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1 Introduction

This is the contribution to the study of automata-theoretic thorem proving. Automata-theoretic
theorem proving checks the satisfiability / validity of a first-order formula under a fixed inter-
pretation. The elements in the universe are encoded into words and every predicate has a corre-
sponding automaton which accepts the support of the formula. A famous result is the Büchi’s
theorem for WS1S and S1S [18]. WS1S(resp. S1S) has the set of predicates {⊆, Sing,= {0}} and
the set of function symbols {Succ, 0}. Set variables in a WS1S formula are only instantiated to
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a finite set, while S1S allows an infinite set. First-order terms are interpreted on N as a standard
manner. Here Sing(X) means X is a singleton set and X = {0} means X is the constant {0}.
Satisfiability / validity are decidable for WS1S formula φ, i.e., subset of ({0, 1}n)∗ is recognizable
iff it is definable in WS1S. Left to right direction of the statement is proved by constructing the
automaton for each atomic predicate of φ and for each logical connectives, we conduct language
operations. From closure properties of these operations, the resulting automaton recognizes the
support of the formula φ.

There are several existing tools for automata-theoretic theorem proving. MONA [6] trans-
lates formulas in weak monadic second-order logic(WSkS) to finite tree automata. Recently
FORT [15] is implemented for First Order Theory of term rewriting. It is based on tree au-
tomata and GTT for left-liner right-ground term rewriting systems. They determine not only
whether a formula is valid, but also generate counter-examples from the automata if the formula
is not valid.

Difficulty of the automata construction comes from the state explosion problem. WS1S
requires tower of computation task corresponding to the depth of quantifiers in the input formula.
The determinization of automata causes state explosion, which is necessary to translate the
complementation.

Antichain Algorithms The commonly used optimization to tackle the state explosion is
the on-the-fly state space generation [10]. Antichain algorithm, another technique originally
developed in the model checking, combines the on-the-fly determinization and minimization
[19]. Abdulla, et al. [1] combined antichains and a simulation technique and further reduced
the state space of the universality/inclusion checking. These techniques are expanded to

1. tree automata [3],

2. Büchi automata on ω language (implemented as ALASKA [20]) and

3. visibly pushdown automata [14, 16, 17, 12].

A number of mitigation techniques have been devised; MONA adopts BDD and path com-
pression. MONA has been improved by antichain algorithm [8]. The work extends the antichain
algorithm to handle the nested structure of the prenex normal form. Recently, FORT started to
introduce antichain algrorithms. However, antichain algorithms are mostly adopted on a prernex
normal forms An interesting empirical observation of FORT is that the flattening of a formula
into a prenex normal form triggers further state explosion, which motivated our work. This
paper investigates a generalized antichain algorithms without flattening. We focus on monadic
first-order logic which has neither set variables (as MONA) nor transitive closure (as FORT),
as the most simple case study.

As an optimization, we further introduce

• conversion rules of composition terms which preserve the accepted language and

• distributive laws of emptiness checking into a composition terms.

Our major targets in experiments are Presburger formulas We perform experiments on ran-
domly generated 3000 Presburger formulas. Generalized antichain algorithm improves the per-
formance for sufficiently large and complex problems. Due to the overhead of calculating or-
derings, it does not work for small problems. In the most cases, conversion of the composition
term leads to performance improvement. It also implies that normalization not dedicated to the
regular language operations, namely prenex normal form, could affect the performance in the
automata construction step.
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2 Preliminaries

2.1 Finite Automata and closure property

Definition 2.1. Let Σ be a finite alphabet. A finite automaton (FA)M on finte words over Σ
is a tuple 〈Q,Σ, δ, I, F 〉, where Q is a finite set of states, δ ⊆ Q × Σ × Q a transition relation,
and I, F ⊆ Q is initial states and final states respectively.

We use subscript to refer each component of the automaton A, e.g., the set of states of A is
referred as QA.

We impose several assumptions on finite automata.

• A standard ε-elimination procedure ensures that δM has no ε− transition.

• All states have an incoming transition edge, and thus reachable from the initial states. In
case there exist such unreachable states, we can delete them without changing its language
so that this assumption holds.

∀ q′ ∈ QM. ∃ c ∈ Σ. ∃ q ∈ QM. (q, c, q′) ∈ δ

• By adding the garbage state, all states have outgoing transition edges.

∀ q ∈ QM. ∀ c ∈ Σ. ∃ q′ ∈ QM. (q, c, q′) ∈ δ

• Among automata A, B, C, .., they share the same alphabet Σ.

• For any 2 automata A and B, the state sets are mutually disjoint, i.e., QA ∩QB = ∅.

Definition 2.2. δMis deterministic if

∀ q ∈ QM. ∀ c ∈ Σ. |{q′ ∈ QM | (q, c, q′) ∈ δM}| = 1

For a non-deterministic automaton M, when reading one alphabet on a state there are
multiple states in the transition relation δM. A transition function takes an alphabet and a
state and maps to set of states in the transition relation. We denote the transition function ∆M
as follows;

∆M : QM × Σ→ 2QM

∆M(q, c) := {q′ | (q, c, q′) ∈ δM}

∆M is extended to read a word on a set of states, inductively defined on a word length as
follows;

∆̂M : 2QM × Σ∗ → 2QM

∆̂M(s, ε) := s

∆̂M(s, cx) := ∆̂M(
⋃
q∈s

∆M(q, c), x)

Note that set operator
⋃
i
commutes;

⋃
i

∆̂(Ai, x) = ∆̂(
⋃
i
Ai, x). Especially

⋃
p∈s

∆̂({p}, x) =

∆̂(s, x) holds. For ∆̂ we prepare another inductive definition in terms of a word length.

Proposition 2.1. Let s ⊆ QA, x ∈ Σ∗, and c ∈ Σ. ∆̂A(s, xc) =
⋃

q∈∆̂A(s,x)

∆A(q, c)
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We say a string x is accepted by M if ∃q ∈ FM. q ∈ ∆̂M(IM, x). For c ∈ Σ, we denote

q
c
−→ p if p ∈ ∆A(q, c). For a word x ∈ Σ∗, we write q

x
−→ p if p ∈ ∆̂A({q}, x). By fixing the

word x, sometimes we regard q
x
−→ p as a binary relation on QA. We say the set of words A

accepts the language of A and denote it as L(A).

Definition 2.3.

postA(c, s) := {q′ ∈ QA | ∃ q ∈ s. (q, c, q′) ∈ δA}

PostA(s) :=
⋃
c∈Σ

⋃
q∈s

∆A(q, c)

Note that postA(c, s) =
⋃
q∈s ∆A(q, c) and that PostA(s) =

⋃
c∈Σ postA(c, s)

Definition 2.4. Let U be a set and a function f : 2U → 2U be a set operator on U . f is
monotone if s ⊆ t ⇒ f(s) ⊆ f(t) and f is finitary if f(A) consists of finite subsets of A, i.e.,
f(A) =

⋃
B⊆A

f(B) , where B is finite. Let X be a set variable. µX. f(X) is the least fixpoint of

f , the point where X = f(X) holds.

µX. f(X) does not necessarily exist for arbitrary f . Given that f is finitary, then µX. f(X)
exists and equals to ∅ ∪ f(∅) ∪ f2(∅) ∪ . . . ∪ fn(∅) for some n [9].

Lemma 2.1. Let A be an NFA. PostA is monotone.

Definition 2.5. Given a partial order X,v, antichain is a subset Y v X containing only
incomparable elements, i.e., ∀s, s′ ∈ Y. s 6v s′

Definition 2.6. s ∈ S is minimal.w.r.t v if ∀s′ ∈ S. s′ 6@ s. Let minv(S) := {s ∈ S |
s is minimal w.r.t v in S}

Theorem 2.2. The class of the regular language is closed under union, intersection and com-
plement operations.

2.2 Automata-theoretic theorem proving

Automata-theoretic theorem proving checks the satisfiability / validity of a formula under a
fixed interpretation. The elements in the universe are encoded into words and every predicate
has a corresponding automaton which accepts the support of the formula. A famous result is the
Büchi’s theorem for WS1S and S1S [18]. WS1S(resp. S1S) has the set of predicates {⊆, Sing,=
{0}} and the set of function symbols {Succ, 0}. Set variables in the WS1S formula are only
instantiated to a finite set, while S1S allows an infinite set. First-order terms are interpreted on
N in a standard manner. Here Sing(X) means X is a singleton set and X = {0} means X is the
constant {0}. Satisfiability / validity are decidable for WS1S formula φ, i.e., subset of ({0, 1}n)∗

is recognizable iff it is definable in WS1S. Left to right direction of the statement is proved
by constructing the automaton for each atomic predicate of φ and for each logical connectives,
we conduct language operations. From closure properties of these operations, the resulting
automaton recognizes the support of the formula φ. In this section we explain our research aim
and specify the target problem. Deciding Presburger arithmetic only requires regular language
operations on finite automata. For simplicity, we focus on Presburger arithmetic. Following the
notation in [8], we write x1 : a

x2 : b to denote the substitution for each variable x1, x2 There are
several existing tools for automata-theoretic theorem proving. MONA [6] translates formulas
in weak monadic second-order logic(WSkS) to finite tree automata. Recently FORT [15] is
implemented for First Order Theory of term rewriting. It is based on tree automata and GTT
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for left-liner right-ground term rewriting systems. They determine not only whether a formula
is valid, but also generate counter-examples from the automata if the formula is not valid.

Difficulty of the automata construction comes from the state explosion problem. WS1S re-
quires tower of computation task corresponding to the depth of quantifiers in the input formula.
In theory, its satisfiability / validity checking problem of is nonerementary [5]. The determiniza-
tion of automata causes state explosion, which is necessary to translate the complementation.
We augment the regular operation with projection, which corresponds to an existential quantifier

∃. Let Σ̄ denote Σ× . . .×Σ, n -tuple of Σ. While c ∈ Σ,
c1
.
.
cn

is the element of Σ̄ and we denote

it as c̄. πi(ā, c) substitutes the i-th element of ā to c. We denote πi(ā, c) :=

.

.
ai−1
c

ai+1
.
.

.

Let A be a FA with the alphabet Σ̄. Let δ′A be
⋃

(q,τ,q′)∈δA
⋃
c∈Σ{(q, πi(τ, c), q′)}. Projection

is an automata operation which replaces δA with δ′A. Even though δA is deterministic, δ′A often
becomes non-deterministic.

Antichain Algorithms The commonly used optimization to tackle the state explosion is
the on-the-fly state space generation [10]. Antichain algorithm, another technique originally
developed in the model checking, combines the on-the-fly determinization and minimization [19].
[11] Abdulla, et al. [1] combined antichains and a simulation technique and further reduced the
state space of the universality/inclusion checking. These techniques are expanded to

1. tree automata [3],

2. automata on ω language (implemented as ALASKA [20]) and

3. visibly pushdown automata [14, 16, 17, 12].

A number of mitigation techniques have been devised; MONA adopts BDD and path com-
pression. MONA has been improved by antichain algorithm [8]. The work extends the antichain
algorithm to handle the nested structure of the prenex normal form. Recently, FORT started to
introduce antichain algorithms. However antichain algorithms are mostly adopted on a prernex
normal forms. An interesting empirical observation of FORT is that the flattening of a formula
into a prenex normal form triggers further state explosion This observation motivated us to
directly handle the formulas of the nested structure without flattening. We focus on monadic
first-order logic which has neither set variables (as MONA) nor transitive closure (as FORT),
as the most simple case study. Instead, we aim to directly handle a nested formula with an
antichain algorithm (i.e., without flattening).

Our major example in the experiments are taken from Presburger arithmetic. Presburger
arithmetic is a First-Order theory, whose structure consists of constant symbols {0, 1}, a function
symbol {+}, a predicate symbol{=} and the interpretation is fixed on the domain of N in a
usual addition and equality of numbers. For each atomic formula in Presburger arithmetic, we
construct an automaton as described in [4]. For instance, an equation φ : x0 + 2x1 − 3x2 = 2 is
recognized by the automaton R (Fig 1), where the set of positive solutions of φ are represented
in words over Σ̄.
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Figure 1: The automaton R which recognizes the solutions of x0 + 2x1 − 3x2 = 2

3 Conventional Antichain Algorithm

In this section, we recall and reformulate the antichain algorithm [13]. We introduce deduction
rules of the emptiness checking for later generalization of antichain algorithms.

3.1 Emptiness Checking

Definition 3.1. Emptiness Checking is the problem that given an input automaton A, answer
whether its language is empty, i.e., L(A) = ∅.

The result of Emptiness Checking is denoted as {Empty, NonEmpty} as boolean values
{true, false} respectively. We denote the function succA : 2QA → 2QA for succA(s) :=
IA ∪ PostA(s).

On-the-fly algorithm of Emptiness Checking computes µX. (succA(X)) by Kleene ascending
chain. If µX. (succA(X)) ∩ FA = ∅ then return Empty else NonEmpty. Since succA is finitary,
the least fixpoint µX. (succA(X)) exists.

Lemma 3.1. Let x ∈ Σ∗ and n be the length of x. For all s ∈ 2QA , ∆̂A(s, x) ⊆ PostnA(s).

Proof. By induction of the length n.

Base case.

x = ε, ∆̂A(s, ε) = s ⊆ Post0A(s) = s

Inductive step.

6



x = x′c, let k+1 be the length of x′c. We have the I.H. ∆̂A(s, x′) ⊆ PostkA(s). By definition,
∆̂A(s, x′c) =

⋃
q∈∆̂A(s,x′)

∆A(q, c). On the other hand,

Postk+1
A (s) = PostA(PostkA(s)) =

⋃
c∈Σ

⋃
q∈PostkA(s)

∆A(q, c)

Postk+1
A (s) ⊇

⋃
q∈PostkA(s)

∆A(q, c)

By I.H. we have,
⋃

q∈∆̂A(s,x′)

∆A(q, c) ⊆
⋃

q∈PostkA(s)

∆A(q, c). Therefore we have ∆̂A(s, x′c) ⊆

Postk+1
A (s).

Lemma 3.2. µX. (succA(X)) ∩ FA = ∅⇔ L(A) = ∅

Proof. By contradiction. We suppose µX. (succA(X)) ∩ FA = ∅ and assume L(A) 6= ∅. Then
we have x ∈ L(A), i.e., we have an accepting state q such that q ∈ ∆̂A(IA, x)∩FA. On the other
hand, from Lemma 3.1, we have ∆̂A(IA, x) ⊆ (PostA)n(IA), where n is the length of x. Since
(PostA)n(IA) ⊆ µX. (succA(X)), we have q ∈ µX. (succA(X)). This is a contradiction.

3.2 Forward Antichain algorithms for universality/ inclusion

Given an input NFA A, the universality problem is to decide whether L(A) = Σ∗. Typically,
we first determinize A and then alternate final states to obtain the complement automaton. If
the resulting automaton A′ is empty, then the original is universal. An antichain algorithm
performs on-the-fly determinization. Note that a subset of QA becomes the new state. The
antichain algorithm exploits an ordering over such state sets. Subsets of QA are ordered with
set inclusion. The idea of the antichain algorithm is to minimize the search space by removing
the redundant branches which are bigger w.r.t. ‘⊆’, and by focusing only on the antichain. [13]
Universality Checking computes µX. (min⊆({IA} ∪

⋃
s∈X

⋃
c∈Σ

{postA(c, s)})). If the least fixpoint

contains s such that s ∩ FA = ∅ then L(A) is not universal.
Given an input NFA A and B, the inclusion problem is to decide whether L(A) ⊆ L(B). By

closure property of regular languages, typically the problem is reduced to check L(A)∩ ¯L(B) = ∅.
In addition to take complement of the automaton, we also conduct product construction. This
time a tuple of a state in QA and a subset of QB becomes the new state. The following
ordering over tuples are used to minimize the search space; =⊆ := {((q, s), (p, t)) | q = p ∧
s ⊆ t}. Antichain algorithm for inclusion checking computes µX. (min=⊆(

⋃
q∈IA
{(q, IB)} ∪⋃

(q,s)∈X

⋃
c∈Σ

⋃
p∈∆A(q,c)

{(p, postA(c, s))})). If the least fixpoint contains (q, s) such that q ∈ FA and

s ∩ FB = ∅ then L(A) 6⊆ L(B).

3.3 Deduction rules for Emptiness Checking

From comparison of the 3 problems above, we can extract the common part of these algorithm,
namely calculation of least fixpoint and emptiness checking. Let us prepare the basic definition
in the deduction style. Later in this paper we extend the algorithm to more general and efficient
one by adding and replacing rules.

We define the binary relation between X, a set of states of A and {Empty, NonEmpty}.

Definition 3.2. LetM be an NFA. s ⊆ QM.

UNSAT (s) := s ∩ FM = ∅
SAT (s) := s ∩ FM 6= ∅
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Definition 3.3.
IM ∩ FM = ∅

UNSAT (succ1
M(∅))

IM ∩ FM 6= ∅
SAT (succ1

M(∅))

UNSAT (succnM(∅))
PostM(succnM(∅)) ∩ FM = ∅

UNSAT (succn+1
M (∅))

UNSAT (succnM(∅))
PostM(succnM(∅)) ∩ FM 6= ∅

SAT (succn+1
M (∅))

UNSAT (succnM(∅))
succnM(∅) = succn+1

M (∅)
UNSAT (µX. (succM(X)))

SAT (succnM(∅))

SAT (µX. (succM(X)))

Note that the i-th iteration of succiA(∅) corresponds to the i-th step reachable states. The
proof tree begins from the initial states and explores i-th reachable states ofM for each i until
it reaches the least fixpoint, that is µX. (succM(X)). It is stressed that the construction of
states is incremental; if the non-empty witness is found before fixpoint, then the construction is
aborted and the algorithm returns SAT (µX. (succM(X))).

4 Generalized antichain algorithm for composition term

In this section we introduce an inductive definition of the regular operations. Recall that the
regular language is closed under complementation, union, intersection. We further add projec-
tion. We denote by A ⊗ B the product automaton of A and B, A ⊕ B the sum automaton.
We decompose the complementation operation into determinization A.d and alternation of the
final states A.c. Projection to the i-th element of an input is denoted A.pi. For A or B, if it
corresponds to a monadic atomic predicate that has a regular set of supports, we refer an atomic
automaton by A0.

Definition 4.1. Composition term ::=| A0 | A.d | A.c | A.pi | A ⊕ B | A ⊗ B

Each symbol in a logical formula is translated into corresponding operator in compostion
term. An automaton operation for negation is not direct. When an automaton A representing
ϕ is non-deterministic, we should apply c to the determinized automaton A.d to express ¬ϕ.
We say a composition term is well formed if every occurrence of ’c’ follows a deterministic
automaton. We assume composition term is well formed.

Definition 4.2. [2] A set of positions of s is a set of strings over the alphabet {1, 2}, where;
Pos(s) ⊆ {1, 2}∗ :=

Pos(A) := {ε}
Pos(A.u) := {ε} ∪ {1p | p ∈ Pos(A)} u ∈ {d, c, pi}
Pos(A,B).b := {ε} ∪ {1p | p ∈ Pos(A)} ∪ {2p | p ∈ Pos(B)} b ∈ {⊗,⊕}

Definition 4.3. A subterm of s at position p , denoted by s|p is;

s|ε := s

s1.u|1p′ := s1|p′ u ∈ {d, c, pi}
(s1, s2).b|ip′ := si|p′ b ∈ {⊗,⊕}

A subterm relation over composition terms s, t , denoted by s ≤ t is;
s ≤ t := ∃p ∈ Pos(t). t|p = s

8



4.1 Interpretation of composition terms

Definition 4.4.

∆ : QM × c→ 2QM

CaseM≡ A0 ∆A0 := ∆A0

CaseM≡ A⊗B ∆A⊗B((ql, qr), c) :=
⋃

q′l∈∆A(ql,c)

⋃
q′r∈∆B(qr,c)

{(q′l, q′r)}

CaseM≡ A⊕B ∆A⊕B := ∆A ∪∆B

CaseM≡ A.d ∆A.d(s, c) :=

{⋃
q∈s

∆A(q, c)

}
CaseM≡ A.pi ∆A.pi(q, ā) :=

⋃
c∈Σ

∆A(q, πi(ā, c))

CaseM≡ A.c ∆A.c := ∆A

The transition function ∆̂ for A0 is also defined forM without changes.

Definition 4.5.

FM ⊆ QM IM ⊆ QM
CaseM≡ A0 FA0 := FA0 IA0 := IA0

CaseM≡ A⊗B FA⊗B := FA × FB IA⊗B := IA × IB
CaseM≡ A⊕B FA⊕B := FA ∪ FB IA⊕B := IA ∪ IB
CaseM≡ A.d FA.d := {s | ∃ q ∈ s. q ∈ FA} IA.d := {IA}
CaseM≡ A.pi FA.pi := FA IA.pi := IA

CaseM≡ A.c FA.c := {q | q /∈ FA} IA.c := IA

4.2 Ordering on states

Definition 4.6.

vM ⊆ QM ×QM
CaseM≡ A0 vA0 := {(q, q) | q ∈ QA0}
CaseM≡ A⊗B vA⊗B := {((qa, qb), (pa, pb)) | qa vA pa ∧ qb vB pb}
CaseM≡ A⊕B vA⊕B :=vA ∪ vB
CaseM≡ A.d vA.d := {(U, V ) | ∀v ∈ V. ∃u ∈ U. u vA v}
CaseM≡ A.c vA.c := {(p, q) | q vA p}
CaseM≡ A.pi vA.pi :=vA

4.3 Generalized antichain algorithm for composition term

A satisfiability checking algorithm consists of two steps.

1. automata construction described by a composition term t.

2. emptiness checking EC described by a deduction rules.
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It can be understood as EC(t) when we apply the on-the-fly algorithm, it becomes (EC(t))OTF =
(EC)OTF (tOTF ), when (EC(t))OTF 4.7 and are performed step-by-step on the length of words.
A generalized antichain algorithm is described as (EC(t))GAC = ECGAC(tOTF ) in which the
automaton construction is amalgamated with the minimization following to inductively defined
orderings. Further optimizations

• conversion of the compositional term to a minimally quantified form(preserving language
equivalence)

• distributive laws of the emptiness checking (preserving equisatisfiability)

are presented in Section 6.

Definition 4.7.

IM ∩ FM = ∅
UNSAT ((succM ◦minvM)1(∅))

IM ∩ FM 6= ∅
SAT ((succM ◦minvM)1(∅))

UNSAT ((succM ◦minvM)n(∅))
PostM((succM ◦minvM)n(∅)) ∩ FM = ∅

UNSAT ((succM ◦minvM)n+1(∅))

UNSAT ((succM ◦minvM)n(∅))
PostM((succM ◦minvM)n(∅)) ∩ FM 6= ∅

SAT ((succM ◦minvM)n+1(∅))

UNSAT ((succM ◦minvM)n(∅))
(succM ◦minvM)n(∅) = (succM ◦minvM)n+1(∅)

UNSAT (µX. (succM ◦minvM(X)))

SAT ((succM ◦minvM)n(∅))

SAT (µX. (succM ◦minvM(X)))

Example Let us demonstrate the construction for composition terms through an example.
Let ψ be a Presburger formula ¬(∃x0. ∃x2. x0 + 2x1 − 3x2 = 2) ∧ ∃x0. 3x0 + x1 + 2x2 = 1.
The automaton R in the previous chapter accepts the set of solutions for x0 + 2x1 − 3x2 =
2. We give another automaton G for 3x0 + x1 + 2x2 = 1. A composition term ct
which corresponds to ψ is (R.p2.p0.d.c ⊗ G.p0). The initial state of ct is computed as fol-
lows; Ict = IR.p2.p0.d.c⊗G.p0 = {IR.p2.p0.d.c × IG.p0} = . . . = {{IR} × IG} = {({r2}, g1)}.

For instance, ∆ct

({r2}, g1),
0
1
0

 = {∆R.p2.p0.d.c

{r2},
0
1
0

 × ∆G.p0

(g1),
0
1
0

} = . . . =

{({r0, r1, r_}, g0), ({r0, r1, r_}, g−1)}. Postct, succct are computed based on the ∆ct. We can
also find the ordering between the states of ct. According to the definition of vct, the ordering is
subset relation for the left hand side of the tuple and equality for the right hand side. The figure
3 depicts the difference between ct→EC Empty and ct→ECv Empty. The initial state ({r2}, g1)
is located in the left of the picture. ct→EC Empty computes all reachable states within i step. As
i proceeds, the new states are added to right direction in the picture. This algorithm generates
31 states and reaches the fixpoint. On the other hand, the generalized antichain algorithm only
maintains minimal states w.r.t. vct. The generated states are circled in the yellow line in the
picture. Eventually the antichain algorithm constructs just 15 states and reaches the fixpoint.
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Figure 2: The automaton G which recognizes the solusions of 3x0 + x1 + 2x2 = 1
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Figure 3: Comparison between the on-the-fly state construction and the antichain algorithm
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5 Composition term to solve problems

In this section, we prove that the generalized antichain algorithm is complete and sound. For
universality and inclusion, our approach is identical to the conventional antichain algorithms.
We observe closely on the universality, the inclusion and a general case, step by step. The key
is an inductive construction of orderings following to the structure of composition terms.

5.1 Universality Problem

Lemma 5.1. Let A.d be a composition term and s, t ∈ QA.d. Let c ∈ Σ.

∀u ∈ ∆A.d(s, c), v ∈ ∆A.d(t, c). s ⊆ t⇒ u ⊆ v

Proof. Let m = t \ s. By definition4.4, u ∈
{⋃

p∈s ∆A(p, c)
}
. We have u =

⋃
p∈s ∆A(p, c).

Similarly,v =
⋃
p∈t ∆A(p, c). Then we have v =

⋃
p∈m ∆A(p, c) ∪

⋃
p∈s ∆A(p, c). Therefore

u ⊆ v.

Lemma 5.2. Let x ∈ Σ∗. ∀u ∈ ∆̂A.d({s}, x), v ∈ ∆̂A.d({t}, x). s ⊆ t⇒ u ⊆ v

Proof. By induction on the length of the word x.

Base case.

x = ε, ∆̂A.d({s}, ε) = {s}. We have u = s. Similarly v = t. Thus u ⊆ v.

Inductive step.

x = x′c, we have the I.H.

∀u ∈ ∆̂A.d({s}, x′), v ∈ ∆̂A.d({t}, x′). s ⊆ t⇒ u ⊆ v

We also have∆̂A.d({s}, cx′) =
⋃

s′∈∆̂A.d({s},x′)

∆A.d(s
′, c)

Similarly we have ∆̂A.d({t}, cx′) =
⋃

t′∈∆̂A.d({s},x′)

∆A.d(t
′, c)

By I.H., ∀s′ ∈ ∆̂A.d({s}, x′), t′ ∈ ∆̂A.d({t}, x′). s ⊆ t ⇒ s′ ⊆′ t , which implies, by Lemma 5.1,
∀u ∈ ∆A.d(s

′, c) ∀v ∈ ∆A.d(t
′, c). u ⊆ v. Finally we have

∀u ∈
⋃

s′∈∆̂A.d({s},x′)

∆A.d(s
′, c) ∀v ∈

⋃
t′∈∆̂A.d({s},x′)

∆A.d(t
′, c). u ⊆ v

Lemma 5.3. ∀u, v ∈ QA.d.c. u ⊆ v ⇒ (u ∈ FA.d.c ⇐ v ∈ FA.d.c)

Proof. Suppose v ∈ FA.d.c. By definition4.1 of composition terms, it is equivalent to ¬(v ∈ FA.d),
and to ¬(∃q ∈ v. q ∈ FA). Equivalently, ∀q ∈ v. q /∈ FA. Since u ⊆ v, ∀q ∈ u. q /∈ FA. We
conclude u ∈ FA.d.c.

Theorem 5.4. ∀u ∈ ∆̂A.d.c({s}, x), v ∈ ∆̂A.d.c({t}, x). s ⊆ t⇒ (u ∈ FA.d.c ⇐ v ∈ FA.d.c)

Proof. Note that ∆̂A.d = ∆̂A.d.c. From Lemma 5.2, s ⊆ t ⇒ u ⊆ v. From Lemma 5.3,
u ∈ FA.d.c ⇐ v ∈ FA.d.c

13



5.2 Inclusion Problem

Lemma 5.5. LetM = A⊗ B.d.c , a composition term and (sl, sr), (tl, tr) ∈ QM. Let c ∈ Σ.

∀(vl, vr) ∈ ∆M((tl, tr), c). ∃(ul, ur) ∈ ∆M((sl, sr), c). sl = tl ∧ sr ⊆ tr ⇒ (ul = vl ∧ ur ⊆ vr)

Proof. Let (vl, vr) ∈
⋃

ql∈∆A(tl,c)

⋃
qr∈∆B.d.c(tr,c)

{(ql, qr)}. Let ur ∈ ∆B.d.c(sr, c). Since sr ⊆ tr,

from Lemma 5.1, ur ⊆ vr. We have vl = vl ∧ ur ⊆ vr. Since sl = tl, vl ∈ ∆A(sl, c), we conclude
that (vl, ur) ∈ ∆M((sl, sr), c).

Lemma 5.6. LetM = A⊗ B.d.c , and (sl, sr), (tl, tr) ∈ QM. Let x ∈ Σ∗.

∀(vl, vr) ∈ ∆̂M({(tl, tr)}, x). ∃(ul, ur) ∈ ∆̂M({(sl, sr)}, x). sl = tl∧sr ⊆ tr ⇒ (ul = vl ∧ ur ⊆ vr)

Proof. By induction on the length of x.

Base case.

x = ε, ∆̂M({(sl, sr)}, ε) = {(sl, sr)} and ∆̂M({(tl, tr)}, ε) = {(tl, tr)}. (sl, sr) and (tl, tr)
satisfy the condition.

Inductive step.

x = x′c, We have I.H.

∀(vl, vr) ∈ ∆̂M({(tl, tr)}, x′). ∃(ul, ur) ∈ ∆̂M({(sl, sr)}, x′). sl = tl∧sr ⊆ tr ⇒ (ul = vl ∧ ur ⊆ vr)

Let (vl, vr) ∈ ∆̂M({(tl, tr)}, cx′) =
⋃

q∈∆̂M({(tl,tr)},x′)
∆M(q, c). We suppose (vl, vr) ∈ ∆M((t′l, t

′
r), c),

for arbitrary (t′l, t
′
r) ∈ ∆̂M({(tl, tr)}, x′). By I.H., we have (s′l, s

′
r) ∈ ∆̂M({(sl, sr)}, x′) such that

s′l = t′l ∧ s′r ⊆ t′r. By Lemma 5.5, there exists (ul, ur) ∈ ∆M((s′l, s
′
r), c) and (ul = vl ∧ ur ⊆ vr)

holds. Since (ul, ur) ∈ ∆̂M({(sl, sr)}, cx′), the statement holds for the inductive case.

Lemma 5.7.

∀(ul, ur), (vl, vr) ∈ QA⊗B.d.c. ul = vl ∧ ur ⊆ vr ⇒ ((ul, ur) ∈ FA⊗B.d.c ⇐ (vr, vl) ∈ FA⊗B.d.c)

Proof. Suppose (vl, vr) ∈ FA⊗B.d.c. By definition of composition terms, it is equivalent to vl ∈
FA ∧ vr ∈ FB.d.c. Since ul = vl ∧ ur ⊆ vr, by using Lemma 5.3, ul ∈ FA ∧ ur ∈ FB.d.c. We
conclude (ul, ur) ∈ FA.d.c.

Theorem 5.8. ∀(vl, vr) ∈ ∆̂M({(tl, tr)}, x). ∃(ul, ur) ∈ ∆̂M({(sl, sr)}, x). sl = tl ∧ sr ⊆ tr ⇒
((ul, ur) ∈ FA⊗B.d.c ⇐ (vr, vl) ∈ FA⊗B.d.c)

Proof. Suppose (vl, vr) ∈ ∆̂M({(tl, tr)}, x) and (vl, vr) ∈ FA⊗B.d.c. Since we have sl = tl∧sr ⊆ tr
and from Lemma 5.6, there exists (ul, ur) ∈ ∆̂M({(sl, sr)}, x) such that ul = vl ∧ur ⊆ vr. From
Lemma 5.7, we have (ul, ur) ∈ FA⊗B.d.c.

5.3 Generalized antichain algorithm for emptiness checking

Lemma 5.9. ∀q, p ∈ QM.q vM p⇒ (q ∈ FM ⇐ p ∈ FM)

Proof.

Base case. M≡ A0

We have q = p by q vA0 p. Assume p ∈ FA0 and we have q ∈ FA0 .

Case. M≡ A⊗B
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Suppose (qa, qb), (pa, pb) ∈ QA⊗B with (qa, qb) vA⊗B (pa, pb). The I.H. is as follows:

• ∀qa, pa ∈ QA.qa vA pa ⇒ (qa ∈ FA ⇐ pa ∈ FA)

• ∀qb, pb ∈ QB.qb vB pa ⇒ (qa ∈ FB ⇐ pb ∈ FB)

We have qa vA pa and qb vB pb by the definition of vA⊗B. Assume (pa, pb) ∈ FA⊗B, i.e.,
pa ∈ FA and pb ∈ FB. Then by qa vA pa, qb vB pb and I.H., we have qa ∈ FA and qb ∈ FA, i.e.,
(qa, qb) ∈ FA⊗B.

Case. M≡ A⊕B

If q, p ∈ QA, then by I.H., the statement holds. If q ∈ QA and p ∈ QB, since (q, p) /∈vA⊕B,
the statement trivially holds.

Case. M≡ A.d

I.H. is as follows: ∀q, p ∈ QA.q vA p ⇒ (q ∈ FA ⇐ p ∈ FA). Suppose U, V ∈ QA.d and
U vA.d V . Assume V ∈ FA.d. By definition of FA.d, we have p ∈ V such that p ∈ FA.d. By
definition of vA.d, we have q ∈ U such that q vA p. Since p ∈ FA, by I.H., q is also in FA. We
have U ∈ FA.d.

Case. M≡ A.c

Suppose q, p ∈ QA.c with q vA.c p. Then we have p vA q. Suppose p ∈ FA.c, then p /∈ FA.
By I.H., p ∈ FA ⇐ q ∈ FA , and by taking contraposition, q /∈ FA.c ⇐ p /∈ FA.c also holds. We
have q ∈ FA.c.

Lemma 5.10. LetM be a composition term and q, p ∈ QM Let c ∈ Σ̄.

∀p′ ∈ ∆M(p, c). ∃q′ ∈ ∆M(q, c). q vM p⇒ q′ vM p′

Proof. By induction on the structure ofM.

Base case. M≡ A0

Assume q vA0 p and let p′ ∈ QA0 with p′ ∈ ∆A0(p, c). By definition, q = p. Hence we have
p′ ∈ ∆A0(q, c) and p′ vA0 p

′.

Inductive step.

Case. M≡ A⊗B

Let (qa, qb), (pa, pb) ∈ QA⊗B and we assume (qa, qb) vA⊗B (pa, pb). We have the I.H.

• ∀p′a ∈ ∆A(p, c). ∃q′a ∈ ∆A(q, c). q vA p⇒ q′ vA p′

• ∀p′b ∈ ∆B(p, c). ∃q′b ∈ ∆B(q, c). q vB p⇒ q′ vB p′

Let (p′a, p
′
b) ∈ ∆A⊗B((pa, pb), c). By definition of vA⊗B, we have qa vA pa and qb vB pb.

By definition of ∆A⊗B, we also have p′a ∈ ∆A(pa, c) and p′b ∈ ∆B(pb, c). By I.H., we have
q′a ∈ ∆A(qa, c) such that q′a vA p′a. Also by I.H., we have q′b ∈ ∆B(qb, c) such that q′b vB p′b. By
definition of ∆A⊗B, (q′a, q

′
b) ∈ ∆A⊗B((qa, qb), c), and by definition ofvA⊗B, (q′a, q

′
b) vA⊗B (p′a, p

′
b).

Case. M≡ A⊕B

Let q, p ∈ QA⊕B. There are 2 cases: 1. q ∈ QA and q ∈ QB (or q ∈ QB and q ∈ QA). 2.
q ∈ QA and q ∈ QA (or q ∈ QB and q ∈ QB). If case 1, then (q, p) /∈vA⊕B. The statement
trivially holds. If case 2, the I.H. satisfies the statement.

Case. M≡ A.d
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Let U, V ∈ QA.d. We assume U vA.d V . Let V ′ ∈ ∆A.d(V, c) and U ′ ∈ ∆A.d(U, c). Since
V ′ ∈ {

⋃
p∈V

∆A(p, c)}, V ′ =
⋃
p∈V

∆A(p, c). Similarly U ′ =
⋃
q∈U

∆A(q, c). We show U ′ vA.d V ′. Let

p′ ∈ V ′. Then we have p ∈ V such that p
c
−→ p′ since V ′ =

⋃
p∈V

∆A(p, c). By definition of vA.d,

∀p ∈ V. ∃q ∈ U. q vA p. Hence we can take q ∈ U such that q vA p. Since q ∈ U , we have
q′ ∈ ∆A(q, c) with q′ ∈ U ′. By I.H., we have q′ vA p′. For arbitrary p′ ∈ V ′, we can find the
element q′ ∈ U ′ such that q′ vA p′. We conclude U ′ vA.d V ′.

Case. M≡ A.c

We have 2 cases: 1. A is non-deterministic. 2. A is deterministic. If case 1, then A.c is not
well formed. The statement trivially holds since the assumption is not satisfied, If case 2, ∆A.c
returns singleton of a state. We have single p′ ∈ ∆A.c(p, c). Assume q vA.c p. By definition of
vA.c, we have p vA q. Let q′ ∈ ∆A.c(q, c). Since p′ is taken from the singleton ∆A.c(p, c), by
I.H., p′ vA q′. Then we have q′ vA.c p′.

Lemma 5.11. Let x ∈ Σ∗,M be a composition term. ∀q ∈ ∆̂M(IM, x). q is minimal w.r.t. vM
in ∆̂M(IM, x)⇒ ∃q′ ∈ µX. (succM ◦minvM(X)). q′ vM q

Proof. By induction on the length of x.

Base case. x = ε

Suppose q ∈ ∆̂M(IM, ε) = IM and minimal w.r.t. vM in IM. If q ∈ µX. (succM ◦
minvM(X)), the statement holds for the base case. Otherwise we have minvM(IM) ⊆
µX. (succM ◦minvM(X)) and there exists q′ ∈ minvM(IM) such that q′ vM q.

Inductive step. x = x′c

We have I.H., ∀q ∈ ∆̂M(IM, x
′). q is minimal w.r.t. vM in ∆̂M(IM, x

′) ⇒ ∃q′ ∈
µX. (succM ◦ minvM(X)). q′ vM q. Let q ∈ ∆̂M(IM, x

′c) and suppose q is minimal
w.r.t. vM in ∆̂M(IM, x

′c). Since q ∈
⋃

p∈∆̂M(IM,x′)

∆M(p, c), let p ∈ ∆̂M(IM, x
′) such that

q ∈ ∆M(p, c). Then we have p is minimal w.r.t. vM in ∆̂M(IM, x
′) . It is because, other-

wise there exists p′ ∈ ∆̂M(IM, x
′) with p′ vM p. By Lemma 5.10 there exists q′ ∈ ∆M(p′, c)

such that q′ ⊆M q. This contradicts q being minimal in ∆̂M(IM, x
′c). By I.H., we have

p′ ∈ µX. (succM ◦minvM(X)) with p′ vM p. By Lemma 5.10 there exists q′ ∈ ∆M(p′, c) such
that q′ ⊆M q.

q′ ∈ PostM({p′}) ⊆ IM ∪ PostM(µX. (succM ◦minvM(X))

⇔ q′ ∈ succM(µX. (succM ◦minvM(X))

If q′ ∈ succM ◦ minvM(µX. (succM ◦ minvM(X))), then q′ ∈ µX. (succM ◦ minvM(X)).
Otherwise we have q′′ ∈ minM(succM(µX. (minM(succM(X))))) such that q′′ v q′ v q and
q′′ ∈ µX. (minM(succM(X))).

Lemma 5.12. µX. (succM ◦minM(X)) ∩ FM = ∅⇔ L(M) = ∅

Theorem 5.13. ECv is sound and complete.
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6 Conversion rules

Before constructing the automaton for a given input formula, there are chances to decompose
a problem into the smaller subproblems. It is natural to apply distributive laws of ∧,∨, and
¬. Those conversions preserve the logical equivalence of the formula. On the other hand, since
it suffices to maintain the satisfiability of the formula, we can further convert the composition
terms, i.e., equisatisfiable conversions. The use of "language terms" and the rewriting rules over
the terms are proposed and applied to WS1S [7]. They observed that

1. Anti-prenexing moves an existential quantifier down in the AST of a formula. This tech-
nique is most effective among others.

2. ¬ is pushed down to bottom of the AST. Since the size of an automaton is smaller in the
bottom part than upper part, determinization costs less.

Although our motivation is quite similar, the main difference is that our target normal form is
not a prenex normal form, but a minimally quantified form, which optimizes the generalized
antichain algorithm. We further introduce the distributive laws of the emptiness checking which
respect the equisatisfiability.

6.1 Logically equivalent conversions

Since the language remains unchanged, we regard certain sequences of symbols as a single symbol.
A.d.c is regarded as A.dc and A.pi.pj . . . . .pk is regarded as A.pipj . . . pk.

Definition 6.1. Logically equivalent rules corresponds to distributive law of negation, conjunc-
tion and disjunction and quantifiers.

A.dc.dc
V R
−→ A (V R1)

(A⊗ B).dc
V R
−→ A.dc⊕ B.dc (V R2)

(A⊕ B).dc
V R
−→ A.dc⊗ B.dc (V R3)

(A⊕ B).pi
V R
−→ A.pi ⊕ B.pi (V R5)

((A⊕ B)⊗ G)
V R
−→ (A⊗ G)⊕ (B ⊗ G) (V R6)

In addition, we can derive the rule from V R, (A⊗B).dc.pi.dc
V R
−→ A.dc.pi.dc⊗B.dc.pi.dc. A

normal form of a composition term t is called a minimally quantified form. From Proposition6.1,
it is uniquely determined.

Proposition 6.1. V R is terminating and confluent.

Proof. V R→ is terminating by AC-RPO with the precedence d, c, pi,� ⊗ � ⊕.
V R→ is locally

confluent, since the critical pairs occur between V R1 and V R2, and V R1 and V R3 which are
joinable. Thus, by Newman’s lemma, V R1 and V R→ is confluent.

Lemma 6.1. Let ct be a composition term and ct′ be a normal form of V R, i.e., ct
V R
−→∗ ct′.

∀p ∈ Pos(ct′). ∀i ∈ {1, 2}. ct′|pi = (_⊕_)⇒ ct′|p = (_⊕_)
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Proof. By contradiction. Suppose ct′|pi = (_ ⊕ _) and assume ct′|p 6= (_ ⊕ _). For ct′|p we
have the following 3 cases; Case ct′|p = (_ ⊗ _). We have ct′|p = ((_ ⊕ _) ⊗ _) and ct′|p
has a redex, which contradicts the fact that ct′ is a normal form of V R. In other cases where
ct′|p = (_ ⊕ _).dc, and ct′|p = (_ ⊕ _).pi, we find the redex of V R. We conclude that our
assumption is wrong.

Lemma 6.2. ∀p, p′ ∈ Pos(ct′). p ≤ p′ ∧ ct′|p′ = (_⊕_)⇒ ct′|p = (_⊕_)

Proof. For arbitrary p, let l, l′ be length of p, p′ respectively. By induction on n = l′ − l.

Base case.

n = 0, we have p = p′, and ct′|p′ = (_⊕_)⇒ ct′|p = (_⊕_).

Inductive step.

n = k + 1, we have I.H. that ct′|pi1i2...ik = (_ ⊕ _) ⇒ ct′|p = (_ ⊕ _). We suppose
ct′|pi1i2...ikik+1

= (_ ⊕ _). Then from Lemma 6.1, ct′|pi1i2...ik = (_ ⊕ _). By applying I.H., we
have ct′|p = (_⊕_).

6.2 Equisatisfiable conversions

In addition, we define equisatisfiable rules for the answer of Emptiness Checking. The application
of these rules may change the language of composition terms, whereas its emptinessis preserved.

Definition 6.2.

A →EC Empty
CR1 A.d→EC Empty

A →EC Empty
CR2 A.pi →EC Empty

A →EC Empty B →EC Empty
CR3

(A⊕ B)→EC Empty

Lemma 6.3. L(A) = ∅⇔ L(A.d) = ∅

Proof. By L(A) = L(A.d)

Lemma 6.4. L(A) = ∅⇔ L(A.pi) = ∅

Proof. Equivalently, we show µX. (succA(X)) ∩ FA = ∅⇔ µX. (succA.pi(X)) ∩ FA.pi = ∅ By
definition, FA = FA.pi and IA = IA.pi . Also we have PostA = PostA.pi since,

PostA.pi(s) =
⋃
c̄∈Σ̄

⋃
q∈s

∆A.pi(q, c̄)

=
⋃
c̄∈Σ̄

⋃
q∈s

⋃
c∈Σ

∆A.pi(q, πi(c̄, c))

=
⋃
c̄∈Σ̄

⋃
q∈s

∆A(q, c̄) = PostA(s)

Thus we have µX. (succA(X)) = µX. (succA.pi(X)). We conclude that L(A) = ∅ ⇔ L(A.pi).

Lemma 6.5. L(A⊕ B) = ∅⇔ L(A) = ∅ ∧ L(B) = ∅

Proof. By L(A⊕ B) = L(A) ∪ L(B)

Lemma 6.6. Let A and A′ be ct s.t. A
V R∗
−→ A′.
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7 Implementation and Experiments

In this section, we explain our tool and its implementation and describe the experimental results.
The tool takes First-Order Presburger formula as the input and answers whether there exist
satisfiable assignments for the free variables in the formula. We don’t restrict the formula to be
closed. The syntactical depth of the formula represents repetition of the regular operations on
the automata while number of variables represents the size of Σ of the language. For we have 4
approaches, we compare the running time of those 4 cases.

7.1 Tool

We implemented those algorithms in OCaml. A user specifies one of 4 algorithms; On-the-fly
construction without any other techniques (None), term conversion only (Ct), minimization of
the antichain algorithm only (Ac), and both of these techniques (CtAc). The user gives the
number of variables in addition to a Presburger formula. Below is an example of the input form;

p 3 and ( not ( e x i s t s ( x0 , e x i s t s ( x2 , eq ( r , 1x0 + 2x1 −3x2 = 2) ) ) ) ,
e x i s t s ( x0 , eq (g , 3x0 + 1x1 + 2x2 = 1) ) )

7.2 Data set and the experiment method

Our experimental data are First-Order Presburger formulas. The formulas are classified under
1. syntactical depth in terms of their parse tree and 2. number of variables occurring in the
formula. We obtain the data in the following manner; for atomic formula, 1a. each coefficient
ai is randomly taken from 0 < ai ≤ 20 and cannot be 0, while right hand side of the equation
is also a random constant c with 0 ≤ c ≤ 100. 1b. some atomic formula are excluded if the set
of the solutions are scarce. In order to make formula out of the set of atomic formulas, we first
randomly generate AST with a specified depth, then fill each node with one of ¬, ∃ for unary
node, and ∧,∨ for binary node. The variable bound by ∃ is also randomly chosen. We prepare
500 problems for each classification by syntactical depth 3 or 4, by number of variables 2, 3 or
4. Timeout is set to 5 minutes. We collect the running time, the size of the generated set of
states and the answer Empty or NonEmpty.

Ac requires additional computation of states comparison, which becomes overhead for small
problems. For problems with variables 2 or 3, the overhead is not compensated and affect the
performance (From figure 4 and 5). A time record of a problem is excluded from Total Time
shown in the table 1, right column when at least one of 4 algorithms failed as timeout. We cannot
maintain that the generalized antichain algorithm immediately leads to universal performance
improvement. At least we can conclude for the problems with depth 4 and 4 variables, especially
whose sizes exceed 3000, surely our optimization techniques both Ac and CtAc outperform None
and Ct.

7.3 Experimental results

Our observation is twofold;

1. Generalized antichain algorithm enjoys the performance improvement for sufficiently large
and complex problems. Due to the overhead of calculating orderings, it does not work for
small problems. The threshold would be the formulas with depth 4, 4 variables and more
than 3000 state size. Regardless of logics (WS1S, Presburger, and so on), we expect the
threshold applies.

2. In the most cases, minimally quantified formof the composition term leads to performance
improvement. It also implies that normalization not dedicated to the regular language
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Figure 4: Results for depth 3 and depth 4, with 2 variables.
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64 problems with 1000>= states, sorted by size of states.
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Figure 5: Results for depth 3 and depth 4, with 3 variables.
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Figure 6: Results for depth 3 and depth 4, with 4 variables.
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Table 1: Results in frequency distribution table.
D3V2 Success/ Timeout Total Time

Size None Ct Ac CtAc None Ct Ac CtAc
0 - 1000 488/ 0 488/ 0 488/ 0 488/ 0 51.04 51.3 74.62 73.79
1000 - 2000 6/ 0 6/ 0 6/ 0 6/ 0 70.91 72.36 121.0 120.79
2000 - 3000 3/ 0 3/ 0 1/ 2 0/ 3 0 0 0 0
3000 - 4000 1/ 0 1/ 0 0/ 1 0/ 1 0 0 0 0
4000 - 5000 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0

D3V3 Success/ Timeout Total Time
Size None Ct Ac CtAc None Ct Ac CtAc
0 - 1000 438/ 0 438/ 0 438/ 0 438/ 0 242.16 242.98 253.79 253.49
1000 - 2000 27/ 0 27/ 0 27/ 0 27/ 0 585.33 595.97 776.15 777.68
2000 - 3000 8/ 0 8/ 0 6/ 2 6/ 2 435.12 435.94 572.37 570.85
3000 - 4000 8/ 0 8/ 0 6/ 2 6/ 2 779.57 810.81 1033.87 1027.4
4000 - 5000 2/ 0 2/ 0 1/ 1 1/ 1 269.3 266.09 253.52 260.2
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0

D3V4 Success/ Timeout Total Time
Size None Ct Ac CtAc None Ct Ac CtAc
0 - 1000 422/ 0 422/ 0 422/ 0 422/ 0 3084.79 3087.87 3093.95 3084.75
1000 - 2000 23/ 0 23/ 0 23/ 0 23/ 0 461.22 454.08 480.28 465.65
2000 - 3000 9/ 0 9/ 0 8/ 1 7/ 2 659.73 649.15 796.76 794.21
3000 - 4000 5/ 1 5/ 1 5/ 1 5/ 1 642.62 657.05 851.35 861.66
4000 - 5000 1/ 0 1/ 0 1/ 0 1/ 0 142.64 144.8 155.25 157.9
5000 - 1/ 0 1/ 0 1/ 0 0/ 1 0 0 0 0

D4V2 Success/ Timeout Total Time
Size None Ct Ac CtAc None Ct Ac CtAc
0 - 1000 376/ 0 376/ 0 376/ 0 376/ 0 119.07 119.47 133.39 132.27
1000 - 2000 33/ 0 33/ 0 32/ 1 32/ 1 680.0 692.51 897.08 888.12
2000 - 3000 26/ 0 26/ 0 15/ 11 18/ 8 1288.9 1294.83 1841.45 1868.93
3000 - 4000 9/ 0 9/ 0 5/ 4 5/ 4 894.87 864.89 940.43 940.82
4000 - 5000 1/ 0 1/ 0 1/ 0 1/ 0 297.99 296.31 248.49 259.15
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0

D4V3 Success/ Timeout Total Time
Size None Ct Ac CtAc None Ct Ac CtAc
0 - 1000 328/ 0 328/ 0 328/ 0 328/ 0 348.25 348.34 343.36 342.04
1000 - 2000 32/ 0 32/ 0 32/ 0 32/ 0 417.92 412.44 396.24 385.84
2000 - 3000 17/ 0 17/ 0 15/ 2 15/ 2 773.21 757.53 724.91 710.1
3000 - 4000 10/ 0 10/ 0 8/ 2 8/ 2 837.52 806.61 876.63 886.04
4000 - 5000 5/ 0 5/ 0 4/ 1 3/ 2 577.3 577.74 551.92 573.84
5000 - 0/ 0 0/ 0 0/ 0 0/ 0 0 0 0 0

D4V4 Success/ Timeout Total Time
Size None Ct Ac CtAc None Ct Ac CtAc
0 - 1000 302/ 0 302/ 0 302/ 0 302/ 0 4999.64 5009.72 4994.13 4989.78
1000 - 2000 34/ 0 34/ 0 34/ 0 34/ 0 794.41 789.95 745.69 745.23
2000 - 3000 20/ 0 20/ 0 19/ 1 19/ 1 1086.41 1105.43 1015.82 1001.12
3000 - 4000 11/ 0 10/ 1 10/ 1 10/ 1 1123.95 1090.03 979.94 956.93
4000 - 5000 7/ 1 7/ 1 8/ 0 8/ 0 783.53 781.5 667.18 674.66
5000 - 5/ 1 5/ 1 6/ 0 5/ 1 954.08 910.19 786.74 782.53
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operations, namely prenex normal form, could affect the performance in the automata
construction step.

8 Conclusion

We developed an efficient algorithm for automata theoretic theorem proving expanding antichain
algorithms. Our aim is to directly handle a nested formula with an antichain algorithm (i.e.,
without flattening). We introduced composition terms that represents automata construction so
that the generalized antichain algorithm is inductively defined for the structure of composition
terms.

1. As an optimization, we further introduced conversion rules of composition terms which
preserves the accepted language distributive laws of emptiness checking into a composition
terms.

2. We perform experiments on randomly generated 3000 Presburger formulas. Generalized
antichain algorithm improved the performance for sufficiently large and complex problems.
Due to the overhead of calculating orderings, it did not work for small problems. In the
most cases, conversion of the composition term led to performance improvement. It also
implies that normalization not dedicated to the regular language operations, namely prenex
normal form, could affect the performance in the automata construction step.
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