking for universal VPA generated by r-regular random (50

automata for each sample)

BMC with antichain algorithm is faster than BMC without antichain algorithm from the
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(a) number of variables (b) number of clauses

Figure 6.3: number of variables and clauses from test cases r-regular random of size 2

following two reasons:

– Antichain applied to transitions (Section 5.2) makes the number of variables and

clauses generated by CNF conversion fewer. This result enables BMC to search with

deeper bound. As shown in Figure 6.1 and 6.2, the number of the bound for BMC

with antichain until timeout is greater than that without antichian.

– Antichain applied to saturation checking (Section 5.5) makes P-automaton conver-

gence faster. As shown in Figure 6.3, the number of the bound for BMC with

antichain until convergence is less than that without antichain. Note that the num-

ber of variables and clauses are not much different, since the number of states and

transitions of VPAs are few.

Remark. Figure 6.4 refers to the most recent results of other tools (Fig. 2 of [14]). Despite

differences in test cases and machine, we have to admit that our current algorithms and

implementations are still behind.
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Figure 6.4: Results of other tools (Fig. 2 of [14])
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Chapter 7

Related work

The concept of antichains is firstly applied to the universality and inclusion checking of

finite automata and emptiness checking of alternating finite automata in [19]. However,

their tool called ALASKA [20] seems not being actively developed anymore. Later the

concept of antichains is extened to tree automata [13] and Büchi automata [21]. Recently,

antichain is also applied to equivalence checking of finite automata [11].

Visibly pushdown automata were firstly proposed by Alur and Madhusudan in [5] and

investigated in [4]. Before that it seems this type of automata was studied under the

name of input driven automata [39, 24] . The visibly pushdown class nicely extends

the closure property of finite automata. This is mainly because VPA can be performed

determinization.

The universality checking of VPA requires O(2n
2
) because of determinization procedure

[38]. The first known implementation VPAlib [32] only works with just few states. Cur-

rently, there are several tools solving this problem, e.g.,

– OpenNWA a nested-word automaton library that provides the standard boolean

operations [23],

– VPAchecker a package based on VPAlib, deciding universality and inclusion of

VPAs by using on-the-fly and antichain algorithm [37],

– FADecider a package for deciding universality and inclusion checking of VPAs by

using Ramsey-based methods [28],

– ATC4VPA a package for deciding universality and inclusion checking of VPAs by

encoding VPAs as an trees acceptors and using antichain algorithm [14].

From above tools, only VPAchecker and ATC4VPA are only tools that using antichain.
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However, VPAchecker seems to have some bugs reported in [14].

BMC was introduced by Biere [9] as a SAT-based efficient technique for finding bugs. It

became a well-known model checking method shortly after its introduction. The BMC

technique that is most related to our work, is BMC for checking reachability of pushdown

system [8] using summarization [34, 7].
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Chapter 8

Conclusion and future works

In our article, we proposed two algorithms to tackle the universality checking of VPAs.

These algorithms combine antichain and BMC technique in order to overcome state space

explosion and optimize size of search space. We unrolled determinization procedure by

transitions of P-automaton transition based on input word length and P-automaton sat-

uration process. We implemented our algorithms and evaluated with existing antichain

algorithm. Although experiments show that our current algorithm implementations are

slower. They show that an antichain algorithm boosts BMC than a standard BMC with-

out antichain algorithm. This is the first attempt of BMC technique for the universality

checking of VPAs, and we expect future improvements of CNF encoding.

This work suggests several future works. We first plan to continue working on BMC

approach. We should emphasize that we need to improve our algorithms as well as im-

plementations to be able to check larger examples. At this moment, the encoding of

determinized VPA and P-automaton are rather naive (e.g., encoding set by bit repre-

sentation). That would be a reason why our implementations are not fast. It would

be interesting to explore a more compact encoding or a more effective method to un-

roll VPA. We also would like to extend our algorithms to inclusion checking of VPAs.

Another challenge would be to consider combination of antichain and simulation, since

this combination is successful for finite automata and tree automata [1]. Simulation can

help antichain to reduce a large portion of unneccessary search space. The last would be

applications to practical case studies (rather than randomly generated). XML processing

and/or program verification will be such examples.
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