
Master’s Thesis

Generating a Dynamic Symbolic Execution Tool
from MIPS Specifications

1710459 Quang Thinh Trac

Supervisor Mizuhito Ogawa
Main Examiner Mizuhito Ogawa

Examiners Kazuhiro Ogata
Nao Hirokawa
Nguyen Minh Le

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

August, 2019



Abstract
Nowadays, malware has evolved and caused serious consequences to society and
business. Hence, malware analysis has been receiving a great deal of attention in
both academic community and industries to detect and prevent malware dangerous
impacts. However, it is a challenge since modern malware uses many obfuscations
techniques (e.g. indirect jumps or self-modifying loops) to hide its behaviors and
guard against the detection of antivirus software. As a result, various methods
have been proposed for analyzing the real behaviors of malware. Unlike other
methods are easily fooled by obfuscation techniques, Control Flow Graph (CFG)
based approaches (e.g. VxClass) can overcome this problem. A well-known exten-
sion of Symbolic Execution as Dynamic Symbolic Execution (or concolic testing)
has been widely used to reconstruct CFGs of malware. Dynamic Symbolic Execu-
tion consists of both concrete and symbolic execution. It is capable of exploring
all feasible execution paths and dealing with obfuscation techniques like indirect
jump. In recent years, we have introduced BEPUM (Binary Emulation for PUsh-
down Model) and Corana, two Dynamic Symbolic Execution tools for x86 and
ARM Cortex M, respectively. Following these studies, our goal is expanding this
idea for a new architecture - MIPS.

Similar to ARM architecture, MIPS is a RISC (Reduced Instruction Set Com-
puter) instruction set architecture, which is one of the popular architectures of
IoT devices. Since the number of IoT devices has been growing rapidly, it leads
to the dramatic increase of IoT malware infection rates. Although IoT malware
does not contain sophisticated obfuscation techniques, dealing with indirect jumps
is necessary to reconstruct precise CFGs of malware. Afterward, generated CFGs
can be used for further detection and classification analysis. Although the number
instructions of MIPS is quite smaller than others such as x86 or ARM, it is benefi-
cial to propose a systematical method to implement Dynamic Symbolic Execution
for further similar studies to reduce human efforts on implementations.

This thesis proposes a semi-automatic extraction of the formal semantics of
MIPS architecture from the pseudocode description in MIPS instruction manual.
Among 127 collected instructions, we focus on the 63 instructions of the CPU
category. After manually preparing 21 primitive functions in the pseudocode de-
scription, their semantics are successfully generated as Java methods, which are
unified as a dynamic symbolic execution tool SyMIPS. We perform an empirical
experiment on 3219 MIPS32 IoT malware collected from ViruSign and observe
that SyMIPS successfully traces 2725 samples. The rest is interrupted by either
system calls or out of memory error. Although the current implementation is pre-
liminary, SyMIPS finds the destinations of indirect jumps by concolic testing and
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discovers dead conditional branches in some samples.

Keywords: Dynamic Symbolic Execution - IoT Malware - MIPS32.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Malware is the shorthand term of malicious software. It is developed with the
intention of causing damages or accessing a system or a network without the ap-
proval of the owners. Like lawful software, malware has evolved over the decades
and come armed with various functions depending on the goals of the attackers.
There are a large number of different forms of malicious software such as computer
viruses, trojan horses, ransomware, spyware, adware. Because of their harmful
impacts and the rapid infection rate, it is essential to do research on detecting,
classifying and then preventing the affection of malicious code into our systems.
However, it is a challenge for the reason that almost malware are created by using
many obfuscation techniques to mask its actual behaviors and also guard against
the detection of antivirus software. In order to unmask its harmful behaviors, sev-
eral methods were proposed for analyzing binary malware including static analysis,
dynamic analysis and also model checking based approaches. Unlike other meth-
ods that are becoming misleading without difficulty by obfuscation techniques,
model checking based approaches reveal malware’s original behaviors by analyzing
binary files to obtain its abstract models. From these models, we conduct further
experiments to investigate malware and find out effective ways of preventing ma-
licious codes. In recent years, we have proposed BEPUM (Binary Emulation for
PUshdownModel)[12] with the aim of building up the CFG of malware under the
presence of obfuscation techniques for x86 architecture. Furthermore, a Dynamic
Symbolic Execution - Corana[17] was proposed for ARM Cortex M architecture.
This study applies natural language processing techniques to automatically extract
ARM formal semantics from its natural language specifications and utilizes gen-
erated methods to develop Corana. Following these studies, our goal is expanding
this idea for a new architecture - MIPS.
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MIPS (Microprocessor without Interlocked Pipelined Stages) is a reduced in-
struction set computer (RISC) instruction set architecture developed by MIPS
Technologies. Originally, MIPS has been used for general-purpose computer but
recently, it has been used for embedded systems such as routers and residential
gateways. Because of its applications, almost current MIPS malware is IoT mal-
ware. According to McAfee1, from June to August-2018, McAfee detected more
than 450 IoT malware threats every minute. Furthermore, the report informed
that new malware samples grew by 53 percents. The total number of IoT malware
had been grown up dramatically about 200 percent over the previous four quarters
in August 2018, which provides the evidence that IoT devices are new targets for
attackers. Although IoT malware does not contain sophisticated obfuscation tech-
niques such as self-decryption loops, studying indirect jumps plays an important
role with the aim of understanding malware behaviors by using Dynamic Symbolic
Execution to reconstruct its CFG. Developing a Dynamic Symbolic Execution tool
requires a binary emulator and path constraints generation. Although the num-
ber instructions of MIPS is quite smaller than others such as x86 or ARM, it is
beneficial to propose a systematical method for further similar studies to reduce
human efforts on implementations.

Hence, the aim of this study is proposing a semi-automatic extraction of the
formal semantics of MIPS architecture from the pseudocode description in MIPS
instruction manual and then utilizing generated methods to developing a Dynamic
Symbolic Execution tool - SyMIPS. Furthermore, we perform an empirical exper-
iment on IoT malware to trace its behaviors.

1.2 Contribution

This study applies a semi-automatic extraction of the formal semantics on the
MIPS architecture, similarly to x86 [11] and ARM [17]. The extracted seman-
tics is unified as a dynamic symbolic execution tool SyMIPS on MIPS. Among
variations of the MIPS architecture such as MIPS I-V and MIPS32/64, we fo-
cus on MIPS32 (release 5) of which the specifications are available in MIPS32
instruction set manual 2. Among 127 collected MIPS32 instructions, we focus on
the 63 instructions of the CPU category. After manually preparing 21 primitive
functions in the pseudocode description, their semantics are successfully gener-
ated as Java methods. We perform an empirical experiment on 3129 MIPS32
IoT malware collected from ViruSign and observe that SyMIPS successfully traces

1https://www.iottechnews.com/news/2018/dec/20/mcafee-new-iot-malware-variants-
minute/

2https://www.mips.com/products/architectures/mips32-2
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2725 samples. The rest is interrupted by either system calls or the stack over-
flow. Although the current implementation is preliminary, SyMIPS finds the
destinations of indirect jumps by concolic testing and discovers dead conditional
branches in some samples. The current version of SyMIPS is downloadable at
https://github.com/tracquangthinh/SyMIPS.

1.3 Thesis Structure

This thesis is organized as follows:

• Chapter 2 explains the overview of MIPS architecture and IoT malware
analysis techniques.

• Chapter 3 introduces the formal semantics of ARM, which including both
operational semantics and Java semantics.

• Chapter 4 briefly introduces the process of MIPS specification extraction.

• Chapter 5 introduces a conformance testing method to validate the correct-
ness of our implementation.

• Chapter 6 presents SyMIPS - a Dynamic Symbolic Execution tool by utilizing
Java generated methods.

• Chapter 7 shows the results of the practical experiment including semantics
extraction and SyMIPS executions on IoT malware.

• Finally, Chapter 8 summaries the contribution of this study and proposes
some directions to improve and extend our current method.

1.4 Extraction Overview

Fig. 1.1 describes the overview of our proposed method. The specification of in-
structions is parsed to abstract syntax trees by defining the context-free grammar
of pseudocode and then, Java methods are generated by applying depth-first search
algorithm. When an instruction is executed, the environment of the binary emu-
lator is updated and the path conditions are generated. Finally, the correctness of
generated methods is validated by conformance testing.
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Figure 1.1: The overview of the proposed method
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Chapter 2

Related Work

2.1 Binary Symbolic Execution Tools

Although developed software have been tested carefully by humans before re-
leasing them to their customer, they still have several potential bugs and se-
curity vulnerabilities. Recently, various methods have been proposed by ap-
plying symbolic execution to analyze programs, especially for binary code such
as McVeto[16], MiAsm[6], CoDisasm[2], BE-PUM[12], Mayhem[5], KLEE-MC[4],
Angr[15], Corana[17]. Most of them are developed for x86 architecture except
Corana is for ARM. The first essential tasks for developing binary analyzers is
extracting formalizing the semantics of the instructions, which is given often in
the manual for human or appear implicitly among the tools like debuggers and
disassemblers.

The implementation of Binary Symbolic Execution tools is classified by two
approaches.

• By using the existing disassemblers, e.g., CAPSTONE1, binary code is trans-
lated to an intermediate machine language, e.g., LLVM in KLEE-MC, VEX
in Angr.

• Directly interpreting the binary code, e.g., McVeto and BE-PUM for x86,
and Corana for ARM.

BE-PUM (Binary Emulation for PUshdown Model) is a binary code analyzer
for x86 architecture. By applying dynamic symbolic execution, BE-PUM inputs
binary files to generate control flow graphs under the presence of obfuscation tech-
niques like indirect jump or overlapping instructions. It consists of three main

1http://www.capstone-engine.org
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components including a binary emulator, a CFG storage and a symbolic executor.
Fig. 2.1 shows the architecture of BE-PUM.

Stub of API

Single-Step
Symbolic Execution

Instr(Env, m)
Jakstab 0.8.3

Feasibility Check
SMT: Z3 4.3

System Call
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Java API
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Controlled
Sandbox

Memory

Flags
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Environment

Stack

control

instructions
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�
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frontiers
data instructions
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(�, �� , )�� ��

Symbolic States
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⟨(�, �� ), �⟩ → ⟨(�, ���), ( , �� )⟩�� �

′
�

′

CFG Storage

Figure 2.1: BE-PUM architecture

Furthermore, we have proposed a method to systematically extract the formal
semantics of ARM instructions from their natural language specifications. It con-
sists of the semantics interpretation by applying translation rules, augmented by
the sentences similarity analysis to recognise the modification of flags. Afterward,
Corana - a Dynamic Symbolic Execution tool for Cortex-M was built by utilising
extracted instructions. Fig. 2.2 shows the architecture of Corana.

2.2 Formal Binary Semantics Extraction

Although the specifications are divergent, they are classified to

• Either natural language description only (e.g., ARM), or with pseudocode
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Figure 2.2: Corana architecture

description (e.g., x86, MIPS). The latter obeys a quite unified grammar and
much easier to handle by manually defining primitive functions.

• Either in html (e.g., x86, ARM Cortex-M). or in pdf (e.g., MIPS, ARM
Cortex-A/R), the latter requires the pdf to text translation, which may lose
the information figured in tables.

Their semantics framework basically consists of the transition systems over the
quadruplets of registers, flags, memory and the stack. Note that since most of
malware is a sequential user-mode process and we avoid the concurrency, the weak
memory model, and co-processor operations. Still, there are some variations. For
instance, MIPS does not have flags (instead the condition is stored in a register
and cache operations explicitly. Due to these differences, it is required to produce
an unprecedented approach to extract the formal semantics of MIPS architecture.

The first trial to automatically extract the formal semantics appears in x86 [11]
for extending BE-PUM, in which the flag updates are recognized by the similar
analysis in natural language processing and the operation of instruction is directly
obtained from the pseudocode description. The experiment shows that among 530
collected specifications from Intel Developer’s Manual 2, Java method descriptions
of 299 x86 instructions are successfully generated by manually preparing 30 prim-
itive functions in the pseudocode.

The extraction of the semantic of ARM instructions [17] is more challenging,
since the ARM specification is described only in English. By manually prepar-

2https://www.felixcloutier.com/x86
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ing 228 semantics interpretation rules that rewrite a noun phrase to a Java code
fragment, the experiment shows that among 1039 collected ARM Cortex-M speci-
fications from ARM manual3, the semantics of the 662 instructions are successfully
extracted. Note that they apply the conformance testing by comparing the exe-
cution results of instructions between generated Java methods and the existing
emulators, e.g., Ollydbg 4 for x86 and µVision 5 for ARM. Fig. 2.3 illustrates the
extraction approach of Corana.
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3https://developer.arm.com
4http://www.ollydbg.de
5http://keil.com/mdk5/uvision
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Chapter 3

Symbolic Execution Techniques

The most disadvantages of common malware analysis techniques are that it can not
be executed successfully in the presence of obfuscation techniques. To overcome
this problem, Dynamic Symbolic Execution technique was proposed to explore the
Control Flow Graph of malware binaries. As the above-mentioned definition, Con-
trol Flow Graph is a directed graph in which its nodes represent basic blocks and
its vertices represent control flow paths. A basic block is a straight-line instruc-
tions sequence with no branches in except to its entry and no branches out except
at its exit. Control Flow Graph is used to capture the behavior and the program
structure of malware. In the example 3.1, a Control Flow Graph contains four
basic blocks as four nodes. The path between node a1 and node a4 may represent
a condition statement while another path between block a2 and a3 may represent
a loop statement.

a1

a2

a3

a4

Figure 3.1: An example of Control Flow Graph
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3.1 Symbolic Execution

Symbolic Execution[9] is a well-known program analysis technique to test whether
violated properties appear in some locations of software. These properties may
be division by zero, NULL pointer or backdoor exists. In a concrete execution,
a specific input is used to execute the program and only one control flow path
is obtained. In contrast, symbolic execution can simultaneously explore multiple
paths of a program under different inputs. Instead of executing concrete values,
input variables are considered as symbolic variables like ϕ or ψ. The path condi-
tion will be updated by adding constraints at each location of conditional branches.

Fig. 3.2 shows an example of generating test cases by applying symbolic ex-
ecution method. Assuming that bar, which has two parameters including x and
y, is the function needed to test. Furthermore, this function has a potential error
ERROR. During generating test cases of this function, the error can be detected by
symbolic execution.

public int bar(int a, int b){

if(a == b){

return 0;

} else {

if(2*a+b > 2019){

if(3*b + 10 < 100){

ERROR();

} else {

b = b + 2018;

}

} else {

a = a + 2020;

}

}

return a;

}

Figure 3.2: An example of a testing function

Let assuming that α, β are symbolic values representing for two parameters x

and y. The execution tree of this function is described in Fig. 3.3. As a result,
from four path conditions in Fig. 3.3, the input and output of four respective test
cases are obtained by using Z3 to check the satisfiability of these conditions.

10
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Figure 3.3: The execution tree of the function bar

• From PC1, we have 〈Input = (x = 0, y = 0), Output = 0〉

• From PC2, we have 〈Input = (x = 0, y = 1), Output = 2020〉

• From PC3, we have 〈Input = (x = 1010, y = 0), Output = Error〉

• From PC4, we have 〈Input = (x = 673, y = 674), Output = 673〉

3.2 Dynamic Symbolic Execution

Concrete Symbolic Abstract

Concolic

Figure 3.4: Concrete and Symbolic Execution
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Although Symbolic Execution has been using in many areas to verify the cor-
rectness of programs for a long time, it still has limitations. As can be observed,
when the path conditions become sophisticated e.g. non-linear equations or black-
box functions, the time explosion of the theorem solver maybe happened and the
feasibility can not be decided. To overcome this limitation, Dynamic Symbolic
Execution or concolic testing [7] had been proposed by Patrice Godefroid and his
colleagues. It is an extension of symbolic execution by using concrete execution to
drive symbolic execution. In similar to static symbolic execution, concolic testing
stores symbolic values and path conditions but it also keeps concrete values. After
beginning with an arbitrary input, it executes the program both concretely and
symbolically by simultaneously updating the concrete - symbolic values and the
path constraints. This approach can overcome the mentioned above problem. Dy-
namic Symbolic Execution is also necessary to deal with indirect jump while the
jump destination is an expression of symbolic values that need to be calculated
concretely. Fig. 3.5 illustrates an example of a testing function, which is difficult
to deal with Symbolic Execution. In this example, complex is a black-box func-
tion such as cryptographic function, non-linear integer, floating-point arithmetic,
or calls to kernel-mode function. Hence, it is hard to generate values for a and b

that satisfies a = complex(b).

public int foo(int a, int b){

if(a == complex(b)){

ERROR();

}

return 0;

}

Figure 3.5: An example of a difficult analysis function

However, Dynamic Symbolic Execution can solve this problem as follows:

1. Start with random values of a and b: a = 10, b = 43.

2. Execute both concretely and symbolically.

• Concrete value: if(10 == 257).

• Symbolic value: if(a == complex(b)).

Because the symbolic constraint is too complex, we simplify it by using the
concrete value of b: if(a == 257). After solving this constraint, we have a
new test case a = 257, b = 43.

3. Go back to step 1 with the new test case until all branches are exectuted.
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3.3 Existing Symbolic Execution Tools

Recently, Symbolic Execution tools for binary have been receiving a great deal of
attention. Comparing to binary Symbolic Execution, Symbolic Execution tools
for high-level programming language have a longer history when several tools have
been proposed since 2000s, e.g. jCute[14], JPF-Symbc[13], JDart[10], Acteve[1]
for Java, CREST[3] for C.

For Java Symbolic Execution tools, although it has been introduced by using
various techniques, there are two key mechanisms including:

• Bytecode instruction factory.

• Attributes associated with the program state.

These tools analyse Java source code by interpreting its bytecodes in a virtual
machine. Afterward, the instruction factory allows extending standard concrete
execution with symbolic execution. For instance, JPF-Symbc and JDart are de-
veloped based on JavaPathFinder(JPF)[8] as bytecode instruction factory while
Soot1 are the instrumentation of jCute and Acteve. Furthermore, the symbolic
information is stored in attributes associated with program data (fields, stack
operands and local variables). The approach for C is expressed in a different way
since Symbolic Execution is executed from source code rather than bytecodes like
Java. For example, CREST uses concolic testing in source code to generate test
cases.

Figure 3.6: The architecture of JDart

1https://github.com/Sable/soot
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In this study, we use JDart to generate test cases for conformance testing. The
key distinguishing feature of JDart is its modular architecture. Hence, it is easily
extensible and configurable and also can be used as a component within other tools.
Fig. 3.6 illustrates the modular architecture of JDart. It has two main modulars
including Executor for executing the analyzed program and recording symbolic
constraints, Explorer for organizing recorded path constraints to a constraint tree
and deciding the next execution.
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Chapter 4

MIPS Formal Semantics

Formal Semantics is a fundamental aspect of binary analysis methods. In recent
years, several studies were proposed with the implementation of formal semantics
such as CoDisasm, BE-PUM, KLEE-MC, MiAsm, McVeto. Unlike other archi-
tecture, MIPS does not use flags. Hence, the implementation of MIPS semantics
consists of three components including registers, memory, and stack instead of
four as usual. The execution of an instruction is considered as the transition of
the triplets of registers, memory, and stack. Furthermore, because almost IoT mal-
ware is a sequential user-mode process, we currently bypass the existence of float
points, co-processor, and privileged instructions to simplify the implementation.

Path Condition

Memory

Registers

Enviroment:

Stack

Env

Path Condition

Memory

Registers

Enviroment:

Stack

Env'

Execution ei

Figure 4.1: MIPS semantics transition
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4.1 MIPS Architecture

4.1.1 Overview

MIPS is a RISC instruction set architecture, which was first introduced in 1985.
Although there are exists multiple versions and extension, all of them are being
followed strictly by MIPS architecture requirements. In a similar way to ARM,
MIPS is a load/store architecture (or known as register-register architecture). It
means that all instructions operate only on registers, except for the load and store
instructions are used for accessing the memory. A conventional MIPS processor
contains the following main components:

$0

$31

Stack

Memory

PC

...

Figure 4.2: The main components of MIPS processors

1. Registers: is a small set of high-speed storage cells inside the CPU. MIPS
provides 32 general-purpose registers which named from $0 to $31 and PC
register:

• Register $0 is hardwired to zero and instructions could not be able to
write to it.

• Register $29 is the stack pointer register which contains the address of
the top value of the stack.

• Register $31 is the link register where the functions return its values.

• Register PC is the program counter register that holds the next executed
instruction.

2. Memory: is a physical device capable of storing information temporarily.

3. Stack: is a special religion of the memory that stores temporary information
created by functions.
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In contrast to the x86 and ARM architectures, MIPS does not have flags and
flags-sensitive instructions. Instead, it uses general registers for storing the Boolean
values of conditions. Furthermore, the MIPS instructions except for the load/store
instructions, lb, sb, lw, sw, cannot access memory directly

4.1.2 Instruction Format

MIPS instructions are divided into three types: R, I and J. The following formats
are used for the core instruction set:

• R-type: Starts with a 6-bit opcode and then three specifications for three
registers. It also consists of a shift amount fied and a function field.

• I-type: Also starts with a 6-bit opcode but it has only two registers and a
16-bit immediate value.

• J-type: follows a 6-bit opcode with a 26-bit jump target.

R opcode(6) rs(5) rt(5) rd(5) shamt(5) funct(6)

I opcode(6) rs(5) rt(5) immediate(16)

J opcode(6) address(26)

Figure 4.3: MIPS instruction formats

4.1.3 MIPS32

After spinning-out of Silicon Graphics in 1998, MIPS Technologies refocused on the
embedded market. MIPS32 was based on MIPS II with some additional features
from other previous versions. MIPS32 instruction set consists of 32-bit instruc-
tions including loads and stores, ALU, shift, multiplication and division, jump and
brach, exception.

4.2 Environment Model

An environment model of a MIPS binary program is defined as a tuple 〈R, M, S〉
where
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• R is the set of 33 registers including 32 general purpose registers and register
PC.

R = {r0, r1...r30, r31, pc}

• M is the set of stored memory locations.
M = {m0, m1...mn}

• S(⊆ M) is the set of contiguous memory locations for a stack.
S = {s0, s1...sk | k < n}

We consider that each register ri is represented by a 32-bit vector while each
memory location mi and si are represented by 8-bit vectors. In the beginning of
the execution, the register pc stores the address of next instruction while sp stores
the address of the top location of the stack. All objects in the environment model
keep their initial symbolic values until the execution of instructions.

4.3 Operational Transitions

Fig. 4.4 describes some examples of MIPS operational transitions which follow
MIPS technical documentation including addi, b, lb, or.

Rpc = n; instr(n) = addi i j im; Rj = x; |im| ≤ 216 – 1; z = x + im; z ≤ 232 – 1

〈R, M, S〉 → 〈R[pc← n + |instr(n)|; Ri = z], M, S〉
[ADDI]

Rpc = n; instr(n) = b i; Ri = x

〈R, M, S〉 → 〈R[pc← pc + x], M, S〉
[B]

Rpc = n; instr(n) = lb i j k; Rj = x; y = x + k; My = z

〈R, M, S〉 → 〈R[pc← n + |instr(n)|; Ri = z], M, S〉
[LB]

Rpc = n; instr(n) = or i j k; Rj = x; Rk = y; z = x or y

〈R, M, S〉 → 〈R[pc← n + |instr(n)|; Ri = z], M, S〉
[OR]

Figure 4.4: Some examples of MIPS operational transitions

4.4 Java Specification

We describe the formal semantics of MIPS instructions by Java methods, which
are interpreted on a Java class BitVec prepared for Corana [17]. The value of the
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BitVec class is a pair 〈bs, s〉, where bs is a variable in the BitSet class supporting
32-bit vector representation and s is a string variable that stores a symbolic value in
the BitVector theory of SMT solvers. We manually prepare 21 primitive functions
(listed below) appearing in the pseudocode description.

1. Jump Operators

• j: Jump to an address.

• jr: Jump to a stored value of a register (indirect jump)

2. Bitwise Operators

• and: Bitwise AND

• or: Bitwise OR

• xor: Bitwise XOR

• nor: Bitwise NOR

3. Arithmetic Operators

• add: Addition of two BitVec values.

• sub: Subtraction of two BitVec values.

• mul: Multiplication of two BitVec values.

• div: Division of two BitVec values.

4. IO Operators

• write: Write a BitVec value to a register.

• val: Get the BitVec value stored in a register.

5. Bit-based Operators

• signExtend: Signed extend a BitVec value.

• zeroExtend: Zero extend a BitVec value.

• concat: Concat two BitVec values.

• power: Power a BitVec values with a constant.

6. Comparable Operators

• equal: Compare two BitVec values, if they are equal, return True.
Otherwise, return False.
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• notEqual: Compare two BitVec values, if they are equal, return False.
Otherwise, return True.

• less: Compare two BitVec values, if the first value is less than the
second value, return True. Otherwise, return False.

• greaterOrEqual: Compare two BitVec values, if the first value is
greater or equal than the second value, return True. Otherwise, re-
turn False.

7. Other

• signalException: Raising an exception.

Fixed-size BitVector Theory

In this study, we propose BitVec based on using SMT format for representing path
conditions in an effective way. The details of this format can be found on SMT-
LIB website1, we introduce briefly the set of operators as follows (note that a and
b are two BitVec values):

1. Basic Bitvector Arithmetic

• Addition: (bvadd a b)

• Subtraction: (bvsub a b)

• Unary Minus: (bvneg a)

• Multiplication: (bvmul a b)

• Unsigned Remainder: (bvurem a b)

• Signed Remainder: (bvsrem a b)

• Signed Modulo: (bvsmod a b)

• Shift Left: (bvshl a b)

• Logical Shift Right: (bvlshr a b)

• Arithmetical Shift Right: (bvashr a b)

2. Bitwise Operations

• Bitwise OR: (bvor a b)

• Bitwise AND: (bvand a b)

• Bitwise NOT: (bvnot a)

1http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
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• Bitwise NAND: (bvnand a b)

• Bitwise NOR: (bvnor a b)

• Bitwise XNOR: (bvxnor a b)

3. Predicates over Bitvectors

• Unsigned Less or Equal: (bvule a b)

• Unsigned Less Than: (bvult a b)

• Unsigned Greater or Equal: (bvuge a b)

• Unsigned Greater Than: (bvugt a b)

• Signed Less or Equal: (bvsle a b)

• Signed Less Than: (bvslt a b)

• Signed Greater or Equal: (bvsge a b)

• Signed Greater Than: (bvsgt a b)
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Chapter 5

Semantics Extraction

5.1 Pseudocode Specification

Table 5.1: The specification of instruction ADDI
Format ADDI rt, rs, immediate

Purpose To add a constant to a 32-bit integer. If overflow occurs, then
trap.

Description The 16-bit signed immediate is added to the 32-bit value in GPR
rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic
overflow, the destination register is not modified and an
Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed
into GPR rt

Operation temp ← (rs[31]||rs[31..0]) + sign extend(immediate)

if temp[32] 6= temp[31] then

SignalException(IntegerOverflow)

else

rt ← sign extend(temp[31..0])

endif

The specification of MIPS instructions was collected and extracted from the
MIPS32 (release 2) instruction set manual after converting the PDF format of
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this manual to the text format. There are four main sections including format,
purpose, description and operation. Table 5.2 shows an example of the speci-
fication of instruction ADDI. Among four sections, format and operation are used
to obtain Java methods representing MIPS32 formal semantics.

5.2 Three Steps of Semantics Extraction

The semantics extraction from the MIPS32 instruction set manual consists of three
steps.

1. Convert the pdf file to a text file: After opening the pdf file by Microsoft
WORD, we observe the keywords as Format, Purpose, Description, and
Operation to divide it to the corresponding sections. By using these key-
words, we obtain these sections of each instruction. Moreover, tables of
instructions grouped by categories, which are CPU, FPU, Coprocessor, and
Privileged, are extracted to select suitable instructions. Since IoT malware
is mostly a sequential user-mode process, we target only on CPU category
MIPS32 instructions, which are 63 instructions (listed in Appendix B).

2. Format extraction: Explained in Section 5.3. This step illustrates the process
of format extraction from format section of specification to Java code.

3. Operation extraction: Explained in Section 5.4. This step shows the proce-
dure of generating Java methods by proposing a context-free grammar.

They are summarized in Fig. 5.1.

MIPS32 instruction
set manual

Instructions by
categories

127 instructions
Extract

Extract

60 instructionsSelect

60 Java methods

Convert

Figure 5.1: The overview of the specification extraction

5.3 Format Extraction

Table 5.2 shows the format section, which describes the operand and the opcodes
of an instruction. MIPS instruction formats are divided into three types, hence,
and three kinds of corresponding Java codes are prepared.

23



Table 5.2: The specification of the instruction ADDI
Format Java code
Operand rd rs rt void Operand(Character rd, Character rs,

Character rt)

Operand rt rs immediate void Operand(Character rt, Character rs,

int immediate)

Operand rs immediate void Operand(Character rs, int

immediate)

The operands rd, rs, and rt describe the values of 32-bits registers Java class
Character is adopted. The operand immediate is to store an integer and its Java
class is int class. For instance, Table 5.3 shows the corresponding Java code of
ADDI.

Table 5.3: The corresponding Java code of ADDI format
ADDI rt rs immediate void ADDI(Character rt, Character rs, int

immediate)

5.4 Operation Extraction

The operation section describes the pseudo-code. It is the most important field for
automatically extracting MIPS formal semantics and generating Java executable
code for the binary emulator of SyMIPS. However, MIPS Instruction Set document
does not supply the definition of the syntax and the semantics of the pseudo-code.
Hence, following to the automatic extraction of x86 formal semantics [11], we
manually deduced and proposed a context-free grammar including 17 rules for
parsing pseudo-code to abstract syntax trees as follows:

code: statement+ EOF;

statement: structuredStatement|simpleStatement;

simpleStatement: assignmentStatement|expression;

structuredStatement: conditionalStatement|forLoopStatement;

parameterList: expression(’,’expression)*;

assignmentStatement: <assoc=right> expression’’expression

|’(’parameterList’)’’’expression;

expression: factor

|<assoc=right> expression(’^’)expression

|expression(’||’)expression
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|expression(’’|’/’|’*’)expression

|expression(’div’|’mod’)expression

|expression(’or’|’and’|’xor’|’nor’|’&’)expression

|expression(’<<’|’>>’)expression

|expression(’+’|’-’)expression

|expression(’=’|’’|’>’|’<’|’’|’’)expression

|expression(’||’|’’|’&&’)expression

|<assoc=right>expression’=’expression;

indexing: identifier’[’expression’..’expression’]’

|identifier’[’expression’]’;

factor: funcCall

|identifier

|’(’expression’)’

|unsignedConstant

|indexing;

identifier: IDENT;

funcCall: <assoc=right> IDENT ’(’parameterList?’)’;

unsignedConstant: NUMBER;

conditionalStatement: ’if’ expression ’then’

statement+

(’elseif’ expression ’then’ statement)*

(’else’ statement)? ’endif’;

forLoopStatement: ’for’ IDENT ’in’ ’[’expression’..’expression’]’

statement

’endfor’;

SPACE: [ \t\r\n]+ -> skip ;

NUMBER: [0-9]+ ;

IDENT: [a-zA-Z_] [a-zA-Z0-9_]* ;

From these rules, we used ANTLR (ANother Tool for Language Recognition)1

to generate a parser for the pseudocode of the operation section. The abstract
syntax trees are obtained by applying the parser. After preparing primitive Java
methods, the abstract syntax trees are transferred to Java source code fragments
by the depth-first traversal. Fig. 5.2 shows the result for the ADDI instruction.

5.4.1 Detecting and selecting primitive functions

The MIPS instruction set manual also provides a list of instructions grouped by
categories including CPU, FPU, Coprocessor, and Privileged. The pseudocode
description is firstly converted to an abstract syntax tree obeying to the prepared

1https://www.antlr.org
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public void ADDI(Character rt, Character rs, int immediate){

BitVec temp = add(concat(val(rs).get(31), val(rs).get(0, 31)),

signExtend(immediate));

if(notEqual(temp.get(32), temp.get(31))){

signalException(IntegerOverflow);

} else {

write(rt,signExtend(temp.get(0, 31)));

}

}

Figure 5.2: The Java method of instruction ADDI

context-free grammar (Appendix A). Second, during the process of converting ab-
stract syntax trees to Java methods, unknown primitive functions are detected.
Fig. 5.4 shows a part of the abstract syntax tree represented the fist line temp

← (rs[31]||rs[31..0]) + sign extend(immediate) of the ADDI instruction.
Three primitive functions as +, ||, and sign extend (which are in dashed boxes)
are detected during the parsing algorithm traversal through expression and funcCall

nodes.

5.4.2 Representation of BitVector Theory

By using string variables for storing symbolic values in SMT format of BitVector
theory, the primitive functions may update symbolic values. Fig. 5.3 shows an
example of the pseudocode of a primitive function and. The symbolic values are
updated during the execution of these instructions without further human effort.

BitVec and(BitVec m, BitVec n) {

String symbolic = "(bvand "+ m.symbolic + " " + n.symbolic + ")";

BitSet concrete = m.and(n);

return new BitVec(concrete, symbolic);

}

Figure 5.3: The pseudo-code of the primitive function and
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expression

factor

← expression

)

)

0

factor

statement

31

]

unsignedConstant

expression

indexing

sign_extend

expression

expression

factor

(

expression

] identifier

factoridentifier

rs

funcCall

immediate

[

factor

(

expression

indexing

31

rs

[ ..

assignmentStatement

||

simpleStatement

factor

factor

+

expression

expression

factor

temp

unsignedConstant

expression

expression

identifier

unsignedConstant

parameterList

factor

identifier

Figure 5.4: An example of an abstract syntax tree
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Chapter 6

Conformance Testing

Software testing is a process to evaluate whether an application meets the spec-
ified requirements or not and to detect potential bugs or vulnerability to ensure
the quality of products. There are many different types of testing from manual
testing to automated testing such as unit testing, integration testing or functional
testing. In this study, we conduct the conformance testing to validate the cor-
rectness of Java generated methods by comparing the output results generated by
Java methods and a trusted MIPS emulator called MARS. This step has two main
objectives including generating test cases automatically and then performing the
conformance testing.

6.1 Test Cases Generation

To automatically generate test cases for full coverage, we applied a symbolic ex-
ecution tool based on Java PathFinder named JDart[10] on the generated Java
methods. It has been proposed in 2016 with two main goals. The primary goal
has been to build a symbolic analysis framework that is robust enough to handle
industrial-scale software. More precisely, it has to be able to execute industrial
software without crashing, deal with long execution paths and complex path con-
straints. The second goal has been to build a modular and extensible platform that
can be used for the implementation and evaluation of novel ideas in Dynamic Sym-
bolic Execution. By applying JDart on generated methods, we can automatically
obtain test cases.
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6.2 Testing Environment

Conformance testing is executed by comparing the environment of the binary
emulators between our method and MAR as a MIPS emulator. As mentioned at
section 4.2, the environment consists of three components including registers,
memory, and stack. The input and output of test cases are illustrated below:

1. Input

• Source code: Java generated methods

• Parameters: Generated by symbolic execution as mentioned at the
above section.

• Pre-Environment: the tuple 〈registers, memory, stack〉 before execut-
ing Java methods.

2. Ouput

• Post-Environment: the tuple 〈registers, memory, stack〉 after execut-
ing Java methods.

6.3 Testing Procedure

Fig. 6.1 describes the overview of conformance testing that contains two steps.

1. Apply JDart for the symbolic execution on a generated Java method, and
generate test cases to cover its all feasible branches.

2. Execute the generated Java method and the instruction on the trusted em-
ulator MARS with all generated test cases, and compare their results.

Compare

1

2

Java Generated Methods Trusted Emulator: MARS

Test Cases

JDar
t

Figure 6.1: The workflow of conformance testing

29



For instance, JDart generates two test cases of the Java method for the in-
struction ADDI. Note that 32 characters from {’0’..’9’, ’a’..’v’} are used to
represent for 32 general registers referred by rd, rs, and rt.

In the following test cases, three characters 7, d, h represent for three registers
r7, r12, r15 respectively.

• Test case 1: rt=’7’, rs=’h’, im=703.

• Test case 2: rt=’d’, rs=’h’, im=0.
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Chapter 7

Dynamic Symbolic Execution

Tool

7.1 Overview

In this section, we introduce a preliminary version of a dynamic symbolic execution
tool SyMIPS1 (Symbolic Execution for MIPS). By exploiting several well-known
methods including Capstone (as single-step disassembler) and Z32 (as a backend
SMT solver), SyMIPS traces IoT Malware and generate its control flow graph
under the presence of indirect jumps. Fig. 7.1 describes five steps of the workflow.

1. Capstone is used for the single-step disassembly to get an instruction insti

2. Interpret the instruction insti to a Java method based on prepared primitive
functions in the pseudocode.

3. Execute insti and update the environment and the path conditions.

4. Generate the control flow graph based on step 3.

5. Repeating the process until reaching either an unsupported instruction or
interrupted by timeout.

7.2 Environment Updates

SyMIPS updates the environment and the path condition when executing an in-
struction, based on the BitVec Java class and 27 primitive methods (Section 5.3).

1https://github.com/tracquangthinh/SyMIPS
2https://github.com/Z3Prover/z3
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Figure 7.1: Tracing MIPS binary by SyMIPS

For instance, the instruction AND r2, r3, r4 sets r2 by and(r3, r4) and up-
dates flags based on the primitive function and. Its updates occur only on the
three registers r2, r3 and r4.

For the BitSet value ci and the symbolic value si with i ∈ {2, 3, 4}, the
pre-environment preEnv is:

r2 : 〈c2, s2〉
r3 : 〈c3, s3〉
r4 : 〈c4, s4〉

The post-environment postEnv after executing the instruction and is:

r2 : 〈and(c3, c4), (bvand s3 s4)〉
r3 : 〈c3, s3〉
r4 : 〈c4, s4〉

while the and method is prepared in the BitSet class.

7.3 Path Conditions Generation

The path condition is updated when a conditional jump occurs. Returning to the
example above , we assume that the next instruction is beq r2 r3 offset while
offset is the destination of the jump instruction. This instruction beq compares
the contents of two registers r2 and r3, then if r2 equals to r3, the instruction
branches to the offset. The path condition of the true branch pctrue is updated as
pctrue = pctrue∧(= (bvand s3 s4) s3) while the path condition of the false branch
pcfalse is updated as pcfalse = pcfalse ∧ (not(= (bvand s3 s4) s3)). Although
the above example is quite simple, more complicated instructions like ADDI also do
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not require additional effort for updating path conditions due to the combination
of environment update and BitVec computation.

7.4 Manual Implementation

From the supporting of 21 primitive functions, we successfully generate Java meth-
ods of 63 instructions. However, the binary emulator also requires load/store
instructions. Hence, we manually implement 6 load/store instructions after ob-
serving MIPS32 Architecture Document as follows:

• lb: Load a byte value from the memory to a register.

• sb: Store a byte value from a register to the memory.

• lw: Load a word value from the memory to a register.

• sw: Store a word value from a register to the memory.

• lh: Load a half-word value from the memory to a register.

• sh: Store a half-word value from a register to the memory.

public void ADDI(Character rt, Character rs, int immediate){

if(immediate <= power(2, 16)){

BitVec temp = add(concat(val(rs).get(31), val(rs).get(0, 31)),

signExtend(immediate));

if(notEqual(temp.get(32), temp.get(31))){

signalException(IntegerOverflow);

} else {

write(rt,signExtend(temp.get(0, 31)));

}

}

}

Figure 7.2: The Java method of instruction ADDI after adding the constraint

The pseudocode section does not consist of the constraint of immediate pa-
rameter in arithmetic and logical instructions. During the process of parsing the
abstract syntax trees of MIPS32 instructions to Java methods, we detect arith-
metic and logical instructions to add the constraint into them. We also manu-
ally add the constraint |immediate| ≤ 216 into the Java methods of Operand rs

rt immediate and Operand rs immediate instructions. Fig. 7.2 shows the Java
method of the ADDI instruction after adding the constraint of immediate.
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7.5 SyMIPS versus Corana

Although SyMIPS and Corana [17] share the use of the BitVec class, there are
several differences.

1. Unlike ARM that uses the flags and the conditional suffix to implement
conditional executions, MIPS only uses general registers. Hence, the path
condition updates for MIPS32 are only on registers.

2. Due to the characteristics of natural language specifications, ARM instruc-
tions consider 32-bit general registers as the word-size values and do not
require to access single bits during its execution. Meanwhile, MIPS handles
registers in the level of bits by producing get as a primitive function. For in-
stance, the ADDI instruction uses a conditional statement to decide whether
an overflow occurs (Fig. 5.2). By using the get function, ADDI accesses the
31st and 32th single bits of the temporary variable temp.
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Chapter 8

Experiments

8.1 Semantics Extraction

From the requirements of MIPS instructions, arithmetic and logical instructions
in the forms of Operand rs rt immediate and Operand rs immediate support
only 16-bit value of immediate. This fact does not appear in the pseudocode de-
scription, but mentioned elsewhere in MIPS instruction manual. JDart may gener-
ate the value of immediate which its absolute value is larger than 216 (|immediate| >
216). We simply add the constraint |immediate| ≤ 216 into the Java methods of
Operand rs rt immediate and Operand rs immediate instructions. All of 63
instructions have passed the conformance testing after adding the constraint of
immediate.

8.2 Handling Jumps by SyMIPS

Although IoT malware rarely uses complex obfuscation techniques like self-modifying
loops, identifying the destination of jumps is an essential task for understanding
the control structure of IoT malware.

8.2.1 Indirect Jumps

Fig. 8.1 shows an example of indirect jump in ELF:Tsunami-BE taken from ViruSign.
SyMIPS successfully finds the destination 0x401eb0 of the indirect jump at 0x400ee8
by concolic testing.
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0x400edc lw t9, -0x7fe4(gp)

0x400ee0 nop

0x400ee4 addiu t9, t9, 0xffc

0x400ee8 jalr t9

0x400eec nop

0x400ef0 lw gp, 0x10(sp)

(a) Disassemble result by Capstone

0x400edc lw t9, -0x7fe4(gp)

0x400ee0 nop

0x400ee4 addiu t9, t9, 0xffc

0x400ee8 jalr t9

0x401eb0 mflo a0

0x401eb4 lui v0, 0xb8c3

(b) Trace of the indirect jump by SyMIPS

Figure 8.1: An example of indirect jump from IoT malware

8.2.2 Conditional Jumps

The main task of the symbolic execution is to judge the feasibility of branches
in a conditional jump. Fig. 8.2a shows a conditional jump bnez at 0x400190

in ELF:DDoS-Y collected from VirusShare1. SyMIPS judges both true and false
branches are satisfiable, and when the condition is true, it jumps to 0x400208.

Fig. 8.2b shows an example of another conditional jump beqz at 0x4004ec

in ELF:DDoS-Y taken from ViruSign. SyMIPS detects that the true branch is
unsatisfiable, and only the false branch is executed. Thus, the next instruction
from 0x4004ec always goes to 0x4004f0 and the code fragment starting at the
jump destination 0x40049c is dead code.

0x400188 lbu v0, -0x2ca0(s1)

0x40018c nop

0x400190 bnez v0, 0x400208

0x400208 lw ra, 0x20(sp)

0x40020c lw s1, 0x1c(sp)

(a) Both true and false branches are SAT

0x4004e8 slti v0, v0, 2

0x4004ec beqz v0, 0x40049c

0x4004f0 nop

0x4004f4 lw v1, 0x44(fp)

0x4004f8 addiu v0, zero, 1

(b) The true branch is UNSAT

Figure 8.2: Feasibility checking of conditional jumps by SyMIPS

8.3 SyMIPS Performance

We perform experiments on MIPS32 IoT malware (taken from ViruSign) to see
the performance of SyMIPS. Note that current SyMIPS implementation is quite
preliminary, and no smart optimizations are applied. We execute on 3219 samples

1https://www.virusshare.com
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on Ubuntu 18.04 with Intel Core i5-6200U CPU, 2.30GHz and 8GB. The results
are summarized in Table 8.1.

Table 8.1: The performance of SyMIPS on IoT malware
Types of Executions Number of samples

Finished 2725

Interrupted
Out of Memory 415

Jump to Kernel Space/
System Calls

79

Total 3219
Average Size 178.8 KB

Note that system calls or jump to kernel space raise an exception. First, the
processor set the cause of exceptions into register $13. Then it changes user mode
to kernel mode and disables further interrupts. Afterward, the processor saves
current PC as the return address to return when done handling the exception and
then, jump to exception handler code.

Table 8.2 shows the statistical result of execution time of SyMIPS on 3219
malware:

Table 8.2: The execution time of SyMIPS on IoT malware
Ranges(seconds) Number of Samples

0 - 10 1658
10 - 20 941
20 - 30 155
30 - 40 36
40 - 50 154
50 - 60 74
>60 201

Average Time: 17.46 seconds
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Chapter 9

Limitations

9.1 Exception Handler

From MIPS32 Architecture Document1, there are four sets of causes for an excep-
tion in MIPS32:

1. Caused by hardware malfunctioning: e.g. machine check or bus error
on a load or store instruction, or instruction fetch.

2. Caused by external causes (to the processor): e.g. hardware inter-
rupts.

3. Caused by instruction problems: e.g. address error such as jumping to
Kernel address space, or integer overflow.

4. Caused by executions of special instructions: e.g. system calls or
break.

Although there are several causes for an exception, we currently observe that
only case 3 and 4 occur in IoT malware samples. However, the implementation
of SyMIPS does not support the exception handler for catching exceptions like
system calls or jump to kernel spaces. For these cases, SyMIPS currently termi-
nates the execution and returns the output. Figure 9.1 shows an example of an
interrupted execution caused by syscall instruction.

To request a service, programs load the system call code into register $v0 and
the arguments into registers $a0, $a1, $a2, $a3. System calls that return values
put their result in register $v0. In the above example, 0xfa5 is the system code
of opening a file.

1https://www.mips.com/products/architectures/mips32-2/
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0x40426c addiu sp, sp, -0x20

0x404270 sw ra, 0x1c(sp)

0x404274 sw s0, 0x18(sp)

0x404278 sw gp, 0x10(sp)

0x40427c addiu v0, zero, 0xfa5

0x404280 syscall

Figure 9.1: An interrupted execution caused by syscall

9.2 Indirect Jumps to the Destination Stored in

Memory

In present, we do experiments on IoT malware of Linux OS. The format of these
samples is ELF, which is the abbreviation for Executable and Linkable Format and
defines the structure for binaries, libraries, and core files. The formal specifica-
tion allows the operating system to interpreter its underlying machine instructions
correctly. ELF files are typically the output of a compiler or linker and are a
binary format. ELF consists of two main sections including .text and .data.
While .text section contains executable code, .data stores initialized data. From
the experiments, we observe that IoT malware execute indirect jumps with the
destination stored in the memory. For instance, Fig. 9.2 depicts an example of
indirect jumps with destination stored in the memory from ELF:Tsunami-BE. At
0x400edc, the jump address is loaded into register t9 from memory at 0x44577c,
which belongs to .data section, before executing an indirect jump at 0x400ee8.

0x400ed0 lui gp, 5

0x400ed4 addiu gp, gp, -0x3770

0x400ed8 addu gp, gp, ra

0x400edc lw t9, -0x7fe4(gp)

0x400ee0 nop

0x400ee4 addiu t9, t9, 0xffc

0x400ee8 jalr t9

0x401004 addu gp, gp, t9

0x401008 addiu sp, sp, -0x20

Figure 9.2: An example of indirect jumps with destination stored in the memory

In current implementation, SyMIPS load .data section into the memory by
using java-binutils2 - a Java library. Otherwise, MARS does not support loading

2https://github.com/jawi/java-binutils
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.data section into the memory. Hence, it will terminate when an load instruction
from .data section is executed.

However, this library can not read binary format successfully in some samples.
It leads to the inaccurate destination address of indirect jumps in SyMIPS. Fig.
9.3 illustrates an example of an inaccurate destination address of indirect jump
traced by SyMIPS due to failed binary format reading form ELF:Mirai-MLC. At
0x401898, the word at 0x451c904 belonged to .data section is loaded into register
r9. However, SyMIPS can not read this section successfully and simply assigns 0
to t9. It leads to the inaccurate indirect jump to the entry point of the execution.

0x401890 addiu gp, gp, -0x7f9c

0x401894 addu gp, gp, ra

0x401898 lw t9, -0x8fe0(gp)

0x40189c nop

0x4018a0 jalr t9

Figure 9.3: An example of an inaccurate jump

9.3 Out of Memory

SyMIPS or general Dynamic Symbolic Execution tools require a huge amount of
memory for tracing binary files. Whenever SyMIPS executes a branch instruction,
it has to back up the current environment by using a stack to roll back in further
steps. Figure 9.4 describes the backup mechanism of SyMIPS on true branches.
Because SyMIPS uses Depth First Search algorithm for tracing, it may lead to the
out of memory error since SyMIPS has to store many environments in the stack.

if(Z3Solver.checkSAT(trueCond) != null){

tracing(currentAddress, jumpAddress);

Logs.infoLn("- True branch is SAT. Go to " +

Arithmetic.intToHex(jumpAddress));

stack.push(emulator.getEnv().clone());

exec(emulator, nodes, jumpAddress, trueCond);

emulator = new MIPS32(stack.pop());

}

Figure 9.4: The mechanism of environment backup of SyMIPS on true branches
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

We proposed a semi-automatic approach for extracting the formal semantics of
MIPS32 instructions from MIPS instruction manual. We also introduced a pre-
liminary version of a dynamic symbolic execution tool SyMIPS. By performing
experiments on 3219 IoT malware collected from ViruSign, and SyMIPS success-
fully traced 2804 samples. Although the current implementation is preliminary,
SyMIPS found the destinations of indirect jumps by concolic testing and discov-
ers dead conditional branches in some samples. This thesis has contributed three
essential objects:

1. Semantics Extraction: By proposing a context-free grammar for pseu-
docode of MIPS instructions, we generated successfully Java executable code
of 63 CPU instructions from its pseudocode in MIPS32 instruction set man-
ual. Currently, we ignored float points, co-processor, and privileged instruc-
tions to simplify the implementation.

2. Path Conditions Generation: The path conditions are updated during
the execution of instructions under the support of primitive methods without
extra-human efforts.

3. SyMIPS - Dynamic Symbolic Execution Tool: We utilized Java gener-
ated methods to develop SyMIPS and did an experiment on more than 3000
malware collected from ViruSign to observe the performance of SyMIPS.
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10.2 Future Work

Although most IoT malware is a sequential user-mode process, it is necessary to
cover remain instructions since the total number of MIPS instructions is not large.
Hence, in the future, we intend to implement float points, co-processor, and privi-
leged instructions to enhance the Dynamic Symbolic Execution tool. Furthermore,
there are two future directions as follows:

1. Cover other MIPS platforms: As can be seen, MIPS Architecture Web-
site also provides the instruction set manual of other platforms such as
microMIPS or nanoMIPS. These documents have the same structures as
MIPS32 manual. Hence, the process of formal semantics extractions can be
conducted in the same manner.

2. Extend to other architectures: We have developed three methods for
three different architectures including BE-PUM for x86, Corana for ARM,
and SyMIPS for MIPS. In the future, it is possible to target to new archi-
tectures, e.g. SPARC.

For this study, our plans are:

1. Optimizing and maintaining Dynamic Symbolic Execution tool SyMIPS to
reduce memory consumption and execution time.

2. Doing more experiments on IoT malware to observe and detect its charac-
teristics.

3. Generalizing current implementation to other platforms.
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Appendix

Instruction Description
ADD Add Word
ADDI Add Immediate Word

ADDIU Add Immediate Unsigned Word
ADDU Add Unsigned Word
CLO Count Leading Ones in Word
CLZ Count Leading Zeros in Word
DIV Divide Word

DIVU Divide Unsigned Word
MADD Multiply and Add Word to Hi, Lo

MADDU Multiply and Add Unsigned Word to Hi, Lo
MSUB Multiply and Subtract Word to Hi, Lo

MSUBU Multiply and Subtract Unsigned Word to Hi, Lo
MUL Multiply Word to GPR

MULT Multiply Word
MULTU Multiply Unsigned Word

SEB Sign-Extend Byte
SEH Sign-Extend Halftword
SLT Set on Less Than
SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned
SLTU Set on Less Than Unsigned
SUB Subtract Word

SUBU Subtract Unsigned Word
NOP No Operation

SSNOP Superscalar No Operation
AND And
ANDI And Immediate
LUI Load Upper Immediate
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NOR Not Or
OR Or
ORI Or Immediate
XOR Exclusive Or
XORI Exclusive Or Immediate
EXT Extract Bit Field
INS Insert Bit Field

WSBH Word Swap Bytes Within Halfwords
MFHI Move From HI Register
MFLO Move From LO Register
MOVN Move Conditional on Not Zero
MOVZ Move Conditional on Zero
MTHI Move To HI Register
MTLO Move To LO Register
ROTR Rotate Word Right

ROTRV Rotate Word Right Variable
SLL Shift Word Left Logical

SLLV Shift Word Left Logical Variable
SRA Shift Word Right Arithmetic

SRAV Shift Word Right Arithmetic Variable
SRL Shift Word Right Logical

SRLV Shift Word Right Logical Variable
BREAK Shift Word Right Logical Variable

TEQ Trap if Equal
TEQI Trap if Equal Immediate
TGE Trap if Greater or Equal
TGEI Trap if Greater of Equal Immediate

TGEIU Trap if Greater or Equal Immediate Unsigned
TGEU Trap if Greater or Equal Unsigned
TLT Trap if Less Than
TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned
TLTU Trap if Less Than Unsigned
TNE Trap if Not Equal
TNEI Trap if Not Equal Immediate
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