
Master’s Thesis

Towards x86 Instruction Set Emulation in Java via
Project-based Text-to-Code Generation using Reinforcement

Learning

2210422 TRAN, Thu Thi Anh

Supervisor Prof. Mizuhito Ogawa
Main Examiner Prof. Mizuhito Ogawa
Examiners Prof. Nguyen Le Minh

Prof. Kiyofumi Tanaka
Prof. Naoya Inoue

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

September, 2024

Abstract

Malware analysis by formal methods using Control Flow Graphs (CFGs) has been
proved to be more effective than conventional signature-based strategies. To recon-
struct a CFG of a given program, Dynamic Symbolic Execution (DSE) techniques
are often used. The implementation of a DSE tool must strictly comply with the
specifications of its designated architecture - the Instruction Set Architecture (ISA)
manual. As there is a number of computer processor families with each has several
variations and editions, fully manual DSE tools construction certainly demands ex-
tensive engineering work. To help reduce human effort, tasks such as environment
emulation and instruction set emulation can be semi/fully automated with the help
of natural language processing techniques.

The semi-automated approach of such tasks includes two steps: extracting semantics
from natural language text of the ISA manual and mapping them into a prepared
code template tailored to the platform that constructs the DSE tool. Two notable
DSE tools which are BEPUM (Binary Emulation for PUshdown Model) for x86 archi-
tecture and CORANA for ARM architecture employs semi-automatic instruction set
emulation. It is reported that BE-PUM successfully generates Java code implemen-
tation for 56.41% of 530 selected x86 instructions and CORANA scores at 63.72%
of 1039 ARM - Cortex M instructions in 5 variations. While achieving promising
emulation results, this approach still requires manual preparation of both interpre-
tation rules for semantic extraction and project-based code templates. Although the
current progress of BE-PUM and CORANA shows that the amount of human effort
spent on the manual preparation is minimal compared to the traditional workload, it
is evidence that to yield higher results than those does demand greater human labor.

The fully automated approach eliminates the need for rule preparation, concentrating
instead on end-to-end text-to-code generation. In this study, we explore the feasibility
of this approach by developing CoDeb system which aims at applying reinforcement
learning to large language models for fully-automatic emulation of x86 instruction
set based on its description in natural language, utilizing feedback from compiler and
the existing Java codebase of BE-PUM project. As a result, the performance of this
method would not be bounded by human effort. However, the quality of the automat-
ically generated codes must meet standard requirements, including syntactical and
semantic correctness.

The scope of our study focuses on ensuring project-level syntactical correctness via
successful compilation. This requires that the generated code is valid within the
project-level context of BE-PUM, meaning it must correctly utilize the existing code
base, including function calls, variable names, and data types. In our work, we
adopt two generative models, one acts as a code writer (Coder) and the other as
a code debugger (Debugger), hence the name CoDeb. Additionally, the code base
knowledge of BE-PUM project is built into separate vector database which serves as
syntax references for the generative models. To eliminate the need for manual work
spent on preparing labelled dataset or coding examples, we approach via almost-zero-
shot generation by preparing a small code template and employing a set of rule-based
feedback and compiler feedback to help iteratively improve the generation through
reinforcement learning with Proximal Policy Optimization. Out of 200 selected x86
instructions, CoDeb’s best attempt successfully generates project-level compilable

code for 20 instructions, achieving a 10% success rate. Due to time and computing
resource constraints, only this attempt (among other experimental trials) completed
a total of 1,147 instructions, achieving a 14.39% success rate with 165 successfully
compiled instructions. Compared to the baseline of semi-automatic approaches, our
work, though with modest results, shows promising potential for application and
adaptability.

Keywords — Project-level Text-to-Code Generation, x86 Instruction Set Emula-
tion, Reinforcement Learning, Rule-based Feedback, Compiler Feedback, CodeWriter,
Code Debugger, Knowledge base.

2

Acknowledgement

First and foremost, I would like to express my heartfelt gratitude to Professor Mizuhito
Ogawa for his exceptional guidance and support throughout my master years at Japan
Advanced Institute of Science and Technology. His deep knowledge, thoughtful ad-
vice, and constructive feedback have significantly shaped the direction of my work.
I am truly grateful for the time he has invested in helping me navigate challenges.
Working under his supervision has been a rewarding experience; not only has he
inspired me to pursue further academic career, but he has also shown me how to
be better at approaching it, from thinking critically to tackling problems. I deeply
appreciate his contributions to my growth as a scholar.

I wish to express my sincere thanks to my second supervisor, Professor Naoya Inoue,
for his insightful advice and thoughtful guidance on the theme of my work. His
insights have been instrumental in shaping and refining my research.

I would like to extend special thanks to my minor research supervisor, Professor
Nguyen Le Minh, for his guidance on the general theme of natural language process-
ing. His insights into the current state of the field have been incredibly valuable.

I would especially like to express my appreciation to my seniors and friends. My
special thanks go to my lab members, Mrs. Nguyen Thi Van Anh, Mr. Pham Thanh
Hung, Ms. Nguyen Thi Hai Yen, Mr. Kosuke Udatsu, and Mr. Nguyen The Hung for
the wonderful times we shared in both our studies and daily life. In particular, Mrs.
Nguyen Thi Van Anh has consistently provided me with invaluable help and advice.
I am also grateful to my group of friends who have shared memorable experiences
with me when we went scaling mountains together.

Last but not least, my family is my greatest source of motivation. I deeply thank
them for always standing by my side and encouraging me to keep moving forward.

1

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Related Work . 6
1.4 Contribution . 7
1.5 Thesis Outline . 8

2 X86 Architecture and BE-PUM 9
2.1 X86 Architecture . 9

2.1.1 X86 Basic Execution Environment 9
2.1.2 X86 Instruction Set and Its Specifications 12

2.2 BE-PUM . 13
2.2.1 BE-PUM Architecture . 15
2.2.2 BE-PUM Code Base . 15

3 Language Model for Text Generation 19
3.1 Language Modeling . 19

3.1.1 Masked Language Model . 20
3.1.2 Causal Language Model . 21

3.2 The Task of Text Generation . 22
3.2.1 Text Generation Basics . 22
3.2.2 Decoding Procedure in Text Generation 24

3.3 Efficient Fine-tuning Techniques for Large Language Models 25
3.3.1 Quantization . 25
3.3.2 Low-rank Adaptation . 27
3.3.3 Technical Usage of Efficient Fine-tuning Techniques 28

4 Reinforcement Learning with Proximal Policy Optimization 31
4.1 Reinforcement Learning Basics . 31

4.1.1 Reinforcement Learning in Machine Learning Hierarchy 31
4.1.2 Elements of Reinforcement Learning 32
4.1.3 An Example . 34

4.2 Proximal Policy Optimization . 36

5 Implementation 40
5.1 CoDeb System Overview . 40
5.2 Description on Input and Output . 40

5.2.1 Input . 40
5.2.2 Output . 42

2

5.3 Code Writer . 42
5.3.1 Model Construction . 42
5.3.2 Response Format . 42
5.3.3 Prompt Construction . 43

5.4 Reward Function . 46
5.4.1 Response Format Checking . 46
5.4.2 Static Syntactic Checking . 47
5.4.3 Compiler Checking . 48

5.5 Code Debugger . 48
5.5.1 Model Construction . 48
5.5.2 Prompt Construction . 50

5.6 BEPUM-KB . 52
5.6.1 Collection of BE-PUM’s Project-level Context 52
5.6.2 Code Embedding with CodeBERT 53
5.6.3 Vector Database Construction 54

6 Experiments and Results 57
6.1 Experiment Setup . 57
6.2 Datasets . 58
6.3 Validation Metrics . 58
6.4 Results . 60

6.4.1 Static-syntactical Correctness 60
6.4.2 Project-level Compilation Correctness 63
6.4.3 Supplementary Results . 68

7 Discussion 71
7.1 Feasibility of CoDeb System . 71
7.2 Issue of Constrained Decoding . 71
7.3 Trade-off between Ensuring Syntactical Constraint and Semantics . . 72
7.4 Issue of Preserving Improvement in Iterative Code Generation 72
7.5 Applicability of Chain-of-Thought Prompting 73

8 Conclusion 74
8.1 The Effectiveness of CoDeb System 74
8.2 The Limitation of CoDeb System . 74
8.3 Future Directions . 75

A Policy Gradient Theorem 76

B Demonstration of Results 79
B.1 Compilable Generated Code Files . 79
B.2 A Failed Case of Iterative Code Generation 83

List of Figures

1.1 Simplified overview of our CoDeb system in terms of message commu-
nication. 5

2.1 x86 General-purpose registers with bit lengths. 10
2.2 EFLAGS Register . 11
2.3 BE-PUM architecture. 16
2.4 Binary emulation in BE-PUM . 16
2.5 Components involved in the implementation of x86 instruction. 17

3.1 Matrix-vector multiplication of neural network accelerators. 26
3.2 Injection of Low-Rank Adaptation into pre-trained weight. 28
3.3 Machine learning research with HuggingFace ecosystem. 29

4.1 An example of state-action-reward exploration. 35
4.2 Clipping effect on Jclip(θ). 38

5.1 CoDeb system. 41

6.1 Result of Static Syntactically Checking for Initial Code Generation and
Iterative Code Generation. 61

6.2 Accumulative number of static-syntactically correct instructions over
Initial Code Generation’s loops. 62

6.3 Example on generation differences between GPU A40 and GPU A100. 64
6.4 Number of successfully compiled generated code files in BE-PUM. . . 65
6.5 Effectiveness of code correction in Iterative Code Generation. 66
6.6 Number of Improvements and Deteriorations per debug iteration. . . 68

B.1 Successfully compiled Java implementation of instruction CMOVNGE
in experiment Default-0. 80

B.2 Compilable Java implementation for instruction NOP and DAA. . . . 81

List of Tables

2.1 Information of x86 instruction AAM. 14

5.1 Samples of code description obtained from ChatGPT-3.5-Turbo. . . . 55
5.2 Samples of code description obtained from CodeLlama-2-34b-Instruct. 56

6.1 Results on SSPR and SSCIR metrics. 60
6.2 Results on CPR and CIR metrics. 63
6.3 Results on FEIR and FEDR metrics. 66
6.4 Estimated number of the Code Writer’s responses needed for obtaining

one Improvement in Iterative Code Generation. 67
6.5 CodeBLEU between Default-0 and semi-automatic approach. 70

Chapter 1

Introduction

1.1 Motivation

The central focus of our study is to apply reinforcement learning to large language
models for fully automated project-level text-to-code generation, utilizing compiler
feedback and an existing project’s code base. This research stems from the essen-
tial need to minimize human effort in developing large-scale projects for malware
analysis tools. This section outlines our motivation, beginning with the demand for
automation in malware analysis and leading to the rationale behind our proposal.

Malware (malicious software) is a broad term for software created by cyber-criminals
to exploit computer system’s vulnerabilities, either to damage the system or gain
unauthorized access to its data. Malware includes several types, such as viruses,
spyware, trojans, and ransomware. These threats can lead to severe consequences,
including data breaches and system failures. One of the largest and most impactful
malware incidents is the WannaCry ransomware attack of May 2017 1. This global
cyber-attack affected over 200,000 computers in 150 countries. WannaCry encrypted
files on affected Microsoft Windows computers, and demands Bitcoin ransoms for
decryption keys. It disrupted both private users and major organizations including
hospitals, schools and government establishments. The incident, along with vast
amount of cyber-attacks over the past years, poses a dire need for early prevention
methods against malware.

Malware analysis is one of the preemptive prevention techniques that includes mal-
ware classification and detection. Surveys [1, 2] provides an overview of various mal-
ware analysis techniques starting from conventional static analysis with non-executed
code examination, to dynamic, hybrid analysis and most recently, machine learning
methods. With the evolution of malware, static analysis such as signature-based
anti-virus tools has now fallen behind because techniques like code obfuscation and
encryption can by-pass static checking. Meanwhile, dynamic analysis and its hybrid
version are more preferred. By analysing through the dynamic execution of malware
in contained and controlled environments, they are more robust and accurate com-
pared to the traditional solutions. One of the dynamic analysis tools that is developed
in our laboratory is BE-PUM (Binary Emulation for PUshdown Model) [3]. BE-PUM
is a binary analyzer designed for x86 malware. It employs Dynamic Symbolic Execu-

1https://www.malwarebytes.com/wannacry

1

tion (DSE) to reconstruct the malware’s precise Control Flow Graph (CFG), which
can be then used to accurately trace software’s behaviors.

Since a DSE tool must be tailored to its target computer processor architecture such
as ARM, x86, and MIPS, being a symbolic execution tool for x86 architecture, BE-
PUM strictly requires the emulation of the processor’s instruction set in order to
explore execution paths and construct the CFGs. The emulation of the x86 instruc-
tions involves describing their semantics in Java - the main programming language
that is used in the development of BE-PUM project. There are over a thousand
x86 instructions and their variants. Although working with malware involves non-
floating-point instructions, manually implementing these instructions still requires a
substantial amount of human effort and resources. The typical implement process
comprises parsing through the Instruction Set Architecture (ISA) manual to gasp the
conceptual model of processor’s environment, rules and operations. Then from such
description in natural language, via the programming language used in the DSE devel-
opment project such as Java in our case, the human developer describes the semantics
of the instructions, organizes the code files, and builds tests to verify the implementa-
tion’s correctness. Hence, we can see that emulating the instruction set alone imposes
a significant overhead and consumes considerable time that could otherwise be spent
on the main purpose which is to develop a DSE tool.

Nowadays, with the rapid progress of automatic text-to-code generation techniques,
it is reasonable to dedicate the emulation stage to these methods. Along with the
history of natural language processing evolution, there are two major approaches:
semi-automatic and fully end-to-end automatic text-to-code generation.

Semi-automatic text-to-code generation. The previous code base of BE-PUM
[4] has already included semi-automatic instruction set emulation in which the au-
thors devise grammar rules of the x86 instruction set’s pseudo-code and map them
to the grammar of Java, which is eventually used to generate Java codes. Addition-
ally, sentence similarity measurement through TF-IDF (Term Frequency - Inverse
Document Frequency) is used to assess flag update cases. It is reported that this
method successfully generates Java code implementation for 56.41% of 530 selected
x86 instructions. Another notable DSE project employing a semi-automatic method
is CORANA, designed for the ARM (Advanced RISC Machine) architecture [5]. The
authors extract semantics of ARM instructions from natural language text in the ISA
manual via syntax parsing and template mapping. The code templates are manually
prepared and tailored to the code project that constructs the DSE tool. The solution
is able to cover 63.72% of 1039 ARM - Cortex M instructions in 5 variations. While
achieving promising emulation results, this approach still requires manual preparation
of 35 initial functions and 228 rewrite rules. In conclusion, the current progress of both
BE-PUM and CORANA shows that the amount of human effort spent on the manual
preparation is indeed minimal compared to the traditional workload. However, it is
evident that to achieve better results would require significantly more human effort.

Fully-automatic text-to-code generation. Different from the aforementioned
approach, the fully automated approach removes intermediate rule preparation and
directly transforms the natural text input into programmable codes. The backbone of
these methods is often machine learning models. Text-to-code generation is claimed to
obtain impressive results with the current state of large language models [6], however,
such results are only of function-level generation or file-level generation where all
variables and methods are self-contained within the said function or file. In practice,

2

software development comes with large and complex code base such as which of BE-
PUM, it thus renders function-level or file-level generation insufficient. Additionally,
to enable project-level generation, the context of the code base should be supplied
to the generative model, through a knowledge base for instance. Unlike text-to-code
models developed through supervised learning, models that depend on feedback from
standard software programming verification methods like compilation and testing are
more advantageous. This is because they eliminate the need for labeled datasets,
which are often labor-intensive to create. Consequently, these models can be framed
as reinforcement learning problems.

Our target. Given the circumstances, we pursue the latter approach - fully-automatic
project-based text-to-code generation for the emulation of x86 instruction set in BE-
PUM. Upholding the goal of reducing human labor, we utilize automatic verification
from one of the software programming processes which is code compilation, hence,
reinforcement learning on large language models is needed. In a bigger picture, our
theme is to generate executable codes, especially on project-level, from a given well-
defined software specification in natural language.

1.2 Problem Statement

The ISA manuals are technical documents that describe the architecture and behavior
of a computer’s instruction set. Different from casual text, the language used in these
manuals has distinct characteristics to ensure clarity, precision, and unambiguity.
These characteristics include:

1. Self-contained knowledge: Targeting at engineers, researchers and students, ISA
manuals provide all the necessary information to understand and work with a
computer’s instruction set independently.

2. Technical precision: ISA manuals use precise definitions and formal language
to clearly describe each instruction’s syntax and semantics and thus avoids
ambiguity.

3. Highly-hierarchical structure: ISA manuals organize information into several
levels of details and categories. As such, this leads to frequent cross-references
between sections.

4. Instructional sentences: Especially for the instruction description, each sen-
tence concretely describes a step of the operation. Pseudo-codes are optionally
provided.

Property #1 makes automatic emulation of instruction set possible as its specifica-
tion can be sufficiently retrieved from a single source. Properties # 2 and #4 makes
aforementioned semi-automatic approaches feasible and thus, it is promising for fully-
automatic methods. However, property #3 makes it hard for retrieving natural lan-
guage description into a whole text body. Additionally, for property #4, it is not
always the case that pseudo-codes are guaranteed to be included in every ISA man-
ual. Despite the natural language descriptions, having a pseudo-code section is more
advantageous as it closely resembles actual code implementation. However, pseudo-
code of each instruction is not self-contained because to enable code re-usability, a
group of steps may be packed into a separate function. These functions are often
documented in other sections of the manual or may not be documented at all as

3

pointed out by [4] for x86 case. Therefore, generating instruction’s code implementa-
tion should not be relied solely on the availability of pseudo-codes. As such, a natural
language text-to-code solution has higher degree of generalization and hence, is more
preferred.

Our project-based text-to-code generation problem is stated as follows:

• Inputs:

– Let x ∈ D is the description of each x86 instruction in natural language
which includes a text sequence describing its operation and flag update.
D is the finite set consists of selected instructions.

– Let x′ ∈ TBE-PUM is the text sequence of a prepared code template tailored
to the code context of project BE-PUM. The template is used with two
purposes: 1) To give sample code snippets on retrieving program’s vari-
ables and 2) To be a main frame of a code file that is to be completed
by the system. With the template be instantiated for each instruction by
simple string substitution x′ = MakeTemplate(x), TBE-PUM is the finite set
of all involved templates.

• Output: Let y ∈ Y be the token sequence for the content generated by the
system, Y is finite. The desired characteristic of y is that it is successfully
compiled, in another word, it should pass Java compiler (Javac) without any
errors.

• Hence, our system CoDeb is as follows:

y = CoDeb(x,x′, Tinit, Titer)

where Tinit defines the maximum number of times the system can attempt to
write code and Titer defines the maximum number of debugging iterations that
the system is allowed to fix its generated codes.

Taking an inspiration from Pair Programming — a collaborative practice where two
developers work together on the same code, CoDeb system employs two large language
models for the positions of Code Writer and Code Debugger. The Code Writer is
responsible for code creation, while the Code Debugger focuses on identifying and
fixing errors. The flow of components within the system resembles how the two
programmers having a conversation on writing codes, as illustrated in Figure 1.1.
The figure is a simplification of the CoDeb system, highlighting two generative models
exchanging messages via natural language sequences. The main flow of CoDeb is as
follows:

• The first code generation of the Code Writer is called Initial Code Generation.
This stage allows the Code Writer to attempt at producing a complete Java
code file for the given input within a number of trials.

• The Java code file is then passed into a Reward Function to obtain feedback
from multiple checking stages. The result is called Compiler feedback, consisting
a scalar reward score and compilation messages.

• The Code Debugger looks into the compilation error in the feedback and the
code written by the Code Writer to provide guidance for code correction. This
includes an explanation and a suggestion drawn from knowledge base BEPUM-
KB to fix the error.

4

Figure 1.1: Simplified overview of our CoDeb system in terms of message communi-
cation for producing code implementation for instruction FDIVP.

5

• Receiving the guidance from the Code Debugger, the Code Writer produces
another Java code file which is its attempt to fix the said error. This starts a
new iteration in the Iterative Code Generation stage.

When any of the terminating conditions is met, either the Java code file is compilable
in BE-PUM project or the Code Writer uses up all of the allowed iterations, the
current answer of the Code Writer is the final output of the system CoDeb.

The above explanation presents the flow of operation. For the large language model
slots, currently we use CodeLlama-7b-Instruct-hf. For the construction of the sys-
tem, reinforcement learning is involved in fine-tuning the two generative components.
We choose Proximal Policy Optimization (PPO) to optimize them. This learning
scheme makes use of the numerical value of the Compiler feedback. Additionally,
typical fine-tuning techniques for large language models are also employed, including
b-bit quantization [7] and Low-rank Adaptation (LoRA) [8]. The typical workflow of
reinforcement fine-tuning generative models often includes a supervised fine-tuning
(SFT) step which requires an amount of labeled data, to govern the output format.
As our work aims at adhering to practical scenarios of programming where there is no
sample codes provided beforehand, we instead remove SFT step by crafting a short
code template and incorporating the checking on output format as criteria used in
the Reward Function. Hence, our problem can be framed as an almost zero-shot
text-to-code generation as no sample program is demonstrated but rather just the
core frame of the code file.

Difficulties. As an initial attempt to tackle instruction emulation using generative
large language models, CoDeb faces the challenge of constrained decoding [9]. In ad-
dition to that, being a stateless system where past code correction activities are not
retained, the correct output of CoDeb is not progressive kept throughout iterations.
Hence, its results are lower compared to which of the semi-automatic approaches.
Other factors, such as time constraints and limited computing resources, also con-
tribute to the situation.

Achievements. We experiment CoDeb with several different configurations. Given
the situation and said difficulties, CoDeb’s best effort successfully translates 20 out
of 200 selected x86 instructions into project-compilable code, yielding a 10% success
rate. Due to the limitation of time and resources, only one experiment, which is the
above best-effort case, is able to complete a full dataset of 1147 x86 instruction. In
such case, CoDeb produces 165 compilable codes, resulting in a 14.39% success rate.
Compared to traditional semi-automatic methods, these results present the potential
and flexibility of our approach.

1.3 Related Work

There have been numerous research on this topic achieving state-of-the-art results
with respect to standard benchmark (e.g: CONALA [10], CodeXGLUE [11], APPS
[12]) for code generation. For instance, the closest work that shares the same idea
of using compiler feedback to perform reinforcement fine-tuning code generation is
Bi et al. [13]. The work focuses on Python code generation from natural language
description. To build the iterative code refinement process, the authors prepare a
SQL vector database of error messages from compiler and the corresponding project
context (code fragments) related to such errors. The limitation of the solution includes

6

two major points: 1) The preparation of possible compilation errors may not cover
all cases and hence may not generalize well to unseen cases in practice; 2) To query
into the SQL database of pre-defined errors, the query string must be generated in
runtime by ChatGPT-v2 which is a commercial model.

Another work that shares the idea of iterative code generation using two trainable
models is CodeRL [14]. CodeRL is a framework for program synthesis that uses
pre-trained language models and deep reinforcement learning. More specifically, the
code-generating language model is treated as an actor network, while the other is
used as a critic network to evaluate the functional correctness of the generated pro-
grams and provide dense feedback signals to the actor. Different from our approach,
the second model other than the code generator which is the critic model, is trained
through supervised learning as an error predictor rather than a code debugger as ours.
In training time, the critic model receives problem definitions and ground-truth pro-
grams to learn to predict one of four possible unit tests’ outcomes: {CompileError,
RuntimeError, FailedTest, PassedTest}. The probability of a specific unit test
outcome from the four possible ones is then used to influence the training of the ac-
tor model. As probability value is used as feedback for the actor, it is called dense
feedback signal.

The literature provides strong evidence supporting the application of reinforcement
learning for code generation using feedback from software engineering tool verification.
It also emphasizes the great concern of producing code programs that are complied
to project-level context. Furthermore, it is suggested that iterative improvements are
beneficial for refining the output of code generation programs.

1.4 Contribution

The main contribution of our work includes:

• We investigate the potential of employing two generative large language models
conversing in natural language to write and improve code together. Work in
the literature of text-to-code generation often tailor the debugging stage with
labeled data. Our work instead grants it to a generative model which, by its pre-
trained knowledge, is capable of code debugging. Evidently, our experiments
have yielded notable results.

• We contribute to the theme of project-based or project-level code generation by
supplying generative components with project context, represented as code lines
that are potentially relevant or similar to the line of code that needs correction.
The process of building the knowledge base of project code lines also involves
those that are explored from traversing project’s class diagram. These code
lines may not have been existed beforehand in the current code base, which
does not limit the correction to existing implementations.

• Our work shows that it is possible to by-pass SFT step for reinforcement learning
with generative language models and instead enforcing the format rules through
reward function.

• Our CoDeb system represents an initial attempt to leverage generative models
for fully-automatic end-to-end implementation of x86 instructions based on their

7

English descriptions. We discuss its advantages and limitations and outline
potential future directions.

1.5 Thesis Outline

The thesis is composed of 8 chapters. Chapter 1 is the introduction to our research
theme. The remaining 7 chapters are as follows:

• Chaper 2 presents our task-specific domain, including knowledge on x86 ar-
chitecture and the current state of BE-PUM.

• Chaper 3 overviews the foundations on language models as well as their typical
fine-tuning techniques that are employed in our work.

• Chaper 4 briefly gives foundations on reinforcement learning which is the tech-
nique used in the fine-tuning of the generative components. This section shows
the feasibility of using software programming verification for text-to-code gen-
eration.

• Chaper 5 is dedicated to explain our proposed system CoDeb in depth. It
details each component of the system, their functions and interactions, as well
as the reasoning behind our system design.

• Chaper 6 reports the results of the CoDeb system in multiple settings. The
results include both statistic data and figurative demonstration data.

• Chaper 7 discusses the achievements and drawbacks of our approach.

• Chaper 8 concludes the thesis and proposes future plan for our work.

8

Chapter 2

X86 Architecture and BE-PUM

2.1 X86 Architecture

The x86 architecture, developed by Intel, is a CISC (Complex Instruction Set Com-
puting) architecture widely used for central processing units (CPUs) in desktop, lap-
top, and server computers. The name “x86” originally refers to the entire family of
backward-compatible processors whose model numbers end in “86” such as the 80186,
80286, 80386, and 80486. Starting from model 80386, “x86” is used synonymously
with the 32-bit version (the IA-32 – Intel Architecture, 32-bit) that supports 32-bit
wide data paths, registers, and memory addresses. A typical x86 ISA defines 4 key
components of the architecture including the basic execution environment (memory
model and registers), the instruction set specifications, the handling of interrupts and
exceptions, and backward compatibility. This section is dedicated to overview the
key components with a focus on the instruction set specifications.

2.1.1 X86 Basic Execution Environment

The basic execution environment can be further divided into 4 elements: Register,
Flag, Memory and Stack.

Register

In computer architecture, a register is a small amount of storage available directly
within the central processing unit (CPU). Registers are used to quickly accept, store,
and transfer data and instructions that are being used immediately by the CPU.
They are much faster than the main memory (RAM) and are essential for the CPU’s
operations. The x86 architecture includes several types of registers, each serving
specific purposes. The standard bit length for an x86 register is 32 bits. However,
shorter bit lengths are also used when necessary. To accommodate this, a 32-bit
register can be divided into halves or quarters as shown in Figure 2.1. Based on
functionality, x86 registers can be categorized as follows:

• General-purpose registers: These registers can be used for a variety of tasks
and are often involved in arithmetic and data manipulation. There are 8 32-bit
registers along with 8 16-bit sub parts and 8 8-bit sub parts in this category
(Figure 2.1).

9

Figure 2.1: x86 General-purpose registers with bit lengths.

• Segment registers: These registers hold segment selectors, which are used to
access different memory segments (E.g: CS, DS, SS, ES, FS, GS).

• Instruction pointer register: It holds the address of the next instruction to be
executed (E.g: EIP, IP).

• Flags register: The EFLAGS register is a 32-bit register where each bit repre-
sents a binary value. The details is describe in component Flag below.

Flag

Status flags, control flags, and system flags that indicate the results of operations and
manage the CPU’s behavior are stored on a 32-bit EFLAGS register. The key flags
include:

• CF (Carry Flag) - 1 bit : Indicates an overflow in arithmetic operations.

• ZF (Zero Flag) - 1 bit : Indicates whether the result of an operation is zero.

• SF (Sign Flag) - 1 bit : Indicates the sign of the result of an operation.

• OF (Overflow Flag) - 1 bit : Indicates an overflow in signed arithmetic opera-
tions.

• PF (Parity Flag) - 1 bit : Indicates if the number of set bits in the result is even
or odd.

• AF (Auxiliary Carry Flag) - 1 bit : Used in binary-coded decimal (BCD) arith-
metic operations.

10

• DF (Direction Flag) - 1 bit : Controls the direction of string operations.

• IF (Interrupt Flag) - 1 bit : Controls the enabling and disabling of interrupts.

The full list of flag bits and their positions on the EFLAGS register is shown in Figure
2.21 with several bits are reserved or have constant values throughout CPU execution.

Figure 2.2: EFLAGS Register.

Memory

The x86 memory model and management handles memory access, organization, and
protection. X86 provides three types of memory models as follows:

• Flat Memory Model: all addresses are treated as a single contiguous block,
which allows applications to access a linear address space without segmentation.

• Segmentation: The memory is divided into different segments (code, data,
stack). Each segment has a base address and a limit.

• Paging: The virtual address space is divided into fixed-size blocks called pages
(typically 4 KB). The operating system uses a page table to map virtual ad-
dresses to physical addresses, which is then used for memory access.

The byte order scheme of x86 architecture is primarily little-endian. This means that
in multi-byte data types (like integers or floating-point numbers), the least significant
byte is stored at the lowest memory address, and the most significant byte is stored
at the highest address. The x86 registers’ bit array also follows such manner as shown
in Figure 2.1.

Stack

The stack is a region of memory used for temporary storage of data, particularly
during function calls, local variable storage, and managing control flow. It operates
on a last-in, first-out (LIFO) principle - the last item pushed onto the stack will be

1The figure is taken from Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A [15].

11

the first one to pop off next. The stack pointer register (ESP/SP) points to the top
of the stack. It is automatically adjusted during push and pop operations.

Each function call creates a stack frame, which includes space for local variables, the
return address, and saved registers. The base pointer (EBP/BP) is used to reference
the base of the current stack frame.

2.1.2 X86 Instruction Set and Its Specifications

X86 Instruction Set

In general, a computer instruction is a binary-coded operation that a CPU can exe-
cute. It tells the processor to perform a specific task, such as arithmetic calculations,
or data movement. Because the instruction set is the lowest-level command that
controls the CPU, emulating it is crucial for software analysis using formal methods.
The instruction set can be categorized into 4 main groups: Data transfer instructions,
Arithmetic instructions, Logical instructions and Control transfer instructions.

• Data transfer instructions: Transfer data between registers, memory, and I/O
devices (e.g., MOV, PUSH, POP).

• Arithmetic instructions: Perform mathematical calculations (e.g., ADD, SUB,
MUL, DIV).

• Logical instructions: Execute bitwise operations (e.g., AND, OR, XOR, NOT).

• Control transfer instructions: Alter the sequence of instruction execution (e.g.,
JMP, CALL, RET).

The specifications

Regardless of architecture, the ISA manual always reserves a section to describe its
exhaust list of the instruction set. Each entry of the list includes specifications of
each instruction, organized in a systematic format. The specifications for an x86
instruction includes:

• Encoding scheme:

– Opcode: A binary sequence that is unique for each instruction, specifying
the operation which is recognized by the CPU. If an instruction has several
variants, their opcodes are also unique.

– Operands: (Optionally) At max 4 operands. Each operand can be data or
resources such as registers.

• Description: Operation described in natural language. This section is often
long, giving information on the typical operation of the instruction along with
exceptions and special cases. It may also include specifications on the update
of flags, for example, in ARM manual. However, for x86 ISA manual, the flag
update section is separated.

• Flag update: Changes of flag bits after executing the described instruction.
This section is often short, consisting of one or two sentences.

• Operation: Pseudo-code expressing the operation. The grammar used in writing
the pseudo-codes is basic and often not specified explicitly in the manual. Noted

12

that pseudo-code section is not always available for other architecture families
such as ARM - Cortex M series [5].

An excerpt of specification for instruction named “AAM” from Intel 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A [16] is provided in tabular
form (Table 2.1). It can be seen that after information about Flag update, there is
additional information on Exception, which is not typical for all of the instructions.

Usage of the Instruction Set Manual

An instruction set manual is a critical resource for anyone involved in low-level
programming, system development, performance optimization and security analysis.
Some of the practical use cases are:

• Operating system development: The ISA manual provides crucial information
about the CPU’s capabilities, instructions, and behaviors that are essential for
building efficient OS. These information includes memory management, sys-
tem calls and interrupt handling, task management and context switching, I/O
operations, debugging and diagnostics.

• Compiler development: The ISA manual provides information on the binary
encoding of each instruction, which serves as the reference for selection and
generation of machine code from intermediate representations. The specifica-
tions on the execution environment also affects the interpretation of high-level
data structures into low-level resources.

• Malware analysis: The ISA manual provides detailed information on the CPU’s
instructions and their behaviors. Malware analysis can benefit in multiple ways:

– Reverse engineering: Dissemblers can be built using binary encoding of
each instruction.

– Behavior analysis: Emulators, which are software, are able to replicate
hardware functionality based on the target architecture specifications. They
allow examining the execution of malware without the need to execute
them in real environments.

Among the aforementioned use cases, we focus on the instruction set’s role in malware
analysis, specifically emulating the instruction set used in a malware analysis system.
The next section describes our target binary analysis system.

2.2 BE-PUM

There are two major scenarios in binary analysis: analysing system software and
analysing malware, with analysing malware involves dealing with tricky obfuscation
codes. One of the effective analysis methods is to use dynamic symbolic execution. In
order to build such tool, the target architecture’s instruction set needs to be emulated.
The emulation of the instruction set - describing each instruction’s semantics in cer-
tain programming language, is costly to manually implement. There are several tools
for binary code analysis such as McVeto [17], X-Force [18] and BE-PUM [3]. Among
which BE-PUM intends its instruction set emulation to be done semi-automatically
or fully-automatically. Given access to its code base and its ongoing development, we
choose BE-PUM as our target.

13

Table 2.1: Information of x86 instruction AAM.

AAM — ASCII Adjust AX After Multiply

Opcode Instruction Op/En
64-bit
Mode

Compat/
Leg Mode

Description

D4 0A AAM ZO Invalid Valid ASCII adjust
AX after multi-
ply.

D4 ib AAM imm8 ZO Invalid Valid Adjust AX after
multiply to num-
ber base imm8.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
ZO N/A N/A N/A N/A

Description
Adjusts the result of the multiplication of two unpacked BCD values to create a
pair of unpacked (base 10) BCD values. The AX register is the implied source and
destination operand for this instruction. The AAM instruction is only useful when
it follows an MUL instruction that multiplies (binary multiplication) two unpacked
BCD values and stores a word result in the AX register. The AAM instruction then
adjusts the contents of the AX register to contain the correct 2-digit unpacked (base
10) BCD result.
The generalized version of this instruction allows adjustment of the contents of the
AX to create two unpacked digits of any number base (see the “Operation” section
below). Here, the imm8 byte is set to the selected number base (for example, 08H
for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is
interpreted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to
values in another number base, the instruction must be hand coded in machine code
(D4 imm8).
This instruction executes as described in compatibility mode and legacy mode.
It is not valid in 64-bit mode.

Operation
IF 64-Bit Mode

THEN
#UD;

ELSE
tempAL := AL;
AH := tempAL / imm8 ; (imm8 is set to 0AH for the AAM mnemonic)
AL := tempAL MOD imm8 ;

FI;
The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected
The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register. The OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

14

BE-PUM (Binary Emulation for Pushdown Model) [3] is a binary file analyzer for
Intel x86/Win32 malware that employs DSE technique to generate precise control flow
graphs (CFG) in an on-the-fly manner with the assumption of non-parallel execution.
This section gives a brief overview of BE-PUM architecture and its implementation
in Java.

2.2.1 BE-PUM Architecture

The architure of BE-PUM is illustrated in Figure 2.32. Overall, BE-PUM consists
of three main components: symbolic execution, binary emulation and CFG stor-
age. The abstraction of x86 execution environment state is expressed by tuple
⟨Register, F lag,Memory, Stack⟩. BE-PUM incorporates JakStab 0.8.3 as its binary
disassembler and Z3 4.3 as theorem prover. At each time step, a symbolic state at
the end of an explored execution path is analyzed by Single-Step Symbolic Execution
to determine the next possible execution step. If the instruction on the current state
is a data instruction whose destination address is statically decided, BE-PUM simply
dissembles the next instruction. If the instruction is a control instruction, BE-PUM
performs concolic testing to figure out the next location address. After each explo-
ration step, a new CFG node or a new CFG edge will be created and is stored in
CFG storage. The emulation of the x86 instruction set therefore plays a crucial role
in state transitioning.

The binary emulation in BE-PUM is shown in Figure 2.4. Each state transition in-
cludes a pre-condition (Path Condition P), a post-condition (Path Condition P ′) and
the execution of the instruction itself which follows a sequence of instruction fetching,
instruction decoding, operand fetching, then executing and storing the results.

2.2.2 BE-PUM Code Base

Overview

The implementation of BE-PUM is written in Java and compilable with Open-
JDKv1.8 3. As BE-PUM includes source code of Jakstab 0.8.3 as its disassembler,
the total number of Java code files in BE-PUM code project is 2950, containing 2538
classes. Among which we focus on the module that implements the instruction set.
Currently, BE-PUM supports 200 x86 instructions [19] with 120 instructions whose
semantics are emulated in separate Java code files. The instructions that share simi-
lar operations are grouped manually into one Java file. As such, we primarily focus
on trying fully-automatic code generation competing against those 120 separate files.

Since the instruction set emulation is a component of a larger code project, from soft-
ware development perspective, it is crucial to understand the structure of the project
including the organization of code files and modules in order to continue writing cor-
rect codes. A typical static modeling method called Class Diagram [20] is often used
to describe structure of a system in terms of programmable object-oriented classes,
attributes, operations and relationships among the system’s entities. Hence, recon-
structing class diagram from an existing code base is one of the ways to overview its
structure. The class diagram excerpt in Figure 2.5 shows the implementation choice
for an instruction in BE-PUM. We present instruction AAA and CLC as an example.

2These figures are redrawn from paper [3].
3https://openjdk.org/projects/jdk8/

15

Figure 2.3: BE-PUM architecture [3].

Figure 2.4: Binary emulation in BE-PUM [3].

16

Figure 2.5: Excerpt of class diagram describing components involved in the imple-
mentation of x86 instruction.

17

In the given class diagram segment, the two classes aaa and clc are designed as
concrete implementations which extend the abstract class X86InstructionStub. The
execute() method, which returns a BPState, is where the semantics of each instruc-
tion is described. The design allows for polymorphic behavior where instances of aaa
and clc can be treated as X86InstructionStub types. With respect to the binary
emulation provided in Figure 2.4, organizing the implementation of each instruction
with polymorphism makes the call to targeted instruction more dynamic in the sense
that the input parameters and input operands need not to be explicitly specified.
Instead, they are available internally by the parent class and are ready for access at
execution time. This conveniently enables the program to decide at runtime which
instruction to invoke. The system, therefore, is easier to extend for the implementa-
tion of more instructions. This also serves as our reference point for constructing the
Java template that the Code Writer in our system will follow.

Project-level Context of BE-PUM

Like context of a sentence, context of a code project consists of the existing codes and
its organization [13]. The representations of the existing codes can be code lines, code
fragments or the entire code files. Meanwhile, the organization of the code base can
be presented in form of UML diagrams [20]. Since software design and development
practices has high degree of modularity and code reuse, incremental implementation
to an on-going code project often makes use of existing modules, functions, libraries,
or components to avoid duplicating code, saving time and resources. Therefore, in our
case, it is necessary that the newly generated code of our system should adhere to the
current BE-PUM project-level context, which is to correctly use resources provided
by other classes such as variables and methods.

One of the ways to let the generative components know the current project-level
context of BE-PUM is to put the raw code base or the project’s class diagram into
the context of their prompts. However, local LLMs such as ours have limited context
length, thus putting content of 2950 Java code files in BE-PUM or class diagram
of 2538 classes in one prompt is not feasible. Therefore, given the said code base
of BE-PUM, we choose to utilize the project-level context of BE-PUM at the level
of individual code lines. The existing code lines in BE-PUM are from these two
categories:

1. The implemented code written by BE-PUM’s developers.

2. The code snippets explored by traversing BE-PUM’s class diagram, which may
not yet be written down by the developers.

18

Chapter 3

Language Model for Text
Generation

3.1 Language Modeling

In tasks that involve sequence generation such as Automatic Speech Recognition and
Machine Translation, the chosen generated sentence is desired to be more linguistically
correct than the others. To achieve it, one of the solutions is to judge whether
a generated sequence of tokens is more common than its counterparts within the
scope of a particular corpus. Note that these tokens can also be characters, set
of characters (also called sub-words), byte-level representation, etc. To quantify a
sequence’s quality of being probable, one can use statistical approaches where an
occurrence of a sequence is considered as a statistical event and thus can be assigned
a probability. The computing entity that can assign probability to a sequence with
respect to a corpus is known as a language model [21].

In linguistics, sentence is defined as the highest unit in the constituent hierarchy
that expresses the minimal syntactic relations between the words it contains [22],
or to say: sentence of words is the realization of a language’s grammatical syntax
and thus induces linguistic context among the words. As an approximation, we can
just quantify the relation between the target word and the words that precede it.
Therefore, the probability model of a sentence can be expressed by a multiplication
chain of conditional probabilities:

P (w1, w2, . . . , wn) = P (w1)P (w2|w1)P (w3|w1, w2)..P (wn|w1, . . . , wn−1) (3.1)

Sentences are varying in length and order-wise, and have complex context relations
among pairs of words. Therefore, to compute the exact value of the said joint probabil-
ity is intractable in general case. A popular solution to this problem is to approximate
it using a type of stochastic model known as discrete Markov chain [23] where the
context needed to compute the probability for a target word wn is limited to N − 1
words wn−N+1..wn−1 preceding it [24]:

P (wn|w1:n−1) ≈ P (wn|wn−N+1:n−1) for n ≥ N > 0 (3.2)

19

And thus the joint probability for the sequence of words is:

P (w1:n) ≈
n∏

k=1

P (wk|wk−1) (3.3)

The family of this solution is called N-gram language model in which N is usually
chosen to be 1, 2, 3, 4 and 5 (uni-grams, bi-grams, tri-grams, 4-grams and 5-grams,
respectively). Since probability value ranges from 0 to 1 inclusively, sum of log prob-
abilities is used to avoid vanishing products.

To compute the probability, Maximum Likelihood Estimation (MLE) method counts
the occurrence of an n-gram text over the entire corpus and normalized it by the total
number of occurrences of n − 1 words that precede the target word. The training
result of the MLE model is a mapping between the unigrams up to n-gram texts and
their frequency in the corpus. As this method relies on counting consecutive groups
of words, the model MLE would falsely assign zero probability for new sequences
that are not presented in the training corpus even if they are linguistically correct.
To overcome the issue, smoothing methods have been introduced to shift some of the
mass probability to the unseen words.

Nonetheless, probability model (3.1) laid the foundation for the task of modeling lan-
guage. Starting from the probability model computed merely by occurrences of tokens
such as N-grams, the development of language model moved on to the incorporation
of handcrafted word features such as part-of-speech and usage frequency, which can be
seen in sequential models like vanilla RNNs [25], LSTM [26], and GRUs [27]. Facing
the challenge of transmitting long-range dependency, the attention mechanism was
introduced to efficiently capture relationship between tokens by looking at all input
tokens at once instead of sequential processing. It then became a key concept for the
next generation of language models which is the Transformers. Some notable models
are BERT(-base) with 110 million parameters (110M) [28] and GPT (117M) [29].
Since then, advances in pre-training and fine-tuning techniques continued to push the
boundaries of language models. Nowadays, large-scale transformer-based language
models like GPT-3 (175B) and open-sourced Llama [30] dominate the field, setting
new benchmarks in language understanding, retrieval and generation. More recently,
LLMs such as GPT-4 and Gemini are made capable of understanding multi-modal
information.

3.1.1 Masked Language Model

Usually for written text, the meaning of a word does not necessarily depend only on
its preceding words [31]. Take an example of a cloze test as follows: “She noodles
yesterday.” Based on the context given by words that come after the blank, we can
predict the missing word to be the action of consuming a type of food (noodles) and
the verb should be in past tense (yesterday). One suitable word to fill in the blank
would be ate. Based on this philosophy, Devlin et al. [28] proposed Bidirectional
Encoder Representations from Transformers (BERT) - a novel deep bidirectional rep-
resentation of language by conditioning on the context from both sides of a word. As
the name suggests, the building block of BERT is a multi-layer Transformer encoder
whose core component is based on Attention Mechanism that is called Multi-Head

20

Attention [32]. Rather than employing recurrence scheme as Recurrent Neural Net-
work (RNN) (recurring left-to-right or bidirection in a sequential order), Transformer
model relies solely on just Attention Mechanism to learn the mapping between the
input and output sequences, which greatly helps parallelize computation and combat
long-range dependency.

There are two stages in applying BERT to a Natural Language Processing (NLP)
task: pre-training and fine-tuning. Usually, the first stage is done universally on
large unlabeled corpus, which involves training its Masked Language Model (MLM)
to learn an embedding of tokens. The training of BERT’s MLM is motivated by the
cloze test problem where roughly 15% input tokens are randomly masked out and
prediction for the masked position is penalized by cross-entropy loss. While RNN
learns word order through step-by-step recurrence, BERT relies on its Positional
Embedding layer to attain such information. Therefore, a BERT model is usually
coupled with a special tokenizer that tokenizes and translates text input into its
positional index in the embedding layer and vice versa. The learnt embedding can
be used for many down-stream tasks with labeled data such as text classification or
Part-of-Speech tagging.

Our study makes use of CodeBERT [33] - a bimodal pre-trained model for both
programming languages and natural languages, built on the BERT architecture. It
is trained on a large corpus of code from GitHub repositories and has been widely
adopted for various code-related tasks such as code generation, code summarization,
and code search. In this work, we employ CodeBERT for code search.

3.1.2 Causal Language Model

Unlike masked language models, causal language models predict the next token in a
sequence based solely on the preceding tokens. This means that the model generates
text one token at a time, which uses the previously generated tokens as context. This
sequential process is known as autoregressive, which is why causal language models are
often referred to as autoregressive models. Their training objective is to minimize the
difference between the predicted and actual next tokens. The attention mechanism is
also used in masked language models. However, instead of attending to all tokens in
the input sequence at once, it only focuses on tokens that come before the position
being predicted.

The first causal language model in the literature is GPT. GPT utilizes a multi-layer
transformer decoder, a variant of the transformer architecture, with an attention
mechanism that only spans a windowed context of tokens. GPT also undergoes un-
supervised pre-training where unlabeled text corpus is used to optimize next-word
prediction objective. During training supervised downstream tasks such as text simi-
larity, question answering, and commonsense reasoning, the auto-regressive language
modeling objective is incorporated alongside the regular objective function of the la-
beled discriminative task. For inference in generative tasks, the sequence of tokens
generated by the model is fed back as input to generate the next token. The genera-
tion halts when the model generate an end-of-sentence symbol or reaches a pre-defined
number of tokens. Based on the success of GPT, GPT-2 [34] explores the capability
of GPT models for zero-shot generation task. A zero-shot generation task involves
generating text or solving a problem without having been explicitly trained on that
specific task or provided with labeled examples during training. Instead, the model

21

relies on its pre-trained knowledge. Certain cues and requirements are provided, so-
called prompts to guide the generation. This then lays foundation for GPT-3 [35] -
a larger scale of GPT architecture in terms of number of parameters and pre-train
data volume.

In our study, we choose to use CodeLlama [36], a causal language model that em-
ploys transformer decoder architecture but includes several significant enhancements
in its internal operations and pre-trained specifically for code-related tasks such as
code completion, translation, summarization, and debugging. The main reason we
select CodeLlama is that CodeLlama, or models using CodeLlama as their backbone,
is enlisted as state-of-the-art generative models for coding tasks [6] while being of-
fered at reasonable size, with the smallest having 7 billion parameters. Additionally,
constraints of time and computing resources also influences our choice. Nevertheless,
the generative model component in our work can be replaced with other code-specific
models if applicable.

3.2 The Task of Text Generation

Natural language processing includes two primary tasks: natural language under-
standing and natural language generation. Natural language generation focuses on
systems that produce plausible language output. Nowadays, natural language gener-
ation extends to broader targets including programming languages, musical notation,
mathematical notation and protein sequence [37]. Hence, we refer to the task of lan-
guage generation as text generation thereafter. Some typical example use cases of text
generation include machine translation, digital assistant (chatbot), code generation,
visual description and creative story writing.

3.2.1 Text Generation Basics

In [38], text generation task is formulated as follows: Let P denote the set of desired
properties of certain text generation task such as grammatical correctness, semantic
accuracy, fluency, language formality, etc. The task of text generation is to obtain
a finite sequence of tokens y = ⟨y1, y2, . . . , ym⟩ given a finite input sequence x =
⟨x1, x2, . . . , yn⟩ following the formula:

y = fM(x,P) (3.4)

where fM is the generative model.

Depending on the type of input data x and the property set P , text generation covers
various use cases including:

• When x is not provided or a random-valued vector, the task becomes causal
language modelling.

• When x is structured data such as tables, graphs, and databases, the task
becomes data-to-text generation.

• When x is of different modality than text, one of the apparent use cases is the
captioning task for multi-modality input.

22

• When x is sequence of text, which is the most common scenario, the task encom-
passes multiple use case such as translation, summarization, (dialog) question
and answering system, and code generation.

The length of x is often called context length - the number of input tokens a language
model can handle in one pass, e.g: the initial release of CodeLlama-2 allows a context
length of 4096 tokens [36]. There are methods that increase the original context length
such as Positional Interpolation which increases it to 32K tokens [39], it however,
requires more memory usage in training .

The operation of a typical text generative model can be formulated as follows:

• At training time: The objective function J(θ) is to maximize the probability in
predicting next token ŷt given the previously predicted sequence of token y<t.
The probability is computed using an embedding model parameterized by θ:

J(θ) = −
T∑
t=1

logP (ŷt|ŷ<t,θ) (3.5)

• At inference time: a decoding algorithm g(·) is needed to select a token from
the learned the distribution P (Yt|Y<t, θ̂):

ŷt = g(P (Yt|Y<t, θ̂)) (3.6)

Text generation can be further divided into subcategories based on the open-endedness
quality - that is the diversity of the output space of the problem. The spectrum of
the open-endedness ranges from restricted output space - non-open-ended or closed-
ended generation (e.g: text translation, summarization) to liberated output space -
open-ended generation (e.g: story generation). Our task, project-level text-to-code
generation, is placed at medium open-endedness as the generated code must conform
to both code context of the given project and a specification, while the content is still
allowed to have certain degree of freedom such as naming new variables and methods,
as well as organizing code into smaller, manageable, and reusable components.

Closed-ended and open-ended problems require different architectures. For closed-
ended tasks, the most common approach is the encoder-decoder model, where the
auto-regressive model serves as the decoder and the encoder is usually a bidirectional
language embedding model. For open-ended tasks, a decoder-only model is often
used. The boundary of using these two architectures is often not clear. For example,
an encoder-only model [40] or decoder-only model [35] is proved to perform on par or
even better than encoder-decoder models for language translation. Likewise, encoder-
decoder models can be used for open-ended tasks but due to achieving the similar
performance to a decoder-only architecture, this approach is not resource-efficient
and hence the latter approach is more favorable. One of the major problems related
to the property of open-endedness is called Constrained Generation or Constrained
Decoding - that is how well the generative language model adheres to the response
format requirements specified in the prompts while still maintained the semantics of
its answers. This is an on-going issue in the literature, addressed in recent study
[41, 42]. Specifically, for the problem of code generation such as ours, several formats
must be upheld such as grammar rules of the target programming language, syntax
of file-level or project-level code context.

23

3.2.2 Decoding Procedure in Text Generation

As mentioned earlier, the conditional probability learned from autoregressive models
requires a decoding algorithm to generate tokens. There have been multiple designs
for the decoding algorithm. Starting with the most straightforward approach - greedy
sampling - research on decoding schemes has led to improvements. Techniques such
as beam search, sampling methods, and advanced algorithms like nucleus sampling
and top-k sampling have been developed to enhance the quality and diversity of gen-
erated text. These methods address the limitations of greedy selection by exploring a
broader range of possible outputs and optimizing the trade-off between accuracy and
creativity.

Greedy Sampling

In greedy selection, during each step of the text generation process, the model picks
the token with the highest predicted probability. This approach is simple and quick,
but the resulted output sequences are often suboptimal as the method falls short for
choosing tokens with locally high probabilities while neglecting the total probability
of the sequence.

Beam-search Sampling

While decoding, beam-search sampling employs greedy selection but instead of storing
one output sequence, beam-search keeps a number of output sequences by keeping k
predicted candidates at each time step.

These two ways of decoding relying on maximum probability is feasible for closed-
ended task. For open-ended tasks, it creates repetitive generation problem regardless
of model scale [43]. To reduce repetition:

• N-gram blocking [44]: N-gram blocking is the most simple method, to avoid
repeating N-grams in the generation sequence.

• Coverage loss [45]: The method modifies training objective such that it prevents
the attention mechanism from attending to the same words over again.

Probabilistic Sampling

However, to make the generated text sequence more natural to human, always choos-
ing the tokens with high probabilities restrict the creativity and diversity of the
speaker [43]. Hence, probabilistic sampling methods are used. Sampling is the pro-
cess of selecting a subset of individuals from a larger population to make observations
and draw inferences about that population, often the selection is tied with a probabil-
ity distribution. There are several typical sampling methods used in recent literature:

• Vanilla sampling: All tokens in the vocabulary have a chance to be selected
even the probability is small.

• Top-k sampling: Only a subset of tokens in the vocabulary whose probabilities
are in the top-k largest have a chance to be selected. Increasing k gives diverse
output, while decreasing k provides more consistent output.

• Top-p sampling: Only a subset of tokens in the vocabulary whose probabilities,
when ranked in descending order, sum up to a probability mass of p. As top-k

24

sampling requires defining a fixed k beforehand, which is not suitable for very
skewed or flat distributions, top-p sampling, in fact, makes k dynamic.

• More complex sampling techniques: Typical sampling [46] - re-weights the score
based on the entropy of the distribution; Epsilon sampling [47] - sets a threshold
for lower bound valid probabilities.

3.3 Efficient Fine-tuning Techniques for Large Lan-

guage Models

While embodied general knowledge from massive pre-trained corpus, (large) language
models often need to be further fine-tuned to serve more specialized domains. With
such a huge number of parameters, consumer GPUs may not be able to accommo-
date the conventional fine-tuning process. For example, the model CodeLlama-2-7B-
Instruct has 7 billion parameters. At precision float32, each parameter value takes 32
bits, which accounts for a total of approximately 28GB for the whole model. Mean-
while, regular consumer GPU memory often comes with equal to or less than 24GB.
Therefore, to facilitate study on large language models for the mass, it is essential
to develop memory-efficient training techniques. A direct method to reduce memory
consumption when loading large model is called n-bit (or b-bit) quantization in which
floating-point precision is quantified into b-bit representation [48]. On the other hand,
technique used in reducing memory footprint during training is called Parameter-
Efficient Fine-Tuning (PEFT) [49, 50, 8]. PEFT involves adjusting only a subset of
model parameters rather than the entire model while maintaining performance.

3.3.1 Quantization

The backbone of Neural networks is matrix-matrix multiplication, which is further
broken down into parallel matrix-vector multiplications by neural network acceler-
ators, for example, GPUs. There are two basic components in one matrix-vector
multiplication: 1) The processing elements Cn,m and 2) The accumulators An. Figure
3.1 demonstrate an example of multiplying weight matrix θ ∈ R2×3 and a row vector
x ∈ R3 using processing elements C and accumulators A.

The computation starts with loading the bias term bn into the accumulator An. Then
weight θn,m and input vector xm are loaded into the corresponding arrays and their
product is computed by Cn,m = θn,mxm in one cycle. The value at the accumulator
An is then computed by

An = bn +
∑
m

Cn,m (3.7)

The operation described above is known as Multiply-Accumulate (MAC). This step
is repeatedly performed for larger matrix-vector multiplications. After all cycles are
completed, the values in the accumulators are transferred back to memory to be
utilized in the subsequent neural network layer. Using precision float32 would place
a heavy load in bit transfer as well as causing high energy consumption for MAC
operation, especially for large neural network like large language models.

The purpose of model quantization is to convert floating point values into fixed-point
precision using a lower number of bits, which is then empirically proved to consume

25

Figure 3.1: Matrix-vector multiplication of neural network accelerators [48].

less computation energy and reduce the amount of data transfer [48]. The mechanism
of quantization is as follows:

Hypothetically, the original floating-point vector x is approximated by a floating-point
scalar sx (so-called scale factor) multiplied by a vector of integers: x ≈ x̂ = sx ·xint.
We use different scale factors for weight matrix θ and vector input x, hence Equation
3.7 becomes:

Ân = b̂n +
∑
m

Ĉn,m

= b̂n +
∑
m

θ̂n,mx̂m

= b̂n +
∑
m

(swθ
int
n,m)(sxx

int
m)

= b̂n + swsx
∑
m

θint
n,mx

int
m (3.8)

To reduce the accumulated errors and avoid overflow, the accumulators are still stored
in high bit-width, such as 32-bit. Hence, the bias term b̂n, although being quantized
based on scale factors of weight matrix and input vector, is stored in 32-bit integer
form. The accumulator value at 32-bit integer is then quantized for the second time
into low-bit integer to transfer into the memory. Compared to the raw floating-point
MAC (Equation 3.7), quantized MAC (Equation 3.8) has its processing element C
computed in low-bit fixed-point precision (e.g: 8-bit, 4-bit) and only at the accumu-
lator, high-bit computation is performed.

Uniform Affine Quantization, or Asymmetric Quantization is the most commonly
used quantization technique. The three hyper-parameters needed for the technique
are: bit-width b, scale factor s and zero-point z where: b is the number of bit of the
target representation, s and z are used for mapping floating-point values into b-bit
integers with z used to avoid error of quantizing real zero. The operation is carried
out as follows:

Denote [·] as rounding to the nearest integer, the unsigned integer projection of

26

floating-point value is computed by

xint = clamp(
[x
s

]
+ z; 0, 2b − 1) (3.9)

where:

clamp(x; l, h) =

l, x < l

x, l ≤ x ≤ h

h, x > h

(3.10)

The original floating-point value is then approximated by

x ≈ x̂ = s(xint − z)

= s
[
clamp(

[x
s

]
+ z; 0, 2b − 1)− z

]
(3.11)

The approximation of x̂ is effectively the quantization function of Uniform Affine
Quantization, denoted as q(x; b, s, z). We can see that qmin = −sz and qmax =
s(2b − 1 − z). Any value that is higher than these boundaries is then clamped into
the nearest boundary. Hence, quantization suffers from the trade-off between clipping
error and rounding error. Consequently, there have been multiple improvements to
quantization such as Symmetric Uniform Quantization and Power-of-two quantization
[51].

3.3.2 Low-rank Adaptation

While quantization helps reduce memory consumption per network parameter, Low-
Rank Adaptation (LoRA) [8] is a PEFT method that reduces the number of trainable
parameters in fine-tuning by freezing weights of the pre-trained model and injects
trainable rank-decomposition weight matrices into each layer of it.

The nature of fine-tuning is that given the original weight matrix θ0 ∈ Rd×k of the
pre-trained model, the new weight after fune-tuning is in fact θ0 +∆θ. Let matrices
B ∈ Rd×r and A ∈ Rr×k be the rank-decomposition matrices of ∆θ with rank r of
choice, r ≪ min (d, k), we have:

∆θ = BA (3.12)

During forward pass, both ∆θ and ∆θ = BA are multiplied with the same input x
and the two outputs are summed element-wise:

h = θ0x+∆θx = θ0x+BAx (3.13)

The visualization of this decomposition is shown in Figure 3.2 1.

Before attempting retraining, the value of ∆θ should be zero, hence, one of the
two matrices is initialized with zeros. A common practice is to initialize the other
with random values from gaussian distribution or other pre-trained LoRA weights
such as PiSSA [52] and LoftQ [53]. Fine-tuning can lead to issues of underfitting or
overfitting, which are considered undesirable deviations from the pre-trained model.

1This figure is adapted from paper [8]

27

Figure 3.2: Injection of Low-Rank Adaptation into pre-trained weight.

A common solution is to reduce the magnitude of ∆θ by applying a hyperparameter
scaling factor. Equation 3.13 hence becomes:

h = θ0x+
α

r
∆θx = θ0x+

α

r
BAx (3.14)

where alpha is typically chosen to be a multiple of r. During backpropagation, since
only ∆θ receives gradient updates, the optimizer consumes much less GPU memory
to store states of trainable parameters.

Empirical study shows that for model fine-tuning, adjusting only a subset of parame-
ters is sufficient to achieve performance that is comparable to a fully fine-tuned model
[54]. Consequently, it is unnecessary to inject LoRA modules into every parameter
layer of the pre-trained model; rather, they can be applied to a selected subset of
layers. The determination of which subset of parameter layers to consider is often
done by empirical experiments. According to the findings presented in [8], it has be-
come standard practice to inject LoRA modules into the linear layers of the attention
mechanism in large language models such as the four query, key, value and output
head layer (θq, θk, θv, θo).

3.3.3 Technical Usage of Efficient Fine-tuning Techniques

Regarding technical implementation, the injection of LoRA adapter, as well as quan-
tization operation, is supported via machine learning platform and libraries, such
as PyTorch. Figure 3.3 briefly visualizes the hierarchy of related machine learning
tools as well as presents a common scenario of machine learning research using such
tools. We start with PyTorch 2 and TensorFlow 3 being the foundational open-source

2https://pytorch.org
3https://www.tensorflow.org/

28

Figure 3.3: Machine learning research with HuggingFace ecosystem.

machine learning platforms that provide users with APIs such as tensor operations,
GPU acceleration, neural network training and deployment. HuggingFace, on the
other hand, is not a platform but rather an ecosystem that leverages existing plat-
forms to provide more specialized libraries such as those for Transformers, Diffusers,
etc. Besides offering machine learning community its open-source libraries, Hugging-
Face also hosts a large number of shared machine learning artifacts such as trained
models and datasets. Figure 3.3 shows that for pretraining case - that is one can
use both specialized APIs from HuggingFace’s libraries as well as native PyTorch’s
APIs to construct and train a model from scratch. The trained model can then be
publish to the community hub for open-source sharing. Our case - that is to fine-
tune a model, for example CodeLlama, clones the shared model to our local machine.
Then by using APIs provided by the ecosystem of HuggingFace and PyTorch, we
can add in our modifications to the cloned model’s architecture, e.g: inserting LoRA
adapter into a subset of layers of CodeLlama and integrating the model into TRL -
a Transformer Reinforcement Learning pipeline to fine-tune it.

29

The benefits of employing the discussed efficient fine-tuning techniques includes:

• Drastic reduction in memory and storage usage. For instance, our study employs
model CodeLlama-2-7B-Instruct which originally comes with 28GB at full pre-
cision. After applying quantization and LoRA injection, the total model sizes
at only 4.8GB, accounting for only 17.14% memory usage of the pre-trained
model’s.

• Multi-tasking by switching between different LoRA layers on the same frozen
pre-trained model. This approach is theoretically feasible; however, the current
version of the machine learning tools in use only supports it during inference,
not during training.

While these methods offer significant benefits and have become standard practices in
machine learning research with large models, they also have drawbacks. Quantiza-
tion can introduce approximation issues such as clipping errors and rounding errors,
whereas fine-tuning with LoRA adaptation may experience a margin of latency.

30

Chapter 4

Reinforcement Learning with
Proximal Policy Optimization

4.1 Reinforcement Learning Basics

4.1.1 Reinforcement Learning in Machine Learning Hierar-
chy

Depending on the types of training data available to the learning models, the speci-
fied learning objectives and types of feedback, machine learning can be divided into
three major paradigms: supervised learning, unsupervised learning and reinforcement
learning [55, 56].

• Supervised learning:

– Data: The given data is fully annotated by external supervisors. Each
data point includes an input and its known ground-truth output.

– Objective: The model is expected to learn a mapping from inputs to out-
puts that can be used to predict labels for new and unseen inputs of the
same knowledge domain.

– Feedback: Direct feedback is provided in the form of labels for each input.
Often, it is represented as a loss function measuring the error distance
between ground-truth value and model’s output.

– Examples: classification, regression, and object detection.

• Unsupervised learning:

– Data: The given data has no label.

– Objective: The model is expected to discover hidden patterns or structures
within the data, such as clusters, associations, or underlying distributions.

– Feedback: There is no direct feedback in terms of correct answers. Instead,
based on the inherent structure of the data, some proxy measurements are
used such as inter-cluster and intra-cluster distances.

– Example: Clustering, data mining, abnormality detection.

31

• Reinforcement learning:

– Data: The training data has no label and is generated through interactions
between the agent and the environment. Often, no test data or testing
phase is needed.

– Objective: The model is expected to learn a decision strategy (formally
called policy - a mapping from states to actions) that maximizes cumulative
reward over time.

– Feedback: The feedback is indirect and often delayed through rewards or
penalties based on actions taken over time.

– Examples: Game playing like Go and Chess, robotic arm control, self-
driving cars.

Among the three, reinforcement learning is favored for problems where the relation-
ship between actions and outcomes is not smooth or continuous. Apart from the
aforementioned examples, another renowned application that inspires our study is
the creation of InstructGPT [57] in which reinforcement learning from human feed-
back is used to effectively adjust large language model’s response . For the instance
of our work, instead of human feedback, we use feedback from software verification
tool like the compiler to assess the generated code’s correctness.

4.1.2 Elements of Reinforcement Learning

Reinforcement learning is a framework for solving decision-making problems. A typ-
ical reinforcement learning problem is represented in the form of an agent learning
to make optimal decisions within an environment by interacting with it and improv-
ing through feedback in the form of cumulative rewards [55, 56]. It is specified by
6 core elements: Value function, Policy, Reward, (Environment) model, Exploration
– exploitation balancing, and Representation [55]. We document 4 major elements
below:

Environment

The environment that an agent acts within defines 4 following components:

• State space S: The set of all environment configurations of interest. S can be
discrete or continuous.

• Action space A: The set of all possible actions the agent could perform within
the environment. A can also be discrete or continuous. The construction of
action space is also affected by the nature of the agent, e.g: what actions the
agent can perform.

• Environment model:

– State transition probability P(st+1|st, at): The probability of moving from
one state to another when taking a specific action.

– Reward function R(a, s) ∈ R: A function that provides feedback from
the environment to the agent. It maps a state or state-action pair to a
numerical reward r. A reward is a signal that immediately informs the
agent whether its chosen action is good or bad at each time step.

32

Based on the visibility of the environment to the agent, an environment can be clas-
sified as either:

• Perfect information: The agent can observe a complete view of the environment
states and the components of the environment are deterministic. E.g: the chess
board in chess playing, the map in traveling saleman problem, the maze in maze
solving problem.

• Imperfect information: The environment contains stochastic elements, hidden
information and/or the agent cannot observe all states of the environment at
once but rather it is generated as the agent explores. E.g: poker, stock trading,
self-driving cars’ surroundings.

Policy

Policy π(·) is the decision strategy used by the agent to determine the next action to
take given the current state, so-called the mapping from states to actions. A policy
can be deterministic π(s) = a or probabilistic π(a|s) = P (a|s). As taking action
transitions the agent to the next state, which obtains a reward, policy optimization
is one of the methods that aim to find an optimal mapping from states to actions.

Value Function

While the reward function provides immediate feedback after taking an action, the
value function estimates the total future reward that the agent can expect to receive
starting from the next state.

The future reward gt, so-called the return, is the sum of the discounted rewards
obtained by moving to the terminal state by k more steps, starting from the next
state st+1:

gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γk−1rt+k =
k−1∑
i=0

γirt+1+i (4.1)

where γ ∈ (0, 1] is the discount factor that weights down the importance of the
future rewards because they may have higher uncertainty and not provide immediate
benefits.

The state-value function vπ(st) of state st is then given by the expected return gt as
vπ(st) = E[gt|st]. Often, it is denoted using generalized notation as follows:

vπ(s) = E[gt|St = s] (4.2)

Additionally, another type of value function that involves predicting the return of a
state-action pair is called state-action-value function and is defined by:

qπ(s, a) = E[gt|St = s, At = a] (4.3)

State-value function differs from state-action-value function in the sense that state-
value function estimates the return if the agent transitions to the next states at t+1
onwards following the guidance of current policy π(a|s). Meanwhile, state-action-
value function measures the expected return if the agent actively chooses to move
to some arbitrary state in the next time step t + 1 and then back to following the
guidance of the current policy π(a|s) for time step t+ 2 onwards. State-action-value
function helps in exploration as it tries taking new actions.

33

Reward

The reward is a component of the environment model as aforementioned and is often
a scalar. The point of time that the reward is given to the agent is crucial, as it
influences how the agent learns to improve its actions. One significant challenge in
this context is known as sparse reward. A sparse reward in reinforcement learning
refers to a situation where an agent receives feedback or rewards infrequently or only
under specific conditions. This can make the learning process more divergent as the
agent has to explore a large number of actions or states before discovering those that
lead to rewards. Characteristics of sparse rewards include: 1) Infrequent rewards -
that is rewards are given only occasionally, rather than after every action or state
transition; and 2) Delayed feedback - that is a significant delay between taking an
action and receiving a reward, which makes it hard for the agent to learn which
actions are beneficial.

Text Generation as a Reinforcement Learning Problem

When framing text generation as a reinforcement learning problem, the generative
model acts as a policy. Hence the learnt probability distribution over output token
represents the decision strategy that serves for later decoding process. There is no
physical environment, instead, the state space is considered to include all the gener-
ated string obtained after taking a decoding step. The reward is straightforward -
that is the scalar value resulted from assessing the generated output sequence.

The generative model with decoder architecture like CodeLlama, when fine-tuning
with reinforcement learning, is capped with a special layer called a Value Head. Policy
optimization like PPO would depend on calculating the advantage of taking a specific
action (selecting a token) in a given state. This calculation involves subtracting the
value of being in the state from the value of the state-action pair. The additional
value-head layer projects the final hidden states onto a scalar to estimate the state’s
value.

4.1.3 An Example

Figure 4.1 demonstrates relationship between state-value function and state-action-
value function in an example setting. Note that the superscript ((1,1), (1,2),...) is used

for branch indexing, e.g: s
(1,2)
t+1 denotes the state at time step t + 1 resulting from

taking action branch #1 and is a child state at index #2.

The example scenarios is as follows: Supposed that the agent exploration has reached
state st and received reward rt. In this state, there are 2 possible actions that the
agent can take: a

(1)
t and a

(2)
t whose probabilities are decided by the stochastic policy

π(a|s). If a
(1)
t is taken next, there are chances that it might end up in state s

(1,1)
t+1 ,

s
(1,2)
t+1 or s

(1,3)
t+1 and would receive some future reward r

(1,i)
t+1 accordingly (i = 1, 2, 3). On

the other hand, if a
(2)
t is taken next, the agent could end up in state s

(2,1)
t+1 and receive

reward r
(2,1)
t+1 . As this is a random process, to assess which move is more probable to

give higher benefit in the long run, at the current state st we calculate vπ(st) - the
weighted average (the expected) value of the future rewards of all possible exploration
paths starting from st.

34

Applying Equation 4.2 for this instance, we have:

vπ(st) =
∑
i

π(a
(i)
t |st)qπ(st, a

(i)
t) (4.4)

The gray box representing the state-action value qπ(s, a). Applying Equation 4.3, we
have:

qπ(st, a
(i)
t) =

∑
j

p
(i,j)
t (r

(i,j)
t+1 + vπ(s

(i,j)
t+1))

=
∑
j

p(s
(i,j)
t+1 , r

(i,j)
t+1 |st, a

(i)
t)(r

(i,j)
t+1 + vπ(s

(i,j)
t+1)) (4.5)

Figure 4.1: An example of state-action-reward exploration.

Finally, at state st, to see if taking action a
(1)
t yields higher future reward than the

average action suggested by policy π(a|s), we simply take the difference between

qπ(st, a
(1)
t) and vπ(st). This quantity is called “Advantage function”.

Often, state-value and action-state-value functions are written without the expecta-
tion notation. Hence, the generalized formulas are:

vπ(s) =
∑
a

π(a|s)qπ(s, a) (from Equation 4.4) (4.6)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)(r + vπ(s
′)) (from Equation 4.5) (4.7)

Putting it all together in a dynamic view, we have: reinforcement learning involves
an agent, at each time step t, is given an environment state st ∈ S and decides to
perform action at ∈ A with respect to its learned behavior π(·). The agent then
receives a reward rt according to R(a, s) and is presented with a new state st+1

35

according to P(st+1|st, at). A sequence of interactions over time t = 1, 2, . . . , T is
called a trajectory (or a trial) that ends in terminal state ST :

s1, a1, r2, s2, a2, r3, . . . , sT−1, aT−1, rT , sT

A reinforcement learning problem can either be episodic or continuous. In episodic
settings, the interaction of the agent reaches a terminal state and restarts to predefined
standard initial states. If the transition of states fits the property of a Markov process,
the reinforcement learning problem can be formulated as Markov Decision Process
(MDP) [55, 58].

4.2 Proximal Policy Optimization

The objective of reinforcement learning boils down to the aim of maximizing the
accumulative reward. There are two major lines of methods: state-value-based and
policy-based. State-value methods try to optimize vπ(s) or qπ(s, a) and then use it to
guide the selection of actions. Meanwhile, policy-based approaches directly optimize
the parameterized policy function πθ(a|s) for θ ∈ Rd′ which is then used to select
actions without consulting a value function. A value function is only used to learn
the policy parameters. Compared to value-based methods, policy-based methods
with parameterization is claimed to yield a superior results and allow injecting prior
knowledge [58]. Proximal Policy Optimization is a type of policy-based methods and
has become the most commonly used reinforcement learning optimization method
[55]. As such, our work employs Proximal Policy Optimization to optimize generative
models using reinforcement reward signal.

The introduction to Proximal Policy Optimization would be extensive as it is an
improvement built upon a series of algorithms developed over the history of policy-
based reinforcement learning. Nonetheless, the foundation of policy-based methods
is Policy Gradient.

Let J(θ) ≜ vπθ
(s) be a scalar function that measures the accumulative reward ob-

tained by following πθ(a|s) starting from an initial state s. The objective of reinforce-
ment learning is expressed as the maximization of J(θ). The update of θ is carried
out by gradient ascent:

θt+1 = θt + α
∂J(θt)

∂θt

(4.8)

The Policy Gradient Theorem for episodic cases states that:

∂J(θ)

∂θ
∝

∑
s

µπ(s)
∑
a

qπ(s, a,θ)
∂π(a|s,θ)

∂θ
(4.9)

The proof for this theorem is present in Appendix A.

The standard policy gradient as presented in Equation A.5 is unbiased. This means on
average, the estimated gradient used to update the policy is equal to the true gradient
and that the gradient accurately estimates the direction in which the policy should
be updated to maximize the expected reward. However, these gradient estimates
have high variance - the estimates can vary significantly from one update to the next,

36

leading to instability and inefficiency in the learning process. Consequently, there have
been numerous improvements proposed to overcome the issue such as Asynchronous
Advantage Actor-Critic (A3C) [59], Trust Region Policy Optimization (TRPO) [60],
PPO [61] and Phasic Policy Gradient (PPG) [62]. Among which PPO is a direct
enhanced version of TRPO.

The current literature replaces the raw state-action-value function with advantage
function, hence Equation A.5 is often referred to as:

∇θJ(θ) = Es∼µπθ
,a∼πθ

[
Â(s, a,θ)∇θ lnπ(a|s,θ)

]
(4.10)

In TRPO, a ratio of new and old policy is used in place of the policy term, which
further modifies the original objective function J(θ) to the following:

J(θ) = Es∼µπθ
,a∼πθ

[
Â(s, a,θold)

π(a|s,θ)
π(a|s,θold)

]
(4.11)

The gradient update is then scaled with ratio between new and old policies instead
of the raw new policy. However, the high variance problem still remains if the new
policy has much larger value. To constraint the distance between two probability
distributions πold(·|s) and π(·|s) to a δ amount, Kullback–Leibler (KL) divergence is
used:

Es∼µπθold
[KL(πold(·|s), π(·|s))] ≤ δ (4.12)

PPO - KL Penalty Version

Empirically, TRPO performs worse than standard policy gradient method on certain
problems with unclear reasons and complex to implement [61]. To overcome the issue,
PPO is introduced. At first, it is a slight adjustment to TRPO in the way that it still
keeps the KL divergence term but instead incorporates it into the objective function
as a penalty weighted by hyperparamter β:

JKL(θ) = Es∼µπθ
,a∼πθ

[
Â(s, a,θold)

π(a|s,θ)
π(a|s,θold)

]
− βEs∼µπθold

[KL(πold(·|s), π(·|s))]

(4.13)

PPO - Clipping Version

Firstly, let us denote r(θ) = π(a|s,θ)
π(a|s,θold)

. So r(θold) = 1. Equation 4.11 becomes:

J(θ) = Es∼µπθ
,a∼πθ

[
Â(s, a,θold)r(θ)

]
(4.14)

Instead of relying on the value of ratio r(θ), the Clipping version of PPO clips it
within a range of [1 − ϵ, 1 + ϵ]. However, to retain the true value of r(θ) when it is
sufficiently small, the objective function is framed as follows:

Jclip(θ) = Es∼µπθ
,a∼πθ

[
min

[
r(θ)Â(s, a,θold), clip(r(θ), 1− ϵ, 1 + ϵ)Â(s, a,θold)

]]
(4.15)

The effect of using clipping on the objective function Jclip(θ) is demonstrated in Figure
4.2. Supposed that the initialization with action a0 causes r(θold) = 1.

37

(a) Â(s, a,θold) ≥ 0 (b) Â(s, a,θold) < 0

Figure 4.2: Clipping effect on Jclip(θ).

• Figure 4.2a presents the case when the estimated advantage reward Â(s, a,θold)
is positive. This indicates that the action a′1 ∼ π′(a|s,θ) the agent has just
performed is a good action. However, it also shows that π′(a|s,θ) is greater than
π(a|s,θold). In the case where r(θ) grows very large, gradient ∇J(θ) = j′1 − j0
also grows significantly. Applying it to update the policy’s parameters using
Equation 4.8 would change the old policy drastically, which might then make the
objective function overshoot the convergence point. To combat this situation,
PPO clips r(θ) to a value of 1 + ϵ. By this way ∇J(θ) = j1 − j0 is kept small
enough such that the parameters changing steadily towards good actions.

• Figure 4.2b illustrates the case when Â(s, a,θold) is negative. This means that
the agent has just performed a bad action, supposedly a′1 ∼ π′(a|s,θ). As
∇J(θ) = j′1− j0 is a positive value, by the policy’s parameters update Equation
4.8, we actually encourage the bad action a′1 to happen again in the future
since the gradient has now ascended. To reduce this effect, PPO clips r(θ) to a
small value of 1− ϵ, which reduces the gap between j′1 and j0 (to just j1 − j0).
This hypothetically makes bad action a′1 less likely to happen compared to
when there is no clipping. Using min(·) operator without a lower bound, PPO
lets bad action a′′1 ∼ π′′(a|s,θ) happen. This turns out not an issue since for
this case the gradient is negative. By the policy’s parameters update Equation
4.8, negative gradients allow the objective function to move back towards the
convergence point. Even if it overshoots the convergence point, it continues to
be adjusted by gradient ascent.

The Clipping version of PPO is more widely used than its KL Penalty counterpart.
The pseudocode for the Clipping version is given in Algorithm 1.

PPO method does face drawbacks when dealing with sparse rewards. These issues
are addressed by alternating between KL Penalty version and Clipping version, which
are proposed by Hsu et al. [63]. One important characteristic of PPO despite sparse
rewards is that it hypothetically allows arbitrary scalar value of rewards as the ob-
jective function uses ratio between new and old policies. However, in practice, it is
preferable to scale the scalar rewards to a certain range.

38

Algorithm 1 PPO - Clipping Version

1: procedure Policy Update(S,A,R, π(a|s,θ), N, T,M)
2: π(a|s,θold)← π(a|s,θ)
3: for i = 1 . . . N do
4: Run π(a|s,θ) for T time steps on ⟨S,A,R⟩.
5: Compute Â(s, a,θold) for all time steps.
6: for j = 1 . . .M do ▷ SGD: Stochastic Gradient Descent
7: Do SGD on −Jclip(θ) with π(a|s,θold) and π(a|s,θ).
8: Update θ accordingly.
9: end for
10: π(a|s,θold)← π(a|s,θ)
11: end for
12: return π(a|s,θ)
13: end procedure

39

Chapter 5

Implementation

5.1 CoDeb System Overview

Our proposed system for project-level text-to-code generation via reinforcement learn-
ing on compiler feedback is called CoDeb consisting of 4 major components: Code
Writer, Code Debugger, Reward Function and BEPUM-KB. Figure 5.1 gives an
overview of the system.

Taking inspiration from Pair programming - a collaborative programming practice
where two developers work together on the same code, our system consists of two
generative language models where one takes on the roles of code writing (Code Writer)
and the other is responsible for code debugging (Code Debugger). The two undergo
reinforcement learning with a Reward Function using PPO method. The knowledge
base BEPUM-KB containing BE-PUM code snippets assists Code Debugger in its
solution finding process. This section documents the details of each component along
with their input and output.

5.2 Description on Input and Output

5.2.1 Input

As can be seen from Figure 5.1, the input into the system consists of two information:

• Complete description of an x86 instruction in natural language which includes
Description section and Flag update section of an x86 instruction’s specification
(as stated in Section 2.1.2). It also includes short description of each instruc-
tion’s variant if applicable.

• A prepared Java code template of the target class that once filled in by the
system, should emulate the specified instruction.

In our case, we have extracted the class diagram of BE-PUM with the help of IntelliJ
IDEA 1 - an Integrated Development Environment (IDE) for Java. An excerpt of
BE-PUM class diagram is shown in Figure 2.5. From class diagram, the generation
of the corresponding Java class can be done automatically using a simple diagram
parser. As such, the Java template input into the system relies on the design choice of

1https://www.jetbrains.com

40

Generated code

Input:
X86 Ins. NL description

& Java template

Code repair
suggestion

Yes

Meet terminating
condition?

Output:
Generated code

program

<<Prompt>>

<<Prompt>>

<<Prompt>>

Error
message

Erroneous
code line

Reward
score

Compiler feedback

Reward Function

Response Format
Checking

Static Syntactic
Checking

Compiler
Checking

PPO update PPO update

Knowledge base
of BE-PUM

code snippets

BEPUM-KB

LLM

Code Writer

LoRA

Code Debugger

LLM LoRA

Figure 5.1: CoDeb system for project-level text-to-code generation.

41

the emulation project and can be automatically obtained. We reserve one Java class
for each x86 instruction and consider its text description as software specification for
the class. In addition to the generated Java template, we also pre-retrieve available
variables resulting from code inheritance and necessary environment variables for an
instruction to execute on.

5.2.2 Output

The expected output of CoDeb system is a complete Java code file that emulates the
requested x86 instruction. More specifically, the output Java code file should contain
the prepared content along with the generated codes filled in correct position. An
example output is shown in Figure B.1.

5.3 Code Writer

5.3.1 Model Construction

Base model. Following the typical parameter-efficient fine-tuning process, the
component Code Writer consists of a frozen LLM injected with a LoRA adapter. In
our implementation, we choose CodeLlama-7b-Instruct-hf 2 - a variant of CodeLlama
specialized in instruction-following tasks, with 7 billion parameters in size. However,
the LLM slot can be substituted with any code LLM of choice that is compatible with
PEFT fine-tuning. The generation configuration settings are as follows: sampling is
enabled, with a temperature of 1. The minimum number of new tokens is set to 80%
of the minimum length, while the maximum number of new tokens is set to 250%
of the minimum length. Additionally, the top-k value is set to 50, the top-p value
is 0.95, and the number of return sequences is 1. The minimum length is the total
number of tokens of the given Java code template, which is 566 tokens.

Configuration for LoRA adapter. The LoRA adapter is configured for the type
of causal language modeling with rank r = 8, α = 8 and one of its low-rank matrices’
weight initialized with values drawn from gaussian distribution. The target layers of
the frozen LLM injected with LoRA are components of attention layers, specifically
the linear key, query, and value layers, namely q proj, k proj, v proj and an output
projection layer o proj.

Configuration for quantization. The model is quantized with 4-bit quantization
scheme, resulting in 4.8GB model size for the Code Writer.

Configuration for reinforcement fine-tuning with PPO. The PPO configura-
tion is set as follows: the learning rate is fixed at 1.41× 10−5, with a batch size and
mini-batch size both set to 1. Gradient accumulation steps are also set to 1, while
the number of PPO epochs is 4. The target KL divergence is 0.5, and score scaling
is enabled.

5.3.2 Response Format

As the heavy lifting of implementing a PEFT-LLM is done by PyTorch framework,
the crucial part that is use-case specific is how to construct the input prompt and

2https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf

42

govern the format of the response regarding syntax and semantics. The reason we
choose Instruct version of CodeLlama is to enable more systematic request for code
generation as well as to help constrain the output format since the Code Writer should
first produce static-syntactically correct Java code file.

Since the entirety of the Code Writer’s response is expected to be valid code content
of a Java code file, we define the response format of the Code Writer as follows:

1 ‘‘‘java
2 <Java code content >
3 ‘‘‘

The response format includes only one pair of tokens ‘‘‘java and ‘‘‘, along with
non-null <Java code content>. The reason that the special tokens denoting the code
section are needed because generally, the generative models are trained to further
explain and/or provide summarization of its coding answers. For small local model
like CodeLlama-7b-Instruct-hf, specifying the exclusion of such text explanation from
its answer does not always guarantee the desired outcome. As only the Java pro-
grammable code content is needed, we mark it with special tokens in order to easily
separate it out from the text explanation, and later serve the penalization.

This response format then decides the construction of the prompt as well as the
Reward Function used for reinforcement fine-tuning the Code Writer.

5.3.3 Prompt Construction

The standard prompt format used for conversational instruction version of CodeLlama
2 3 is given as:

1 <s>[INST] <<SYS >>
2 {{ system_prompt }}
3 <</SYS >>
4
5 {{ u1 }} [/INST] {{ m1 }} </s><s>[INST] {{ u2 }} [/INST]

Note that the content of each round of conversation including one request from user
(u1) and one response from the model (m1) is wrapped within the two tags <s> </s>.
The part of the prompt that starts with <s> without ending in </s> is then followed
by the generation of the model. Usually it is the last round of conversation in the
prompt.

Here we only use one conversation round for each time of prompting with the following
prompt structure:

1 <s>[INST] <<SYS >>
2 {{ system_prompt }}
3 <</SYS >>
4
5 {{ u1 }} [/INST]

There are two scenarios where the Code Writer is asked to generate code:

• Initial code generation: The Code Writer receives the system’s input described
in Section 5.2.1 and is asked to generate a static-syntactically parsable Java
code file.

3Article on CodeLlama-2 prompting: https://huggingface.co/blog/llama2#how-to-prompt-
llama-2

43

• Iterative code generation: The Code Writer receives an erroneous code file and
the suggestion from the Code Debugger on how to fix such error. It is then asked
to correct the error, the output must still be a static-syntactically parsable Java
code file.

Initial Code Generation

For our first generation round, the content of {{ system_prompt }} is manually
provided as follows:

1 You are an expert Java programmer.
2 Complete the code given in the context.
3 Your answer should contain only Java codes with no textual explanation.
4 Your answer should start with ‘‘‘java mark and end with ‘‘‘ mark.
5 Provide comment for each block of codes.

The content of user’s first request {{ u1 }}:

1 Your task is to implement x86 instruction named {{ inst_name }}.
2
3 ### Input:
4 {{ text_description }}
5
6 ### Context:
7 Generate codes for function {{func}} in this Java code:
8 {{ additional_knowledge }}
9

10 ### Response:

The value for {{inst_name}} is the uppercase sequence of an instruction’s name.

The value for {{text_description}} is the first information of the system’s input
(described in Section 5.2.1) that is the description of each x86 instruction in nat-
ural language, obtained from parsing the ISA manual of x86. The text includes a
general description regarding operation, flag changes, and short description of each
instruction’s variant. The paragraph structure of the raw text is retained as is.

The second information of the system’s input (described in Section 5.2.1) is used as
below:

• The value for {{func}} is the name of the Java method that the Code Writer
should try to complete.

• The value for {{additional_knowledge}} making the context for in-context
learning is the code template of the target Java class. The declaration of package
name, import statements and class structure is automatically retrieved from the
class diagram of the project. We manually declare several code statements to
demonstrate syntax for input retrieval. A sample is shown below:

1 package v2.org.analysis.transition_rule.x86instruction;
2
3 import v2.org.analysis.environment.memory.MemoryV2;
4 import v2.org.analysis.environment.stack.StackV2;
5 import v2.org.analysis.path.BPState;
6 import v2.org.analysis.transition_rule.stub.X86InstructionStub;
7 import java.util.List;
8 import org.jakstab.asm.Operand;
9 import org.jakstab.asm.x86.X86Instruction;

10 import v2.org.analysis.environment.Environment;
11 import v2.org.analysis.path.BPPath;
12 import v2.org.analysis.transition_rule.X86TransitionRule;
13 import v2.org.analysis.value.LongValue;

44

14 import v2.org.analysis.value.BooleanValue;
15
16 public class <classname > extends X86InstructionStub {
17 @Override
18 public BPState execute () {
19 // From Top -most base class
20 String groupName = this.groupName;
21 X86Instruction inst = this.inst;
22 BPPath path = this.path;
23 List <BPPath > pathList = this.pathList;
24 X86TransitionRule rule = this.rule;
25 BPState curState = this.curState;
26 Operand dest = this.dest;
27 Operand src = this.src;
28 Environment env = this.env;
29 int opSize = this.opSize;
30 List <Long > params = this.params;
31
32 // Example syntax for retrieving register values , use them for other registers.
33 LongValue eax = (LongValue) env.getRegister ().getRegisterValue ("eax");
34 LongValue ax = (LongValue) env.getRegister ().getRegisterValue ("ax");
35
36 // Example syntax for retrieving flag values , use them for other flags.
37 BooleanValue AFlag = (BooleanValue) env.getFlag ().getAFlag ();
38 BooleanValue CFlag = (BooleanValue) env.getFlag ().getCFlag ();
39
40 // Retrieve stack value
41 StackV2 stack = (StackV2) env.getStack ();
42
43 // Retrieve memory value
44 MemoryV2 memory = env.getMemory ();
45
46 // Generate from here
47
48
49 return null;
50 }
51 }

Iterative Code Generation

For our iterative generation rounds, the content of {{ system_prompt }} is manually
provided as follows:

1 You are an expert Java programmer.
2 Your job is to fix an erroneous program given a guidance.
3 The program that needs correction and the guidance are in the input.
4 Use suggestion in the context.
5 Output the corrected version of the given program only.
6 Do not explain anything before or after the program.
7 Your answer should start with ‘‘‘java mark and end with ‘‘‘ mark.
8 Provide comment for each block of codes.

The content of {{ u1 }}:

1 ### Input:
2 - The erroneous program <class -name >.java:
3 <error -code >
4
5 - The guidance to fix the program:
6 <guidance >
7
8 ### Context:
9 Suggest using these snippets:

10 <suggest -snippets >
11
12 ### Response:

where:

45

• <class-name>: The name of the class within the Java code file.

• <error-code>: All of the code within the Java code file.

• <guidance>: The guidance of the Code Debugger on explaining the error and
suggesting possible ways to fix it.

• <suggest-snippets> (optional): The code snippets of BE-PUM that is possibly
related to the error, fetched from the knowledge base BEPUM-KB.

5.4 Reward Function

Component Reward Function consist of 3 checking procedures, namely Response For-
mat Checking, Static Syntactic Checking and Compiler Checking. Algorithm 2 gives
the details of the Reward Function where:

• r: A scalar reward value.

• p: A scalar penalty value.

• δ: A scalar threshold value which is the allowed ratio between newly generated
code lines that are comment lines and the total number of newly generated code
lines.

• R: The final reward value after taking penalty.

The Reward Function first starts with RESPONSE FORMAT CHECKING procedure (Algo-
rithm 3) to ensure that the code section in the response of the Code Writer can be
obtained. Note that the STATIC SYNTACTIC CHECKING procedure (Algorithm 4) calls
to COMPILER CHECKING (Algorithm 5) as we only allow sending static-syntactically
correct Java codes to the compiler due to two reasons: 1) Static syntactic checking
can rely on static parser alone, hence reducing number of calls to and waiting time
on running compiler; and 2) The compiler can deliver more concise and meaningful
feedback.

Algorithm 2 Reward Function - Scoring the response of Code Writer

1: procedure Reward Function(s)
2: r ← 0
3: p← 0
4: δ ← 0.7
5: ⟨r, p⟩ ← RESPONSE FORMAT CHECKING(s, r, p)
6: ⟨r, p, e, sfcom⟩ ← STATIC SYNTACTIC CHECKING(s, r, p, δ) ▷ Include Compiler

Checking Procedure
7: R← r − p
8: return ⟨R, e, sfcom⟩
9: end procedure

5.4.1 Response Format Checking

To guarantee the response format specified in section 5.3.2, as shown in Algorithm
3, this procedure helps determine if the generated text contains actual codes because
programmable codes and natural text may be indistinguishable by Java parser like

46

javalang 4. Additionally, as LLMs usually try to explain the content of the code which
is unwanted, separating out the code section helps pointing out such explanation part
and therefore, helps penalizes the behaviour.

Algorithm 3 Checking the format of the response generated by Code Writer

1: procedure Response Format Checking(s, r, p)
2: N ← number of characters in s
3: if s begins with ‘‘‘java then
4: r ← r + 1
5: else
6: p← p+ 1 + 1

N
|s0:i‘‘‘java | ▷ Number of tokens before reaching the first

‘‘‘java
7: end if

8: if s ends with ‘‘‘ then
9: r ← r + 1
10: else
11: p← p+ 1 + 1

N
|si‘‘‘:| ▷ Number of tokens after reaching the last ‘‘‘

12: end if

13: if s contains only one ‘‘‘java then
14: r ← r + 1
15: else
16: p← p+ 1
17: end if

18: if s contains only two ‘‘‘ then
19: r ← r + 1
20: else
21: p← p+ 1
22: end if

23: return ⟨r, p⟩
24: end procedure

5.4.2 Static Syntactic Checking

Algorithm 4 details the steps performed in the checking for syntactic correctness of
the Code Writer’s response. There are two main purposes in this procedure:

• Check for Java static syntactic correctness using a static parser for Java -
javalang, lines #4..7,29,30. First, function GET CODE SECTION takes out the
section of codes from the Code Writer’s response based on the token pair
‘‘‘java and ‘‘‘. Next, GET JAVA PARSED CODE continues to run javalang parser
on the extracted code section.

• Examine the generated code content of the Code Writer by multiple criteria:

4https://github.com/c2nes/javalang

47

– Check if the generated code retains all tokens given in the Java template,
lines #8..13. If all of the tokens in the given template cannot be found in
the Code Writer’s response, then the total penalty value for this criteria
reaches 1.

– Check if the generated code retains the Java template in terms of code
lines, lines #15..17. This criteria differs from the above in the sense that
the above looks for the usage (or reuse) of the template’s code tokens such
as variable names, method names. Meanwhile, this checks if the manually
provided parts which are syntactically correct is unaltered.

– Check if the Code Writer actually generate new code lines, lines #18..20.
There are cases where the Code Write cheats by only outputting the given
template, so we need to penalize this behaviour.

– Check if the all of the newly generated code lines are not comment lines,
lines #21..27. There are instances where the Code Writer cheats by gen-
erating only comment lines. This is similar to the previously mentioned
cheat case but also consumes memory space. Hence, penalty is needed for
this behaviour.

5.4.3 Compiler Checking

Algorithm 5 shows the steps taken in Compiler verification. First, function REFINE CODE
adds missing information to the generated codes. These information includes package
name, import statement and correct class name for the target Java code file. Note
that these information is fixed and can be automatically obtained from pre-defined
coding design, in our case, we take it from the extracted class diagram of the project.

Next, function COMPILE IN BEPUM inserts the generated Java code file into BE-PUM
project in an appropriate directory and calls Java compiler Javac to run project-wide
compilation. The message m returns by the compiler Javac is then collected. If the
compilation succeeds, an large immediate reward value of 2 is given. Otherwise, we
examine the errors and try to correct them.

Inspired from CoTran [64], CoDeb also focuses on fixing the first encountered com-
pilation error at a time. Function PARSE ERROR MESSAGE parses the message m and
returns the first error’s description ef and its line number lf . Using lf , we try to
reward the model with its correctly generated part while penalizing the remaining.
Function GET NEAREST COMMENT retrieves the comment line sfcom that is immediately
above the erroneous code line (if any). ef and sfcom are then useful for Code Debugger.

5.5 Code Debugger

5.5.1 Model Construction

The configurations for the base mode, LoRA adapter, quantization and PPO training
are similar to those of the Code Writer. The only difference is that the maximum
number of new tokens is set at 128 only. Since the response from the Code Debugger
is to put into the prompt of the Code Writer, it should be kept short and concise.
Ideally, sharing the same frozen LLM with the Code Writer would significantly reduce
GPU memory consumption during training compared to running two separate LLMs.

48

Algorithm 4 Checking the static syntactic parsability of Code Writer’s response

1: procedure Static Syntactic Checking(s, r, p, δ)
2: ef ← NULL ▷ Prepared for Compiler Checking Procedure
3: sfcom ← NULL ▷ Prepared for Compiler Checking Procedure
4: s← GET CODE SECTION(s)
5: s← GET JAVA PARSED CODE(s)
6: if s is valid then
7: r ← r + 2

8: if s retains all tokens given in template s′ then
9: r ← r + 1
10: else
11: tneg ← tokens in s′ but not in s
12: p← p+ 1

|tokens of s′| |tneg|
13: end if

14: l← furthest matched line number between s and s′

15: Criteria: Code Writer retains the template in terms of lines
16: r ← r + l

|lines of s′|
17: p← p+ 1− l

|lines of s′|

18: Criteria: Code Writer should generate more lines
19: r ← r + 1− l

|lines of s|
20: p← p+ l

|lines of s|

21: Criteria: Prevent new generated code lines are all comments
22: c← number of new lines that are comments
23: if c

|lines of s|−l
≤ δ then

24: r ← r + 2
25: else
26: p← p+ 2
27: end if

28: ⟨r, p, e, sfcom⟩ ← COMPILER CHECKING(s, r, p)

29: else
30: p← p+ 2
31: end if

32: return ⟨r, p, e, sfcom⟩
33: end procedure

49

Algorithm 5 Checking the compilability of Code Writer’s response in BE-PUM

1: procedure Compiler Checking(s, r, p)
2: s← REFINE CODE(s)
3: m← COMPILE IN BEPUM(s)
4: if m has status SUCCESS then
5: r ← r + 2
6: else
7: ⟨ef , lf⟩ ← PARSE ERROR MESSAGE(m)

8: rcorrect part ← lf
|lines of s|

9: r ← r + rcorrect part

10: p← p+ 1− rcorrect part

11: sfcom ← GET NEAREST COMMENT(lf , s)
12: end if
13: return ⟨r, p, e, sfcom⟩
14: end procedure

However, the PyTorch platform no longer supports this training scheme with multiple
adapters in a single session. Hence, there are two possible ways of implementation:

• Constructing the Code Writer and Code Debugger as two separate frozen LLMs,
each equipped with its own LoRA adapter.

• Using one frozen LLM injected with one LoRA adapter for both code writing
and debugging tasks (multi-task learner).

There is no restriction on the response format for the Code Debugger, indicating that
the required formats for the tasks of writing and debugging differ. Consequently,
the initial implementation, which separates the two models, appears intuitively effec-
tive. However, given that large language models (LLMs) are capable of multi-task
language understanding [65], the alternative implementation is also considered in our
experiments.

5.5.2 Prompt Construction

Following the same format used for a single turn of conversation prompting in the
Code Writer, the complete prompt template for the Code Debugger is manually pre-
pared as follows:

1 <s>[INST] <<SYS >>
2 You are an expert Java code debugger.
3 Your job is to suggest solutions to fix an erroneous program.
4 The program that needs correction and its error are in the input.
5 The suggestion is in the context.
6 Note that class name is changeable while file name cannot be changed.
7 <</SYS >>
8
9 ### Input:

10 - The errorneous program <class -name >.java:
11 <error -code >
12
13 - The error message:
14 <error -message >
15
16 ### Context:
17 Suggest using these snippets:
18 <suggest -snippets >
19

50

20 ### Response:
21 [/INST]

where:

• <class-name> is substituted with the target instruction’s name in lowercase.

• <error-code> is replaced with the entire faulty program generated by the Code
Writer.

• <error-message> is substituted with the first encountered error’s message ef
informed by the compiler via the Reward Function.

• <suggest-snippets> is the code snippets in BE-PUM that potentially express
the same semantics as the generated code line where the first encountered error
occurs. The code line sfcode parsed from the error message ef and the nearest
comment to it sfcom together forms a query into BEPUM-KB. The returned
top-k most semantically similar code snippets of BE-PUM are then placed in
to this placeholder.

An instantiation of the prompt in the case of fixing instruction JLE is given below:

1 <s>[INST] <<SYS >>
2 You are an expert Java code debugger.
3 Your job is to suggest solutions to fix an erroneous program.
4 The program that needs correction and its error are in the input.
5 The suggestion is in the context.
6 Note that class name is changeable while file name cannot be changed.
7 <</SYS >>
8
9 ### Input:

10 - The errorneous program jle.java:
11 package v2.org.analysis.transition_rule.x86instruction;
12
13 import v2.org.analysis.environment.memory.MemoryV2;
14 import v2.org.analysis.environment.stack.StackV2;
15 import v2.org.analysis.path.BPState;
16 import v2.org.analysis.transition_rule.stub.X86InstructionStub;
17 import java.util.List;
18 import org.jakstab.asm.Operand;
19 import org.jakstab.asm.x86.X86Instruction;
20 import v2.org.analysis.environment.Environment;
21 import v2.org.analysis.path.BPPath;
22 import v2.org.analysis.transition_rule.X86TransitionRule;
23 import v2.org.analysis.value.LongValue;
24 import v2.org.analysis.value.BooleanValue;
25
26 public class jle extends X86InstructionStub {
27 @Override
28 public BPState execute () {
29 // From Top -most base class
30 String groupName = this.groupName;
31 X86Instruction inst = this.inst;
32 BPPath path = this.path;
33 List <BPPath > pathList = this.pathList;
34 X86TransitionRule rule = this.rule;
35 BPState curState = this.curState;
36 Operand dest = this.dest;
37 Operand src = this.src;
38 Environment env = this.env;
39 int opSize = this.opSize;
40 List <Long > params = this.params;
41
42 // Example syntax for retrieving register values , use them for other registers.
43 LongValue eax = (LongValue) env.getRegister ().getRegisterValue ("eax");
44 LongValue ax = (LongValue) env.getRegister ().getRegisterValue ("ax");
45
46 // Example syntax for retrieving flag values , use them for other flags.
47 BooleanValue AFlag = (BooleanValue) env.getFlag ().getAFlag ();

51

48 BooleanValue CFlag = (BooleanValue) env.getFlag ().getCFlag ();
49
50 // Retrieve stack value
51 StackV2 stack = (StackV2) env.getStack ();
52
53 // Retrieve memory value
54 MemoryV2 memory = env.getMemory ();
55
56 if (CFlag.getValue () == 1 || AFlag.getValue () == 1) {
57 // Jump to the destination
58 path.setPC(dest.getValue ());
59 return null;
60 } else {
61 // Continue executing current instruction
62 return null;
63 }
64 }
65 }
66
67
68 - The error message:
69 jle.java :46: error: incomparable types: boolean and int
70 if (CFlag.getValue () == 1 || AFlag.getValue () == 1) {
71 ˆ
72
73
74 ### Context:
75 Suggest using these snippets:
76 if (env.getFlag ().getPFlag ().equal(new BooleanValue (1))) {
77
78 ### Response:
79 [/INST]

5.6 BEPUM-KB

To inform the Code Writer and Code Debugger with the potentially suitable code
syntax from BE-PUM project to use, we need to index the project-level context of
BE-PUM for semantic retrieval. The component that holds this information and
facilitates semantic searching is named BEPUM-KB (KB: Knowledge Base). This
section documents the process of constructing BEPUM-KB, starting from collecting
the project-level context of BE-PUM, to embedding and plugging it into a small
semantic search engine.

5.6.1 Collection of BE-PUM’s Project-level Context

With respect to the two types of project-level context declared in Section 2.2.2, we di-
vide the collection of these code into two scenarios respectively: Collection of existing
code base and Collection of explored code lines from class diagram.

Collection of Existing Code Base

All code lines from 2950 code files in BE-PUM, except comment lines and blank lines,
are collected with duplicate removal and excessive white-space removal, resulting in
a total of 30,402 code lines. We exclude all of the code lines that are in the code files
emulating the target instructions implemented by human developers.

Collection of Explored Code Lines from Class Diagram

The exploration to generate potential code lines from the class diagram include 3
types (taking the class diagram fragment in Figure 2.5 as an example):

52

• Generating class declaration statement, e.g:
public class aaa extends X86InstructionStub {

• Generating variable and method declaration and initialization statement, e.g:
public int opSize;,
public X86InstructionStub();,
BPState bPState = new BPState(Environment,AbsoluteAddress,Instruction);

• Generating chained method calls based on object’s datatype, e.g:
env.clone().getMemory().getStack().length();
curState.getEnvironement().getMemory().getStack().equals(Stack);
We limit the number of next hops in a chained method call to be 5 - that is to
only explore at max 5 more chained methods for a given variable of non-void
datatype.

The total number of explored code lines with duplicate removal is 80,242.

The two collection scenarios results in a total of 110,644 code lines. These 110,644
code lines are to be stored in a database indexed by their semantics represented as
vector values computed by a code embedding model - so-called a vector database.
The following sections continues this process.

5.6.2 Code Embedding with CodeBERT

We measure the similarity between the queried code line and the code lines stored in
the database by computing the cosine distance between their embedding vectors. We
choose CodeBERT as the embedding model. Since tokens in code are just mnemonics
or abbreviations and typically shorter than those in natural language, embedding code
based solely on individual lines may lead to inaccurate results. It is common practice
for code embedding models to require natural language descriptions alongside each
code snippet to form a complete input. Therefore, we equip each line of the collected
code lines with a text description. To obtain the text description, we ask ChatGPT-
3.5-Turbo to give a brief summary (maximum 256 tokens) of the purpose of each code
lines.

The usage of ChatGPT-3.5-Turbo is done via API provided by OpenAI 5. Below is
the Python code snippet used to obtain the summary:

1 response = client.chat.completions.create(
2 model ="gpt -3.5- turbo",
3 messages =[
4 {
5 "role": "system",
6 "content ": "You are a code summarizer ."
7 },
8 {
9 "role": "user",

10 "content ": f"Summarize this line of code:\n{code_line }"
11 }
12],
13 temperature =1,
14 max_tokens =256,
15 top_p=1,
16 frequency_penalty =0,
17 presence_penalty =0
18)

5https://platform.openai.com/docs/overview

53

Before resulting in choosing ChatGPT model for the summarization, we also try with
a local model which is CodeLlama-2-34b-Instruct (CodeLlama-2, Instruct variant, 34
billion parameters). As we wish to limit the response length of CodeLlama (to under
50 words), we try with two types of prompting:

• Not explicitly informing the model about the word limit in the prompt but
instead, set it in generation’s hyper-parameters (case WLimHparam: Word
Limit in Hyper-parameters).

1 <s>[INST] <<SYS >>
2 You are a code summarizer.
3 Summarize this line of code:
4
5 <</SYS >>
6
7 <code -line > [/INST]

• Explicitly inform the model about the word limit in the prompt (and also set
it in hyper-parameters) (case WLimPrompt: Word Limit in Prompt).

1 <s>[INST] <<SYS >>
2 You are a code summarizer.
3 Under 50 words , summarize this line of code:
4
5 <</SYS >>
6
7 <code -line > [/INST]

Table 5.1 and 5.2 list out several samples demonstrating the results of BE-PUM’s code
lines and their obtained text description from ChatGPT-3.5-Turbo and the two cases
of CodeLlama-2-34b-Instruct, respectively. The text in color red indicates that the
response is not complete and gets cut off due to exceeding maximum length. As can be
seen from the two tables, ChatGPT’s response is more consistent, concise and shorter
than CodeLlama’s despite the configuration for ChatGPT indicates that maximum
number of tokens is 256. As for CodeLlama responses, case WLimPrompt is more
likely to produce responses that are within the specified length than WLimHparam.
However, it is not always guaranteed. Another reason that we rely on ChatGPT for
the automatic summarization is that the time it takes for running CodeLlama locally
for this task is roughly 50 seconds per request while using OpenAI API for ChatGPT-
3.5-Turbo returns each response in approximately 18 seconds with reasonable pricing
rate.

For each pair of BE-PUM code line and its text description, following the data format
for CodeBERT, we use the below template to form a training data-point:

1 <s> {{ text_description }} </s> {{ code_line }} </s>

Following the standard fine-tuning process for a language model, we then obtain the
fine-tuned CodeBERT on BE-PUM code base.

5.6.3 Vector Database Construction

We use ChromaDB 6 as our local database and semantic search engine. To populate
the database, we simply use the fine-tuned CodeBERT model to get embeddings of all

6https://docs.trychroma.com

54

Table 5.1: Samples of code description obtained from ChatGPT-3.5-Turbo.

ID BE-PUM’s Code Line ChatGPT-3.5-Turbo
1 env.getFlag().getDFlag() Calls the getFlag() method from the

env object and then calls the getD-
Flag() method on the result.

2 env.getMemory().clone(). ge-
tRegister().and(String,Value);

Gets the memory from the environ-
ment, creates a clone of it, accesses the
register from the clone, and performs a
bitwise AND operation with the given
String value.

3 BPState bPState = new BP-
State(Environment, AbsoluteAd-
dress,Instruction);

Creates a new object of type BPState
with parameters Environment, Abso-
luteAddress, and Instruction, and as-
signs it to the variable bPState.

4 Register register = new Regis-
ter();

Creates a new instance of a class called
Register and assigns it to a variable
named register.

5 env.getSystem().getFileHandle().
moveFile(String,String);

Gets the system environment, accesses
the file handle within the system, and
invokes the moveFile method with two
String parameters.

6 state.getEnvironement().getFlag().
changeFlagWithSUB(Value,
Value, Environment, int);

Calls a method to change a flag in the
environment by subtracting a specified
value with the given parameters.

the collected BE-PUM code lines. The database then stores these code lines, indexes
them by their vector embedding values.

To look up the top-k most similar BE-PUM code lines that potentially express the
same idea as the Code Writer’s generated code line in the query, we first use the
fine-tuned CodeBERT to obtain the embedding of the generated code line. Then by
computing cosine distance between each embedding vector stored in the database and
the queried embedding, we fetch out the BE-PUM code lines whose embeddings are
in the top-k closest to the queried. The cosine distance formula is

d = 1.0−
∑

(Ai ×Bi)√∑
A2

i

√∑
B2

i

where A and B are two vectors and i is an index into a vector’s components.

55

Table 5.2: Samples of code description obtained from CodeLlama-2-34b-Instruct.

ID CodeLlama-2-34b-Instruct
(WLimPrompt)

CodeLlama-2-34b-Instruct
(WLimHparam)

1
This line of code gets the DFlag
value from the Flag object re-
turned by the getFlag() method of
the env object.

This line of code is accessing the DFlag
property of an object stored in the env
variable. The env variable is likely an
environment object that contains var-
ious properties and methods. The get-
Flag() method is being called

2
This line of code is cloning the
current memory state of the en-
vironment and performing a bit-
wise AND operation on the regis-
ter and a string value.

The provided line of code appears to
be a method call to the clone() method
of a Memory object, and then a call to
the and() method of a Register object.
The method call is being made on the

3
Creating a new instance of the
BPState class with the specified
parameters Environment, Abso-
luteAddress, and Instruction.

The code defines a new instance of
the BPState class named bPState and
passes three parameters to its con-
structor: Environment, AbsoluteAd-
dress, and Instruction.

4
Declares a variable register of type
Register and assigns a new Regis-
ter object to it.

This line of code creates a new in-
stance of the Register class and assigns
it to a variable called register.

5
This line of code is using the
env class’s getSystem() method
to get a reference to the system,
and then using the getFileHan-
dle() method to get a reference to
the file handle. The moveFile

The code is calling the moveFile
method of an object in the getSys-
tem().getFileHandle() chain, passing
in two string arguments. The method
is used to move a file from one location
to another.

6
This line of code is using the Envi-
ronment class and its changeFlag-
WithSUB method to modify the
value of a flag. The SUB parame-
ter is used to specify the new value
for the flag, and the Value

This line of code is using the change-
FlagWithSUB method of the Flag
class, which is part of the Environment
class. The method takes four parame-
ters: Value, Value, Environment, and
int

56

Chapter 6

Experiments and Results

6.1 Experiment Setup

Hardware environment

During our selection of hardware environment, we observe that different GPU models
produces different generated codes. Therefore, we includes two choices of environ-
ments that are available to us which includes: a single GPU A100 (40960MB, with
DELL PowerEdge R750 Server) and a single GPU A40 (46068MB, with DELL Pow-
erEdge R750 Server).

Software environment

As the aforementioned, the platform and library we use are PyTorch and Hugging-
Face’s specialized libraries for transformer research. Other software products include
ChromaDB for hosting a local search engine, OpenAI’s ChatGPT-3.5-Turbo APIs
for BE-PUM knowledge base’s data preparation and Java Development Kit that con-
sists of Java compiler for obtaining compiler’s feedback. The training environments’
operating system are Ubuntu, which is incompatible with the target code project
BE-PUM. Since BE-PUM is built on Windows only, we need to establish a TCP con-
nection to transfer generated code files to the BE-PUM project hosted on a Windows
machine.

Experiment scenarios

Based on the main frame of the proposed system CoDeb, we empirically experiment
it with different scenarios, with each is referred to one experiment. The naming of
these experiments are:

• Default-0 (CoDeb-Default-0): All hyper-parameters are set as the above men-
tioned in Chapter 5. The system runs on GPU A100, consists of two distinct
generative models and finishes the first epoch of training.

• Default-1 (CoDeb-Default-1): The same model in CoDeb-Default-0 finishes the
second epoch of training.

• NoRL (CoDeb-NoRL): all configurations are similar to CoDeb-Defautl-0 but no
training is applied.

57

• A40 (CoDeb-A40): all configurations are similar to CoDeb-Defautl-0 but runs
on GPU A40.

• (CoDeb-Single): all configurations are similar to CoDeb-Defautl-0 except that
instead of two distinct generative models, we only use one model for both code
writing and debugging tasks.

All the experiments undergo up to 3 iterations of Initial Code Generation and a
maximum of 3 iterations of Iterative Code Generation.

6.2 Datasets

As described in Section 5.2.1, the text data used as input into the system includes
natural language description of the x86 instruction and a java code template with
respect to such instruction. Additionally, BE-PUM project-level context is used for
BEPUM-KB component. The statistics for these datasets are:

• The natural language description of each instruction is extracted from the spec-
ifications that has been described in Section 2.1.2 of the Intel 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A. As the manual comes
with both 32-bit and 64-bit modes, the total number of instructions (1220 in-
structions) includes both 32-bit and 64-bit instructions. If we were to consider
each variation of an instruction (a combination of Opcode and Operands) to
be an independent instruction, then the total number is estimated to be 8274
instructions. For example, instruction called CMOVcc - Conditional Move has
90 variations such as CMOVA - Move if above, CMOVNL - Move if not less,
and so on. In our case, we limit the number of instructions to 1147, neglecting
several instructions for 64-bit only and expanding to a number of variations
of the CMOVcc instruction that are used within BE-PUM. Particularly, we
primarily focus on the existing set of 200 instructions including 120 previously
implemented instructions in BE-PUM and the first 80 instructions among those
1147, ordered alphabetically.

• 200 java code templates, with each corresponding to a selected x86 instruction,
are prepared using the method described in Section 5.2.1.

• 110,644 code lines of BE-PUM project-level context that is used specifically for
BEPUM-KB, collected by the method described in Section 5.6.1.

6.3 Validation Metrics

Targeting at code compilation results, we use these two types of measurements: 1)
Performance measurement that uses each generation time step as its counting unit
and 2) Performance measurement that uses each data point in the dataset as its
counting unit.

For measurement numbered 1), we use the following criteria:

• Static Syntactic Pass Ratio (SSPR):

SSPR =
nss pass

nresponse

58

The ratio shows the total number of times that the Code Writer produces a
static-syntactically correct Java code file over the total number of times that
the Code Writer responses. This criteria indicates how much the generative lan-
guage model could follow the response format requirement given in the prompts
(constrained decoding).

• Compiler Pass Ratio (CPR):

CPR =
nc pass

nresponse

The ratio shows the total number of times that the Code Writer produces a
static-syntactically correct Java code file that passes the compiler without an
error over the total number of times that the Code Writer responses. This cri-
teria indicates the capability of the system to generate project-level compilable
code files.

• First-Error Improvement Ratio (FEIR):

FEIR =
nfei

nfixing response

Where nfei is the total number of times that the Code Writer produces a cor-
rected version of the erroneous code file where the first error that previously
occurred gets fixed and nfixing response is the total number of times that the Code
Writer fixes an erroneous code file in Iterative code generation stage. This
criteria assesses the effectiveness of using the Code Debugger to provide code
fixing guidance and the ability of the Code Writer to follow such guidance in
automatic code correction. On the other hand, the total number of errors is
disregarded because fixing the first encountered error in the error list could mis-
match the subsequent usage of the fixed code line such that the total number
of errors may decrease or increase.

• First-Error Deterioration Ratio (FEDR):

FEDR =
nfed

nfixing response

Where nfed is the total number of times that the Code Writer produces a cor-
rected version of the erroneous code file where the first error in the list turns
out to occur earlier than in the previous version. The first errors from both
times are not necessarily the same. This criteria also assesses the effectiveness
of the code debugging and correcting task in CoDeb.

For measurement numbered 2), we use the following criteria:

• Static-Syntactically Correct Instructions Ratio (SSCIR):

SSCIR =
nssc ins

nall ins

where nssc ins is the total number of instructions that have at least one static-
syntactically correct Java implementation and nall ins is the total number of
instructions.

59

• Compilable Instructions Ratio (CIR):

CIR =
nc ins

nall ins

where nc ins is the total number of instructions whose Java implementation
passes project-level compilation in BE-PUM. These instructions can be then
ready for semantic verification which is not in the scope of our current work.

Note that the Result section below reports these metrics in percentage.

6.4 Results

There are two major types of results with respect to static-syntactical correctness and
project-level compilation correctness.

After the Static Syntactic Checking step in the Reward Function, the static-syntactical
correctness is reported to demonstrate how well the generative models adhere to the
specified response format for constrained decoding. It also verifies that the generated
code passes static syntactic checks within the file-level context.

After the Compiler Checking step in the Reward Function, the project-level compi-
lation correctness is report to show the end result of the system which is to achieve
compilable code implementation.

For each type, overall results are presented first, followed by a more detailed analysis.
Furthermore, Appendix B documents several demonstration of results.

6.4.1 Static-syntactical Correctness

Overall results

Table 6.1 reports the overall results of Static Syntactic Checking over the total num-
ber of Code Writer’s responses (SSPR) and over the number of input instructions
(SSCIR).

From Table 6.1, it can be seen that Default-0 scores the highest on both metrics
SSPR and SSCIR, which means among the times that the Code Writer attempts
to write a Java code file for all 200 selection instructions, 51.22% of such times it
successfully produces a static-syntactically correct code. Among those 200 input
instructions, there are 178 instructions (89%) having at least 1 static-syntactically
correct implementation. Although NoRL has the least SSPR, it comes in second
place in SSCIR metric. Further observations and explanation are documented next.

Table 6.1: Results on SSPR and SSCIR metrics.

Index Experiment SSPR SSCIR
1 Default-0 51.22 89
2 Default-1 42.17 71.5
3 NoRL 37.32 79.5
4 A40 41.24 76
6 Single 42.54 75

60

Figure 6.1: Result of Static Syntactically Checking for Initial Code Generation and
Iterative Code Generation.

Result analysis

The result of static-syntactically correct and incorrect generation per Code Writer’s
response in shown in Figure 6.1. According to Chapter 5, there are two scenarios
where the Code Writer produces a Java code file. In the Initial Code Generation
scenario, across all experiments, it is approximately 24.58% of the total responses
that a static-syntactically correct Java code file is produced. Meanwhile, the Iterative
Code Generation with debugging process achieves an average of 18.32%. Because the
total number of times that a static-syntactically correct Java code file is generated
accounts for approximately 42.90% of all Code Writer’s responses, we can see that it
is hard to achieve constrained generation while still encouraging certain amount of
randomness. Hence, the Code Writer needs to redo some more trials, resulting in a
larger number of total responses per experiment. Considering the worst case where
each of the 200 instructions need all 3 rounds of initial generation and then 3 rounds
of iterative correction with debugging, the total number of responses that the Code
Write must make in this case is 1800 (200× 3× 3), our experiments average to just
42.42% of such case.

For each individual experiment:

• Default-0: The experiment produces the highest number of static-syntactically
correct Java code files (on response unit) while not requiring the most responses.

• Default-1: Compared to its previous epoch, in the second epoch the default-
configured system takes less number of responses while having performance
comparable to other experiments. This shows that it can obtain a static-
syntactically correct Java code file earlier than other experiments. However,

61

Figure 6.2: Accumulative number of static-syntactically correct instructions over Ini-
tial Code Generation’s loops.

the number of instructions that have at least one static-syntactically correct
implementation decreases. This drastic drop is caused by the fine-tuning pro-
cess which is discussed more in Chapter 7.

• NoRL: From Figure 6.1 and Table 6.1, it can be seen that the experiment
CoDeb-NoRL that does not undergo reinforcement fine-tuning produces the
least static-syntactically correct Java files in response units (only 37.32% for
SSPR). This is expected as the system is not governed by response format
rules. However, it is still able to produce correct Java implementation for upto
79.50% of 200 x86 instructions, which hints the trade-off between syntactic and
semantic tuning.

• A40: Experiment A40 needs the most responses to produce static-syntactically
correct Java files while having moderate successful generation. The result shows
that the generated part in the answer of A40 is often shorter than the answer
produced when using GPU A100, an example is shown in Figure 6.3. Its cor-
rectness rate per instruction (SSCIR) is not as high as its counterpart running
on GPU A100. However, its performance on SSPR and SSCIR are comparable
to the Single experiment’s.

• Single: The experiment requires as many responses as the Default-0 while pro-
ducing less correct Java code files in both response units and instruction units.
This suggests that separate generative models are more favorable for tasks that
require distinct response formats.

Additionally, Figure 6.2 illustrates the increase in the total number of static-syntactically
correct instructions across the three loops of Initial Code Generation. It can be seen
that the total number of successful instructions increase steadily over the loops with
Default-0 taking the lead. Default-1, A40 and Single’s growths are moderate, while
the increase in NoRL is more significant toward loop numbered 3.

If the Code Writer were limited to only one attempt, the count of static-syntactically
correct instructions would be much lower, as demonstrated by the results of the first

62

loop in the figure. In fact, a human coder (without the aid of code linting) also
attempts several times before obtaining a correct program. Hence, it is reasonable to
let the Code Writer performs several trials if the previous attempt is not correct, and
improve it via reinforcement reward through static syntactic checking. The figure
demonstrates that allowing the Code Writer to have multiple attempts results in a
higher number of instructions with static-syntactically correct implementations.

6.4.2 Project-level Compilation Correctness

The overall results shown here include statistics on the number of generated code
files that successfully compile at the project level within the target project BE-PUM.
Following this, the analysis presents how the compiler’s feedback, interpreted by the
Code Debugger, impacts the correction of the code files generated by the Code Writer.

Overall result

Table 6.2: Results on CPR and CIR metrics.

Index Experiment CPR CIR
1 Default-0 2.57 10
2 Default-1 1.16 4
3 NoRL 1.66 6.5
4 A40 1.01 4
6 Single 1.95 7.5

Table 6.2 reports the overall results on two metrics CIR and CPR in percentages.
The CIR column indicates the percentage of instructions out of the selected 200
that are successfully compiled in BE-PUM. Meanwhile, the CPR column displays the
percentage of compilable responses out of all the Code Writer’s responses. As can
be seen that Default-0 scores highest on both measurements. The following-ups are
Single and NoRL. The reason why these two experiments have more significant results
than Default-1 and A40 can be explained as follows:

• Default-0: A subset of pre-trained weight matrices are tuned in favor of produc-
ing compilable codes, which may affect the output semantics but not significant
on the first epoch.

• NoRL: The pre-trained weight matrices are unaltered, therefore the pre-trained
semantics is preserved. However, as output syntax is not constrained, the num-
ber of syntactically correct generation is few, and thus the final number of
compilable codes is less than Default-0.

• A40: Similar to Default-0, a subset of pre-trained weight matrices are tuned
in favor of producing compilable codes. However, H100 GPU may advance
more than A40 GPU in terms of floating-point precision. Hence, the output
probabilities for decoding tokens are different. Figure 6.3 also demonstrates
such difference.

Additionally, Figure 6.4 summarizes the number of compilable generated code files
of the system through two stages: Initial Code Generation and Iterative Code Gen-
eration. It can be seen from the figure that experiment Default-0 obtains the most
compilable files, Single and NoRL come in second and the remaining experiments

63

(a) Experiment A40.

(b) Experiment Default-0 with GPU A100.

Figure 6.3: Example on generation differences between GPU A40 and GPU A100:
the generative models are given the same prompt asking for Java implementation for
instruction AAA, in the first loop of Initial Code Generation.

64

Figure 6.4: Number of successfully compiled generated code files in BE-PUM.

obtains moderate results. While the compilable files obtained mostly from the Initial
Code Generation for all experiments except Default-1, for Default-1, the compilable
files obtained after debugging is higher than those in the initial generation. This
can be explained by the effect of reinforcement fine-tuning using only feedback on
the correctness of syntax without considering semantic feedback. Nonetheless, a rise
in the compilable files due to debugging demonstrates the effective role of the Code
Debugger.

Result analysis

The results of utilizing feedback from the compiler to fix errors in the generated code
files is shown in Figure 6.5. The figure reports the total number of times that the
Code Writer produces corrected code with Improvement, Deterioration or Unchanging
status, while Table 6.3 presents it in percentages. These labels are furthered explained
as follows:

• Improvement: Indicates that after receiving consultation from the Code Debug-
ger, the Code Writer produces a static-syntactically correct code file, in which
the first error that occurred in the previous compilation is now fixed.

• Deterioration: Indicates that after receiving consultation from the Code Debug-
ger, the Code Writer produces a static-syntactically correct code file, in which
the first error that occurred in the previous compilation may not yet be fixed
but another error now occurs earlier than the previously found one. This shows
that the code correction wrongly changes the correct code lines.

• Unchanging: Indicates that after receiving consultation from the Code Debug-
ger, the Code Writer produces a static-syntactically correct code file, in which
nothing has been modified.

Among these three label, Improvement indicates a good code fix, which is favorable.
Deterioration indicates a bad fix, Unchanging indicates an ineffective fix, which are

65

Figure 6.5: Effectiveness of code correction in Iterative Code Generation.

both undesired.

Table 6.3: Results on FEIR and FEDR metrics.

Index Experiment FEIR FEDR
1 Default-0 32.42 26.37
2 Default-1 26.56 23.44
3 NoRL 31.78 26.17
4 A40 29.66 22.33
6 Single 34.81 20.74

Individual experiments : The result reported by Figure 6.5 and Table 6.3 shows that:

• Default-0: The Default-0 experiment corrects the most code files while having
fewer Deteriorations than Improvements. However, the number of Deteriora-
tions and Unchangings are also significantly higher than other experiments.

• Default-1: The Default-1 experiment’s results are less than its previous epoch
(Default-0) on all three indicators. Adding up with its result on static-syntactic
correctness, the problems may have root in how reinforcement learning changes
the generative models’ parameters in the way that favors the conformance to
response format and static-syntactical correctness than code coherence. This
behaviour is further stated in Chapter 7.

• NoRL: The system when not using any fine-tuning is shown to obtain compara-
ble results with the number of Improvements being higher than the Deteriora-
tions, while the number of Unchanging code correction is the fewest. Still, taking
its result in static-syntactical correctness into consideration, we can see that its
Improvement number is just moderate while requiring as many responses as
Default-0. Additionally, as being non fine-tuned, this result cannot be further
improved like those of the experiments with fine-tuning.

66

• A40: Experiment A40 has moderate results with the number of Improvements
being larger than its own Deteriorations and larger than which of Default-1.

• Single: Using only one generative model to iteratively modify and assess the
same code file shows certain benefit since the result is also moderate like which of
the two-model system in experiment A40. Percentage results from Table 6.3 also
shows that this experiment scores the highest in FEIR and the lowest in FEDR.
Adding up to the fact that this needs a significant number of responses, we can
infer that most of the times the system in this experiment produces static-
syntactically incorrect code files. But when it manages to produce it correctly,
it has higher chance of obtain an Improvement. Compared to the experiment
Default-0 with two distinct models, we can see that Default-0 outperforms it
while requiring similar amount of total responses.

Assessing Improvement over total responses leads to a hypothetical estimation dis-
cussed in the following content: It can be seen that the total sum of all indicators
presented in Figure 6.5 here also indicates the number of static-syntactically correct
responses the Code Writer makes in Iterative Code Generation (see Figure 6.1, a
small difference of 1 is due to a log file from Javac that cannot be decoded). If we
assume the static-syntactically correct responses in Figure 6.1 of Initial Code Gener-
ation is obtained immediately on the first try, then the remaining Failed Generation
is considered to have occurred in Iterative Code Generation. Table 6.4 estimates this
hypothetical situation where the values (= #Failed Generation

#Improvement
) means the average redo

times that the Code Writer must do in order to obtain one Improvement. Hence, a
smaller value is more favorable. It can be seen from the table that Default-0 has the
lowest trials to obtain an Improvement, Default-1 and Single needs a moderate num-
ber of redos while NoRL requires the most trials and its total number of Improvement
is among the lowest.

Table 6.4: Estimated number of the Code Writer’s responses needed for obtaining
one Improvement in Iterative Code Generation.

Experiment Default-0 Default-1 NoRL A40 Single
Estimated responses 6.67 10.23 12.62 12.59 10.55

Individual loops : This result presents how Improvement and Deterioration changes
throughout each debug loop in Iterative Code Generation of each experiment. Figure
6.6 presents the said result.

Note that an Improvement (as well as Deterioration and Unchanging) is counted be-
tween two subsequent code correction turns that both pass compiler checking. For
example, an Improvement happens after loop #3 of Iterative Code Generation, this
means that if loop #2 produces a static-syntactically correct code file, then the com-
parison is between the two compiled code files of the said loops. Else, if loop #2 does
not produce such static-syntactically correct code file, then the comparison is meant
for previous loops’ generated code, e.g: loop #1, if it has a static-syntactically correct
code file; or the code file from the Initial Code Generation, which is guaranteed.

It can be seen from the Figure 6.6 that the highest number of Improvements and
Deteriorations both occur in debug iteration 1. The system in experiments A40
and Default-0 achieves the highest Improvement in the first debug loop, while Single
obtains a moderate level of Improvement, and Default-1 and NoRL are among the

67

Figure 6.6: Number of Improvements and Deteriorations per debug iteration.

lowest.

Although an Improvement occurs in previous debug loop, the system makes no guar-
antee that such Improvement is retained in the subsequent debug loop. Hence, the
Improvements and Deteriorations decrease over debug iterations is explained as fol-
lows:

• The Code Writer does not provide answers that are static-syntactically correct
after the first debug loop.

• The Code Writer in the later loops refrains from making changes to the given
erroneous code file, resulting in an Unchanging status.

• After a code line is correctly fixed, the number of errors may increase due to
changes made in that line (e.g., changing data types, variable names, method
names, etc.). Subsequent attempts to fix these errors may result in success,
failure, or no change with success being less likely to happen (decrease of Im-
provement is steeper than Deterioration’s).

In conclusion, the fact that the number of Improvements, especially in the first debug
iteration is larger than the number of Deteriorations shows that the system has the
ability to self-correct its generated code files. However, as the system does not have
a mechanism to retain such Improvements in the subsequent debugging iterations,
the number of static-syntactically valid changes (Improvements and Deteriorations)
decreases with the steepest decline occurring in the number of Improvements.

6.4.3 Supplementary Results

Removal of Debugging Step

This experiment is carried out to determine the impact of performing debugging step
in code correction. In the default system, we extend the code correction task with

68

an intermediate step of error explanation and solution suggestion done by component
Code Debugger. This experiment removes such step and directly asks the Code Writer
to fix the generated code given the raw feedback text from the compiler. Thus, the
prompt now used for Iterative Code Generation by the Code Writer is:

1 You are an expert Java programmer.
2 Your job is to fix an erroneous program given compiler error message.
3 The program that needs correction and the error message are in the input.
4 Use suggestion in the context.
5 Output the corrected version of the given program only.
6 Do not explain anything before or after the program.
7 Your answer should start with ‘‘‘java mark and end with ‘‘‘ mark.
8 Provide comment for each block of codes.
9

10 ### Input:
11 - The erroneous program <class -name >.java:
12 <error -code >
13
14 - The compiler error message:
15 <error >
16
17 ### Context:
18 Suggest using these snippets:
19 <suggest -snippets >
20
21 ### Response:

This experiment result shows the inferior to the chain-of-thought approach of the
original design. The total number of compilable instructions out of 200 is only 5
(CMOVNB, CMOVNGE, DAA, NOP, and STD), which results in 2.5% on CIR met-
ric. These compilable instructions are all resulted from Initial Code Generation. It is
seen that most of the time the response returned by the Code Writer is instead the
explanation of why the error happens or just a fragment of corrected code mixed in
with natural language. There are cases that the Code Writer actually produces static-
syntactically correct code for this type of prompt, but throughout several iterations
of code correction, none has succeeded.

Running Default-0 on a full-length dataset

Due to time and resource constraints, only the best-effort experiment Default-0 com-
pleted the entire dataset of 1147 selected instructions. Out of these, Default-0 pro-
duced 1023 instructions with static-syntactically correct implementations. However,
only 165 of these instructions successfully passed compiler verification in BE-PUM,
representing 14.39% of the full dataset.

Comparison with ChatGPT

As a point of reference, we asks ChatGPT-3.5-Turbo to generate Java implementation
for the said 1147 instructions. The input prompt of ChatGPT we use is different
from our system: in addition to the description of an instruction and the prepared
Java template, ChatGPT also receives the whole class diagram of the current code
base in BE-PUM. With that, the model achieves 94.97% instructions with static-
syntactically correct implementations. Among which, there are 340 instructions whose
implementations pass verification by the compiler in BE-PUM project. The exact
number of parameters in ChatGPT-3.5-Turbo is undisclosed, but it is anticipated to
be greater than 7 billion. Therefore, its success rate, which is double that of our local
model, is expected. This shows that our results are reasonable for a local solution.

69

Table 6.5: CodeBLEU between Default-0 and semi-automatic approach.

Ngram
match
score

Weighted
ngram
match
score

Syntax
match
score

Dataflow
match
score

CodeBLEU

10.43 26.06 54.51 70.6 40.4

CodeBLEU score of Default-0

In comparison to the previous semi-automatic instruction emulation in BE-PUM, we
also conduct an assessment between Default-0 and the method using the CodeBLEU
metric [66]. Since the same code semantics can be expressed through different imple-
mentations, this assessment serves only as a reference, demonstrating how the fully
generated code is able to correctly reuse existing code from BE-PUM, including vari-
able names and function calls. Table 6.5 reports the measurement in percentage. We
can see that the n-gram matches between the two implementation is low, while syn-
tax match is moderate and dataflow match is significantly higher. The overall values
averages to a BLEU score of 40.4%.

70

Chapter 7

Discussion

7.1 Feasibility of CoDeb System

The non-fine-tuning experiment (NoRL), although achieving reasonable results, re-
quires a large number of attempts to obtain them. The fact that these results are not
the best, and the generative components cannot be further improved, highlights the
importance of governing and enhancing generation through reinforcement fine-tuning.

By fine-tuning via reinforcement learning with feedback from software engineering
tools, the system does not require domain-specific supervised labelled datasets. Rather,
the Code Writer and Code Debugger explore the solution space themselves. In our
experiment settings, we only set a fixed number of trials per code writing stage - Ini-
tial Code Generation and Iterative Code Generation. In practice, it is often required
more trials in order to correct a coding error.

However, as evidenced by the experiment results, our system still has flaws. The
following content is dedicated to discussing these issues.

7.2 Issue of Constrained Decoding

Our theme is an instance of generation problem that requires constrained decoding,
particularly for syntactical constraint and contextual constraint. The results demon-
strate the difficulty of consistently achieving constrained generation. Our system
attempts to enforce those constraints on the output by specifying them in the input
prompts and employing reinforcement fine-tuning to reward the obedience. However,
it is evident that this approach is insufficient, which requires generative models to
perform multiple trials in hopes of producing a correct result.

Another factor that adds up to the issue is the problem of sparse reward in reinforce-
ment learning of our case. The reward used for the generative models is delayed in
the sense that each of their actions which is to generate one token at a time, does not
receive any reward signal until the entire sequence of actions is completed. Therefore,
such way of giving reward is not informative enough to guide the generative model
at each step in choosing output tokens. Besides, we do think that the impact of each
criterion in our current Reward Function’s design must be more thoroughly assessed.

In general, the survey paper [9] points out that the constrained decoding challenge

71

specifically comes from multiple hardships including incorporation of the constraints
into a model’s objective function during training; and lack of datasets, evaluation
metrics and optimization methods. There have been multiple work that aims to
achieve constrained decoding, especially for code-related tasks such as llama.cpp 1

which allows defining formal grammars to constrain model outputs, and Artificial
Intelligence Controller Interface (AICI) project of Microsoft [67].

7.3 Trade-off between Ensuring Syntactical Con-

straint and Semantics

Our experiments Default-0, Default-1 and NoRL demonstrates consequences of tuning
generative models towards syntactical adherence while neglecting semantics. It can
be seen that the generative model in the later epoch is quicker to produces answers
that are more adherent to the syntactical constraints. However, the code coherence,
in turn, slowly degrades. This is evident as the results of experiment Default-1 are
lower than those of Default-0 and NoRL.

The inefficiency of relying solely on syntactical constraints for project-level code gen-
eration emphasizes the importance of incorporating methods for semantic checking
via testing. Therefore, it is recommended that using feedback from testing is the next
step of this theme. Further phases in compilation process such as code optimization
may also apply in order to help the Code Writer produce more efficient codes.

7.4 Issue of Preserving Improvement in Iterative

Code Generation

There are two main reasons why the Iterative Code Generation is unstable in terms
of preserving the past good fixes:

• State-less Code Debugging: Our system’s code debugging is stateless - meaning
that only the most recent version of the corrected code file is retained, with
earlier versions being discarded. Therefore, penalty for repeating generation
cannot be given, which results in a large number of Unchanging status. On the
other hand, the reason for why the current design of the system is stateless is
that concatenating history of code correction would result in a drastic increase
in input size. Consequently, there may not be sufficient memory for training,
and it could also lead to confusion for the generative model regarding which
tokens it should prioritize.

• Non-monotonic behaviour of generative models: The generated answer of pre-
vious round is not guaranteed to be retained in the next round, which adds to
the non-preservation of Improvement. This is due to these major reasons:

– The content of the prompt may be not instructive enough or informative
enough. In fact, constructing prompts is know-how knowledge. Therefore,
it is hard to devise an optimal prompt for a given problem, rather only a
sub-optimal prompt can be investigate.

1https://github.com/ggerganov/llama.cpp/tree/master

72

– There are non-monotonic processes in the construction of a deep learn-
ing models such as activation functions like Swish [68] and its variation
SwiGLU [69] are non-monotonic. In fact, SwiGLU is used in CodeLlama
models.

– Generative models rely on probabilistic sampling in its decoding stage to
obtain an output sequence. One conceptual idea is to make tokens from
previously correct version more probable to obtain in the next generation
turn, however, this may restrict the creativity of the generative models to
some degree.

7.5 Applicability of Chain-of-Thought Prompting

One of the reasons why we approach with almost-zero-shot prompting is to reduce the
input size as text specification of an instruction can be large. Although this approach
may be sufficient in terms of training resource usage for our scope, its output quality,
however, can be underwhelming. An example for this is the failed case in Appendix
B.2 where there is supposed to be no RF flag involved in the execution of instruction
SAHF. One reason for this is that providing a full body of description text as input
all at once may cause the generative components to attend to the wrong tokens as
the context length is large and attention can be sparse, which leads to hallucinations
(producing made-up, incorrect, or misleading results). Additionally, if the new input
size is too large, out-of-memory error could still occur.

A natural approach for a human developer would be to sequentially process the spec-
ification part-by-part, which is reasonable due to property #4 of the specifications in
ISA manuals, as stated in our problem statement (Chapter 1). For generative models,
Chain-of-Thought prompting [70] is an effective technique to replicate this process.
The idea is to prompt the model to generate a series of intermediate reasoning steps or
thoughts leading to the final answer, rather than expecting it to produce the answer
directly. As such, we can break down the input description into manageable chunks
(typically sentences or short paragraphs) and let the models generate for each chunk,
thus implement an instruction step by step. Although this approach may disrupt the
continuity of context, a possible mitigation is to ensure that each step maintains its
pre-condition and post-condition. Another viable benefit of this approach is that it
should make it easier to address errors in the generated code, both syntactically and
semantically.

73

Chapter 8

Conclusion

8.1 The Effectiveness of CoDeb System

It can be seen from the experiment results that the design of CoDeb system is ef-
fective and presents a promising approach. Specifically, in the system, code writing
and debugging are done automatically via two generative components, functioning
similarly to how two developers communicate to resolve code errors.

Instead of manually interfering in the debugging stage such as several work in the liter-
ature [13, 14], in CoDeb system we grant it to a generative component because nowa-
days code-specific generative models are equipped with debugging ability. Though
human expertise is still superior for complex problems, having the task done auto-
matically while making the model improvable is more desired towards the aim of
automation and human effort reduction.

CoDeb is adaptable to new code domains. The generative components of CoDeb
are replaceable while the code snippet knowledge base can be recreated with new
content. Additionally, the software engineering tools used to give reward values can
be substituted with other verification tools depending on the specific task.

8.2 The Limitation of CoDeb System

Within the scope of achieving project-level compilability, the main limitation of the
system is that it lacks the ability to guarantee its outcome’s correctness progressively.
The root of the problem actually lie in the fact that deep learning models lacks of
expressiveness - that is to explain the transformation of an input to a corresponding
output within the model. If it were made clear, then the incorporation arbitrary
constraints would be controllable and hence, the desired outcome could be assured.
To sum up, the current limitations include:

• Constrained decoding is hard to guaranteed.

• Within the current scope of achieving compilability, ensuring only syntactical
correctness while neglecting semantic verification may hurt performance.

• Improvement in code correction is not progressively retained.

74

8.3 Future Directions

Future work of our theme includes two major tasks as follows:

• Improving the current results.

– As indicated in discussion, the next important step is to include seman-
tic verification stage by further performing black-box checking, including
dataflow analysis in compiler at higher optimization level, verification by
test cases, and ultimately symbolic execution for full path coverage.

– As incorporating more verification stages increases complexity, breaking
down the input specifications into steps and applying Chain-of-Thought
prompting would make the generation more manageable and debuggable.

– To mitigate the issues of sparse rewards in reinforcement learning, a deeper
study into reinforcement fine-tuning of generative models could assist in
designing a more effective reward function.

– Besides, to increase the efficiency, it is essential to enforce more effective
methods to achieve more constrained decoding such as 1) Combating the
sparsity of the reward by intervening directly at each step of the token ex-
ploration process in generative models; and 2) Considering about applying
output template or grammar in a more systematic way.

– Mechanisms for progressive code correction should be studied and imple-
mented.

– The next nearest target is to adapt the system to similar domains such as
manual specifications for the 64-bit version and other processor architec-
tures.

• Generalizing to broader scenarios. The research aims at automating tasks
in software development, specifically focusing on code generation from natural
language descriptions. Acknowledging the current situation, our work aims at
leveraging Class Diagram of a software development project to explore the topic
of generating a code project from scratch. The necessary sub-objectives are:

1. Automatically generating class diagram from given software specification.

2. Utilizing class diagram as parsable and retrievable knowledge for generative
model to take reference from.

3. Construct project-level text-to-code generation system that is capable of
using such knowledge to build a code project from scratch and continu-
ously.

Among the three, sub-objectives numbered #2 and #3 are being investigated
altogether in our current work.

75

Appendix A

Policy Gradient Theorem

The Policy Gradient Theorem is proved as follows:

∂J(θ)

∂θ
=

∂vπ(s,θ)

∂θ

=
∂
∑

a π(a|s,θ)qπ(s, a,θ)
∂θ

(Eq. 4.6)

=
∑
a

[
∂π(a|s,θ)

∂θ
qπ(s, a,θ) + π(a|s,θ)∂qπ(s, a,θ)

∂θ

]
(Derivative product rule)

=
∑
a

[
∂π(a|s,θ)

∂θ
qπ(s, a,θ) + π(a|s,θ)

∂
∑

s′,r P (s′, r|s, a)(r + vπ(s
′,θ))

∂θ

]
(Eq. 4.7)

=
∑
a

[
∂π(a|s,θ)

∂θ
qπ(s, a,θ) + π(a|s,θ)

∑
s′,r

P (s′, r|s, a)∂vπ(s
′,θ)

∂θ

]

=
∑
a

[
∂π(a|s,θ)

∂θ
qπ(s, a,θ) + π(a|s,θ)

∑
s′

P (s′|s, a)∂vπ(s
′,θ)

∂θ

]
(A.1)

To further unroll the recursion, we first simplify the notation by changing partial
derivative on θ to ∇θ(·) and letting π implicitly denote a policy parameterized by θ.
Supposed the the trajectory from s(0) to some terminal state s(k) involves transition
s(0) → s(1) → s(2) · · · → s(k), the Equation A.1 becomes:

∇θJ(θ) = ∇θvπ(s
(0))

=
∑
a

[
∇θπ(a|s(0))qπ(s(0), a) + π(a|s(0))

∑
s(1)

P (s(1)|s(0), a)∇θvπ(s
(1))

]

=
∑
a

∇θπ(a|s(0))qπ(s(0), a) +
∑
a

[
π(a|s(0))

∑
s(1)

P (s(1)|s(0), a)∇θvπ(s
(1))

]
=

∑
a

∇θπ(a|s(0))qπ(s(0), a) +
∑
s(1)

∑
a

π(a|s(0))P (s(1)|s(0), a)∇θvπ(s
(1))

(A.2)

Denote the probability transitioning from state s(i) to s(m) through m− i steps as
P (s(i) → s(m),m− i, π).

76

When s(i) and s(m) are the same state (e.g: taking 0 step at the initial state, s(0) →
s(0)), we have:

P (s(0) → s(0),m− i = 0, π) = 1

When s(m) is a distinct subsequent state of s(i):

P (s(i) → s(m),m− i = 1, π) =
∑
a

π(a|s(i))P (s(m)|s(i), a)

Recursively, the probability of transitioning from state s(i) to state s(m) withm−i > 1
steps is:

P (s(i) → s(m),m−i > 1, π) =
∑

s(m−1)

P (s(i) → s(m−1), (m−i)−1, π)P (s(m−1) → s(m), 1, π)

Let us also denote A(i) =
∑

a∇θπ(a|s(i))qπ(s(i), a). The Equation A.2 then becomes:

∇θJ(θ) = ∇θvπ(s
(0))

= A(0) +
∑
s(1)

P (s(0) → s(1), 1, π)∇θvπ(s
(1))

= A(0) +
∑
s(1)

P (s(0) → s(1), 1, π)

[
A(1) +

∑
s(2)

P (s(1) → s(2), 1, π)∇θvπ(s
(2))

]
= A(0) +

∑
s(1)

P (s(0) → s(1), 1, π)A(1)

+
∑
s(1)

P (s(0) → s(1), 1, π)
∑
s(2)

P (s(1) → s(2), 1, π)∇θvπ(s
(2))

= A(0) +
∑
s(1)

P (s(0) → s(1), 1, π)A(1)

+
∑
s(2)

∑
s(1)

P (s(0) → s(1), 1, π)P (s(1) → s(2), 1, π)∇θvπ(s
(2))

= A(0) +
∑
s(1)

P (s(0) → s(1), 1, π)A(1) +
∑
s(2)

P (s(0) → s(2), 2, π)∇θvπ(s
(2))

=
∑
s(0)

P (s(0) → s(0), 0, π)A(0) +
∑
s(1)

P (s(0) → s(1), 1, π)A(1)+

+
∑
s(2)

P (s(0) → s(2), 2, π)A(2) + · · ·+
∑
s(k)

P (s(0) → s(k), k, π)A(k)

(since ∇θvπ(s
(k)) = 0)

=
k∑

m=0

∑
s(m)

P (s(0) → s(m),m, π)A(m) (A.3)

Note that s(m) ∈ S denotes iterating over all possible states in S at step mth. With
each step to a subsequent state acts as one sampling from S, law of large numbers
shows that when k →∞, the probability of transition s(0) → s(m) through m→ k →
∞ steps converges to a true value, if exists. Applying the On-policy distribution in
episodic tasks 1, we have: η(s(·), π) =

∑∞
m=0 P (s(0) → s(·),m, π). Equation A.3 then

1Chapter 9 of the same book in [58]

77

becomes:

∇θJ(θ) = ∇θvπ(s
(0))

=
∑
s(·)∈S

η(s(·), π)A(·)

=
∑
s′∈S

η(s′, π)
∑
s(·)∈S

η(s(·), π)∑
s′∈S η(s

′, π)
A(·)

=
∑
s′∈S

η(s′, π)
∑
s(·)∈S

µ(s(·), π)A(·)

∝
∑
s(·)∈S

µ(s(·), π)A(·)

=
∑
s(·)∈S

µ(s(·), π)
∑
a∈A

∇θπ(a|s(·))qπ(s(·), a)

=
∑
s∈S

µπ(s,θ)
∑
a∈A

qπ(s, a,θ)
∂π(a|s,θ)

∂θ
■ (A.4)

The commonly used notation of ∇θJ(θ) involves expectation notation, which can be
obtained by further modifying Equation A.4 as follows:

∇θJ(θ) ∝
∑
s∈S

µπ(s,θ)
∑
a∈A

qπ(s, a,θ)
∂π(a|s,θ)

∂θ

=
∑
s∈S

µπ(s,θ)
∑
a∈A

π(a|s,θ)qπ(s, a,θ)
∂π(a|s,θ)

∂θ

π(a|s,θ)

=
∑
s∈S

µπ(s,θ)
∑
a∈A

π(a|s,θ)qπ(s, a,θ)∇θ ln π(a|s,θ)

=
∑
s∈S

µπ(s,θ)Ea∼π [qπ(s, a,θ)∇θ lnπ(a|s,θ)]

= Es∼µπθ
,a∼πθ

[qπ(s, a,θ)∇θ lnπ(a|s,θ)] (A.5)

78

Appendix B

Demonstration of Results

For the demonstration of CoDeb’s performance, this section is dedicated to presenting
outputs of the system. Since the code files that undergo Compiler Checking step infers
that they have passed previous checks, we will not present results of those previous
steps.

B.1 Compilable Generated Code Files

Compilable results after Initial Code Generation

Figure B.1 shows a successfully compiled Java implementation of instruction CMOVNGE
in the first loop of Initial Code Generation. Meanwhile, there are cases where the
system produce a fraud compilable file - that is the operation part is all comment
lines, e.g: the sample in Figure B.2a. However, for the case of instruction NOP (No
Operation), it is, in turn, correct (Figure B.2b).

Compilable results after Iterative Code Generation

Taken from experiment Default-0, the implementation for instruction STD becomes
compilable after the first loop of Iterative Code Generation. Below is the content
of the prompt used to ask the Code Debugger to fix the error after the Initial Code
Generation:

1 <s>[INST] <<SYS >>
2 You are an expert Java code debugger.
3 Your job is to suggest solutions to fix an erroneous program.
4 The program that needs correction and its error are in the input.
5 The suggestion is in the context.
6 Note that class name is changeable while file name cannot be changed.
7 <</SYS >>
8
9 ### Input:

10 - The errorneous program std.java:
11 package v2.org.analysis.transition_rule.x86instruction;
12
13 import v2.org.analysis.environment.memory.MemoryV2;
14 import v2.org.analysis.environment.stack.StackV2;
15 import v2.org.analysis.path.BPState;
16 import v2.org.analysis.transition_rule.stub.X86InstructionStub;
17 import java.util.List;
18 import org.jakstab.asm.Operand;
19 import org.jakstab.asm.x86.X86Instruction;
20 import v2.org.analysis.environment.Environment;
21 import v2.org.analysis.path.BPPath;
22 import v2.org.analysis.transition_rule.X86TransitionRule;

79

Figure B.1: Successfully compiled Java implementation of instruction CMOVNGE
in the first loop of Initial Code Generation of the experiment Default-0. Yellow box
indicates the part that are not in the given template that the system generate.

80

(a) DAA instruction. (b) NOP instruction.

Figure B.2: Compilable Java implementation for instruction NOP and DAA in the
first loop of Initial Code Generation. NOP is correct while DAA is fraud by leaving
a to-do comment only.

23 import v2.org.analysis.value.LongValue;
24 import v2.org.analysis.value.BooleanValue;
25
26 public class std extends X86InstructionStub {
27 @Override
28 public BPState execute () {
29 // From Top -most base class
30 String groupName = this.groupName;
31 X86Instruction inst = this.inst;
32 BPPath path = this.path;
33 List <BPPath > pathList = this.pathList;
34 X86TransitionRule rule = this.rule;
35 BPState curState = this.curState;
36 Operand dest = this.dest;
37 Operand src = this.src;
38 Environment env = this.env;
39 int opSize = this.opSize;
40 List <Long > params = this.params;
41
42 // Example syntax for retrieving register values , use them for other registers.
43 LongValue eax = (LongValue) env.getRegister ().getRegisterValue ("eax");
44 LongValue ax = (LongValue) env.getRegister ().getRegisterValue ("ax");
45
46 // Example syntax for retrieving flag values , use them for other flags.
47 BooleanValue AFlag = (BooleanValue) env.getFlag ().getAFlag ();
48 BooleanValue CFlag = (BooleanValue) env.getFlag ().getCFlag ();
49
50 // Retrieve stack value
51 StackV2 stack = (StackV2) env.getStack ();
52
53 // Retrieve memory value
54 MemoryV2 memory = env.getMemory ();
55
56 // Generate from here
57 CFlag.setBooleanValue(true);
58 env.getRegister ().setRegisterValue (" eflags", CFlag);
59
60 return null;
61 }
62 }
63
64
65 - The error message:
66 std.java :47: error: cannot find symbol
67 CFlag.setBooleanValue(true);
68 ˆ
69 symbol: method setBooleanValue(boolean)
70 location: variable CFlag of type BooleanValue
71 1 error
72
73
74 ### Context:
75 Suggest using these syntaxes:
76 env.getFlag ().setOFlag(new BooleanValue(true));

81

77
78 ### Response:
79 [/INST]

• Lines #11-62 is the content of the Java code file that results from the Initial
Code Generation stage. Note that this instruction’s operation is short, so the
generated part that the Code Writer adds in is those in lines #57, 58.

• The project-level context known by human developers is that there exists no
method named setBooleanValue(bool) in class BooleanValue, and there is no
universal register named eflags in BE-PUM.

• As the first error is to be corrected first, lines #66-71 includes its raw message
from the compiler Javac.

• To suggest the potentially related code snippet from BE-PUM, the whole er-
roneous code line CFlag.setBooleanValue(true); is used as the query into
BEPUM-KB.

• The retrieval from BEPUM-KB for such query is env.getFlag().setOFlag(new
BooleanValue(true));, which is put into line #76 of the prompt.

Receiving the prompt, the Code Debugger replies:

1 The error message suggests that the variable "CFlag" cannot be found in the current scope.
To fix this error , you can replace the line with the following:

2
3 ‘‘‘
4 env.getFlag ().setCFlag(new BooleanValue(true));
5 ‘‘‘
6
7 This sets the CFlag value to true in the current environment.
8
9 Alternatively , you can also use the following syntax:

10
11 ‘‘‘
12 CFlag.setBooleanValue(true);
13 ‘‘‘
14
15 This sets the CFlag value to true , but it is not recommended to use this syntax as it is

not clear what the CFlag variable

This response from Code Debugger is put into the prompt typed Iterative Code
Generation of the Code Writer. The Code Writer then responses with its correction
of the given erroneous file where its attempt to fix the error is the lines #48-50:

1 // std.java
2 package v2.org.analysis.transition_rule.x86instruction;
3
4 import v2.org.analysis.environment.memory.MemoryV2;
5 import v2.org.analysis.environment.stack.StackV2;
6 import v2.org.analysis.path.BPState;
7 import v2.org.analysis.transition_rule.stub.X86InstructionStub;
8 import java.util.List;
9 import org.jakstab.asm.Operand;

10 import org.jakstab.asm.x86.X86Instruction;
11 import v2.org.analysis.environment.Environment;
12 import v2.org.analysis.path.BPPath;
13 import v2.org.analysis.transition_rule.X86TransitionRule;
14 import v2.org.analysis.value.LongValue;
15 import v2.org.analysis.value.BooleanValue;
16
17 public class std extends X86InstructionStub {
18 @Override
19 public BPState execute () {
20 // From Top -most base class

82

21 String groupName = this.groupName;
22 X86Instruction inst = this.inst;
23 BPPath path = this.path;
24 List <BPPath > pathList = this.pathList;
25 X86TransitionRule rule = this.rule;
26 BPState curState = this.curState;
27 Operand dest = this.dest;
28 Operand src = this.src;
29 Environment env = this.env;
30 int opSize = this.opSize;
31 List <Long > params = this.params;
32
33 // Example syntax for retrieving register values , use them for other registers.
34 LongValue eax = (LongValue) env.getRegister ().getRegisterValue ("eax");
35 LongValue ax = (LongValue) env.getRegister ().getRegisterValue ("ax");
36
37 // Example syntax for retrieving flag values , use them for other flags.
38 BooleanValue AFlag = (BooleanValue) env.getFlag ().getAFlag ();
39 BooleanValue CFlag = (BooleanValue) env.getFlag ().getCFlag ();
40
41 // Retrieve stack value
42 StackV2 stack = (StackV2) env.getStack ();
43
44 // Retrieve memory value
45 MemoryV2 memory = env.getMemory ();
46
47 // Generate from here
48 env.getFlag ().setCFlag(new BooleanValue(true));
49 // or
50 // CFlag.setBooleanValue(true);
51
52 return null;
53 }
54 }

We can see that the suggestion retrieved from BEPUM-KB influences the correction
guidance made by the Code Debugger and the correction executed by the CodeWriter.
In this case, the system manages to correct the code which then passes compiler
verification. However, considering the semantic side of this instance, in instruction
STD, DF flag in the EFLAGS register should be the one to be set to true, not the
CF flag. Hence, as also stated in chapter 7, semantic verification is crucial.

B.2 A Failed Case of Iterative Code Generation

We present a case of Unchanging code correction via the example of SAHF (Store
AH Into Flags) instruction. The below example illustrated the input prompt passed
into the Code Writer used in Iterative Code Generation stage, which is informative
enough to observe both the previously compile-failed generated code (lines #13-75),
the guidance to fix the error from the Code Debugger (lines #80-86), and the poten-
tially related code snippet drawn from BEPUM-KB (lines #90).

1 <s>[INST] <<SYS >>
2 You are an expert Java programmer.
3 Your job is to fix an erroneous program given a guidance.
4 The program that needs correction and the guidance are in the input.
5 Use suggestion in the context.
6 Output the corected version of the given program only.
7 Do not explain anything before or after the program.
8 Your answer should start with ‘‘‘java mark and end with ‘‘‘ mark.
9 Provide comment for each block of codes.

10 <</SYS >>
11
12 ### Input:
13 - The errorneous program sahf.java:
14 package v2.org.analysis.transition_rule.x86instruction;
15

83

16 import v2.org.analysis.environment.memory.MemoryV2;
17 import v2.org.analysis.environment.stack.StackV2;
18 import v2.org.analysis.path.BPState;
19 import v2.org.analysis.transition_rule.stub.X86InstructionStub;
20 import java.util.List;
21 import org.jakstab.asm.Operand;
22 import org.jakstab.asm.x86.X86Instruction;
23 import v2.org.analysis.environment.Environment;
24 import v2.org.analysis.path.BPPath;
25 import v2.org.analysis.transition_rule.X86TransitionRule;
26 import v2.org.analysis.value.LongValue;
27 import v2.org.analysis.value.BooleanValue;
28
29 public class sahf extends X86InstructionStub {
30 @Override
31 public BPState execute () {
32 // From Top -most base class
33 String groupName = this.groupName;
34 X86Instruction inst = this.inst;
35 BPPath path = this.path;
36 List <BPPath > pathList = this.pathList;
37 X86TransitionRule rule = this.rule;
38 BPState curState = this.curState;
39 Operand dest = this.dest;
40 Operand src = this.src;
41 Environment env = this.env;
42 int opSize = this.opSize;
43 List <Long > params = this.params;
44
45 // Example syntax for retrieving register values , use them for other registers.
46 LongValue eax = (LongValue) env.getRegister ().getRegisterValue ("eax");
47 LongValue ax = (LongValue) env.getRegister ().getRegisterValue ("ax");
48
49 // Example syntax for retrieving flag values , use them for other flags.
50 BooleanValue AFlag = (BooleanValue) env.getFlag ().getAFlag ();
51 BooleanValue CFlag = (BooleanValue) env.getFlag ().getCFlag ();
52
53 // Retrieve stack value
54 StackV2 stack = (StackV2) env.getStack ();
55
56 // Retrieve memory value
57 MemoryV2 memory = env.getMemory ();
58
59 // Generate from here
60 AFlag.setValue ((ax.getValue () & 0x40) != 0);
61 CFlag.setValue ((ax.getValue () & 0x100) != 0);
62 BooleanValue DFlag = (BooleanValue) env.getFlag ().getDFlag ();
63 DFlag.setValue ((ax.getValue () & 0x20) != 0);
64 BooleanValue OFlag = (BooleanValue) env.getFlag ().getOFlag ();
65 OFlag.setValue ((ax.getValue () & 0x80) != 0);
66 BooleanValue RFlag = (BooleanValue) env.getFlag ().getRFlag ();
67 RFlag.setValue ((ax.getValue () & 0x2) != 0);
68 BooleanValue SFlag = (BooleanValue) env.getFlag ().getSFlag ();
69 SFlag.setValue ((ax.getValue () & 0x8) != 0);
70 BooleanValue ZFlag = (BooleanValue) env.getFlag ().getZFlag ();
71 ZFlag.setValue ((ax.getValue () & 0x1) != 0);
72
73 return null;
74 }
75 }
76
77
78 - The guidance to fix the program:
79
80 The error message indicates that the ‘getRFlag ()‘ method is not available in the ‘Flag ‘

class , and it is not clear what the method is supposed to do. It is possible that the
‘getRFlag ()‘ method has been renamed to ‘getRFlag ‘ or ‘getRFlag ()‘ is not implemented
at all.

81
82 To fix the error , you can replace the line with the following code:
83 ‘‘‘
84 BooleanValue RFlag = (BooleanValue) env.getFlag ().getRFlag ();
85 ‘‘‘
86 This code retrieves the value of the ‘RFlag ‘ flag from the ‘Flag ‘ class
87

84

88 ### Context:
89 Suggest using these syntaxes:
90 boolean z = ((BooleanValue) env.getFlag ().getCFlag ()).getValue ();
91
92 ### Response:
93 [/INST]

The compilation error states that method getRFlag() does not exist in Flag class
by the current code base of BE-PUM. This is the case because RF flag is a system
flag (Resume Flag) that should not be altered by the application side. In addition,
instruction SAHF does not involve modifying the RF flag. Therefore, a correct fix
for this must be to remove the two code lines related to RFlag. However, as can be
seen from the correction guidance of the Code Debugger, the correct solution is not
offered. Indeed, the next generation of Code Writer produces the exact same faulty
code program.

The situation persists for another iteration and concludes with the final iteration
where the Code Writer produces a response that is static-syntactically incorrect:

1 ‘‘‘java
2 BooleanValue RFlag = (BooleanValue) env.getFlag ().getCFlag ();
3 ‘‘‘
4 This code is correct because the ‘CFlag ‘ field in the ‘Flag ‘ class is already of type ‘

BooleanValue ‘, so there is no need to typecast it again.
5
6 Alternatively , you can also use the ‘getValue ()‘ method to retrieve the boolean value from

the ‘CFlag ‘ field , like this:
7 ‘‘‘
8 boolean z = ((BooleanValue) env.getFlag ().getCFlag ()).getValue ();
9 ‘‘‘

10 This is a more concise way to achieve the same result.
11
12 Both of these syntaxes are valid and will work correctly. However , it is generally a good

practice to use the most specific type that is appropriate for the variable , in this
case , ‘BooleanValue ‘. This can help avoid any potential casting issues and make the
code more readable.

13
14 I hope this helps! Let me know if you have any questions or need further assistance.
15
16 Bye!
17 ‘‘‘

85

Bibliography

[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv., vol. 44,
no. 2, mar 2008. [Online]. Available: https://doi.org/10.1145/2089125.2089126

[2] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware analysis
in the modern era—a state of the art survey,” ACM Comput. Surv., vol. 52,
no. 5, sep 2019. [Online]. Available: https://doi.org/10.1145/3329786

[3] N. Minh Hai, M. Ogawa, and T. Quan, “Obfuscation code localization
based on cfg generation of malware,” in Foundations and Practice of
Security, vol. 9482, 02 2016, pp. 229–247. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:33555226

[4] H. Nguyen, “Automatic extraction of x86 formal semantics from its natural lan-
guage description,” Master’s thesis, Japan Advanced Institute of Science and
Technology (JAIST) - Information Science, 2018.

[5] A. V. Vu and M. Ogawa, “Formal Semantics Extraction from Natural Language
Specifications for ARM,” in Formal Methods – The Next 30 Years, ser. Lecture
Notes in Computer Science, M. H. ter Beek, A. McIver, and J. N. Oliveira, Eds.
Cham: Springer International Publishing, 2019, pp. 465–483.

[6] Z. Zheng, K. Ning, Y. Wang, J. Zhang, D. Zheng, M. Ye, and J. Chen, “A
survey of large language models for code: Evolution, benchmarking, and future
trends,” 2024. [Online]. Available: https://arxiv.org/abs/2311.10372

[7] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference,” Dec. 2017, arXiv:1712.05877 [cs, stat].
[Online]. Available: http://arxiv.org/abs/1712.05877

[8] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen, “LoRA: Low-Rank Adaptation of Large Language Models,” Oct. 2021,
arXiv:2106.09685 [cs]. [Online]. Available: http://arxiv.org/abs/2106.09685

[9] C. Garbacea and Q. Mei, “Why is constrained neural language generation
particularly challenging?” 2022. [Online]. Available: https://arxiv.org/abs/
2206.05395

[10] P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig, “Learning to Mine
Aligned Code and Natural Language Pairs from Stack Overflow,” May 2018,
arXiv:1805.08949 [cs]. [Online]. Available: http://arxiv.org/abs/1805.08949

86

https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/3329786
https://api.semanticscholar.org/CorpusID:33555226
https://api.semanticscholar.org/CorpusID:33555226
https://arxiv.org/abs/2311.10372
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2206.05395
https://arxiv.org/abs/2206.05395
http://arxiv.org/abs/1805.08949

[11] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,
D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano,
M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu, and
S. Liu, “CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation,” Mar. 2021, arXiv:2102.04664 [cs] version: 2.
[Online]. Available: http://arxiv.org/abs/2102.04664

[12] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns,
S. Puranik, H. He, D. Song, and J. Steinhardt, “Measuring Coding Challenge
Competence With APPS,” Nov. 2021, arXiv:2105.09938 [cs]. [Online]. Available:
http://arxiv.org/abs/2105.09938

[13] Z. Bi, Y. Wan, Z. Wang, H. Zhang, B. Guan, F. Lu, Z. Zhang, Y. Sui, H. Jin,
and X. Shi, “Iterative Refinement of Project-Level Code Context for Precise
Code Generation with Compiler Feedback,” Jun. 2024, arXiv:2403.16792 [cs].
[Online]. Available: http://arxiv.org/abs/2403.16792

[14] H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. H. Hoi, “Coderl:
Mastering code generation through pretrained models and deep reinforcement
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2207.01780

[15] I. Corporation, Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1, Intel Corporation, 2023,
figure 2-5. System Flags in the EFLAGS Register. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

[16] ——, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A: Instruction Set Reference, A-L, Intel Corporation, 2023, page 124.
[Online]. Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html

[17] A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and
T. Reps, “Directed proof generation for machine code,” in Computer Aided Ver-
ification, T. Touili, B. Cook, and P. Jackson, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 288–305.

[18] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: force-executing
binary programs for security applications,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14. USA: USENIX Association,
2014, p. 829–844.

[19] N. M. Hai, M. Ogawa, and Q. T. Tho, “Packer identification based on metadata
signature,” in Proceedings of the 7th Software Security, Protection, and Reverse
Engineering / Software Security and Protection Workshop, ser. SSPREW-7.
New York, NY, USA: Association for Computing Machinery, Dec. 2017, pp.
1–11. [Online]. Available: https://doi.org/10.1145/3151137.3160687

[20] “OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1 | BibSonomy.” [Online]. Available: https://www.bibsonomy.org/bibtex/
2318ba81f4fb196c34b21d95b32e2d8ae/porta

[21] T. H. M. Le, H. Chen, and M. A. Babar, “Deep Learning for Source
Code Modeling and Generation: Models, Applications, and Challenges,” ACM

87

http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2403.16792
https://arxiv.org/abs/2207.01780
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/3151137.3160687
https://www.bibsonomy.org/bibtex/2318ba81f4fb196c34b21d95b32e2d8ae/porta
https://www.bibsonomy.org/bibtex/2318ba81f4fb196c34b21d95b32e2d8ae/porta

Computing Surveys, vol. 53, no. 3, pp. 62:1–62:38, Jun. 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3383458

[22] C. M. M. M.A.K. Halliday, Introduction to Functional Grammar. Routledge,
2013, ch. 1, 7, pp. 6, 371–372, https://doi.org/10.4324/9780203431269.

[23] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. [Online]. Available:
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[24] D. and J. H. Martin, Speech and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguistics, and Speech Recognition,
1st ed. USA: Prentice Hall PTR, 2000.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties
of neural machine translation: Encoder-decoder approaches,” CoRR, vol.
abs/1409.1259, 2014. [Online]. Available: http://arxiv.org/abs/1409.1259

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” May 2019,
arXiv:1810.04805 [cs]. [Online]. Available: http://arxiv.org/abs/1810.04805

[29] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language
Understanding by Generative Pre-Training.”

[30] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave,
and G. Lample, “Llama: Open and efficient foundation language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2302.13971

[31] W. L. Taylor, ““cloze procedure”: A new tool for measuring readability,”
Journalism Quarterly, vol. 30, no. 4, pp. 415–433, 1953. [Online]. Available:
https://doi.org/10.1177/107769905303000401

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR, 2017. [Online].
Available: http://arxiv.org/abs/1706.03762

[33] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained Model for Programming
and Natural Languages,” Sep. 2020, arXiv:2002.08155 [cs]. [Online]. Available:
http://arxiv.org/abs/2002.08155

[34] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[35] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

88

https://dl.acm.org/doi/10.1145/3383458
https://doi.org/10.4324/9780203431269
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2302.13971
https://doi.org/10.1177/107769905303000401
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2002.08155

S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” 2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[36] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,
R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton,
M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez, J. Copet,
F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and G. Synnaeve,
“Code llama: Open foundation models for code,” 2024. [Online]. Available:
https://arxiv.org/abs/2308.12950

[37] J. Liu, M. Yang, Y. Yu, H. Xu, K. Li, and X. Zhou, “Large language models
in bioinformatics: applications and perspectives,” 2024. [Online]. Available:
https://arxiv.org/abs/2401.04155

[38] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pre-trained language
models for text generation: A survey,” ACM Comput. Surv., vol. 56, no. 9, apr
2024. [Online]. Available: https://doi.org/10.1145/3649449

[39] S. Chen, S. Wong, L. Chen, and Y. Tian, “Extending context window of
large language models via positional interpolation,” 2023. [Online]. Available:
https://arxiv.org/abs/2306.15595

[40] Y. Gao, C. Herold, Z. Yang, and H. Ney, “Is encoder-decoder redundant for
neural machine translation?” in Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), Y. He, H. Ji, S. Li, Y. Liu, and C.-H. Chang, Eds. Online only:
Association for Computational Linguistics, Nov. 2022, pp. 562–574. [Online].
Available: https://aclanthology.org/2022.aacl-main.43

[41] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Guiding llms the right
way: Fast, non-invasive constrained generation,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.06988

[42] X. Chen and X. Wan, “Evaluating, understanding, and improving constrained
text generation for large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2310.16343

[43] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural
text degeneration,” 2020. [Online]. Available: https://arxiv.org/abs/1904.09751

[44] I. Kulikov, A. H. Miller, K. Cho, and J. Weston, “Importance of search and
evaluation strategies in neural dialogue modeling,” 2019. [Online]. Available:
https://arxiv.org/abs/1811.00907

[45] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with
pointer-generator networks,” 2017. [Online]. Available: https://arxiv.org/abs/
1704.04368

[46] C. Meister, T. Pimentel, G. Wiher, and R. Cotterell, “Locally typical sampling,”
2023. [Online]. Available: https://arxiv.org/abs/2202.00666

[47] M. Freitag, B. Ghorbani, and P. Fernandes, “Epsilon sampling rocks:
Investigating sampling strategies for minimum bayes risk decoding for machine
translation,” 2023. [Online]. Available: https://arxiv.org/abs/2305.09860

89

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2401.04155
https://doi.org/10.1145/3649449
https://arxiv.org/abs/2306.15595
https://aclanthology.org/2022.aacl-main.43
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2310.16343
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1811.00907
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/2202.00666
https://arxiv.org/abs/2305.09860

[48] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,” 2021.
[Online]. Available: https://arxiv.org/abs/2106.08295

[49] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-Efficient Transfer
Learning for NLP,” Jun. 2019, arXiv:1902.00751 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1902.00751

[50] E. B. Zaken, S. Ravfogel, and Y. Goldberg, “BitFit: Simple Parameter-efficient
Fine-tuning for Transformer-based Masked Language-models,” Sep. 2022,
arXiv:2106.10199 [cs]. [Online]. Available: http://arxiv.org/abs/2106.10199

[51] D. Przewlocka-Rus, S. S. Sarwar, H. E. Sumbul, Y. Li, and B. D. Salvo,
“Power-of-two quantization for low bitwidth and hardware compliant neural
networks,” 2022. [Online]. Available: https://arxiv.org/abs/2203.05025

[52] F. Meng, Z. Wang, and M. Zhang, “Pissa: Principal singular values and
singular vectors adaptation of large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.02948

[53] Y. Li, Y. Yu, C. Liang, P. He, N. Karampatziakis, W. Chen, and T. Zhao,
“Loftq: Lora-fine-tuning-aware quantization for large language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2310.08659

[54] A. Aghajanyan, S. Gupta, and L. Zettlemoyer, “Intrinsic dimensionality
explains the effectiveness of language model fine-tuning,” in Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), C. Zong, F. Xia, W. Li, and R. Navigli, Eds. Online:
Association for Computational Linguistics, Aug. 2021, pp. 7319–7328. [Online].
Available: https://aclanthology.org/2021.acl-long.568

[55] Y. Li, “Deep Reinforcement Learning,” Oct. 2018, arXiv:1810.06339 [cs, stat].
[Online]. Available: http://arxiv.org/abs/1810.06339

[56] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learn-
ing, 2nd ed. MIT Press, 2018.

[57] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton,
L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike,
and R. Lowe, “Training language models to follow instructions with human
feedback,” 2022. [Online]. Available: https://arxiv.org/abs/2203.02155

[58] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.
MIT Press, 2018, ch. 3, pp. 61–69, in progress.

[59] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement
learning,” CoRR, vol. abs/1602.01783, 2016. [Online]. Available: http:
//arxiv.org/abs/1602.01783

[60] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region
policy optimization,” CoRR, vol. abs/1502.05477, 2015. [Online]. Available:
http://arxiv.org/abs/1502.05477

90

https://arxiv.org/abs/2106.08295
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2203.05025
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2310.08659
https://aclanthology.org/2021.acl-long.568
http://arxiv.org/abs/1810.06339
https://arxiv.org/abs/2203.02155
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1502.05477

[61] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” Aug. 2017, arXiv:1707.06347 [cs]. [Online].
Available: http://arxiv.org/abs/1707.06347

[62] K. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy
gradient,” CoRR, vol. abs/2009.04416, 2020. [Online]. Available: https:
//arxiv.org/abs/2009.04416

[63] C. C. Hsu, C. Mendler-Dünner, and M. Hardt, “Revisiting design choices
in proximal policy optimization,” CoRR, vol. abs/2009.10897, 2020. [Online].
Available: https://arxiv.org/abs/2009.10897

[64] P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, and V. Ganesh,
“Cotran: An llm-based code translator using reinforcement learning with
feedback from compiler and symbolic execution,” 2024. [Online]. Available:
https://arxiv.org/abs/2306.06755

[65] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama,
M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang,
J. Dean, and W. Fedus, “Emergent abilities of large language models,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.07682

[66] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou,
A. Blanco, and S. Ma, “CodeBLEU: a Method for Automatic Evaluation
of Code Synthesis,” Sep. 2020, arXiv:2009.10297 [cs]. [Online]. Available:
http://arxiv.org/abs/2009.10297

[67] M. Moskal, M. Musuvathi, and E. Kıcıman, “AI Controller Interface,” https:
//github.com/microsoft/aici/, 2024.

[68] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”
2017. [Online]. Available: https://arxiv.org/abs/1710.05941

[69] N. Shazeer, “Glu variants improve transformer,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.05202

[70] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le,
and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language
models,” 2023. [Online]. Available: https://arxiv.org/abs/2201.11903

91

http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2009.04416
https://arxiv.org/abs/2009.04416
https://arxiv.org/abs/2009.10897
https://arxiv.org/abs/2306.06755
https://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2009.10297
https://github.com/microsoft/aici/
https://github.com/microsoft/aici/
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2201.11903

	Introduction
	Motivation
	Problem Statement
	Related Work
	Contribution
	Thesis Outline

	X86 Architecture and BE-PUM
	X86 Architecture
	X86 Basic Execution Environment
	X86 Instruction Set and Its Specifications

	BE-PUM
	BE-PUM Architecture
	BE-PUM Code Base

	Language Model for Text Generation
	Language Modeling
	Masked Language Model
	Causal Language Model

	The Task of Text Generation
	Text Generation Basics
	Decoding Procedure in Text Generation

	Efficient Fine-tuning Techniques for Large Language Models
	Quantization
	Low-rank Adaptation
	Technical Usage of Efficient Fine-tuning Techniques

	Reinforcement Learning with Proximal Policy Optimization
	Reinforcement Learning Basics
	Reinforcement Learning in Machine Learning Hierarchy
	Elements of Reinforcement Learning
	An Example

	Proximal Policy Optimization

	Implementation
	CoDeb System Overview
	Description on Input and Output
	Input
	Output

	Code Writer
	Model Construction
	Response Format
	Prompt Construction

	Reward Function
	Response Format Checking
	Static Syntactic Checking
	Compiler Checking

	Code Debugger
	Model Construction
	Prompt Construction

	BEPUM-KB
	Collection of BE-PUM's Project-level Context
	Code Embedding with CodeBERT
	Vector Database Construction

	Experiments and Results
	Experiment Setup
	Datasets
	Validation Metrics
	Results
	Static-syntactical Correctness
	Project-level Compilation Correctness
	Supplementary Results

	Discussion
	Feasibility of CoDeb System
	Issue of Constrained Decoding
	Trade-off between Ensuring Syntactical Constraint and Semantics
	Issue of Preserving Improvement in Iterative Code Generation
	Applicability of Chain-of-Thought Prompting

	Conclusion
	The Effectiveness of CoDeb System
	The Limitation of CoDeb System
	Future Directions

	Policy Gradient Theorem
	Demonstration of Results
	Compilable Generated Code Files
	A Failed Case of Iterative Code Generation

