
Formal Semantics Extraction from Natural Language

Specifications for ARM

Viet Anh Vu

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

December, 2018

Master’s Thesis

Formal Semantics Extraction from Natural Language

Specifications for ARM

1610432 Viet Anh Vu

Supervisor : Mizuhito Ogawa
Main Examiner : Mizuhito Ogawa

Examiners : Kazuhiro Ogata
Nguyen Minh Le
Keita Yokoyama

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

[Information Science]
November, 2018

Abstract

Recently, Malware Analysis has been received much attention not only in industry but also
in the academic community. Modern malware frequently applies obfuscation techniques
(e.g., indirect jump, overlapping instruction) to conceal its behaviors and protect itself
against antivirus software, which regularly uses lightweight detection methods like bit-
based fingerprints. Since famous commercial disassemblers such as IDA Pro and Capstone
are easily fooled by these obfuscations, analyzing and detecting the obfuscated malware are
not straightforward. For dealing with these problems, some malware analysis approaches
based on Control Flow Graph (CFG) have been proposed (e.g., VxClass at Google). To
effectively reconstruct the CFG, a technique called Dynamic Symbolic Execution (DSE)
(known as concolic testing) has been widely applied. It is the combination of symbolic
execution and testing to automatically explore all feasible program execution paths and
determine the destination of obfuscation code like indirect jumps (by using a binary
emulator). In DSE, the feasibility of a path constraint is checked by testing with a
satisfiable instance using a Theorem Prover. Currently, we have developed BE-PUM
(Binary Emulation for PUshdown Model), a binary analyzer concentrating on malware
for Intel x86 architecture. Learning from its experiences, BE-PUM can be extended to
other platforms. By considering IoT Malware, ARM is our first target.

ARM is a family of computer processors, acts as the architecture behind billions of devices,
especially IoT devices. The explosive growth of IoT devices leads to the rapid increase of
IoT malware. With a huge number of connected devices worldwide, IoT malware can infect
quickly from a device to others among the network. After the infection, their collaboration
might cause dangerous large-scale attacks (e.g., BotNet). As our observation, even IoT
malware is lightweight, it still contains obfuscated code. To overcome this problem, DSE
should be applied to efficiently reconstruct the Control Flow Graph of IoT malware. After
that, the generated CFG can be used to correctly trace behaviors of malware then proceed
detection and classification tasks. However, ARM architecture consists of various series
such as Cortex-M, Cortex-A, and Cortex R. Due to the huge number of instructions for
each series, manual implementation of the Dynamic Symbolic Execution for ARM requires
a lot of engineering efforts. As the result, a method to semi-automatically extract the
semantics of ARM is essential and meaningful.

Based on our observation from the official ARM developer website, the ARM instruc-
tions have been written by natural language in English with some specific information
such as mnemonic, operation specifications, and flags-update descriptions. Through our
investigation, these descriptions frequently use some particular phrases, which can be ex-
tracted by using some Natural Language Processing techniques. Therefore, it is feasible
to systematically extract formal semantics of ARM instructions from these documents.
After that, the binary emulator and path conditions can be also generated, which will be
used in the Dynamic Symbolic Executor for ARM. By semi-automatically generating from
Natural Language Specifications, this procedure saves a lot of human efforts. However,

i

the lack of pseudo-code in the description of operations is a big challenge, and the various
type of flags-update description also makes some difficulties to analyze.

This thesis proposes an efficient method to systematically extract the formal seman-
tics of ARM instructions from their natural language specifications over six Cortex se-
ries: Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, and Cortex-M33. Al-
though ARM is based on RISC architecture and the number of instructions is rather
small, a large number of variations exist under Cortex-A, Cortex-M, and Cortex-R. Thus,
automatic extraction of the formal semantics of rather simple instructions reduces the
human effort for tool development, such as the dynamic symbolic execution. We focus
on 6 variations, M0, M0+, M3, M4, M7, and M33 of ARM Cortex-M, aiming to cover
IoT malware. By preparing 205 semantics interpretation rules (and additional 23 syntax
normalization rules) on phrases, we have automatically extracted the formal semantics
of 692 instructions among 1039 collected natural language specifications for 6 variations,
and 662 instructions have passed the automated conformance testing. With 35 manually
implemented default methods, a dynamic symbolic execution tool for ARM Cortex-M
variations has started to work. Because our proposed method is a generalized approach,
it can be quickly extended to other platforms without a lot of modifications.

Keywords: Semantic Extraction, IoT Malware, ARM Cortex-M, Dynamic Symbolic
Execution, Natural Language Processing.

ii

Acknowledgment

First and foremost, I wish to express my sincere gratitude and respect to my supervisor,
Professor Mizuhito Ogawa for his continuous supports and kindly guidance during my
study at Japan Advanced Institute of Science and Technology. He has inspired me to
become a scientific researcher, as well as given me invaluable knowledge of how to deal
with problems and how to think critically. While I was completing this thesis, even at
very late night, he still spent several hours to discuss and gave me lots of comments. I
am very thankful about that.

Besides, I would like to say my special thanks to my second supervisor, Associate Professor
Nao Hirokawa for his useful advice and sharp comments for my research. He also gave
me many suggestions for the slides and contents of my presentation, which actually helps
me a lot to improve my work.

I would like to express my appreciation to my friends, Dr. Vu Xuan Tung, Mr. Nguyen
Lam Hoang Yen, Ms. Vuong Thi Hai Yen, Mr. Trac Quang Thinh, and Ms. Yoon
Myet Thwe. Thank you for sharing wonderful moments, interesting ideas, and useful
experiences not only in research but also in daily life. I will never forget our Kimono lab,
absolutely. My thank also goes to Mr. Le Khanh Trinh, for helping me a lot since the
very first day I came to JAIST.

Last but not least, my family is an indispensable part of my life. There are no proper words
to express how much important they are. Their big love and encouragement motivated
me to study and keep moving forward. I would like to give my heartfelt thanks to my
dear father, mother, and sister. Without their support, it would be impossible for me to
complete this work.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Related Work . 8
1.4 Contributions . 9
1.5 Thesis Structure . 9

2 Preliminaries 11
2.1 Natural Language Processing Techniques 11

2.1.1 Sentence Syntax Parsing . 11
2.1.2 TF-IDF Score . 13
2.1.3 Cosine Similarity Measure . 14

2.2 Machine Learning Techniques . 15
2.2.1 Probabilistic Distributions . 15
2.2.2 Latent Dirichlet Allocation . 17

3 IoT Malware Analysis 20
3.1 Obfuscation Techniques . 20
3.2 Typical Approaches . 21
3.3 Malware Analysis Based on Control Flow Graph 23

3.3.1 Dynamic Symbolic Execution . 24
3.3.2 On-the-fly CFG Generation . 26
3.3.3 BE-PUM for x86/Windows . 26

4 ARM Formal Semantics 29
4.1 ARM Processor . 29

4.1.1 Architecture . 29
4.1.2 Cortex Series . 30
4.1.3 Instructions . 31

4.2 Formal Semantics of ARM . 33
4.2.1 Abstract Environment . 34
4.2.2 Operational Transitions . 34
4.2.3 Java Specifications as Semantics . 35

4.3 Semantics Extraction Overview . 41

iv

5 Syntax Normalization and Semantics Interpretation 42
5.1 Instructions Normalization . 42
5.2 Automatic Instructions Selection . 46
5.3 Rewriting Rules Preparation . 48

6 Dynamic Symbolic Executor Generation 51
6.1 Generation Overview . 51
6.2 Operations Code Generation . 52
6.3 Flags Update Detection . 54
6.4 Path Conditions Generation . 56

7 Conformance Testing 59
7.1 Automatic Tests Generation . 59
7.2 Test Case Structure . 61
7.3 Testing Procedure . 61

8 Experiments 63
8.1 Instruction Selection Strategy . 63
8.2 Successfully Generated Instructions . 64
8.3 Discussion . 65
8.4 Running Example of the Generated DSE Tool 66

9 Conclusion and Future Directions 68
9.1 Result and Conclusion . 68
9.2 Future Directions . 69

Bibliography

Appendix

This dissertation was prepared according to the curriculum for the collaborative ed-
ucation program organized by Japan Advanced Institute of Science and Technology
and University of Engineering and Technology, Vietnam National University.

v

List of Figures

1.1 A part of ARM Cortex-M7 instruction set 4
1.2 The generated Java code of UMAAL instruction in Cortex-M7 6
1.3 The Flow of Semantics Extraction . 7

2.1 An example result of syntax parser . 13

3.1 Indirect jump in an IoT malware . 21
3.2 Original malware assembly code and after dead code insertion 21
3.3 A Control Flow Graph of Binary File . 23
3.4 Symbolic execution for automatic tests generation 24
3.5 Static Symbolic Execution and Dynamic Symbolic Execution 25
3.6 Control Flow Graph Generation by on-the-fly manner 26
3.7 BE-PUM Architecture . 27
3.8 Binary emulator in BE-PUM . 27

4.1 Components of ARM Architecture . 29
4.2 Popular Cortex series of ARM . 31
4.3 The semantics transition framework of ARM 34
4.4 The simplest implementation of CLZ . 39
4.5 The unfolded form of CLZ . 40
4.6 The SMT format of CLZ . 40
4.7 Semantics Extraction Overview . 41

5.1 Instruction Normalization Procedure . 43
5.2 Example of the syntax tree, its refinement and TF/IDF scores 44
5.3 Candidates selection from all instructions 46

6.1 Java code generation overview for an instruction 52
6.2 Code generation process for an instruction 53
6.3 Matching process to generate formal Java code for an operation 54
6.4 Flags Update Detection . 55
6.5 Path conditions update through the execution on ARM 57

7.1 An example of function need to be tested 60
7.2 Execution tree of foo . 60
7.3 Conformance Testing Procedure . 62

vi

8.1 Instruction Selection Strategy Performance 63
8.2 An example demonstrating how our DSE generates path conditions through

executions and explores the destination of an indirect jump 67

vii

List of Tables

1.1 The official description of UMAAL instruction in Cortex-M7 5
1.2 Typical flags modification description of ARM instructions 8

2.1 Syntax notations in the grammar G . 12

4.1 Number of collected instructions over six architecture 32
4.2 ARM Conditional Suffix . 33

5.1 Syntax notations in the syntax tree of S 44
5.2 Most popular extracted NP-Terms . 48

8.1 The number of generated instructions over six Cortex series 64
8.2 The ignored case of QSAX instruction in Cortex-M7 65
8.3 The failed case of RORS instruction in Cortex-M0+ 66
8.4 The failed case of STRB instruction in Cortex-M7 66

viii

Chapter 1

Introduction

1.1 Motivation

Malware (shortened of Malicious Software) is a program intending to infiltrate the system
without the acceptance of owners, them harm or disable computer systems. By the
purpose of how it damages the system, it can be characterized into many types such as
worms, virus, trojans, and spyware. The best way to protect the systems against the
damages of malware is proactive detection. However, it is not an easy problem because
modern malware usually uses many obfuscation techniques [1] in order to conceal its
behaviors and protect itself against antivirus software. Therefore, the problems of how to
detect and classify malware have been received a lot of attention in the community. There
are many existing approaches to do that including static analysis, dynamic analysis, model
checking based, and machine learning approach. In almost cases, disassembling binary
files is the very first requirement. However, current famous disassemblers (e.g, IDA Pro,
Capstone) are easily fooled by obfuscation techniques. To overcome this problem, some
model checking based approaches [2] [3] [4] have been applied to first obtains the abstract
model of the binary file, then proceed some further methods to detect malware based
on the generated model. A typical model has been used is Control Flow Graph (CFG),
which is a directed graph to represent the program execution process. Currently, we have
developed BE-PUM (Binary Emulation for PUshdownModel), a binary analyzer focusing
on x86 malware. It uses the Dynamic Symbolic Execution technique to reconstruct the
CFG of malware, then enables us to trace its correct behaviors. By learning from the
experiences, BE-PUM can be extended to other architectures, and the first target is
ARM.

ARM is a processor family, which is the backbone of billions of devices in the world, espe-
cially the IoT devices. Recently, the number of IoT device has raised rapidly. According
to a prediction of Statista 1, the number of IoT devices connected worldwide during the
period from 2015 to 2025 will increase from 15.41 to 75.44 billion. This development leads
to the fast growth of IoT malware. Different from Intel x86 malware, IoT malware is light-

1Statista (2018). Internet of Things - the number of connected devices worldwide 2015 - 2025

1

2

weight, which can be deployed in many small devices such as smart-phones, routers, and
devices in smart-home ecosystems. Although the computing power of each IoT device is
low, for a huge number of IoT devices, they can collaborate for making large-scale attacks
(e.g., BotNet). Although almost IoT malware does not include obfuscation techniques
(due to rare system update), analyzing of indirect jump will be needed to understand its
control behavior. To overcome this problem, it is necessary to apply Dynamic Symbolic
Execution to reconstruct its Control Flow Graph, then use the generated graphs to per-
form detection or classification tasks. Dynamic Symbolic Execution technique requires
a binary emulator and path constraints generation over each execution. However, ARM
architecture has many Cortex series; each one contains an instruction set with plenty of
individual instructions. This diversity takes a huge engineering effort to manually imple-
ment the Dynamic Symbolic Executor for ARM. Therefore, a method to systematically
extract the formal semantics of ARM instructions will be very useful since it saves a lot
of human efforts. Our ultimate goal is proposing a method to semi-automatically extract
formal semantics of ARM. This method must be generalized for being able to be extended
to other architectures without big modifications.

Symbolic Execution [5] is an old, powerful, and popular method to analyze and/or verify
software. It has been developed mostly for high-level programming languages, such as
Java and C. Recently, the symbolic execution tools for binaries gradually increase, e.g.,
MiAsm [6], McVeto [7], CoDisasm [8], BE-PUM [9], and KLEE-MC [10], but most of
them target on x86. Considering the evolving threat of IoT malware, extending such
tools to various instruction sets, e.g., ARM, MIPS, and PowerPC becomes important.
The difficulties on handling binaries lie on (1) the operational semantics is intricate to
human and (2) the number of instructions is often large, e.g., > 1000 for x86. However,
contrary to high-level programming languages, good news are:

• A binary program has a simple semantics framework as transitions on the environ-
ment consisting of a memory, a stack, registers, and flags.

• The instruction set has a rigid natural language specification.

• Since many debuggers and emulation environments are prepared, the ambiguity of
natural language specifications can be resolved by testing.

We target on ARM, of which the specifications is available on ARM Developer Website
[11]. Since ARM is a RISC-based processor family, it has rather few instructions (' 60
- 300). However, it has three Cortex series: M for microcontrollers (e.g., IoT devices), A
for rich operating systems (e.g., Android), R for real-time systems (e.g., LTE modems).
Furthermore, each has many variations, e.g., 16 in Cortex-A, 9 in Cortex-M, and 5 in
Cortex-R, which are still increasing.

This thesis proposes a method to systematically extract the formal semantics of instruc-
tions from their natural language specifications collected from ARM Developer Website.

3

For each instruction, first, we apply some natural language processing techniques to re-
trieve information of its arguments, its flags updates, and its actions. After that, the
formal semantics is described as a Java method in an extension of BitSet class obtained
by instantiating these information to a dynamic template. This template represents the
semantics framework as a transition on quadruplets of the flags, the registers, the memory,
and the stack.

Since the flags update is a boolean operation, a similarity analysis with model sentences
often works, e.g., x86 specifications at Intel Developer Network [12]. A more challenging
task is the semantics extraction of the actions; different from Intel Developer Network for
x86, the specifications at ARM Developer Website does not provide the pseudocode de-
scription. We manually prepare rewriting rules as a semantic interpretation that converts
a normalized syntax tree of a sentence to a Java code fragment in a bottom-up manner.
At last, the generated Java method is automatically tested whether the result matches
with a popular ARM emulator, e.g., µV ision [13].

Note that, instead of intending a fully automatic extraction, we hope to reduce human
effort by automatically handling rather simple but many instructions. Then, when devel-
oping a formal method tool, human can concentrate only on the most complex part. Our
experiment is performed on 6 Cortex-M variations: M0, M0+, M3, M4, M7, and M33.
By preparing 205 semantics interpretation rules (and additional 23 syntax normalization
rules) on phrases, we have successfully extracted the formal semantics of 692 instructions
among 1039 collected specifications, and 662 instructions have passed the automated con-
formance testing. With 35 manually implemented methods, a dynamic symbolic execution
tool for ARM Cortex-M variations has started to work.

1.2 Problem Statement

ARM is a RISC based CPU and the number of instructions is relatively small. However,
it has many variations call Cortex (e.g., Cortex-A, Cortex-M, Cortex-R). In this research,
we focus on Cortex-M series since it was used in plenty of IoT devices. The ARM De-
veloper website2 provides the natural language specifications of Cortex-M series. Some of
them have been written in structured forms with natural language description, some have
been written totally in natural language and have been enclosed in a PDF file. In fact,
extracting structured data from PDF file is a challenge because we just can gather almost
the information by plain text even it is written inside a table in this PDF file. Forming
these text into structured data requires a lot of efforts. Therefore, for the first experience,
we focus on six series: Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, and
Cortex-M33, which are written in structured form.

The table below shows some instructions in the official ARM Cortex-M7 instruction set

2https://developer.arm.com/

4

document. The full set can be found on ARM Developer Website for Cortex-M7 3.

!27

Mnemonic Operands Brief description Flags

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C,V

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right -

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear N,Z,C

BFI Rd, Rn, #lsb, #width Bit Field Insert N,Z,C

BIC, BICS {Rd,} Rn, Op2 Bit Clear -

BKPT #imm8 Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link and Exchange N,Z,C

BX Rm Branch indirect and Exchange -

CBNZ Rn, label Compare and Branch if Non Zero -

CBZ Rn, label Compare and Branch if Zero -

CLREX - Clear Exclusive -

CLZ Rd, Rm Count Leading Zeros -

Figure 1.1: A part of ARM Cortex-M7 instruction set

where each instruction has same structures of natural language description including some
information as follows:

• Mnemonic: The short name of instruction.

• Brief description: A brief information about the purpose of this instruction.

• Syntax: Main components of instruction syntax, including parameters and precon-
ditions that must be checked before execution.

• Operation: This is the most essential part of the instructions, contains some sen-
tences describing how the instruction is explicitly executed.

• Flags update: The update status of flags are described here. It uses many syn-
onyms to explain what flags will be changed after execution such as change, update,
modify, and set.

3https://developer.arm.com/docs/dui0646/a/the-cortex-m7-instruction-set/instruction-set-summary

5

The problem can be stated as follows:

Input: Given an official instruction set document of a Cortex series collected from the
ARM developer website (one of Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-
M7, and Cortex-M33).

Output: Extracting the formal semantics of these instructions, then generate a binary
emulator and path conditions that will be used for the Dynamic Symbolic Execution for
ARM.

Example 1.2.1. Detailed information of UMAAL instruction in Cortex-M7

Mnemonic UMAAL

Brief description Signed multiply with accumulate long

Syntax UMAAL{cond} RdLo, RdHi, Rn, Rm

Operation The UMAAL instruction multiplies the two unsigned 32-bit inte-
gers in the first and second operands. Adds the unsigned 32-bit
integer in RdHi to the 64-bit result of the multiplication. Adds
the unsigned 32-bit integer in RdLo to the 64-bit result of the
addition. Writes the top 32-bits of the result to RdHi. Writes
the lower 32-bits of the result to RdLo.

Flags update This instruction does not affect the condition code flags.

Table 1.1: The official description of UMAAL instruction in Cortex-M7

The natural language specification of an ARM instruction taken from ARM Developer
Website consists of five sections: mnemonic, brief description, syntax, operation, and flags
update. From these information, we aim to extract this formal semantics

Rpc = k; instr(k) = umaal rdlo rdhi rn rm;Rrdlo = lo;Rrdhi = hi;

Rrn = n;Rrm = m; a = m ∗ n+ lo+ hi;hi′ = a� 32; lo′ = (a� 32)� 32;

〈F,R,M, S〉 → 〈F,R[pc← k + | instr(k) |;Rrdlo ← lo′;Rrdhi ← hi′],M, S〉
[UMAAL]

by using some sentence-level NLP (natural language processing) techniques: (1) the syntax
analysis, (2) the similarity analysis, and (3) the semantic interpretation. The instruction
name and arguments are directly extracted from the syntax section by (1), the flag update
information is extracted from the flags update section by (1) and (2), and the actions are
extracted from the operation section by (1), (2), and (3), ignoring the mnemonic and the
brief description sections.

6

Our expected output for this example is the Java executable code of UMAAL for Cortex-
M7. This code contains the semantics transition of ARM instructions including path
condition updates.

public void UMAAL(Character l, Character h, Character n, Character m,
Character suffix, Character cond) {
env.arithmeticMode = ArithmeticMode.BINARY;
if (cond == null || env.checkCond(cond)) {

char[] flags = new char[]{};
BitVec result = null;
result = mul(val(n),val(m));
result = add(result,val(h));
result = add(result,val(l));
write(h,shift(result,Mode.RIGHT,32));
write(l,shift(shift(result,Mode.LEFT,32),Mode.RIGHT,32));
if (suffix != null && suffix == ’s’) {

if (result != null) {
env.updateFlags(flags, result);

}
}

}
}

Figure 1.2: The generated Java code of UMAAL instruction in Cortex-M7

Solution Overview: Figure 1.3 shows the flow of our method, in which two are manually
prepared:

(A) 35 initial functions for the binary emulator, which are used as basic methods in the
Java dynamic template. Note that, these functions both update the environment
and path condition through each transition.

(B) 228 rewrite rules consisting of 23 syntax normalization rules and 205 semantic inter-
pretations rules where the left-hand sides of rules are collected automatically and
the right-hand sides are prepared manually.

To have an optimal performance of the automatic extraction with respect to the manual
preparation, we first select some ARM instructions, of which their descriptions consist of
frequently appearing phrases. Then, fewer rewrite rules cover more instructions. Cur-
rently, the total 228 rewrite rules cover 662 instructions among 1039 collected specifica-
tions. As the result, by instantiating extracted information to the Java dynamic template,
a method that formally describes the semantics of UMAAL is obtained. The dotted boxes
indicate the insertions of the extracted information to the template.

7

Java Method Generation
Java Dynamic

Template

ARM Instruction Specification

Flags Update
Detection

Operational Semantics
Interpretation

Flags Update DescriptionsOperation Descriptions Syntax

Parsing

Lemmatization and Refinement

Syntax Tree Refinement

Instructions Selection Instruction Filter

Rules
Preparation

Conformance TestingSymbolic Executionchapter 6

chapter 5
(5.1, 5.2)

chapter 7

chapter 5
(5.3, 5.4)

NP-Terms Extraction

Figure 1.3: The Flow of Semantics Extraction

Difficulties

There are two major difficulties compared to x86 instruction specification. First, ARM
instruction specifications lack of pseudo-code descriptions. Pseudo-code is an informal
description of how the program is executed. It enables human to understand the se-
mantics of program without knowledge of any explicit programming languages. In code
generation, pseudo-code plays an important roles in describing the execution process of
programs. In the work of Yen et al. [12], the pseudo-code in Intel x86 instructions are quite
structured. For ARM instructions, instead of pseudo-code, the operations description is
written totally by natural language in English. It makes more challenges to analyze and
extract information because of the ambiguity and complex structure of natural language.
In addition, the operation’s description in ARM consists of many separated sentences, in
which some sentences describe an operation. Moreover, it may use the result from the
previous operation. Hence, to combine all sentences and transform it to a formal unified
operation is also a challenge.

8

In addition, flags changes are also described by natural language only. The table below
shows some kinds of expressions for flags-change description.

Description Implication

This instruction does not change the flags

Does not update flags
This instruction does not affect the condition code flags

The V flag is left unmodified.

This instruction updates the N, Z, C and V flags according to
the result.

Update specific flags

based on description
Updates the N and Z flags according to the result. Does not
affect the C and V flags.

Table 1.2: Typical flags modification description of ARM instructions

As for Intel x86 instruction description, ARM also uses many different types of synonyms
to describe flags-change. It makes more challenging to correctly detect how flags are af-
fected after execution. Naturally, many synonyms can be used in order to describe such
implications. For instance, two sentences “The V flag is left unmodified” and “This in-
struction does not affect the V flag” have different words, but indicate the same meanings.

1.3 Related Work

There are several model checking based approaches [2, 3, 4] to analyze malware. Different
from high-level programming languages, binary code is not easy to obtain its control flow
graph (corresponding to the difficulty of the disassembly). Thus, before model checking,
the precise model needs to be prepared. Recently, the symbolic execution tools for binaries
gradually increase, e.g., MiAsm [6], McVeto [7] , CoDisasm [8], BE-PUM [9], and KLEE-
MC [10], but most of them are for x86. Furthermore, KLEE-MC and MiAsm first convert
the binary code to intermediate assembly languages, like LLVM. Although current IoT
malware rarely uses typical obfuscation techniques [1] of PC malware, it uses indirect
jumps quite often. The traditional disassemble techniques like the linear sweep and the
recursive disassembling (used in IDA Pro [14], Capstone [15]) are easily cheated by them.
The use of intermediate assembly languages shares the problem. The symbolic execution
of CoDisasm relies on MiAsm and has difficulties on handling indirect jumps. BE-PUM
and McVeto on x86 directly apply the symbolic execution on binaries (with the one-step
disassembly at the specified address) to handle indirect jumps precisely. The difference is
that McVeto uses only the symbolic execution and the destination candidates of indirect
jumps are analyzed statically, whereas BE-PUM uses the dynamic symbolic execution and
the destinations of indirect jumps are decided by the concolic testing. Thus, the targets

9

of McVeto is mostly limited to compiled binaries. We follow the same methodology of
BE-PUM, but apply it to ARM Cortex-M.

The drawback of the methodology is that the implementation becomes heavy. Thus, we
hope to have an automated support to extract the formal semantics of binary instructions.
For a wider coverage of BE-PUM, the semantics extraction from the x86 specifications
collected from Intel Software Developer’s Manual has been tried [12]. It covered 299 x86
instructions among 530 collected specifications, and the 5 semantic bugs in the manual
implementation of BE-PUM are reported. It relies on the pseudo code description for
extracting the information of the actions (with the aid of manually implemented about
30 functions), and the similarity analysis using a sophisticated scoring based on WordNet
[16] is an essential use to extract the information of the flags update. In our case, the
specification of ARM does not have such a pseudocode description and we need to use
the semantics interpretation.

1.4 Contributions

The specification of ARM instructions is written in English by natural language. This
study focuses on analyzing and extracting formal specification from natural language
description over six cortex series. Because of the ambiguity of natural language, it is not
a straightforward task. Our main contributions consist of:

• First, we proposed a generalized method to extract the semantic of operations in
instructions, then generate its formal executable code (represented in Java). This
method can be extended to multiple platforms, as long as the rewriting rules for
each platform are defined correctly. In this method, we also introduce a strategy for
automatically select potential instructions to optimize the needed human efforts for
implementation. In this method, we also provide a set of rewriting rules for ARM
Cortex-M series, which can be modified for extending to other architectures.

• Second, we present an approach to automatically detect the flags-changes using an
unsupervised learning algorithm called Latent Dirichlet Allocation and the Cosine
similarity measure.

• Finally, we combine two methods above to develop a tool to completely generate the
formal semantics of ARM instructions. In our work, this formal specifications are
written in Java, consisting of both path conditions update and a binary emulator.
This semantics which will be further used in the Dynamic Symbolic Execution for
ARM.

1.5 Thesis Structure

This thesis is organized into nine chapters. Chapter 1 is the introduction; the main
content of the next eight chapters are summarized as follows:

10

• Chapter 2 presents some background knowledge of Natural Language Processing
and Machine Learning techniques that are applied in the scope of this thesis.

• Chapter 3 briefly introduces IoT malware and typical approaches of malware analy-
sis. Besides, it also presents the approach to overcome obfuscation techniques called
Dynamic Symbolic Execution (concolic testing) and the current tool BE-PUM for
x86/Windows.

• Chapter 4 first briefly talks about ARM architecture, then introduces the formal
semantics of ARM, including both operational semantics and Java semantics. It
also shows an overview of semantics extraction process.

• Chapter 5 mentions about some prerequisites needed to be done before the seman-
tics extraction process. It also illustrates how the potential instructions is selected
and how we prepared rewriting rules for further generation task.

• Chapter 6 explains how the dynamic symbolic executor for ARM is systematically
generated. The generation process includes three tasks: operation code generation,
flags change detection and path condition generation.

• Chapter 7 presents a conformance testing method to verify the correctness of our
implementation using Symbolic Execution.

• Chapter 8 shows the practical experiments result over six Cortex series of ARM
architecture, including the instruction selection strategy, and the generated instruc-
tions. In addition, some cases that still cannot be covered are discussed. Finally, a
running example of the generated DSE tool is also demonstrated.

• Chapter 9 summarizes the main contributions of the thesis and the advantages
as well as remaining drawbacks. After that, some future works are also mentioned
to suggest some directions to improve and extend our proposed method to other
platforms.

Chapter 2

Preliminaries

This chapter presents some existing techniques used in our method. For extracting formal
semantics of ARM, Natural Language Processing techniques are used to process text data
collected from ARM Developer Website and perform the instruction normalization. We
also use a Machine Learning algorithm called Latent Dirichlet Allocation for detecting
flags modifications.

2.1 Natural Language Processing Techniques

In computer science, Natural Language Processing (NLP) is a research field that aims
to enable computers to understand and be able to communicate with human by natural
language. It is one of the indispensable factors for the interaction between human and
machine. Recently, the increase of computing power and the availability of big data leads
to the rapid growth of NLP. Some typical advanced problems in NLP are information
extraction, machine translation, text summarization, and text generation. Applying NLP
to automatically extract information from text has been received a lot of attention from
the community because it saves a lot of human efforts. As our observation, this technique
can be used to extract formal specification of ARM instruction from its natural language
description. In this work, Syntactic Parser, TF-IDF score, and Cosine similarity have
been applied.

2.1.1 Sentence Syntax Parsing

Syntax Parsing (known as Parsing for short) is a process to determine the syntactic
structure of a sentence based on a given formal grammar. This technique has been widely
used as the pre-processing task of many natural language processing algorithms before
proceeding next steps. It inputs a sentence and a grammar, then outputs a syntax tree
which represents the syntax of this sentence. The grammar used in Parsing can be a
context-free or domain-oriented grammar. In this study, we used a context-free grammar.

11

12

Definition 2.1.1. A context-free grammar G is a reduction system over strings that uses
a set of rules to rewrite string patterns. It consists of four components 〈N, T,R, S〉 where:

• N : a set of non-terminal symbols.

• T : a set of terminal symbols.

• R: a set of rewriting rules. Each rule is denoted as a→ b, where a, b are strings.

• S: a set of start symbols. Each element of S is a non-terminal symbol.

A syntax tree of a sentence S now will be generated by performing rule matching by re-
placing the left-hand side by the right-hand side of rules until the right-hand side contains
only terminal symbols.

Example 2.1.1. Consider a context-free grammar G as follows:

S → NP VP
PP → P NP
NP → DT N | DT N PP | ’I’
VP → V NP | VP PP
DT → ’a’ | ’the’
N → ’banana’ | ’table’
V → ’see’
P → ’on’
. . .

where:

Notation Meaning

S Sentence

NP Noun Phrase

VP Verb Phrase

V Verb

Notation Meaning

PP Prepositional Phrase

DT Determiner

P Prepositional

N Noun

Table 2.1: Syntax notations in the grammar G

In this case, the components of G are:

• N : NP, PP, VP, DT, . . .

• T : ’a’,’on’,’see’,’banana’, . . .

• R: S → NP VP, PP → P NP, . . .

• S: S, . . .

13

Then, a syntax tree of the sentence “I see a banana on the table” based on G is:

S

VP

NP

PP

NP

N

table

DT

the

P

on

NP

N

banana

DT

a

V

see

NP

I

Figure 2.1: An example result of syntax parser

2.1.2 TF-IDF Score

Term Frequency - Inverse Document Frequency (TF-IDF) is a measure to estimate the
importance of a word to a document over a corpus. It is usually used in text mining to
refine sentences for the preprocessing task. Besides, it has been also applied to calculate
the similarity between two document by using cosine distance between two sentence’s
TF-IDF vector. In this work, TF-IDF was used as an evaluation to remove unimportant
words, acts as a pre-processing task. The reason why this task is essential is that almost
unimportant words do not carry the meaning of the sentence. It can be removed to
shorten the sentence and make it simpler. It is useful for the next steps of generating
rewriting rules. The input of this task is a target document d and a corpus D. It outputs
a real numbers vector that represents the score of each word in d.

Definition 2.1.2. Given a set of n documents:

D = {d1, d2, d3, . . . , dn−1, dn} (2.1)

Each document i is a set of mi words:

di = {wi1, wi2, wi3, . . . , wimi−1, w
i
mi
} (2.2)

Then:

• Term frequency of wik is defined as:

tf(wik) =
fkdi
mi

(2.3)

14

• Inverse document frequency of wik is defined as:

idf(wik) = loge(
n

f
wi

k
D

) (2.4)

• TF-IDF of wik is defined as:

tfidf(wik) = tf(wik)× idf(wik) (2.5)

where:

• fkdi : The number of occurrences of wik in di.

• fw
i
k

D : The number of document in D containing wik.

The tfidf(wik) can represent the importance of a word wik in the document di because:

1. If wik appears many times in di, it is important for di. The bigger number of
occurrences, the bigger tf(wik). It will led to the increment of tfidf(wik).

2. On a other hand, if wik also appears many times in D, it is so common. The bigger
number of occurrences, the smaller idf(wik). It will led to the decrement of tfidf(wik).

2.1.3 Cosine Similarity Measure

Cosine similarity is a real value reflecting the difference of two non-zero vectors based on
the cosine of its spatial angle. To apply Cosine similarity for determining whether the
semantic of two sentences are equivalent or not, we first need to transform two sentences
s1, s2 into two non-zero vectors v1, v2, respectively. Then the value of Cosine Similarity
between v1 and v2 is the distance between s1 and s2.

Definition 2.1.3. Let va and vb are two non-zero real vectors with n dimensions:

va = (a1, a2, a3, . . . , an−1, an)

vb = (b1, b2, b3, . . . , bn−1, bn)

The Cosine similarity between va and vb is defined by:

sim(vA, vb) =
va · vb
‖va‖‖vb‖

=

n∑
i=1

aibi√
n∑
i=1

a2i

√
n∑
i=1

b2i

(2.6)

15

2.2 Machine Learning Techniques

Machine Learning (a branch of Artificial Intelligence) is a set of algorithms that enables
machines to automatically learn from previous experiences and after that, it can be able to
adapt and predict new unseen data. Recently, Machine Learning is regularly used in many
problems such as classification, regression, clustering, and detection. In fact, Machine
Learning can be combined with other technologies to create more efficient algorithms for
analyzing a huge amount of information. Based on how the machine learning algorithms
“learn” from data, it can be classified into the following categories:

• Supervised learning algorithm: This is the algorithm which uses labeled training
data to learn a generalized model, then uses this model to predict unlabeled testing
data. Some famous supervised learning algorithms are Support Vector Machine,
Neural Networks, Decision Tree, and Linear Regression.

• Unsupervised learning algorithm: Opposite to supervised learning algorithms, this
kind of algorithm uses the unlabeled data to learn a generalized model for describing
a latent structure behind the data. Although it cannot figure out the label of data,
it still can divide data into some clusters. Some popular algorithms are K-means,
K-nearest Neighbor, and Latent Dirichlet Allocation.

• Semi-supervised learning algorithm: This kind of algorithm uses both labeled and
unlabeled data for the training process. Basically, it is used when we have a large
set of unlabeled data and a small set of labeled data. In this case, labeled data will
be used to improvement the accuracy of training process.

• Reinforcement learning algorithm: In some specific situation, the machine learning
algorithm need to interact and adapt to its environment (e.g., games’ AI bot). It
uses the feedback and errors from the environment to improve itself, then after that,
it can make better decisions.

In our works, a probabilistic unsupervised machine learning model called Latent Dirichlet
Allocation (LDA) has been applied to represent a document by a distribution of topics.
The basic idea of LDA is that each document is considered as a distribution of hidden
topics d where each topic is a distribution of words. Then LDA tries to figure out d based
on the training data.

2.2.1 Probabilistic Distributions

A probability distribution is a function describing the proportion of random variables
that occurs in an event. For example, in the coin flipping scenario, assume the coin
is fair, the probabilities of head and tail would be 0.5, 0.5 respectively. It follows the
Bernoulli distribution with the λ = 0.5. This section briefly introduces some probabilistic
distributions used in the machine learning model that has been applied in our proposed
method.

16

Poisson Distribution

Poisson Distribution is a discrete probability distribution, describes the average number
of successful occurrences of an event e over a given time period t. Consider a random
discrete variable N , if the average number of occurrences of N over t is λ, the probability
of e occurs k times (k is a non-negative integer) is defined by:

p(k;λ) =
λke−λ

k!
(2.7)

where e ≈ 2.71828 (Euler’s number)

Categorical Distribution

In many cases, the output of discrete random variables may be one value in a finite set. For
example, when you roll a dice, the receiving face is one value in the set {1, 2, 3, 4, 5, 6}. In
this case, we usually use Categorical distribution to describe random variables. Assume
there are N possible outcomes, the outputs would be described by one element in the
set {1, 2, . . . , N}. Then, the Categorical Distribution is described by N non-negative
parameters:

λ = (λ1, λ2, . . . , λN) (2.8)

where:
λi ≥ 0

N∑
i=1

λi = 1
(2.9)

Each λi represents the probability of output to be i: p(x = i) = λi.
The probability density function of Categorical Distribution is defined as:

p(x) = Catx[λ] (2.10)

Dirichlet Distribution

Dirichlet Distribution is used to describe the parameters of Categorical Distribution. It
describes N continuous random variables λ1, λ2, . . . , λN , where

λi > 0

N∑
i=1

λi = 1
(2.11)

17

Using N positive parameters used to describe a Dirichlet Distribution: α1, α2, . . . , αN , the
probability density function is defined by:

p(λ1, λ2, . . . , λn) =

Γ(
N∑
n=1

αn)

N∏
n=1

Γ(αn)

N∏
n=1

λαn−1
n (2.12)

where:

Γ(z) =

∫ ∞
0

tz−1 exp(−t)dt (2.13)

For short, it can be written as: p(λ1, λ2, . . . , λk) = Dirλ1,λ2,...,λk [α1, α2, . . . , αK]

2.2.2 Latent Dirichlet Allocation

In order to extract the characteristics of documents, in information retrieval and data min-
ing, modeling the documents is an essential task before proceeding next steps. Compare
to the words vectorization methods, documents represented by probabilistic distribution
has many advantages. Latent Dirichlet Allocation (LDA) [17] is a generative probabilistic
model over discrete data, which aims to discover the “hidden topics” in a corpus. In
LDA, each document is represented by a distribution of hidden topics and a topic is a
distribution of words. Because LDA is a bag-of-words model, the order of words does not
matter. Beside being applied in text mining, it also is used in many other domains as
long as the purpose is to capture the hidden structure of the dataset.

Notation

Assume we have a vocabulary ϑ, indexed by {1, 2, . . . , V }.
A word is an element from ϑ, is represented by an one-hot vector. It means the vword is
defined by a vector w = (w1, w2, . . . , wV), in which wi = 1 if i = v, otherwise, wi = 0.
A document w is represented by a vector of N words, in which wi is the ith word in the
document:

w = (w1, w2, . . . , wN) (2.14)

A corpus (or collection) is a set of M documents:

D = {w1, w2, . . . , wM} (2.15)

Assumption

We need to assume a fixed number of topics, say K. Then we have K topics:

T = {t1, t2, . . . , tk} (2.16)

Then assume the generation of document w in D follows these step:

18

1. First, decide the number of words N for D according to a Poisson distribution:

N ∼ Poisson(ξ)

2. Second, choose a mixture of K topics for w according to a Dirichlet distribution:

θ ∼ Dir(α)

3. Third, we next generate each words wi in w by:

• Pick a topic according to the multinomial distribution chosen in the second
step: ti ∼Multinomial(θ)

• Then use this chosen topic above to generate a word wi according to a multi-
nomial probability on the topic ti

Then, LDA tries to learn the topic distribution of each document, and the words associated
for each topics. The learning process is performed as follows:

1. For all document w in D, assign each word wi in w to a random one in K topics.

2. After this step, we already have topic distribution of all wi, and word mixtures of
all topic. But this result is still not good. We need to improve it by performing
some iterations:

• For all document w in D:

• For all word wi in w:

• For each topic tj:

• Calculate:
p = p(tj | w).p(wi | tj)

where

– p(tj | w): the proportion of words wk in w in which t(wk) = tj

– p(wi | tj): the proportion of document in D containing wi in which t(wi) = tj.

After that, the wi is assigned to the topic tj with the new probability p.

After some iterations, when the state of the dataset is quite stable, the training can be
stopped after some specific iterations or when the perplexity of model is good enough.
This model now can be used for inferring topics distribution of a document.

Example 2.2.1. Assume we have following sample documents:

• s1 : I love eating apple when walking with my dog at night.

• s2 : I like some sports such as basketball, tennis, and walking.

• s3 : My dog and her cat are playing with the balls.

19

• s4 : Today we have apple, orange, and kiwi for a tea break after the tennis match.

Assume we choose the number of hidden topics that need to be discovered is 3 and each
topic is a distribution of keywords such as:

• t1 : apple (0.25), orange (0.2), kiwi (0.18), sports (0.1), dog (0.05), cat (0.04), . . .

• t2 : dog (0.4), cat (0.3), apple (0.15), basketball (0.05), . . .

• t3 : walking (0.35), basketball (0.2), tennis (0.2), orange (0.1), cat (0.05), . . .

In fact, t1, t2, t3 are hidden topics. It means we do not know exactly the label of them.
However, t1 could be interpreted as “fruit”, t2 could be interpreted as “animal”, and t3
could be interpreted as “sport”. Now, each sentence si can be represented as a distribution
of topics:

• s1: t1 (0.4), t2 (0.3), t3 (0.3)

• s2: t1 (0.1), t2 (0.1), t3 (0.8)

• s3: t1 (0.1), t2 (0.75), t3 (0.15)

• s4: t1 (0.8), t2 (0.05), t3 (0.15)

Chapter 3

IoT Malware Analysis

To satisfy the low power requirements, IoT devices tend to use lightweight processors. The
most popular processor is being used is ARM. As the result, IoT malware is typically based
on ARM architecture. Even though IoT Malware is not much complex as x86/windows
malware, by our investigation, it also contains obfuscation techniques in order to hide
its behaviors. It leads to some difficulties in detection and analysis because we cannot
correctly trace its execution with commercial disassemblers like IDA Pro [14] and Capstone
[15].

3.1 Obfuscation Techniques

Being obfuscated makes more difficulties for disassemblers to correctly trace the assembly
code of malware. As a result, it has more opportunities to survive. Even commercial
disassemblers like IDA Pro and Capstone are robust, they are still easily fooled by obfus-
cation technique such as indirect jump and overlapping instruction. In this section, we
present some typical obfuscation techniques frequently appearing in IoT malware.

Indirect Jump

An indirect jump (also known as an indirect branch) is a control instruction, in which,
instead of clearly determining the next instruction to be executed by an address, the target
address is encoded itself and stored indirectly in memory or general-purpose register.
Unless the instruction is executed, the specific value of the address to be jumped is
unknown. The example below shows an indirect jump in an IoT malware 48cff3f21c
provided by Prof. Katsunari Yoshioka (Yokohama National University). At 9a50, the
bx instruction executes a jump operation to the address specified by the value stored in
the register lr. To deal with this technique, it is necessary to use a binary emulator to
get this specific value.

20

21

· · ·
9a48: e24bd00c sub sp,fp,#12
9a4c: e89d6800 ldm sp,{fp,sp,lr}
9a50: e12fff1e bx lr
9a54: e1a0c00d mov ip,sp
9a58: e92dd800 push{fp,ip,lr,pc}
· · ·

Figure 3.1: Indirect jump in an IoT malware

Dead Code Insertion

This is a simple technique to modify the structure and appearance of malware, but does
not affect its semantic and behaviors. By modifying itself code, it works quite well to
protect against some traditional detection method in typical commercial antivirus software
like bit-based signatures. In this technique, some ineffective instructions were inserted
between the original instructions, then make the assembly code seems more complex, but
actually it plays no role in the behavior of malware.

· · ·
d138: add r3,r3,r0
d13c: add r4,r3,#7
d140: mov r5,#5
d144: bl 8ecc
d148: bcs d5c4
d15c: ldr r5,[fp,#-56]
· · ·

· · ·
d138: add r3,r3,r0
d13c: nop
d140: add r4,r3,#7
d144: mov r5,#5
d148: bl 8ecc
d14c: add r5,#1
d150: sub r5,#3
d154: bcs d5c4
d158: add r5,#2
d15c: ldr r5,[fp,#-56]
· · ·

Figure 3.2: Original malware assembly code and after dead code insertion

In this figure, we can easily real the problem at d13c, this is a “no-operation” instruction,
means that doing nothing here. In addition, at d14c, d150, and d158 the value of the
register r5 is modified three times, but after all, the value stored in r5 is unchanged.
Although these codes are inserted to make the program more complex, it just can modify
the structure, but worths nothing for the behaviors of malware.

3.2 Typical Approaches

Static Analysis

Static analysis aims to analyze the executable binary files of malware without running it.
Some typical methods of static analysis are signature based and behavior based.

22

• In signature-based approach, the hash value of binary files, or a byte sequence in
binary files is used to check whether a new binary file is a malware or not by
comparing the signature hash value of this file with the existing hash value stored
in a centralized database. This database is regularly updated. This approach is
used in many antivirus software because of its light-weight and correctness. But the
biggest problems is that the number of unique signatures is huge, as well as modern
malware usually use various polymorphic and metamorphic techniques.

• In behavior-based approach, the data flow and control flow of malware are stati-
cally explored, then it is used to describe the behavior of malware. These flows are
usually represented by directed graphs. Analyzing malware behaviors now becomes
checking these graphs. Basically, if malware is totally clear without any obfusca-
tion techniques, this method may work well. However, modern malware is usually
obfuscated.

Dynamic Analysis

Dynamic Analysis aims to analyze malware by actually running it. Based on the specific
behavior and the way of how malware affects to the environment during runtime process,
we can understand its functionalities and then, explore some indicators as its signature.
Some typical indicators are API calls, connected IP addresses or domains, and behavior
of downloading some files. Although almost dynamic analysis methods are slower than
static analysis, it reflects more precise about malware behaviors. In fact, dynamic analysis
and static analysis are usually combined together to improve the accuracy of detection
and classification.

Machine Learning Approach

Malware detection based on Machine Learning approaches are attracting a lot of attention.
In the past, when the machine learning model was not robust, and the data set is not
big enough, this approach seemed to be inefficient. But currently, many methods gain
impressive results. Some typical methods are introduced below:

• Malware as an image: This idea considers a malware as an image, then transforms
malware into gray-scale images. After that, by using a Convolution Neural Network
(CNN) over transformed images, the detection or classification are performed. For
instance, in 2017, Jiawei Su et al. proposed a lightwight classification for IoT mal-
ware [18]. His approach converts a binary code to a fixed-size color image and uses
AlexNet [19] to perform the classification task.

• Malware as a sequence: This idea considers a malware as a document with a sequence
of byte, in which each word is a group of bytes. Then it applies some typical machine
learning algorithms to perform the detection or classification. For instance, in 2017,
a malware detection from raw byte sequences was introduced by E. Raff et al [20].

23

This method has a good performance with linear complexity dependence on the
length of sequence.

Model-checking Based

To make the machine understand and work with real-world systems, it should be simulated
by a model in the computer written by logic or mathematics. Malware is not an exception,
it usually is represented by a model M , then the all the scenarios and behaviours of M are
tested by using formal verification methods. A typical model for binary file is Control Flow
Graph (CFG), which reflects its execution steps. After that, the malware classification
and detection problems are equivalent to checking the represented model M . Based on
model-checking, many algorithms have been proposed to detect malware. For instance,
in 2018, Anh Viet Phan et al. introduces a graph-based Convolutional Neural Network
approach [21] to perform software defects detection and malware analysis.

3.3 Malware Analysis Based on Control Flow Graph

One of the drawbacks of traditional malware analysis methods is that it can not overcome
obfuscation techniques. To deal with this problem, Dynamic Symbolic Execution (concolic
testing) is applied in order to explore the Control Flow Graph (CFG) of malware. A CFG
is a representation model of the program execution process. It is a directed graph which
node is a block without any jumps and each edge represents the path condition from the
parent node. CFG can explore all feasible paths from the initial state to terminated state
during the execution.

n1

n2

n3

n4
n5

n6

initial node

terminated

Figure 3.3: A Control Flow Graph of Binary File

24

This figure above shows an example of CFG. It can be interpreted that, node n1 and n2

may causes an if − else statement, node n4 and n5 may causes a while loop. For binary
files, the data instructions such as mov, ldr, add do not affect the jump operations,
therefore it can be grouped into a node. If the execution reaches a jump instruction (e.g.,
b in ARM and jmp in x86), the branch is created by deciding the satisfiability of the
current path constrain with a Theorem Prover.

3.3.1 Dynamic Symbolic Execution

Symbolic Execution [5] is a technique has been used regularly in software testing, to
execute a program symbolically rather than running it with concrete input values. By
using Symbolic Execution, all available scenarios during the execution can be caught. In
this technique, inputs are assumed as symbolic values like α, β; then in every conditional
branch, it adds the constraints in the path condition pc. By using this approach, the
Symbolic Execution can run through all possible path of a program and do the testing
all possible outcomes. This technique also is used in software security to detect potential
vulnerabilities.

n1

n2

n3

n4
n5

n6

initial node

terminated

n2

n4n3

…

φ1 = φ0 ∧ c1 c3 c4

φ3 = φ2 ∧ c3 φ4 = φ2 ∧ c4

n0

c2

n1

c1

φ0

φ2 = φ0 ∧ c2

Figure 3.4: Symbolic execution for automatic tests generation

The figure above illustrates how symbolic execution is applied to cover all possible sce-
narios of a program. Assume the path condition from the initial node of ni is ϕi, and the
condition from ni−1 to ni is ci. Then, for each path, the satisfiability of the path condition
is checked (e.g, ϕ1, ϕ2, ϕ3, ϕ4) by Z3. If it is SAT, an instance of input values causing
this path is collected as a test-case. There are two ways to explore next destinations in
Symbolic Execution: Static Symbolic Execution (SSE) and Dynamic Symbolic Execution
(DSE).

25

N Z C V Q
G
E

SP (Stack Pointer)

LR (Link Register)

PC (Program Counter)

R0

R12

…..

Stac
k

Memory

APSRGeneral-Purpose

n2

n4n3

…

φ1 = φ0 ∧ c1 c3 c4

φ3 = φ2 ∧ c3 φ4 = φ2 ∧ c4

n0

c2

n1

c1

φ0

φ2 = φ0 ∧ c2

SAT

UNSAT

+

SSE

n2

n4n3

…

φ1 = φ0 ∧ c1 c3 c4

φ3 = φ2 ∧ c3 φ4 = φ2 ∧ c4

n0

c2

n1

c1

φ0

φ2 = φ0 ∧ c2

SAT

UNSAT

+

DSE

SAT and test

Figure 3.5: Static Symbolic Execution and Dynamic Symbolic Execution

• Static Symbolic Execution: The next candidates are statically decided by check-
ing the feasibility of each path ϕ2 = ϕ1 ∧ c2, ϕ3 = ϕ1 ∧ c3, and ϕ4 = ϕ1 ∧ c4. One
of the problems of SSE is that, for some specific conditions, the theorem provers
cannot easily check the satisfiability of the candidates. For instance, if c2 keeps the
condition: (x ∗ x ∗ x+ y ∗ y ∗ y = z ∗ z ∗ z), in which x, y, z are integer numbers, it is
really hard to decide whether it is SAT or UNSAT. In this case, the DSE should be
used, in which a concrete instance of ϕ0 should be used in order to test the feasibility
of the path.

• Dynamic Symbolic Execution (Concolic Testing): This technique is the com-
bination of concrete execution and static symbolic execution to overcome the draw-
back mentioned above. I also be used to explore obfuscation techniques like indirect
jump in malware. In DSE, to decide the next candidates, the feasibility is checked
by using a satisfiable instance of ϕ1. It requires a binary emulator to get the value
of the concrete variables.

To deal with obfuscation techniques in malware like indirect jump, we need to use DSE
because at that time of executing jump instruction, its target is an expression of symbolic
values that need to be dynamically determined by using a satisfiable instance of the
current path constrain. For instance, if there is a jump instruction b lr at n2, a satisfiable
instance of the path condition ϕ2 will be used to get the concrete value of lr, then builds
the CFG based on this determined target.

26

3.3.2 On-the-fly CFG Generation

n1

initial
node n1

n2

initial
node

n1

n2

n4

n6

initial
node

n4 n5

n1

n2

n6

initial
node

…

Figure 3.6: Control Flow Graph Generation by on-the-fly manner

The figure above illustrates how Control Flow Graph is generated by the on-the-fly man-
ner. When an conditional instruction is reached, concolic testing will be applied to decide
the feasible paths (red color in the figure). At each execution step, the state of a binary
program is updated, including the environment of binary emulator (flags, registers, stack,
and memory). This procedure is interrupted at the end of program or when reaching an
unsupported instruction.

3.3.3 BE-PUM for x86/Windows

BE-PUM (Binary Emulation for PUshdown Model) [9] is a binary code analyzer concen-
trating on malware on Intel x86/Win32 architecture. BE-PUM inputs a binary file then
applies the Dynamic Symbolic Execution technique (DSE) to generate the Control Flow
Graph (CFG) of binary files in on-the-fly manner. For analyzing binary files, BE-PUM
uses JackStab 0.8.3 [22] as the disassembler, and Z3 4.3 [23] as the theorem prover to
perform test instances in the DSE process.

The figure1 below shows the architecture of BE-PUM, which consists of three main ele-
ments: a CFG storage, a binary emulator, and a symbolic execution.

1These figures are redrawn from the original images in the paper [9]

27

Stub of API

Memory

Flags

Registers

Environment

Controlled
Sandbox Stack

System Call
(pre-condition)

Return
(post-condition)

Java API

(output)

Single-Step
Symbolic Execution

Feasibility Check
SMT: Z3 4.3

Instr(Env,m)
Jakstab 0.8.3

control 
instructions

data instructions

no : new region ?(k, asmk, ψk)
⟨(k, asmk), ϵ⟩ ↪ ⟨(m, asm), (m′�, asm′�)⟩ : new rules ?

CFG Storage
⟨(k, asmk)⟩

yes

Symbolic States
(k, asmk, ψk)

Pushdown Model
⟨(k, asmk), ϵ⟩ ↪ ⟨(m, asm), (m′�, asm′�)⟩

frontiers

(k, asmk, ψk)

Figure 3.7: BE-PUM Architecture

Instruction

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Store

JNA

Path Condition P

Memory

Flags

Registers

Environment

Controlled
Sandbox Stack

Path Constrain

Path Condition P’

Memory

Flags

Registers

Environment

Controlled
Sandbox Stack

Path Constrain

Figure 3.8: Binary emulator in BE-PUM

The binary emulator in BE-PUM executes the instructions. If an instruction is a branch

28

operation, the binary emulator updates the path constraints and the environment in the
pre-condition P to the post-condition P’. Otherwise, the binary emulator only updates
the environment. In BE-PUM, path constraints keep a boolean expression of symbolic
values, and the environment holds the states of Memory, Stack, Registers, and Flags.

Chapter 4

ARM Formal Semantics

4.1 ARM Processor

ARM (shortened of Acorn RISC Machines) is a computer processors family of RISC
architecture. This section briefly introduces the main components of ARM, including
Stack, Memory, Register, and Flags.

4.1.1 Architecture

N Z C V Q GE

SP (Stack Pointer)

LR (Link Register)

PC (Program Counter)

R0

R12

…..

Stack

Memory

APSRGeneral-Purpose

Figure 4.1: Components of ARM Architecture

This figure illustrates the main components in ARM architecture:

1. Memory: This is a physical device for temporarily stores information used during
the computer operations.

2. Stack: Stack is a part of memory, stores temporary variables generated by the
execution process.

29

30

3. Register: This is a place in the processor to hold data. There are five different
types of registers in ARM Processors:

• General-purpose registers: It contains 13 registers marked from R0 to R12.

• Stack Pointer (SP): This is a register which points to the last value was stored
in the stack.

• Link Register (LR): The LR register keeps the address returned from a function
call.

• Program Counter (PC): (or instruction pointer) The PC register keeps the
address of next instruction that needs to be executed.

• Application Program Status Register: One APSR register. It keeps conditional
flags (N, Z, C, V). In some specific versions of ARM, it also holds GE and Q
flags.

4. Flags: Flags are binary values to store states in the executed operations. The value
stored in flags is either True (T) or False (F). An instruction may need to check
the boolean value of flags before execution and after executing, it may also update
some specific flags. In ARM, flags are stored in the APSR register.

• Negative flag (N): This flag is set by an operation if the result is negative.

• Zero flag (Z): If the result of an instruction is zero, it is set by true, otherwise
false.

• Carry flag (C): When an unsigned operation’s result overflows the capacity of
32-bit register, this flag is set.

• Signed Overflow flag (V): The flag works the same as the C flag, but for signed
operations.

• Q: This is one of the program status flags in the APSR. It is used to indicates
overflows or saturation of instruction result in only the E variants ARM-v5 or
later.

• GE: The GE flags only exist in ARM-v6 and later. It can be set during the
execution of parallel operations.

4.1.2 Cortex Series

The most popular architecture of ARM family is Cortex. It includes different series for
various purpose. In general, it can be categorized into three main series: Cortex-A,
Cortex-M, and Cortex-R.

31

Figure 4.2: Popular Cortex series of ARM

Cortex-A

The ARM Cortex-A is the highest performance processor in ARM family. It is optimized
for rich operating systems such as Android or Linux. It plays a role as the heart in the
powerful technology products like smart-phones, tablet, laptop devices. The Cortex-A
series can be categoried by three families: highest performance (A7X series), performance
and efficiency (A5X), and lowest power (A3X).

Cortex-M

The ARM Cortex-M is the lowest power processors, which is optimized for real-time
embedded processing and micro-controller uses. As a report from ARM1, this family has
already been shipped in tens of billions of device. The Cortex-M series can be categoried
by three families: lowest power (M0, M0+, M23), performance efficiency (M3, M4, M33,
M35P), and highest performance (M7).

Cortex-R

The ARM Cortex-R is the family of ARM architecture that is optimized for real-time
applications. Not only offers high performance, it also satisfies the requirements of real-
time applications such as solid-state drive controllers.

4.1.3 Instructions

Each Cortex series has a different number of instructions. Even some shared instructions
are used in many series, there are still some differences between other architectures. For
example, the instruction SSAX in the Cortex-M4 has the same operation as SSAX in
Cortex-M7, but the flags update of SSAX in Cortex-M4 is “This instruction does not affect
the condition code flags” and the flags update of SSAX in Cortex-M7 is “This instruction
set the APSR.GE bits according to the results”. Because we do not know exactly when
they are different, we still need to process all instructions. In 5.2, an effective strategy is
introduced to decide which one should be implemented.

1https://arm.com/products/processors/cortex-m

32

Variation Number of instructions

Cortex-M0 63

Cortex-M0+ 63

Cortex-M3 129

Cortex-M4 244

Cortex-M7 261

Cortex-M33 297

Total 1039

Table 4.1: Number of collected instructions over six architecture

The table above shows the number of instructions for each Cortex-M variation that we
have successfully collected from ARM Developer Website. Each ARM instruction consists
of: $name$suffix{$cond} $params where:

• $name: Instruction name.

• $suffix: Conditional suffix (optional). This is the precondition that need to be
checked before execution. There is 15 different values of suffix, as described in 4.2.

• $cond: Flags update condition (optional). In general, if the $cond appears, this
instruction updates the APSR flags based on the result of the operation.

• $params: Instruction’s parameters. It can contains some conditional params sep-
arated by |. For instance, in the instruction ADD{S} {Rd,} Rn, <Rm|#imm>, the
third parameter can either be a value stored in the register Rm or a specific value
#imm.

Example 4.1.1. An Cortex-M7 instruction: UMAALNE RdLo, RdHi, Rn, Rm

In this example, the instruction name is UMAAL. The parameters are RdLo, RdHi, Rn, and
Rm. The flags update condition is omitted. It means the flags will not be modified after
execution. The conditional suffix is NE means that, this instruction needs to check this
condition before execution. The table below shows all possible conditional suffix in ARM
and its meaning.

33

Suffix Meaning Condition

EQ Equal Z

NE Not equal ¬Z
CS or HS Carry set C

CC or LO Carry clear ¬C
MI Negative N

PL Positive or zero ¬N
VS Signed overflow V

VC No signed overflow ¬V
HI Unsigned higher C ∧¬Z
LS Unsigned lower or same ¬C ∧ Z
GE Signed greater than or equal N = V

LT Signed less than N¬ = V

GT Signed greater than ¬Z ∧N = V

LE Signed less than or equal Z ∧N¬ = V

AL (or omitted) Always executed None

Table 4.2: ARM Conditional Suffix2

4.2 Formal Semantics of ARM

There are several works of the formal semantics of binaries, especially for x86, e.g., op-
erational semantics for self-modifying programs [24]. The formal semantics of binary is a
basis for the implementation of binary code analyzers, e.g., BINCOA [25], MiAsm [26],
McVeto [7], CoDisasm [8], BE-PUM [9] KLEE-MC [10], Jakstab [27], BAP [28]. Although
the semantics of binaries is intricate for human, the semantics framework is quite sim-
ple, which consists of four ingredients: registers, flags, memory, and stack (a part of the
memory). We omit the multi-threads and the weak memory model, since our target, IoT
malware, is mostly a sequential user-mode process. An execution of each instruction is
regarded as a transition on the quadruplets as in the figure below:

2https://community.arm.com/

34

disassembler

easy part

DSE

Binary Emulator

Path Conditions

Formal Semantics
Natural Language

Specifications

Semantics
Extraction

Control Flow
Graph

Malware Behaviour
Understanding

IoT Malware

101001
100111
010010

ti
Memory

Flags

Registers Stack

Path
Condition

Env Memory

Flags

Registers Stack

Path
Condition

Env’

Binary Emulator

Figure 4.3: The semantics transition framework of ARM

4.2.1 Abstract Environment

Definition 4.2.1. The environment model E = 〈F,R,M, S〉 of an ARM binary program
consists of

• F : the set of 6 flags: F = {N,Z,C, V,Q,GE}

• R: the set of 17 registers:

R = {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, sp, lr, pc, apsr}

where apsr is a special register storing the values of flags N,Z,C, V (also Q,GE in
some specific versions of ARM).

• M : the set of contiguous n+ 1 memory locations: M = {m0,m1, . . . ,mn}

• S(⊆ M): an contiguously allocated memory to store stack: S = {s0, s1, . . . , sk}
with k < n.

Note that, F is a boolean value, other elements are 32-bit vectors.

As the initial state, the register pc points to the address of the next instruction and the
register sp points to the top of S.
At the beginning, each the components of environment keeps an initial symbolic values.
After that, the values of environment is updated through each execution as a semantics
transition. Note that, the register pc is pointing to the address of next instruction that
needs to be executed and the register SP is pointing to the top of stack S.

4.2.2 Operational Transitions

Rpc = k; instr(k) = b i; Ri = m

〈F,R,M, S〉 → 〈F,R[pc← m],M, S〉
[B]

35

Rpc = k; instr(k) = subs i j h;Rj = m;Rh = n; a = m− n;

N ′ = (a < 0);Z ′ = (a = 0);C ′ = (a ≥ 232 − 1);V ′ = (a ≤ −231) ∨ (a ≥ 231 − 1)

〈F,R,M, S〉 → 〈F [N ← N ′;Z ← Z ′;C ← C ′;V ← V ′];R[pc← k + | instr(k) |;Ri ← a],M, S〉
[SUBS]

Rpc = k; instr(k) = mov i j;Rj = m

〈F,R,M, S〉 → 〈F,R[pc← k + | instr(k) |;Ri ← m],M, S〉
[MOV]

Rpc = k; instr(k) = ands i j h; Rj = m;Rh = n; a = m & n;

N ′ = (a < 0);Z ′ = (a = 0);C ′ = (a ≥ 232 − 1);V ′ = (a ≤ −231) ∨ (a ≥ 231 − 1)

〈F,R,M, S〉 → 〈F [N ← N ′;Z ← Z ′;C ← C ′;V ← V ′], R[pc← k + | instr(k) |;Ri ← a],M, S〉
[ANDS]

Rpc = k; instr(k) = neg i j; Rj = n

〈F,R,M, S〉 → 〈F,R[pc← k + | instr(k) |;Ri ← !n],M, S〉
[NEG]

Rpc = k; instr(k) = cmp i j; Ri = m;Rj = n; a = m− n;

N ′ = (a < 0);Z ′ = (a = 0);C ′ = (a ≥ 232 − 1);V ′ = (a ≤ −231) ∨ (a ≥ 231 − 1)

〈F,R,M, S〉 → 〈F [N ← N ′;Z ← Z ′;C ← C ′;V ← V ′], R[pc← k + | instr(k) |],M, S〉
[CMP]

Rpc = k; instr(k) = ldr i j; Mj = m

〈F,R,M, S〉 → 〈F,R[pc← k + | instr(k) |;Ri ← m],M, S〉
[LDR]

This figure above shows some examples of the operational semantics of ARM instructions,
based on the description on ARM Developer Website: b, subs, neg, and, ldr, mov, cmp.
That mean the indirect jump, the subtraction, the negation, the bitwise AND, the load,
the move, and the comparison respectively. For instance, the “subs i j h” first takes the
subtraction of two values stored in the registers j and h, and stores the result a = m - n
to the register i. The flags are updated such that:

• N is set by true if a is negative, otherwise false.

• Z is set by true if a is not zero, otherwise false.

• C and V are set by true if a overflows for unsigned and signed operations, respec-
tively.

4.2.3 Java Specifications as Semantics

Our motivation of the formal semantics is an automatic generation of the dynamic sym-
bolic execution tool for ARM (similar to CoDisasm [8], BE-PUM [9], MiAsm [6], Klee-MC
[10]). The formal semantics of each ARM instruction is represented as a Java method of
BitVec class, which is obtained by instantiating this dynamic template:

36

public void $name($params, Character suffix, Character cond) {
env.arithmeticMode = $arithmeticMode;
if (cond == null || checkCond(cond)) {

char[] flags = new char[]{$flags};
BitVec result = null;
$execCode
if (suffix != null && suffix == ’s’) {

if (result != null) {
env.updateFlags(flags, result);

}
}

}
}

Note that:

• BitVec is a new class defined as a pair 〈bs, s〉, where bs is a BitSet value (a
supported class in Java) representing the 32 bits BitVector, and s is a string value
in SMT format to store either an expression (for the registers, the memory, and the
stack) or a formula (for the flags).

• The blank variables need to be filled are:

– $name: The instruction name.

– $params: The arguments of the function.

– $arithmeticMode: Show either the floating-point or the binary arithmetic.

– $flags: The list of flags to be updated.

– $execCode: The code for actions.

• Default parameters of the template are:

– suffix: The suffix of the flags update. If the s suffix occurs, the flags might be
updated.

– cond: The conditional suffix of the instructions, showing the pre-condition.

• The environment env is the quadruplet of the flags, the registers, the memory, and the
stack.

• Prepared functions:

– updateFlags: Update flags if their names occur in $flags.

– checkCond: Check the pre-condition provided by cond.

– Corresponding to BitVector theory of SMT solvers, 35 basic methods are manually
implemented, e.g., the arithmetic operators add, sub, mul, the bitwise operators and,
shift, xor, the data operators write, load, store, and else clz, saturate, rotate.

Since some operators on binary are primitive, they need to be manually implemented
as basic functions for the binary emulator. After that, all generated Java methods
work based on them. In total, 35 basic functions are prepared in 7 categories:

37

1. Environment:

∗ checkCond: Check the pre-condition before execution.

∗ updateFlags: Update the flags based on the result of operators.

2. Jump Operator:

∗ b: Jump to an address or a value stored in a register (indirect jump).

3. Bitwise Operators:

∗ and: Bitwise AND.

∗ or: Bitwise OR.

∗ xor: Bitwise XOR.

∗ not: Bitwise NOT.

4. Arithmetic Operators:

∗ abs: Absolute value of a BitVec value.

∗ div: Division of two BitVec values.

∗ mul: Multiplication of two BitVec values.

∗ add: Addition of two BitVec values.

∗ sub: Subtraction of two BitVec values.

∗ max: The bigger value in two BitVec values.

∗ min: The smaller value in two BitVec values.

∗ sqrt: Square root of a BitVec value.

5. IO Operators:

∗ write: Write a BitVec value to a register.

∗ val: Get the BitVec value stored in a register.

∗ load: Load the BitVec value in a memory location to a register.

∗ store: Store a BitVec value in a register to a memory location.

∗ pop: Pop a BitVec value from the stack.

∗ push: Push a BitVec value to the stack.

6. Bit-based Operators:

∗ comp: Complement of a BitVec value.

∗ neg: Negation of a BitVec value.

∗ sat: Saturate a BitVec value.

∗ shift: Shift a BitVec value.

∗ rot: Rotate a BitVec value.

∗ rev: Reverse a BitVec value.

∗ signedExt: Signed Extend a BitVec value.

∗ zeroExt: Zero Extend a BitVec value.

7. Others:

∗ clz: Count the number of leading zeros in a BitVec value.

∗ round: Round a BitVec value.

∗ cmp: Compare two BitVec values.

∗ clearBitfield: Clear BitField of a register.

38

∗ copyBitfield: Copy BitField to a register.

∗ convertEndian: Convert between 16-bit signed big-endian data and 32-
bit signed little-endian data.

Fixed-size BitVector Theory

Using SMT format to represent path constraints is an effective way, however, linear and
nonlinear arithmetic theories cannot cover the path constrains solving on ARM due to
some special operators of ARM instructions (e.g. shift, rotate, count leading zeros). In
these cases, fixed-size bitvector theory is an appropriate choice. Detailed specifications of
operations can be found at SMT-LIB 3 or Z3-Guide 4. In brief, it can be described by a
set of operators as follows, where a and b are two BitVector values:

1. Basic Bitvector Arithmetic

• Addition: (bvadd a b)

• Subtraction: (bvsub a b)

• Unary Minus: (bvneg a)

• Multiplication: (bvmul a b)

• Unsigned Remainder: (bvurem a b)

• Signed Remainder: (bvsrem a b)

• Signed Modulo: (bvsmod a b)

• Shift Left: (bvshl a b)

• Logical Shift Right: (bvlshr a b)

• Arithmetical Shift Right: (bvashr a b)

2. Bitwise Operations

• Bitwise OR: (bvor a b)

• Bitwise AND: (bvand a b)

• Bitwise NOT: (bvnot a)

• Bitwise NAND: (bvnand a b)

• Bitwise NOR: (bvnor a b)

• Bitwise XNOR: (bvxnor a b)

3. Predicates over Bitvectors

• Unsigned Less or Equal: (bvule a b)

• Unsigned Less Than: (bvult a b)

3http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
4https://rise4fun.com/z3/tutorialcontent/guide

39

• Unsigned Greater or Equal: (bvuge a b)

• Unsigned Greater Than: (bvugt a b)

• Signed Less or Equal: (bvsle a b)

• Signed Less Than: (bvslt a b)

• Signed Greater or Equal: (bvsge a b)

• Signed Greater Than: (bvsgt a b)

However, there are some operations of ARM instructions still cannot be covered by the
basic operators in Fixed-Size Bitvector Theory. In these cases, we need to transform these
operations to a combination of basic operations. For instance, the mostSignificant(a)
can be transformed to shiftRight(a,16) where shiftRight is a basic operator sup-
ported by BitVector theory in SMT solvers and 16 is a half of length of a register (assume
we are using 32-bit architecture). Then, the SMT format of this operator will be (bvlshr
a #b010000). By the same manner, leastSignificant(a) can be transformed to
shiftRight(shiftLeft(a,16),16).

In addition, some special cases even contains loops inside. For instance, the CLZ r in-
struction aims to count the number of leading zero of the value stored in a register r. The
simplest implementation of CLZ requires a loop inside:

int clz(int r){
int count = 0;
while (r > 0) {

r >> 1;
count++;

}
return 32 - count;

}

Figure 4.4: The simplest implementation of CLZ

Because Theorem Prover cannot accept loops, we need to declare new function to unfold
the loop inside CLZ. Fortunately, the number of loop is statically identified because we
assuming the target architectures are 32-bit. Therefore, the loop now is unfolded by using
32 statements as follows:

40

int clz(int r){
int count = 0;
int new_r;
new_r = r >> 1;
if (new_r > 0) count++; else return new_r;
... < 30 times more >...
new_r = r >> 1;
if (new_r > 0) count++; else return new_r;
return new_r;

}

Figure 4.5: The unfolded form of CLZ

After that, it can be easily written in SMT format to input to a theorem prover for
checking the satisfiability of path constrains.

(declare-const r0 (_ BitVec 32))
(declare-const c0 (_ BitVec 32))
... same declarations for r1, c1 ... r31, c31
(declare-const r32 (_ BitVec 32))
(declare-const c32 (_ BitVec 32))
(declare-const z (_ BitVec 32))
(declare-const m (_ BitVec 32))
(define-fun clz ((x (_ BitVec 32))) (_ BitVec 32)
(if (and

(= r0 x) (= z #x00000000) (= m #x00000001) (= c0 #x00000020)
(= c1 (ite (bvsgt (bvashr r0 m) z) (bvsub c0 m) c0))
(= r1 (ite (bvsgt (bvashr r0 m) z) (bvashr r0 m) r0))
... same declarations for c2, r2, ... , c31, r31
(= c32 (ite (bvsgt (bvashr r31 m) z) (bvsub c31 m) c31))
(= r32 (ite (bvsgt (bvashr r31 m) z) (bvashr r31 m) r31))

) c32 #x00000021))

Figure 4.6: The SMT format of CLZ

This figure above shows an example of unfolded methods CLZ. After defining it in SMT
format, this function now can be used for further checking. In general, to deal with all
unsupported methods, the corresponding SMT format of them are also declared.

41

4.3 Semantics Extraction Overview

Java Method Generation
Java Dynamic

Template

ARM Instruction Specification

Flags Update
Detection

Operational Semantics
Interpretation

Flags Update DescriptionsOperation Descriptions Syntax

Parsing

Lemmatization and Refinement

Syntax Tree Refinement

Instructions Selection Instruction Filter

Rules
Preparation

Conformance TestingSymbolic Executionchapter 6

chapter 5
(5.1, 5.2)

chapter 7

chapter 5
(5.3, 5.4)

NP-Terms Extraction

Figure 4.7: Semantics Extraction Overview

The figure above illustrates how semantics extraction is performed. It has two main
parts: Prerequisites and Dynamic Symbolic Executor Generation. The first part aims
to prepare prerequisites for the generation, which includes rewriting rules and selected
instructions. In this part, some NLP techniques are applied. After that, the second part
generates the dynamic symbolic executor for ARM, which consists of a matching process
to get executable code, and the flags changes detection. In fact, the path conditions are
also generated inside the matching process. The next two chapters present the detailed
procedures of these two parts.

Chapter 5

Syntax Normalization and Semantics
Interpretation

Before automatic performing the semantics extraction, we need to perform some prior pre-
requisites, which requires using natural language processing techniques. After these tasks,
the normalized form of instruction is obtained and the rewriting rules is also prepared.

5.1 Instructions Normalization

Before pushing instructions to the generation step, it need to be normalized to extract
syntax structure, important words, and noun phrases. Given an instruction S, the aim of
this task is extract syntax tree and NP-Terms of S. Figure 5.1 shows the normalization
process. First, the instruction’s operation description is splitted to individual sentences.
After being processed by three steps, all sentences is combined together. At here, each
instruction contains all syntax tree and NP-Terms of sentences. To apply NLP on each
sentence of the operation section in the specification, three steps are performed: the
parsing, the lemmatization, and the unimportant word removal.

1. Syntax Parsing: This step performs parsing to get the syntax tree T of S.

2. Syntax Tree Refinement: In different situations, words in English is transformed
into forms, but the meaning is kept. For instance, “studied” and “studies” carry
the same meaning, but if we consider it as two separate words, it is not reasonable.
Therefore, this step first perform Word Lemmatization to transforms words to its
primitive form. After that, unimportant words are removed by using TF-IDF score.

3. NP-Terms Extraction: We call a noun phrase (NP) in the syntax tree is a NP-
Term. This task inputs a syntax tree T and extract all NP-Terms from T .

42

43

(1) Syntax Parsing

(2) Syntax Tree Refinement

(3) NP-Terms Extraction

(4) Instruction Selection

Selected
Instructions

Operations Description

…
Splitting

All Syntax Tree with NP-
Terms of Instructions

Sentence

Syntax Tree

Refined Syntax Tree

Syntax Tree with NP-Terms

Sentence

Syntax Tree

Refined Syntax Tree

Syntax Tree with NP-Terms

An Instruction

Figure 5.1: Instruction Normalization Procedure

Sentence Syntax Parsing

The parsing is the first step for the syntax analysis of a sentence. We use the standard
tool NLTK [29], obeying to the built-in context free grammar of English. It outputs the
syntax tree labeled with the classification of phrases, like NP (Noun Phrase). Fig. 5.2
shows the output of the sentence “The UMAAL instruction multiplies the two unsigned
32-bit integers in the first and second operands” in UMAAL specification. In fact, we can
use our own grammar rules, but in this work, we use the default context-free grammar of
NLTK, There are some grammar rules contained in this:

S → NP VP
PP → P NP | IN NP

44

NP → DT CD JJ JJ NNS | DT JJ CC JJ NNS
VP → VBZ NP | VP PP
DT → ’the’
NN → ’instruction’
VBZ → ’multiplies’
IN → ’in’
CD → ’two’
JJ → ’unsigned’ | ’32-bit’ | ’first’ | ’second’
. . .

Example 5.1.1. Based on the grammar rules above, the syntax tree of the sentence S: “The
UMAAL instruction multiplies the two unsigned 32-bit integers in the first and second operands”
can be generated:

DT

(0.
037

) t
he

JJ

(0.
206

) fi
rst

JJ

(0.
193

) s
eco

nd

NNS

(0.
273

) o
pe

ran
d

CC

(0.
097

) a
nd

NPIN

(0.
064

) in

PP

NPVBZ

(0.
267

) m
ult

ipl
y

DT

(0.
037

) T
he

NN

(0.
044

) in
str

uct
ion

NNP

(0.
476

) U
MAAL

VPNP

S

+

DT

(0.
037

) t
he

CD

(0.
231

) t
wo

JJ

(0.
267

) 3
2-b

it

NNS

(0.
305

) in
teg

er

JJ

(0.
186

) u
nsi

gn
ed

NP

+

+

has not completed yet

Java
Methods D

SE

Binary Emulator

Path ConditionsARM Binary

101001
100111 Single-Step

Disassembler

(1) (2) (3)

(4)(5)

CFG

Generated
Java Method

Trusted ARM
Emulator

Environment
After Execution

Environment
After Execution

(2)
(3) Comparison(4)

Test Cases of i

(1)

Instruction i

+ ++

Figure 5.2: Example of the syntax tree, its refinement and TF/IDF scores

where:

Abbreviation Meaning

S Sentence

NP Noun Phrase

VP Verb Phrase

DT Determiner

NNP Proper Noun

NN Singular Noun

Abbreviation Meaning

PP Prepositional Phrase

CD Cardinal Number

JJ Adjective

IN Preposition

NNS Plural Noun

CC Coordinating Conjunction

Table 5.1: Syntax notations in the syntax tree of S

45

Lemmatization

A natural language like English introduces the variations on an expression, e.g., the conjugation,
the synonym and the plural form. The lemmatization unifies them to the standardized form
of a word. The tool NLTK also provides the lemmatization of English words. The red-colored
words appearing at the leaves in Fig. 5.2 are the result of the lemmatization, e.g., multiplies →
multiply, integers → integer and operands → operand.

Unimportant Words Removal

In this step, TF/IDF score is used to remove unimportant words, where a term is a word
appearing in the operation section, and the whole documents are a set of the operation sections
of all collected specifications. For instance, the TF/IDF scores of words in the sentence above
is the values put together with leaves’ label. After trying a few sentences, we set the threshold
h = 0.05 to cut unimportant words. Note that, the name of the instruction is also removed. In
Fig. 5.2, the grey edges are cut and if all the leaves are cut, the removal is propagated to the
upper node.

NP-Terms Extraction

NP-Term and NP-Phrase

Definition 5.1.1. A native NP-Term is a subtree of the normalized syntax tree of which the
root node is labeled “NP” and each non-root node is not labeled “NP”. A NP-Phrase is either
the phrase at the leaves of a native NP-Term or the (whole) sentence after replacing each native
NP-Term with �.

After trials on about 100 sentences, we concentrate on subtrees with the root label NP (Noun
Phrase). This seems the best compared with keeping or selecting the labels like VP (Verb Phrase)
and PP (Propositional Phrase) for optimal choices of the NP-Phrase and the instructions. Due
to the efficiency reason, we ignore intermediate subtrees with the root label NP in a refined
syntax tree, and focus on the phrases of native NP-Terms and the whole sentences. Since the
semantic interpretation is applied in a bottom-up manner on the refined syntax tree, the phrases
of native NP-Terms are replaced with �, which means a hole to be instantiated. To identify the
holes �’s, we enumerate them and give the indices.

Example 5.1.2. In Fig. 5.2, the subtrees surrounded by the dotted lines are native NP-Terms.
The extracted NP-Phrases are: “two unsigned 32-bit integer”, “first and second operand”,and
“multiply �1 in �2”.

This process inputs the refined syntax tree T , then outputs a list of NP-Terms L. To extract
NP-Terms from T , we do the traversal over this tree by the bottom up manner. If a node N
has the label ’NP’ or ’S’, all its children nodes containing words or a blank hole � are merged
together and become a new NP-Term. This NP-Term is also added to L. After that, the sub-
tree which N is the root is replaced by a blank hole �. Repeat this process until T becomes a
blank hole �. Return L. In fact, we have try to use verb phrases (VP) or propositional phrase
(PP) instead of noun phrase, but the result is worse. NP-Terms seems like the best choice.
Then, the following NP-Terms can be extracted from the refined syntax tree above.

46

1. first and second operand

2. two unsign 32-bit integer

3. multiply �1 in �2

After completing this step, all syntax tree with NP-Terms of S is generated. After that, its state
is kept for further usage in semantics extraction without redoing the previous tasks.

5.2 Automatic Instructions Selection

As stated in 4.1.3, there are over 1000 instructions over six ARM Cortex series. Because some
operations are written by a long and complex natural language description, a huge number
of rules are required to cover it. However, these rules are usually rare, some are unique. For
instance, among all instructions of six series, these instructions STLEX, VLLDM, and LDAEX in
Cortex-M33 only appear one time and its description is very long and complex. In comparison
with the gained benefit, the efforts needed to cover these cases is not worth it. Hence, it is
necessary to have an effective strategy to decide which instructions should be processed, in
order to save the human efforts as much as possible. This strategy inputs all instructions of six
architectures, and an acceptance rate α then output a list of best selected instructions.

After having all extracted syntax tree and NP-Terms, we perform a selection strategy to decide
which instruction should be processed.

Selection Strategy

Instruction i0
All Syntax Tree with

NP-Terms of i0

… All Syntax Tree
with NP-Terms of

all instructions

Instruction in
All Syntax Tree with

NP-Terms of in

Selected
Instructions

Figure 5.3: Candidates selection from all instructions

We observe on the collected specifications of ARM instructions that:

• The same instruction may be shared with different variations, but sometimes they have
different semantics. For instance, the instruction UASX appears both in M33 and M4 but
has different flag updates.

47

• Some instructions appear only once among variations and have long and complex natural
language descriptions. For instance, STLEX, VLLDM, and LDAEX in Cortex-M33 are
such examples.

Our aim is that less effort of manually prepared semantics interpretation rules covers the seman-
tics of more instructions, trying to have an optimal trade-off. Thus, the strategy for selecting
NP-Phrase and instructions is:

1. First, estimate the TF/IDF score for all NP-Phrases in all sentences of the operation
descriptions over n collected instructions.

2. Second, the importance of an instruction i is considered as the sum of TF/IDF scores of
all NP-Phrases contained in i. We aim to select k instructions that maximize the sum
of their importance scores divided by k. We set an acceptance rate α to be 65%, means
k ≥ α× n.

Definition 5.2.1. Selection Strategy: We use a term called Efficient Rate (denoted ϕ) to decide
how efficient of a list of instruction is, overall instructions set (in six Cortex variations). Let
ϕ(k) is a measure used to evaluate the efficiency of the selection strategy for a list of k selected
instructions over all instructions. The smaller ϕ(k), the better selected candidates. Let I is a
set of all n instructions over six variations:

I = {i1, i2, . . . , in}

where an instruction i has a set Ti containing w NP-Terms:

Ti = {〈t1, o1〉, 〈t2, o2〉, . . . , 〈tw, ow〉}

where tj is the jth term, and oj is the frequency of tj in i. Let p(tj) is the proportion occurrences
of tj over all NP-Terms in I, the importance of i over I is defined as:

mi =

n∑
j=1

1

p(tj).oj

Let S is the ascending sorted set of all m:

S = sorted(mi,mi+1, . . . ,mn−1,mn)

Let Sq is the qth value of S, the efficient rate of the first k selected elements from S is:

ϕ(k) =
1

k

k∑
q=1

Sq

Now, with a given k, this strategy can effectively choose first k candidates by trying to makes
ϕ(k) as small as possible.

After performing the selection procedure, the number of selected instructions and selected NP-
Phrase are 692 and 228, respectively. Among them, we manually observe the further need
of the syntax normalization, e.g., 〈sign bottom | bottom sign〉 → sign bottom, and 23 syntax
normalization rewrite rules are added. The resting 205 NP-Phrases are regarded as a set of the
left-hand sides candidates for semantic interpretation rules, which is manually prepared.

48

5.3 Rewriting Rules Preparation

Based on our investigation over ARM instructions, we observe that, some noun phrases in its
operations’ description occurs many times. For instance, as the table below, for over six ARM
Cortex architectures (M0, M0+, M3, M4, M7, and M33), the term “destination register” and
“second operand” appear 249 times and 156 times in the instructions description, respectively.
Thus, it is reasonable to first, define some rewriting rules one time, then use it for many times.
The most popular Noun Phrases over six architectures are described in the table below. Note
that, the smaller instructions covered by one rules, the better performance of reducing human
efforts.

Phrases Occurrences

destination-register 249

second-operand 156

first-operand 129

memory-address 124

top-halfword 94

Phrases Occurrences

zero-extend-to-32-bits 90

word-value 64

offset-from-register-rn 64

lowest-memory-address 62

highest-memory-address 62

Table 5.2: Most popular extracted NP-Terms

Therefore, by our observation, it is feasible to define some rewriting rules for the popular noun
phrases one time, then use it many times. This figure below shows how rewriting rules are
generated in our work. This process inputs a sentence S from operation description, then
outputs some rewriting rules for this sentence.

Rewriting System

After selecting appropriate instructions to optimize the human efforts, we have already had the
normalized syntax tree and extracted NP-Terms of them. These NP-Terms act as the left-hand
side (LHS) of rewriting rules. We will now design the right-hand side (RHS) for each extracted
NP-Terms. This task aims to prepared all rewriting rules for the semantics interpretation, which
will be introduced later.

Definition 5.3.1. Our Rewriting System: Let a, b, u, v are strings. Our designed system is a
reduction system over strings. A rewriting rules r : a → b is a transition from a LHS u to a
RHS v. With a, b are any strings (including empty string), r can be extended to:

aub→ avb

Rules Categories.

Consider each string (e.g, uaw, ubw) is a token, each token is either an English sequence or
abbreviation (e.g, neg). Let t, t1, t2 are tokens, bvs is a BitVec-class code statement. There are
two types of rewriting rules:

1. Token Transformation:
t1 → t2

49

2. Interpretations:
t→ bvs

Each left-hand side of a rule can be categorized into 3 patterns below. A ground rule rewrites
NP-Phrases of native NP-Terms, a left-linear rule rewrites NP-Phrases of the whole sentence,
and a conditional rule unifies several rules that are quite similar.

• Ground rules:

– Interpretation form: a→ b

– Example: first and second operand → rn, rm

• Conditional rules:

– Interpretation form: a 〈 b | c 〉 d 〈 e | f 〉 → g

– Example: 〈 most significant | top 〉 〈 32-bits | 32-bits of result 〉 → shift(result, Mode.RIGHT,
32)

• Context-based rules: �i is a hole to be instantiated by a string.

– Interpretation form: a �1 b �2 c → d �2 e �1 f

– Example: extract bits [�1:�2] → result = extract(xm,�1,�2)

Note that, a rewrite rule can be both conditional and left-linear. For instance, 〈 place | write
〉 〈�1(result,32) | �1(result,32) of result〉 〈 in | to 〉 rdhi → write(xhi, �1(result, 32)). Among
205 NP-Phrases for the semantics interpretation, the number of ground, conditional ground,
left-linear, and conditional left-linear rules are 116, 69, 14 and 6, respectively.

Rules Preparation Process

Starting with the set of selected NP-Phrases as the initial set of the left-hand sides of the
semantics interpretation rules, the right-hand sides of rules now are manually prepared. This
figure illustrates this preparation procedure:

!31

Empty?
false

true

Return R

frequency
sorting

Prepare RHS

Prepared
Rules R

c
LHS Candidates

r : c → ?
delete c from C
add r to R

C

LHS Substitution

(1)

(2)

(3)

(4)

10 No Author Given

5.1 Semantics Interpretation Rules

We start with the set of selected NP-Phrases in Section 4.3 as the initial set of the
left-hand sides of the semantics interpretation rules. Choose an NP-Phrase with the
highest frequency, its corresponding right-hand side is added by directly interpreting
the specifications that contain this NP-Phrase. The specifications may include NP-
Phrases that have not selected. They are newly added to the set of the left-hand sides
of the rules. The figure below illustrates the procedure:

Empty?
false

true

Return R

frequency
sorting

RHS
Preparation

Prepared
Rules R

c
LHS Candidates

r : c � ?
delete c from C
add r to R

C
(1)

(2)

(3)

(4)…
normalized syntax
tree of sentences

from specifications
consisting of c

terms substitution

a b c
(5)

(1) C is the set of the left-hand sides of rules that need to be interpreted.

(2) c 2 C with the highest frequency is completed as a rule r : c! u.

(3) r is added to the rule set R, and c is deleted from C.

(4) Rules in R rewrite each in C. When a substitution to ⇤ in r 2 R occurs, the rule
r is updated with this substitution.

(5) Continue until C = ?.

Example 2. We observe the procedure on a sentence in UMAAL specification in Section
2. Assume a set of NP-Phrase: C = {c1, c2, c3} with c1 : “first and second operand”,
c2 : “two unsigned 32-bit integer”, and c3 : “multiply ⇤ in ⇤”. The highest frequency
NP-Phrase is on c2 and by interpret the specifications, we set r2 : first and second
operand ! rn, rm). c3 now is substituted such that c03 = multiply ⇤ in rn,rm. After
the procedure completed, R consists of:

r1: first and second operand ! rn, rm

r2: two unsigned 32-bit integer ! val(⇤), val(⇤)

r3: multiply val(⇤), val(⇤) in rn, rm ! mul(val(rn), val(rm))

These rules may be occasionally already prepared. In such a case, the reductions occurs
in a bottom-up manner such that:

multiply two unsigned 32-bit integer in first and second operand
r1! multiply two unsigned 32-bit integer in rn, rm
r2! multiply val(⇤), val(⇤) in rn, rm
r3! mul(val(rn), val(rm))

(4)

(5)

50

Choose an NP-Phrase with the highest frequency, its corresponding right-hand side is added
by directly interpreting the specifications that contain this NP-Phrase. The specifications may
include NP-Phrases that have not selected. They are newly added to the set of the left-hand
sides of the rules.

(1) C is the set of the left-hand sides of rules that need to be interpreted.

(2) c ∈ C with the highest frequency is completed as a rule r : c→ u.

(3) r is added to the rule set R, and c is deleted from C.

(4) Rules in R rewrite each in C. When a substitution to � in r ∈ R occurs, the rule r is
updated with this substitution.

(5) Continue until C = ∅.

Example 5.3.1. Consider the procedure on a sentence in UMAAL specification. Assume a set
of NP-Phrase: C = {c1, c2, c3} with c1 : “first and second operand”, c2 : “two unsigned 32-bit
integer”, and c3 : “multiply � in �”. The highest frequency NP-Phrase is on c2 and by interpret
the specifications, we set r2 : first and second operand → rn, rm). c3 now is substituted such
that c′3 = multiply � in rn,rm. After the procedure completed, R consists of:

r1: first and second operand → rn, rm

r2: two unsigned 32-bit integer → val(�), val(�)

r3: multiply val(�), val(�) in rn, rm → mul(val(rn), val(rm))

Chapter 6

Dynamic Symbolic Executor
Generation

6.1 Generation Overview

As our observation, $name and $params can be easily extracted from the Mnemonic. We clas-
sify the executable code to two parts: main-operation and flags-update. The main-operation is
the part that only takes effect on the register, memory, and stack of the environment (〈R,M,S〉)
while flags-update part takes only effect on the flags of environment (〈F 〉). The dynamic sym-
bolic executor generation now focuses on three following problems:

1. Operation Code Generation: This part aims to generate the main operation code of
instruction (main-operation part), then fill it to the blank $execCode in the dynamic
code template. This generated code usually performs arithmetic or bitwise operations
then update the binary emulator components such as memory, stack, and register.

2. Flags Update Detection: This part aims to detect whether a flag is changed or not
(flags-update part). After that, it fills an array of modified flags to the blank $flags.
For instance, $flags = "N","Z","C" means this instruction updates the N, Z, and C
flags. The V, GE, and Q flags are left unmodified.

3. Path Conditions Generation: The CFG generation uses concolic testing to check the
satisfiability of the path conditions from the initial node to the current node for deciding
which execution branch is feasible. Therefore, along with executable code generation and
flags change detection, path conditions also need to be generated.

By using the prepared template and rewriting rules, code generation process can be briefly
described as follows:

51

52

Selection Strategy

Instruction i0
All Syntax Tree with

NP-Terms of i0

… All Syntax Tree
with NP-Terms of

all instructions

Instruction in
All Syntax Tree with

NP-Terms of in

Selected
Instructions

Operation
description of
an instruction

Flags changes
description of
an instruction

Operations
Code

Generation

Flags Change
Detection

Code
Template

…

…

$execCode

$f
la
gs

Generated
Java Code

(II)

(III)

(IV)
(V)ARM

Instruction
Description

(I)

Figure 6.1: Java code generation overview for an instruction

Assume the ARM instruction need to be proceed is K.

1. First, at (I), the operation description and flags change description are extracted from the
description of K.

2. Second, at (II), the executable code generation part is performed (detailed process is
presented later). After this step, the $execCode is obtained. The detailed procedure of
(II) is given in the section 6.2

3. Third, at (III), the flags changes detection part is performed (detailed process is presented
later). After this step, the flags is obtained. The detailed procedure of (III) is given in
the section 6.3

4. Next, at (IV), the obtained $execCode and $flags are filled to the code template which
is prepared.

5. Finally, the full Java code for K is generated.

The next three sections present the detailed procedures of Executable Code Generation, Flags
Change Detection, and Path Conditions Generation.

6.2 Operations Code Generation

Code generation from Operations Description inputs an instruction written in natural language
describing an operation of an ARM instruction, then generate a corresponding formal Java
code. For instance, if the sentence “The UMAAL instruction multiplies the two unsigned 32-bit
integers in the first and second operands” is considered as the input, the expected output of this
process is: mul(val(rn),val(rm)).

53

Syntax
Parsing

A sentence from
operation description

(1)

NP-Terms
Extraction

Instruction
Selection
Strategy

Rewriting
Rules

Preparation

Prepared
Rewriting Rules

(3) (4) (5)

Syntax Tree
Refinement

(2)

Prepared
Rewriting Rules

Rules
Matching

Sentence s0 Code Statement c0
Syntax Tree

with NP-Terms

Rules
Matching

Sentence sn Code Statement cn
Syntax Tree

with NP-Terms

… Generated
Code

Figure 6.2: Code generation process for an instruction

The diagram above illustrates how the Java code is generated.

1. First, each sentence si of this instruction with its syntax tree and NP-Terms (already
extracted) is performed bottom-up rules matching with the prepared rewriting rules. After
that, a code statement ci is generated.

2. After having all ci, we combine all together to get the final generated code.

Rules Matching

This task aims to generate executable code from the refined syntax tree above, with the helps
of prepared rewriting rules. The manner is, start matching nodes from the bottom to the top of
the tree, if the term in this node is matched with the LHS of prepared rules, replace it by the
RHS of the rules. Keep going until the root of the tree is reached.

Example 6.2.1. Let assume we have already had the following prepared rewriting rules:

1. first and second operand → rn, rm

2. two unsign 32-bit integer → val(�), val(�)

3. multiply val(�), val(�) in rn, rm → mul(val(rn), val(rm))

These rules may be occasionally already prepared. In such a case, the reductions are performed
in a bottom-up manner as described in the figure above:

multiply two unsigned 32-bit integer in first and second operand
r1→ multiply two unsigned 32-bit integer in rn, rm
r2→ multiply val(�), val(�) in rn, rm
r3→ mul(val(rn), val(rm))

54

in first and second
operand

VP

rn,rmin

in rn,rm

not matched

multiply

Generated
Statement

not matched

matched mul(val(rn),val(rm))

 multiply val(),val() in rn,rm

merge

matchednot matched

merge

NP PP

NPIN

val(),val() in rn,rm

val(),

 val()

two unsigned 32-
bit integer

matched

multiply

not matched

NPVBZ

merge

Figure 6.3: Matching process to generate formal Java code for an operation

6.3 Flags Update Detection

The table below shows typical expressions for the flags update descriptions appearing in the
specifications.

Description Implication

This instruction does not change the flags

Does not update flags
This instruction does not affect the condition code flags

The V flag is left unmodified.

This instruction updates the N, Z, C and V flags according to the result. Update specific flags

based on descriptionUpdates the N and Z flags according to the result. Does not affect the C and
V flags.

To detect whether a flag is updated, a topic modeling method called Latent Dirichlet Alloca-
tion (LDA) [17] is used to estimate the topics distribution of a sentence s and the (unique)
model sentence: m = “update affect set change modify” as two real numbers vectors #»vs,

»vm,
respectively. After that, the similarity between s and m are evaluate by a similarity measure
over #»vs and # »vm. The flags “modified” if sim(#»vs,

»vm) does not exceed a threshold t; otherwise,
“unmodified”. As the preprocessing step of the sentences in the flags update section, we apply

55

the same lemmatization and the unimportant word removal in Section 5.1. The unsupervised
model training uses all the preprocessed sentences in the flags update section of all collected
ARM instruction specifications. The figure below illustrates the procedure:

normalized
sentences

LDA Model

flags update
sentence

model
sentence

topics topicssimilarity

False≤ t
True

unmodifiedmodified

(1)

(2)

(3)

(4)

“update affect set
change modify”

training

Figure 6.4: Flags Update Detection

We use the implementation of LDA in sklearn library [30] with a set of hyperparameters: α =
0.1, β = 0.1, ntopics = 10, twords = 10, niters = 2000 and the Cosine similarity as the similarity
function. The threshold is set t = 0.85.

Example 6.3.1. Suppose that two sentences s1 and s2 need to be classified into two classes
“modified” and “unmodified”. Assume the model sentence is m; v1, v2, and vm are vector
representations by LDA model of s1, s2, and m respectively. We have:

• s1: “This instruction updates the N, Z, C and V flags according to the result”. In our ex-
periment, v1=(0.81998589, 0.02000604, 0.02, 0.02000347, 0.02, 0.02000072, 0.02000053,
0.02000209, 0.02000125, 0.02)

• s2: “Does not affect the C or V flags”. In our experiment, v2=(0.05, 0.05, 0.05, 0.05,
0.05, 0.55, 0.05, 0.05, 0.05, 0.05)

• m: “update affect set change modify”. In our experiment, vm=(0.02000251, 0.2199939,
0.02, 0.2199923, 0.02, 0.41999946, 0.02000674, 0.02000319, 0.02000191, 0.02)

By applying the Cosine similarity, we have sim(s1,m) ≈ 0.0834 and sim(s2,m) ≈ 0.868. Be-
cause sim(s1,m) ≤ 0.85 and sim(s2,) > 0.85, s1 and s2 should be classified to “modified” and
“unmodified” respectively.

56

6.4 Path Conditions Generation

Symbolic Execution executes program and generates the pre-condition and post-condition as
path condition [5]. A path condition is a conjunction of constrains in jump instructions from
the entry point to the current instruction. The path conditions need to be generated because
we need to check its satisfiability in concolic testing to decide which path is feasible.

Path Conditions

The Symbolic Execution store the symbolic state of a program execution by a set of 〈ni, ai, ϕi〉
where ni is a node and ϕi is the precondition of the path reaching to ni from the initial node
(the program entry). By checking by a theorem prover (SMT Solver), if ϕi is satisfiable, the
path ni is feasible.

Definition 6.4.1. In CFG, each node i is a tuple of its location ni, current assembly instruction
ai, and the path conditions ϕi from the initial node to i:

• 〈n0, a0, ϕ0〉 is the initial node (entry point) of the CFG

• 〈ni, ai, ϕi〉 is the ith node

The path conditions is updated through each step of the execution:
ϕ0 = true

ϕi′ = ϕi ∧ ci
(6.1)

where i is the previous instruction of i′ and ci is the path condition from node i to i′. Please
note that the condition ci might depend on the environment’s variables. For example, the
instruction beq checks the condition Z = true, where Z is the flag Z. However, the flags Z
might be changed based on the data instruction (e.g, subs r0 r1). In that case, we also need
to update the condition of Z: z = ((r0−r1) = 0). This procedure will continue until the program
execution interrupts (at the end of program or when meeting an unsupported instructions). In
our implementation, the path conditions is updated inside the manually defined methods.

Example 6.4.1. The figure below shows an example to illustrates how path conditions are
generated through the execution on ARM.

57

Initial CFG node

SMT Solver

UNSATSAT

+

+

UNSAT SAT

………

�26

…
9794: mov r6,#7
9798: subs r2,r3,#1
979c: str r4,[fp,#-16]
97a0: beq r2
…
97c4: mov r0,r2
97cc: mov r5,#5
97d0: adds r2,r2,r1
97d4: bmi 98d8
97d8: ldr r3,[fp,#-20]
97dc: str r3,[fp,#-24]
…
98d8: mov r3,#-20
98dc: str r6,[fp,#-4]
…

Jump if EQ

Jump if MI

n1

n3

n2

n4

n5

n1

n2n3

n4 n5

(r3 + r1 − 1) < 0(r3 + r1 − 1) ≥ 0

PC : {((r3 − 1) = 0) ∧ ((r3 + r1 − 1) ≥ 0)} PC : {((r3 − 1) = 0) ∧ ((r3 + r1 − 1) < 0)}

PC : {(r3 − 1) ≠ 0} PC : {(r3 − 1) = 0}

(r3 − 1) ≠ 0 (r3 − 1) = 0

PC : {}

test with a
satisfiable
instance

Figure 6.5: Path conditions update through the execution on ARM

The CFG in the left-hand side represents the execution of the code in the right-hand side.
Through the execution, the path conditions and CFG is generated as follows:

1. n1: Assume n1 is the initial CFG node. First, this node is added to CFG without any
conditional checking. After that, next instruction at 9798 is executed. At that time, the
value of r2 is updated: r2 = r3 − 1. Because this is subs, the flags is updated based on
the result of this instruction. It means, Z = (r3 − 1) < 0 (in example, we only consider
flag Z because the next jump instruction only needs Z). Next, the instruction beq checks
the condition Z = true (because of the suffix eq. It means, the path constrain here will
be (r3 − 1) < 0. Now, theorem prove was used to decide which branch is satisfiable.
Let’s assume that right branch is SAT and left branch is UNSAT. Because beq r2 is an
indirect jump, the jump target must be decided by testing an satisfiable instance of PC.
Let’s assume here the theorem prover returns r2 = 97cc, then the execution now continues
to node n2 and update path conditions at n2: PC = {(r3)− 1 = 0}.

2. n2: At n2, the next instruction addsr2, r2, r1 is executed. Therefore, the value of r2 is
updated: r2 = r2 + r1 = r3 − 1 + r1. Because this is adds, the flags are updated based
on the result of this operation. It means, N = (r3 + r1 − 1) < 0. Then, the right-
hand side branch conditions is now assigned to (r3 + r1 − 1) < 0 and the left-hand side
branch conditions is now assigned to (r3 + r1 − 1) ≥ 0. The next instruction is 97d4,
checking the condition N = true (suffix mi) means checking the new path constrain:
((r3 − 1) = 0) ∧ ((r3 + r1 − 1) < 0). Assume that it’s UNSAT, then now the execution
follows the left-hand side and test it with a satisfiable instance of the path condition:
((r3 − 1) = 0) ∧ ((r3 + r1 − 1) ≥ 0).

58

3. The execution will interrupted at the end of program or catching an unsupported instruc-
tion.

After running through all instructions in the binary file, the Dynamic Symbolic Execution returns
the CFG of binary files, which reflects its behaviors. From its behaviors, further techniques may
be applied to detect whether this binary file is a malware or not. However, if at a node, the SMT
Solver returns unknown or the instruction is not already supported, this process is interrupted.

Chapter 7

Conformance Testing

Software testing is the procedure to check the correctness of a program by comparing the sim-
ilarity of actual result and expected output. Test cases generation is one of software testing
problems, which aims to automatically generate all possible program scenarios without the in-
volvement of human. To verify the correctness of the generated Java methods, a conformance
testing is performed by comparing the execution results between the generated Java method and
the binary emulator µV ision [13] (which supports many ARM variations). Since the number
of instructions over six ARM architectures is huge, manual testing is very time-consuming and
requires a lot of human efforts in both writing test cases and perform the test. This chap-
ter presents our testing process to (1) automatically generate test-cases, then (2) proceed the
automated tests by combining the change of binary emulator’s environments between our imple-
mentation and a trusted ARM Debugger (We use (µV ision) [13]). For automatically generate
test cases, in this work, we used Symbolic Execution technique. After that, a theorem prover
was used (Z3) [23] to check the satisfiability of all possible conditional paths. If satisfiability of
a path is SAT, we use this concrete values as the input parameters of the test case. To generate
test data for full coverage, we apply a symbolic execution tools based on Java Pathfinder (JPF)
named JDart [31] on generated Java methods.

7.1 Automatic Tests Generation

As stated in 3.3.1, symbolic execution can be used to explore all feasible path of program.
Therefore, for each feasible path, a test case is generated. By testing over all test cases, the
correctness of the program can be warranted. We will illustrate how Symbolic Execution works
in this example to generate test cases.

Example 7.1.1. Assume the following function foo is needed to test, the aim is to generate
test-cases to cover all feasible path of foo.

59

60

public boolean foo(int a, int b, int c){
int x = 5;
int y = 1;
if (a == b){

x = x - 1;
y = y + x;

} else {
if (c == a + b){

x = x + y;
if (a * b == 36) {

y = y - x;
}

} else {
x = x - y;

}
}
return x > y;

}

Figure 7.1: An example of function need to be tested

Solve: Let α, β, γ are the symbolic variables representing three foo’s parameters a, b, c
respectively. The execution tree of foo is generated as below:

α = β

x = 5; y = 1

x = 4; y = 5

α . β = 36

x = 6; y = 5 x = 4; y = 1

x = 6; y = -5 x = 6; y = 1(True) (True)

(True)

(False)

T F

γ = α + β

T F

T F

{α = β}PC1 :

{α ≠ β ∧ γ ≠ α + β}PC2 :

{α ≠ β ∧ γ = α + β ∧ α . β = 36}PC3 : {α ≠ β ∧ γ = α + β ∧ α . β ≠ 36}PC4 :

Figure 7.2: Execution tree of foo

where:

61

• T , F : branch conditions

• (True), (False): results of foo function.

• PCi: path conditions from the initial node.

Symbolic Execution generate 4 possible path conditions. Using a theorem prover (e.g., Z3), 4
pairs of input values and expected result of test-cases are:

1. For PC1: 〈(α = 0, β = 0, γ = 0), false〉

2. For PC2: 〈(α = 0, β = 1, γ = 2), true〉

3. For PC3: 〈(α = 1, β = 36, γ = 37), true〉

4. For PC4: 〈(α = 60, β = −34, γ = 26), true〉 �

7.2 Test Case Structure

To evaluate the correctness of our generated code, our idea is comparing the environments of
binary emulator between our implementation and µV ision ARM debugger. Note that, the
environment includes the states of flags (F), registers (R), memory (M), and stack (S). Hence,
A test-case consists of:

1. Input variables:

• Java Source Code (JSC): The target generated Java executable code.

• Parameters (PRS): A set of parameters with concrete values generated by symbolic
execution.

• Pre-Environment (PrEnv): The environment of binary emulator before execution.

2. Expected output:

• Post-Environment (PoEnv): The environment of binary emulator after execution.

7.3 Testing Procedure

Assume all possible code for instructions over 6 architectures are generated and pushed into a
stack S. This diagram illustrates how the testing process is performed:

62

generated test-cases of i

Symbolic Execution

JSC PRS

PrEnv

JSC PRS

PrEnv
… comparison

QADD8 USASX… SMMULUMAAL

Generated code for instructions

S
pop

(1)

(3)

(2)

(4) (5)

REVSHi

□1

NP

NP PP

IN NP

in

value

Rm

NP

Rn Rm

C[□]

NP

value

fill (, 32-bits)

C[32 −bits]

NP

value

C[□]

NP

C′�[□]

NP

NP IN NP

secondand

NP

first

NP

the

NP

operand

C[□]

C[NP] C’[NP]

NP

□2bits value of

□2

value(,)□1

ARM Debugger

Our implementation

PoEnv

PoEnv

Figure 7.3: Conformance Testing Procedure

1. First, at (1), an instance i is pop from the stack S, then push through the Symbolic
Execution at (2).

2. After that, at (3), this code is analyzed by symbolic execution, then all possible test-cases
of i are automatically generated. Note that, each test-case consists of four components.
For each test-case:

• At (4), we push it through µV ision and our implementation. This step outputs two
PoEnv state of µV ision and our implementation.

• Next, at (5), we compare the two PoEnv above. If the two PoEnv are similar, we
can conclude that, with this test-case, the implemented function works correctly.

3. Finally, if there is no wrong test-case in i, it can be conclude that, this function is imple-
mented correctly.

Chapter 8

Experiments

This section presents the experiment result of our proposed method over six ARM Cortex series
(M0, M0+, M3, M4, M7, and M33). First, the efficiency of the Instruction Selection Strategy
is evaluated. After that, we conduct experiments on how effective the rewriting rules cover
instructions and evaluate the generated Java code by using test cases generated from the con-
formance testing procedure. Finally, we discuss some ignored cases and failed cases to clarify
why it cannot be covered by our current method.

8.1 Instruction Selection Strategy

To evaluate the efficiency of the automatic instruction selection strategy, we conduct the experi-
ment over 1039 ARM instructions collected from ARM Developer Website, over six architecture.
The black line R describes the average number of rules that need to be prepared per an instruc-
tion. The blue line C shows the percentage of covered instructions.

−100 0 100 200 300 400 500 600 700 800 900 1,000 1,100

0

0.5

1

1.5

2

Number of selected instructions

R: Number of rule per an instruction
C: Instructions Coverage

Figure 8.1: Instruction Selection Strategy Performance

The figure illustrates that, for the very first selected instructions, the value of R decreased

63

64

dramatically. After taking 258 instructions, R reaches the smallest value. Although at that
point, the value of R is minimum, but the number of covered instructions is quite small (24.83%).
After that, the value of R tends to increase until it reach the value 0.9785 at the end. This
result can be interpreted that, the automatic Instruction Selection Strategy works well because
it chooses the best candidates, then make the R decrease. After that, the remaining candidates
is not good enough. As the result, the value of R increases.

Note that, the acceptance rate C must be provided at the beginning. In our implementation, we
choose the rate C = 65%, it means our strategy tries to selects N best instructions to minimize
the value of R as long as N ≥ 65% total number of instructions. With the C = 0.65, for average,
we only need to write 0.34 rules to successfully generate an instruction implementation. At this
point, 692 instructions are generated (66.60%) and 662 (63.72%) instructions are verified.

8.2 Successfully Generated Instructions

This table shows the number of selected and generated instructions where:

• Variation: The ARM Cortex-M Architecture.

• Collected: Total instructions collected from ARM Developer Website.

• Selected: Total instruction selected by our Selection Strategy.

• Generated: Number of generated instructions.

• Verified: Number of instruction passed the conformance testing.

Variation Collected Selected Generated Verified

Cortex-M0 63 44 (69.84%) 44 (69.84%) 41 (65.08%)

Cortex-M0+ 63 44 (69.84%) 44 (69.84%) 41 (65.08%)

Cortex-M3 129 80 (62.02%) 80 (62.02%) 74 (57.36%)

Cortex-M4 244 167 (68.44%) 167 (68.44%) 161 (65.98%)

Cortex-M7 261 178 (68.20%) 178 (68.20%) 172 (65.90%)

Cortex-M33 279 179 (64.16%) 179 (64.16%) 173 (62.00%)

Total 1039 692 (66.60%) 692 (66.60%) 662 (63.72%)

Table 8.1: The number of generated instructions over six Cortex series

The table above shows the detailed experiment result. After applying the proposed method for
1039 collected ARM instructions of 6 variations, the Java methods for 692 instructions (66.60%)
are generated by using 228 rewrite rules. Among 692 generated Java methods, 662 methods
(63.72%) have passed an automated conformance testing. It can be argued that, the instruction
selected by our Instruction Selection Strategy is quite balanced among six architectures. The
number of generated instructions equals to the number of selected instructions because rules are
prepared for all selected instruction by our strategy. However, the number of verified instructions

65

is obviously smaller than generated instructions because there are some failed cases. We will
discuss in the next sections.

8.3 Discussion

Ignored Cases

We observe that some instructions are described by very long and complicated sentences. Theo-
retically, it is possible to analyze this case, but it will take a huge effort to define rules for them.
Therefore, these cases should be ignored. In fact, our Instruction Selection Strategy removed
them automatically.

Mnemonic QSAX

Brief description Saturating Subtract and Add With Exchange

Syntax QSAX{cond} {Rd}, Rm, Rn

Opreration Subtracts the bottom halfword of the second operand from the
top highword of the first operand. Adds the bottom halfword of
the source operand with the top halfword of the second operand.
Saturates the results of the sum and writes a 16-bit signed integer
in the range −215 ≤ x ≤ 215 − 1, where x equals 16, to the
bottom halfword of the destination register. Saturates the result
of the subtraction and writes a 16-bit signed integer in the range
−215 ≤ x ≤ 215−1, where x equals 16, to the top halfword of the
destination register.

Flags update This instruction does not affect the condition code flags.

Table 8.2: The ignored case of QSAX instruction in Cortex-M7

Failed Cases

There are 30 cases that failed to pass the conformance testing. Failures are classified into two
reasons.

1. Wrong flags change detection: For flags change detection task, there are total 1436
individual sentences needed to analyze, include various types of description. It also uses
many synonyms such as update, change, affect, modify, and set. Our experiment correctly
detect 1428 sentences among this set. The cases that we missed are the complex synonyms
like “left unmodified” in the sentence “The V flag is left unmodified” in the instruction RORS
of Cortex-M0+. When the complex synonyms like “left unmodified” in the flag update section
of the instruction RORS (Cortex-M0 and Cortex-M0+), the similarity analysis fails.

66

Mnemonic RORS

Brief description Rotate Right

Syntax RORS {Rd,} Rm, Rs

Opreration RORS moves the bits in the register Rm to the right by the
number of places specified by register Rs.

Flags update This instruction updates the N and Z flags according to the result.
The C flag is updated to the last bit shifted out, except when the
shift length is 0. The V flag is left unmodified.

Table 8.3: The failed case of RORS instruction in Cortex-M0+

2. Wrong order of sentences in instruction description: Some instruction descriptions
do not have a correct order of sentences. It is hard to detect and reverse its order. Therefore,
currently our method cannot deal with this problem. For instance, the instruction STRB
descriptions has two sentences, but its order is not correct. The correct one should be “The
STRB instruction zero extend a register unsigned value then store it to memory”. Our
method interprets each sentence in order in the operation section. Thus, the confusing order
of the sentences leads failure. For instance, the operation section of the instruction STRB
(Cortex-M7) intends “The STRB instruction zero extend a register unsigned value, then store
it to memory”, but with the opposite order.

Mnemonic STRB

Brief description Store Register for two unsigned byte

Syntax STRB{cond} Rt, Rt2, [Rn],#offset

Operation The STRB instruction store a register unsigned byte value to
memory. Zero extend to 32 bits on loads.

Flags update This instruction does not change the flags.

Table 8.4: The failed case of STRB instruction in Cortex-M7

8.4 Running Example of the Generated DSE Tool

We show a simple case demonstrating how our Dynamic Symbolic Execution (DSE) tool explores
the destination of an indirect jump in ARM Cortex-M. In this example, the indirect jump appears
in the instruction bmi r1, where mi is the conditional suffix and r1 is the destination of indirect
jump. Note that, this DSE uses the semantics of ARM instructions extracted by our proposed
method.

67

-----[INIT]-----
+ Flags:
+ Register (32-bit):
-----[ADDS R0 #15]-----
+ Flags:

- N:0 (bvslt (bvadd r0 #x0000000f) #x00000000)
- Z:0 (= (bvadd r0 #x0000000f) #x00000000)
- C:0 (bvugt (bvadd r0 #x0000000f) #xFFFFFFFF)

+ Register (32-bit):
- R0 :(bvadd r0 #x0000000f)

-----[ADDS R1 #38850]-----
+ Flags:

- N:0 (bvslt (bvadd r1 #x000097c2) #x00000000)
- Z:0 (= (bvadd r1 #x000097c2) #x00000000)
- C:0 (bvugt (bvadd r1 #x000097c2) #xFFFFFFFF)

+ Register (32-bit):
- R0 :(bvadd r0 #x0000000f)
- R1 :(bvadd r1 #x000097c2)

-----[ADDS R3 R0 #12]-----
+ Flags:

- N:0 (bvslt (bvadd (bvadd r0 #x0000000f) #x0000000c) #x00000000)
- Z:0 (= (bvadd (bvadd r0 #x0000000f) #x0000000c) #x00000000)
- C:0 (bvugt (bvadd (bvadd r0 #x0000000f) #x0000000c) #xFFFFFFFF)

+ Register (32-bit):
- R0 :(bvadd r0 #x0000000f)
- R1 :(bvadd r1 #x000097c2)
- R3 :(bvadd (bvadd r0 #x0000000f) #x0000000c)

-----[SUBS R4 R3 R1]-----
+ Flags:

- N:1 (bvslt (bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2)) #
x00000000)

- Z:0 (= (bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2)) #x00000000)
- C:0 (bvugt (bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2)) #

xFFFFFFFF)
+ Register (32-bit):

- R0 :(bvadd r0 #x0000000f)
- R1 :(bvadd r1 #x000097c2)
- R3 :(bvadd (bvadd r0 #x0000000f) #x0000000c)
- R4 :(bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2))

-----[NEG R5 R3]-----
+ Flags:

- N:1 (bvslt (bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2)) #
x00000000)

- Z:0 (= (bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2)) #x00000000)
- C:0 (bvugt (bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2)) #

xFFFFFFFF)
+ Register (32-bit):

- R0 :(bvadd r0 #x0000000f)
- R1 :(bvadd r1 #x000097c2)
- R3 :(bvadd (bvadd r0 #x0000000f) #x0000000c)
- R4 :(bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (bvadd r1 #x000097c2))
- R5 :(bvneg (bvadd (bvadd r0 #x0000000f) #x0000000c))

-----[BMI R1]-----
-> Indirect jump detected !
-> Checking path constrains by z3 (bvslt (bvsub (bvadd (bvadd r0 #x0000000f) #x0000000c) (

bvadd r1 #x000097c2)) #x00000000) ...
SAT instance: sat
(model
(define-fun r0 () (_ BitVec 32)
#x000097a6)
(define-fun r1 () (_ BitVec 32)
#x00000000)
)

-> Jump to #x000097c2

Figure 8.2: An example demonstrating how our DSE generates path conditions through
executions and explores the destination of an indirect jump

Chapter 9

Conclusion and Future Directions

9.1 Result and Conclusion

This thesis proposed a systematic approach to extract formal semantics from natural language
specifications of ARM Cortex-M instructions (from 6 variations, M0, M0+, M3, M4, M7, and
M33). In the experiment, the semantics of 692 instructions is extracted from 1039 collected
specifications from ARM Developer Website, after preparing 228 rewrite rules for the semantics
interpretation and 35 initial methods used in the Java template. Among them, 662 (63.72%)
have passed the automated conformance testing. The extracted semantics of each instruction
is presented as a Java method of an extension of BitSet class. With the surrounding libraries,
these Java methods give the implementation of the symbolic execution and the binary emulator,
and we obtain the preliminary version of the dynamic symbolic execution of ARM Cortex-M for
free. We confirmed that it correctly traces indirect jumps in small examples. We expect that
our methodology can be a standard approach to implement the dynamic symbolic execution
of binaries on other platforms, such as other Cortex of ARM and MIPS. Our ultimate goal is
to reduce the human efforts on the implementation of Dynamic Symbolic Executor for ARM,
which is used to analyze malware under obfuscation techniques. This study has contributed
three main modules:

1. Semantics Interpretation: We have already developed a module to generate Java exe-
cutable code for operations of ARM instructions in multiple platforms. The number of
instruction now can be covered is approximately 63.72%. Because the remaining instruc-
tions consist of very long, complex and not popular instructions, at this moment, they are
temporarily ignored.

2. Flags Update Detection: We have presented a method to automatically detect which flag
is updated after execution by using an unsupervised machine learning algorithm called
Latent Dirichlet Allocation. This algorithm works well for short and sparse sentences,
which typically occur in flags changes descriptions of ARM instructions.

3. Path conditions generation: Beside generating the operation code, the path conditions are
also generated. It is used in the satisfiabilities checking of the dynamic symbolic executor
for ARM.

68

69

4. A set of interpretation rules: We also provide a set of rewriting rules for ARM Cortex-M
series. To extend this method to another platform, these rules must be prepared manually.

Our result shows that: With only 228 prepared rules, 692 instructions are successfully generated
and 662 instructions are verified. The rule/instruction ratio is approximately 0.34, it means for
average, we need 0.34 rules to cover an instruction. Since rewriting rules is quite short and
easy to prepare, our method reduces a lot of human effort on the implementation of Dynamic
Symbolic Executor for ARM Cortex series over 6 architectures (M0, M0+, M3, M4, M7, and
M33). The total generated Java code is approximately 10800 lines.

Advantages:

1. Our method is a semi-automatic approach: Our method only requires preparing rewriting
rules at the beginning (for the operations generation task), and a model sentence (for flags
change detection task). After that, everything runs automatically.

2. Our method is effective: It can cover a large number of instructions with a small ratio of
predefined rewriting rules per an instruction.

3. Our method is generalized: It can be extended to multiple platforms as long as the rewrit-
ing rules are prepared in advanced.

Drawbacks:

1. Long and complex instruction: Our method still cannot deal with the long and complex
instructions like QSAX. If this kind of instruction is added, the average efforts needed
to prepare all rules is much larger, but the number of covered instructions is not much
bigger.

2. Requires human effort on preparing rules: Because our method still requires the prepared
rewriting rules, it still needs human efforts.

9.2 Future Directions

Up to now, out implementation can analyze and extract formal semantics for six ARM Cortex
series including Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, and Cortex-M33.
Even the total number of instruction in six mentioned architectures is quite big (over 1000),
it is still a small set in all available instructions that needs to be processed. In the future, we
intend to continue this study to enlarge the capacity of our method, make it be able to cover
more architectures, as well as to deal with long and complex instructions. The first two next
directions are:

1. Extend to more series: As our observation, ARM developer website does not contain
structured document for other series like Cortex-A and Cortex-R. Only PDF specification
can be found on this website. However, extracting structured data from a PDF file is a
complex process and requires a huge effort because it contains tons of natural plain text.
In the future, we are going to consider it as a pre-processing task. Because our proposed
method is generalized for multiple platforms, after doing the pre-processing for PDF file,
we can continue extracting formal semantics process in the same manner.

70

2. Extend to other architecture: Currently, our method supports only ARM architecture. in
the future, it is feasible to extend our methodology to more architecture like MISP with
a few modifications.

In the future, our plan is:

• Complete the dynamic symbolic execution tool and try experiments on real-world IoT
malware.

• Try the methodology of the systematic semantics extraction on other platforms.

• ARM Developer Website does not provide structured documents for Cortex-A and R (only
PDF files are provided). After performing the preprocessing for PDF files, we hope to
apply our methodology for them in the same manner.

Bibliography

[1] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” in Broadband, Wire-
less Computing, Communication and Applications (BWCCA), 2010 International Confer-
ence on. IEEE, 2010, pp. 297–300.

[2] F. Song and T. Touili, “Pushdown model checking for malware detection,” International
Journal on Software Tools for Technology Transfer, vol. 16, no. 2, pp. 147–173, 2014.

[3] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive detection of computer
worms using model checking,” IEEE transactions on dependable and secure computing,
vol. 7, no. 4, pp. 424–438, 2010.

[4] J. Kinder, S. Katzenbeisser, C. Schallhart, Veith, and Helmut, “Detecting malicious code
by model checking,” in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2005, pp. 174–187.

[5] J. C. King, “Symbolic execution and program testing,” Communications of the ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[6] F. Desclaux, “Miasm: Framework de reverse engineering,” Actes du SSTIC. SSTIC, 2012.

[7] A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and T. Reps,
“Directed proof generation for machine code,” in International Conference on Computer
Aided Verification. Springer, 2010, pp. 288–305.

[8] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry, “Codis-
asm: medium scale concatic disassembly of self-modifying binaries with overlapping in-
structions,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, 2015, pp. 745–756.

[9] N. M. Hai, M. Ogawa, and Q. T. Tho, “Obfuscation code localization based on cfg gener-
ation of malware,” in International Symposium on Foundations and Practice of Security.
Springer, 2015, pp. 229–247.

[10] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs.” in OSDI, vol. 8, 2008, pp. 209–224.

[11] “Arm developer website, https://developer.arm.com/.”

[12] Y. Nguyen L. H., “Automatic extraction of x86 formal semantics from its natural language
description,” Master’s thesis, School of Information Science, March 2018.

[13] “µvision, http://keil.com/mdk5/uvision/.”

[14] “Ida pro, https://www.hex-rays.com/products/ida/.”

[15] “Capstone engine, http://www.capstone-engine.org/.”

[16] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of machine
Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[18] J. Su, D. V. Vargas, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai, “Lightweight
classification of iot malware based on image recognition,” arXiv preprint arXiv:1802.03714,
2018.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012, pp.
1097–1105.

[20] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas, “Malware
detection by eating a whole exe,” arXiv preprint arXiv:1710.09435, 2017.

[21] A. V. Phan, M. Le Nguyen, Y. L. H. Nguyen, and L. T. Bui, “Dgcnn: A convolutional
neural network over large-scale labeled graphs,” Neural Networks, 2018.

[22] J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based framework for con-
trol flow reconstruction from binaries,” in International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer, 2009, pp. 214–228.

[23] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2008, pp.
337–340.

[24] G. Bonfante, J.-Y. Marion, and D. Reynaud, “A computability perspective on self-
modifying programs,” in 7th IEEE International Conference on Software Engineering and
Formal Methods-SEFM 2009, 2009.

[25] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent, “The bincoa frame-
work for binary code analysis,” in International Conference on Computer Aided Verification.
Springer, 2011, pp. 165–170.

[26] F. Desclaux, “Miasm: Framework de reverse engineering,” Actes du SSTIC. SSTIC, 2012.

[27] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,” in International
Conference on Computer Aided Verification. Springer, 2008, pp. 423–427.

[28] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis platform,”
in International Conference on Computer Aided Verification. Springer, 2011, pp. 463–469.

[29] S. Bird and E. Loper, “Nltk: the natural language toolkit,” in Proceedings of the ACL
2004 on Interactive poster and demonstration sessions. Association for Computational
Linguistics, 2004, p. 31.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,”
Journal of machine learning research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[31] K. Luckow, M. Dimjašević, D. Giannakopoulou, F. Howar, M. Isberner, T. Kahsai, Z. Raka-
marić, and V. Raman, “Jdart: A dynamic symbolic analysis framework,” in Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2016, pp. 442–459.

Appendix: Manually Prepared Rewriting Rules

1. right by 1 → 1

2. 〈 either | or 〉 16-bit sign → 16-bit signed

3. 〈 32-bit sign result | sign 32-bit value | 32-bit sign 〉 → 32-bit signed

4. correspond 〈 bytes | byte 〉 → correspondingByte

5. correspond 〈 halfwords | halfword 〉 → correspondingHalfWord

6. extract 〈 bits | 〉 → extract bits

7. constant value → imm

8. imm12 from value → imm12

9. imm16 into rd → imm16

10. pc-relative memory address → label

11. operand2 from value → operand2

12. unsigned range → range

13. single register specify → register

14. 〈 64-bit product | result 64-bit | both result | 64-bit result | result 64-bit product | result of subtraction
| result from sign 〉 → result

15. multiplication and addition to rd → result to rd

16. round result → round

17. saturate 〈 result to sign | to sign range 〉 → saturate

18. 〈 sign bottom | bottom sign 〉 → sign bottom

19. 〈 register with sign | correspond sign 〉 → signed

20. sign result 〈 of subtraction | 〉 → signed result

21. sign top halfword → top sign halfword

22. unsigned byte value from memory → unsigned byte

23. extract value → value

24. 〈 n bits | constant n 〉 → n

25. 〈 value in ra | ra to sign | value from ra 〉 → ra

26. 〈 result in rd | register specify by rd | destination register 〉 → rd

27. 〈 register rm | another register | second operand value | second operand | value in rm | rm from value
〉 → rm

28. 〈 first operand | first operand register | rn from value | one register 〉 → rn

29. register specify by rt → rt

30. 〈 floating-point register | destination floating-point value | floating-point destination register | desti-
nation floating-point register | second floating-point register 〉 → sd

31. 〈 source register | one floating-point value | floating-point value | second register | another floating-point
register | one floating-point register | operand floating-point register | second floating-point operand 〉
→ sm

32. 〈 another floating-point value | first floating-point 〉 → sn

33. rd�1 and rd�2 → x�1, x�2

34. rn and immediate value imm → xn, im

35. rn and operand2 → xn, op

36. multiply top sign 〈 halfword value | Type.HALFWORD 〉 〈 in | of 〉 rn with sign bottom halfword of
rm and sign bottom 〈 halfword value | Type.HALFWORD 〉 〈 in | of 〉 rn with top sign halfword of rm
→ BitVec result 1 = mul(shift(val(xn), Mode.RIGHT, 32), shift(val(xm), Mode.LEFT, 32)); BitVec
result 2 = mul(shift(val(xn), Mode.LEFT, 32), shift(val(xm), Mode.RIGHT, 32))

37. multiply top sign 〈 halfword value | Type.HALFWORD 〉 〈 in | of 〉 rn with top sign halfword of rm
and bottom sign 〈 halfword value | Type.HALFWORD 〉 〈 in | of 〉 rn with sign bottom halfword of rm
→ BitVec result 1 = mul(shift(val(xn), Mode.RIGHT, 32), shift(val(xm), Mode.RIGHT, 32)); BitVec
result 2 = mul(shift(val(xn), Mode.LEFT, 32), shift(val(xm), Mode.LEFT, 32))

38. 〈 add eight value from xn, xm | add Type.BYTE of rn to correspondingByte of rm | add each re-
spective byte of xn, xm 〉 → BitVec[] resultArr = add(val(xn), val(xm), Type.BYTE); result = con-
cat(resultArr)

39. 〈 add four value from xn, xm | add Type.HALFWORD from rn to correspondingHalfWord of rm |
add respective top and bottom halfwords of xn, xm 〉 → BitVec[] resultArr = add(val(xn), val(xm),
Type.HALFWORD); result = concat(resultArr)

40. add two value from xn, xm → BitVec[] resultArr = add(val(xn), val(xm), Type.WORD); result =
concat(resultArr)

41. 〈 subtract eight value from xn, xm | subtract Type.BYTE of rm register from correspond byte of
rn | subtract Type.BYTE of rm from correspondingByte of rn | subtract respective bytes of rm
from respective bytes of rn 〉 → BitVec[] resultArr = sub(val(xn), val(xm), Type.BYTE); result =
concat(resultArr)

42. 〈 subtract both halfwords of rm from respective halfwords of rn | subtract four value from xn, xm |
subtract Type.HALFWORD of rm from correspondingHalfWord of rn | subtract Type.HALFWORD
from rm register from correspond halfword of rn | subtract Type.HALFWORD from rm from corre-
spondingHalfWord of rn 〉 → BitVec[] resultArr = sub(val(xn), val(xm), Type.HALFWORD); result
= concat(resultArr)

43. subtract two value from xn, xm → BitVec[] resultArr = sub(val(xn), val(xm), Type.WORD); result
= concat(resultArr)

44. apply specify shift → BitVec[] resultArr = toArray(shift(val(xm), shiftMode, s))

45. clear 〈 bite field | bitfield 〉 in register → clearBitfield(xd, lsb, width)

46. copy 〈 bite field | bitfield 〉 into rn from rm → copyBitfield(xd, val(xn), width)

47. change 〈 primask special register value | faultmask special register value 〉 → env.change(mode == ‘i’
? “primask” : “faultmask”)

48. cause processor to enter debug state → env.switchMode(“debug”)

49. cause svc exception → env.throwExc(“svc”)

50. if value in rn be not divisible by value in rm, result be result = round(result, RoundType.TOWARDS ZERO)
→ if (!checkDiv(val(xn), val(xm))) result = round(result, RoundType.TOWARDS ZERO); write(xd,
result)

51. use to avoid change condition code flag and to reduce number of instructions→ b(val(xn), cond, label)

52. load multiple consecutive extension register from stack → pop(list)

53. store multiple consecutive extension register to stack → push(list)

54. take absolute value of sm → result = abs(val(xm))

55. add accumulation value to sum of absolute differences → result = accumulation(result)

56. add 〈 unsigned absolute differences | absolute value 〉 together → result = add(abs(shift(result,
Mode.RIGHT, 8)), abs(shift(result, Mode.LEFT, 8)))

57. add result to 32-bit signed in ra → result = add(add(result 1, result 2), word(val(xa)))

58. generate address by add immediate value to pc → result = add(env.register.get(‘p’), val(label))

59. add negation of 〈 sm in rd to negation of | sd to 〉 product → result = add(neg(val(xd)), result)

60. add negation of sm in rd to product → result = add(result, neg(val(xd)))

61. add unsigned 32-bit integer in rd�1 to result → result = add(result, val(x�1))

62. add ra → result = add(result, val(xa))

63. add products to rd → result = add(result, val(xd))

64. add sign or zero extend value to word or correspond halfword of rn → result = add(result, val(xn))

65. 〈 add 64-bit value in xlo, xhi to result | add 64-bit result to 64-bit unsigned integer contain in rdhi
and rdlo 〉 → result = add(result, xlo, xhi)

66. add top sign halfword of rn with sign bottom halfword of rm→ result = add(shift(halfWord(val(xn)),
Mode.RIGHT, 16), shift(halfWord(val(xm)), Mode.LEFT, 16))

67. add bottom halfword of rn with Type.TOP HALFWORD of rm→ result = add(shift(val(xn), Mode.LEFT,
16), shift(val(xm), Mode.RIGHT, 16))

68. add Type.TOP HALFWORD of rn with Type.BOTTOM HALFWORD of rm→ result = add(shift(val(xn),
Mode.RIGHT, 16), shift(val(xm), Mode.LEFT, 16))

69. add result sign-extended 32-bit product to 64-bit value in rdlo and rdhi→ result = add(signedExt(result,
32), xlo, xhi)

70. add value of ra extract value → result = add(val(xa), result)

71. add 32-bit sign value in ra to shift(result, Mode.RIGHT, 32) of 48-bit product→ result = add(val(xa),
shift(result, Mode.RIGHT, 32))

72. add value in xn, �1 together with carry flag→ result = add(val(xn), val(�1), true); write(xd, result)

73. add value of imm12 to val(xn) → result = add(val(xn), val(im)); write(xd, result)

74. add value of val(op, im) to value in rn → result = add(val(xn), val(op, im)); write(xd, result)

75. add value in rn to value in val(xm, im) specify by imm → result = add(val(xn), val(xm, im))

76. add value in xn, xm operand register → result = add(val(xn), val(xm))

77. perform and-operation on bits in rn with complement of correspond bits in val(�1) → result =
and(val(xn), comp(val(�1))); write(xd, result)

78. perform and-operation on value in xn, �1 → result = and(val(xn), val(�1)); write(xd, result)

79. compare 〈 rn | val(xn) 〉 with operand2 → result = cmp(val(xn), val(op))

80. compare value in register with either value in rm or immediate value→ result = cmp(val(xn), val(xm,
im))

81. compare xn, xm → result = cmp(val(xn), val(xm))

82. convert 16-bit signed big-endian data into 32-bit signed little-endian data 16-bit signed little-endian
data into 32-bit signed big-endian data → result = convertEndian(val(xn)); write(xd, result)

83. count number of lead zero in rm and return rd → result = clz(val(xm)); write(xd, result)

84. 〈 divide sm by sn | perform unsigned integer division of value in rn by value in rm 〉 → result =
div(val(xn), val(xm))

85. extract bits [23:16] 〈 from rm | 〉 → result = shift(shift(result, Mode.LEFT, 16), Mode.RIGHT,
Configs.architecture-23+16)

86. extract bits bits[�1:�2] → result = shift(shift(val(xm), Mode.LEFT, �2), Mode.RIGHT, Configs.
architecture-�1+�2)

87. extract 〈 bite field | bitfield 〉 from rn → result = shift(shift(val(xn), Mode.LEFT, sub(add(val(lsb),
val(width)), val(1))), Mode.RIGHT, add(sub(new BitVec(Configs.architecture), new BitVec(lsb)),
sub(add(val(lsb), val(width)), val(1))))

88. store two register unsigned 〈 halfword value | Type.HALFWORD 〉 to memory → result = half-
Word(val(xt)); BitVec result 2 = halfWord(val(xt2)); store(val(xn), result, result 2)

89. store register unsigned 〈 halfword value | Type.HALFWORD 〉 to memory→ result = halfWord(val(xt));
store(val(xn), result)

90. load signed byte value from memory → result = load(Type.BYTE, add(val(xn), val(offset), offset-
Type))

91. load register with unsigned byte → result = load(Type.BYTE, add(val(xn), val(offset), offsetType));
write(xt, result)

92. load 〈 register with unsigned byte value from pc-relative memory address | signed byte value from
label 〉 → result = load(Type.BYTE, val(label))

93. load register specify by rt with Type.BYTE value from memory→ result = load(Type.BYTE, val(xn))

94. load 〈 register with unsigned | signed 〉 halfword value from memory→ result = load(Type.HALFWORD,
add(val(xn), val(offset), offsetType))

95. load 〈 register with unsigned halfword value from pc-relative memory address | signed halfword value
from label 〉 → result = load(Type.HALFWORD, val(label))

96. load register specify by rt with Type.HALFWORD value from memory→ result = load(Type.HALFWORD,
val(xn))

97. load 〈 halfword | Type.HALFWORD 〉 from memory address → result = load(Type.HALFWORD,
val(xn)); write(xt, result)

98. load register specify by rt with Type.WORD value from memory → result = load(Type.WORD,
add(val(xn, xp), val(im)))

99. move bits in rm to 1 → result = shift(val(xm), Mode.RIGHT, val(1)); write(xd, result)

100. move bits in rm to leave by number of place specify by n or register rs → result = shift(val(xm),
Mode.LEFT, val(xs, n)); write(xd, result)

101. move bits in register rm to right by number of place specify by n or register rs→ result = shift(val(xm),
Mode.RIGHT, val(xs, n)); write(xd, result)

102. move bits in register rm to right by number of place specify by register rs → result = shift(val(xm),
Mode.RIGHT, val(xs)); write(xd, result)

103. multiply two complement sign word value from xn, xm → result = mul(comp(word(val(xn))), comp(
word(val(xm))))

104. add two multiplication result to sign 64-bit value in rdlo and rdhi to create result product → result
= mul(result 1, result 2)

105. multiply specify sign halfword, bottom and bottom value from rn and rm→ result = mul(shift(shift(val(xn),
Mode.LEFT, 16), Mode.RIGHT, 16), shift(shift(val(xm), Mode.LEFT, 16), Mode.RIGHT, 16))

106. multiply specify sign halfword, bottom and top value from rn and rm→ result = mul(shift(shift(val(xn),
Mode.LEFT, 16), Mode.RIGHT, 16), shift(shift(val(xm), Mode.RIGHT, 16), Mode.LEFT, 16))

107. multiply specify sign halfword, top and bottom value from rn and rm→ result = mul(shift(shift(val(xn),
Mode.RIGHT, 16), Mode.LEFT, 16), shift(shift(val(xm), Mode.LEFT, 16), Mode.RIGHT, 16))

108. multiply specify sign halfword, top and top value from rn and rm → result = mul(shift(shift(val(xn),
Mode.RIGHT, 16), Mode.LEFT, 16), shift(shift(val(xm), Mode.RIGHT, 16), Mode.LEFT, 16))

109. double rm → result = mul(val(xm), val(2))

110. multiply rn and Type.BOTTOM HALFWORD of rm→ result = mul(val(xn), shift(val(xm), Mode.LEFT,
16))

111. multiply rn and Type.TOP HALFWORD of rm→ result = mul(val(xn), shift(val(xm), Mode.RIGHT,
16))

112. 〈 multiply sm in xn, xm | multiply sn operand with sm | multiply sm of xn, xm | multiply two floating-
point value | multiply together xn, xm register value | multiply xn, xm register value | multiply value
from xn, xm | multiply value in register specify by xn, xm | multiply value in xn, xm | it multiply
integers | multiply two unsigned integers in xn, xm | multiply two unsigned 32-bit integers in xn, xm
〉 → result = mul(val(xn), val(xm))

113. multiply 32-bit sign value in rn with bottom sign halfword of rm → result = mul(word(val(xn)),
halfWord(val(xm)), Type.BOTTOM HALFWORD)

114. multiply 32-bit sign value in rn with top sign halfword of rm → result = mul(word(val(xn)), half-
Word(val(xm)), Type.TOP HALFWORD)

115. 〈 produce arithmetic negative of value | negate sm 〉 → result = neg(val(xm))

116. perform not-operation on value → result = not(result)

117. perform or-operation on bits in rn with complement of correspond bits in val(op)→ result = or(val(xn),
comp(val(op))); write(xd, result)

118. perform or-operation on value in xn, �1 → result = or(val(xn), val(�1)); write(xd, result)

119. rotate value from rm right by n → result = rot(val(xm), rorn, Mode.RIGHT)

120. convert val(xn) from sm to 32-bit integer → result = round(fromFloatingPoint(val(xm), suffix))

121. round to nearest even → result = round(result, RoundType.NEAREST EVEN)

122. round to nearest tie away → result = round(result, RoundType.NEAREST TIE)

123. round towards minus infinity → result = round(result, RoundType.TOWARDS MINUS INF)

124. round towards plus infinity → result = round(result, RoundType.TOWARDS PLUS INF)

125. round towards zero → result = round(result, RoundType.TOWARDS ZERO)

126. 〈 saturate range | saturate 〉 -2 ∧ (�1-1) ≤ x ≤ 2 ∧ (�2-1)-1 → result = sat(resultArr, -Math.pow(2,

�1-1), Math.pow(2, �2-1)-1); write(xd, result)

127. saturate result for �1 in destination register to range 0 ≤ x ≤ 2 ∧ �2-1 → result = sat(resultArr, 0,
Math.pow(2, �2)-1); write(xd, result)

128. saturate result in destination register to range 0 ≤ x ≤ 2 ∧ 16-1 → result = sat(resultArr, 0,
Math.pow(2, 16)-1); write(xd, result)

129. saturate to range 0 ≤ x ≤ 2 ∧ n-1 → result = sat(resultArr, 0, Math.pow(2, n)-1); write(xd, result)

130. saturate two sign 16-bit 〈 halfword value | Type.HALFWORD 〉 of register with value to saturate
from select by bite position in n → result = sat(toArray(val(xm, Type.HALFWORD)), -Math.pow(2,
n)+1, Math.pow(2, n)-1)

131. saturate two unsigned 16-bit 〈 halfword value | Type.HALFWORD 〉 of register with value to saturate
from select by bite position in n→ result = sat(toArray(val(xm, Type.HALFWORD)), 0, Math.pow(2,
n)-1)

132. extract shift(result, Mode.RIGHT, 32) → result = shift(result, Mode.RIGHT, 32)

133. shuffle 〈 halfword result by one bite to right, halve data | Type.HALFWORD result to right by one
bit, halve data | result by one bite to right, halve data 〉 → result = shift(resultArr, Mode.RIGHT, 1)

134. shuffle 〈 byte | Type.BYTE 〉 result by one bite to right, halve data → result = shift(resultArr,
Mode.RIGHT, 1)

135. perform logical-shift-�1 of bits in rm by number of place specify by immediate imm or value in
least-significant byte of register specify by rs → result = shift(val(xm), Mode.valueOf(�1), val(im,
shift(val(xs), Mode.LEFT, 8))); write(xd, result)

136. sign extend 〈 it to | to 〉 �1-bits → result = signedExt(result, �1)

137. calculate square root of value in sd → result = sqrt(val(xm))

138. if carry flag be clear, result be reduce by one → result = sub(result, val(1), env.flags.C); write(xd,
result)

139. subtract sign bottom halfword of rm from top sign halfword of rn→ result = sub(shift(halfWord(val(xn)),
Mode.RIGHT, 16), shift(halfWord(val(xm)), Mode.LEFT, 16))

140. subtract Type.TOP HALFWORD of rm from bottom halfword of rn → result = sub(shift(val(xm),
Mode.RIGHT, 16), shift(val(xn), Mode.LEFT, 16))

141. subtract bottom halfword of rm from Type.TOP HALFWORD of rn → result = sub(shift(val(xn),
Mode.RIGHT, 16), shift(val(xm), Mode.LEFT, 16))

142. subtract value 〈 in rn of operand2 | of operand2 in rn 〉 → result = sub(val(op), val(xn)); write(xd,
result)

143. subtract 〈 value of result | product | products 〉 from ra → result = sub(val(xa), result)

144. subtract products from sd → result = sub(val(xd), result)

145. subtract value 〈 of | in 〉 val(�1, im) 〈 from value in rn | 〉 → result = sub(val(xn), val(�1, im));
write(xd, result)

146. subtract value in rn from zero → result = sub(val(xn), val(0))

147. subtract value of imm12 in rn → result = sub(val(xn), val(im)); write(xd, result)

148. 〈 subtract sm from sn | subtract value of rm in rn 〉 → result = sub(val(xn), val(xm))

149. optionally round by add 0x80000000→ result = suffix == ’r’ ? add(result, Arithmetic.fromHexStr(80000000))
: result

150. optionally round, otherwise truncate result→ result = suffix == ’r’ ? round(result, RoundType.NORMAL)
: truncates(result)

151. convert from 32-bit integer to sm → result = toFloatingPoint(val(xm))

152. copy value of val(�1, im) into rd → result = val(�1, im); write(xd, result)

153. take val(�1) → result = val(�1)

154. copy 〈 imm to sd | value of imm16 〉 → result = val(im); write(xd, result)

155. copy value of operand2 into rd → result = val(op); write(xd, result)

156. read sm → result = val(xm)

157. copy content of sm to another → result = val(xm); write(xd, result)

158. perform exclusive-or-operation on value in xn, op → result = xor(val(xn), val(op)); write(xd, result)

159. perform exclusive-or-operation on value in xn, xm → result = xor(val(xn), val(xm)); write(xd, result)

160. 〈 zero extend to �1-bits | zero extend it to �1-bits | size less than word be zero extend to �1-bits 〉
→ result = zeroExt(result, �1)

161. 〈most significant | top 〉 〈 32-bits | 32 bits | 32-bits of result | sign 32-bits 〉 → shift(result, Mode.RIGHT,
32)

162. 〈 lower | least significant 〉 〈 32-bits | 32 bits | 32-bits of result 〉 → shift(shift(result, Mode.LEFT, 32),
Mode.RIGHT, 32)

163. memory address to store to be sum of value in register specify by either rn or sp and immediate value
imm → store(add(val(xn, xp), val(im)), val(xt, lt))

164. memory address to store to be sum of value in register specify by xn, �1 → store(add(val(xn),
val(�1)), val(xt, lt))

165. store two register unsigned Type.BYTE to memory → store(add(val(xn), val(offset), offsetType),
val(xt), val(xt2))

166. store register word value into memory → store(add(val(xn), val(offset), offsetType), val(xt))

167. store 〈 byte | Type.BYTE 〉 to memory address → store(val(xn), bytes(val(xt)))

168. store 〈 halfword | Type.HALFWORD 〉 to memory address → store(val(xn), halfWord(val(xt)))

169. store register unsigned Type.BYTE 〈 to | into 〉 memory → store(val(xn), val(xt))

170. store xt, xt2 word value to memory → store(val(xn), word(val(xt)), word(val(xt2)))

171. store 〈 word | Type.WORD 〉 to 〈 memory address | memory 〉 → store(val(xn), word(val(xt)))

172. store least-significant byte contain in register by rt into memory→ Type lt = Type.BOTTOM BYTE

173. store lower halfword contain in register by rt into memory→ Type lt = Type.BOTTOM HALFWORD

174. store word contain in register by rt into memory → Type lt = Type.WORD

175. bottom halfword → Type.BOTTOM HALFWORD

176. 〈 each byte | byte data | byte value 〉 → Type.BYTE

177. 〈 halfword data | halfword value | each halfword 〉 → Type.HALFWORD

178. top halfword → Type.TOP HALFWORD

179. 〈 word data | register word value 〉 → Type.WORD

180. operand2 or imm〈 12 | 16 〉 → val(op, im)

181. value of operand2 → val(op)

182. rm or 〈 immediate value | imm | immediate specify by imm 〉 → val(xm, im)

183. value of rm → val(xm)

184. value in 〈 register | rn 〉 → val(xn)

185. move value of general-purpose register to fpscr → write(’F’, val(xt))

186. accumulate result into rd → write(xd, accumulation(result))

187. add result to sd → write(xd, add(result, val(xd)))

188. write halfword result to Type.TOP HALFWORD of rd→ write(xd, halfWord(result), Type.TOP HALFWORD)

189. write sign most significant 32-bits of 48-bit 〈 product | result 〉 in rd→ write(xd, halfWord(shift(result,
Mode.RIGHT, 32)))

190. if shifted, shift value of rm be write to �1 of rd → write(xd, halfWord(shift(val(xm), shiftMode, s)),

�1)

191. write value of �1 of rn to �2 of rd → write(xd, halfWord(val(xn)), �1)

192. move largest to rd → write(xd, max(val(xn), val(xm)))

193. move smallest to rd → write(xd, min(val(xn), val(xm)))

194. write negation of result to rd → write(xd, neg(result))

195. write 〈 unsigned result | signed result 〉 to Type.BOTTOM HALFWORD of rd → write(xd, result,
Type.BOTTOM HALFWORD)

196. write 〈 sign | unsigned 〉 result to Type.TOP HALFWORD of rd→ write(xd, result, Type.TOP HALFWORD)

197. 〈 place result in rd | write result to rd | place result into rd | write rd | write to rd | write result in rd |
place result in sd | place result in sm | write result to sd | place result in sd | write unsigned byte result
to correspond byte of rd | write unsigned result in correspond byte in rd | write unsigned result in
correspondingByte of rd | write result in correspondingByte of rd | write difference result of four sign
bytes in correspondingByte of rd | write result as two unsigned halfwords in rd | write each unsigned
halfword result to correspond halfwords in rd | write unsigned result in correspondingHalfWord of
rd | write result in correspondingHalfWord of rd | write difference result of two sign halfwords in
correspondingHalfWord of rd | write unsigned result to correspondingHalfWord in rd | write unsigned
byte result in correspondingByte of rd | write result as two sign 16-bit halfwords to rd | write signed
byte result in rd | write byte result in rd 〉 → write(xd, result)

198. write 〈 halve halfword result | halfword result 〉 in rd → write(xd, result)

199. convert 16-bit big-endian data into little-endian data or 16-bit little-endian data into big-endian data
→ write(xd, rev(val(xn), Type.HALFWORD))

200. convert either 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian
data → write(xd, rev(val(xn), Type.WORD))

201. reverse bite order in 32-bit word → write(xd, rev(val(xn), Type.WORD))

202. write shift(result, Mode.RIGHT, 32) of result in rd → write(xd, shift(result, Mode.RIGHT, 32))

203. place shift(shift(result, Mode.LEFT, 32), Mode.RIGHT, 32) in rd → write(xd, shift(shift(result,
Mode.LEFT, 32), Mode.RIGHT, 32))

204. 〈 write 32-bit signed of result to rd | write 32-bit result of multiplication in rd 〉 → write(xd,
word(result))

205. 〈 place | write 〉 〈 �1 of result | �1 〉 〈 in | to 〉 rdhi → write(xhi, �1)

206. 〈 place | write 〉 〈 �1 of result | �1 〉 〈 in | to 〉 rdlo → write(xlo, �1)

207. 〈 write result back to xhi, xlo | write result in xlo, xhi | write 64-bit result of multiplication and
addition in xlo, xhi 〉 → write(xlo, shift(shift(result, Mode.LEFT, 32), Mode.RIGHT, 32)); write(xhi,
shift(result, Mode.RIGHT, 32))

208. write result to sm → write(xm, result)

209. add result to sign saturate value in rn → write(xn, add(result, sat(toArray(val(xn)), -Math.pow(2,
31), Math.pow(2, 31)-1)))

210. negate 〈 first floating-point operand register | rn 〉 → write(xn, neg(val(xn)))

211. subtract result saturate value in rn → write(xn, sub(result, sat(toArray(val(xn)), -Math.pow(2, 31),
Math.pow(2, 31)-1)))

212. load xt, xt2 with 〈 sign byte value from memory | unsigned byte 〉 → write(xt, load(Type.BYTE,
add(val(xn), val(offset), offsetType))); write(xt2, load(Type.BYTE, add(val(xn), val(offset), offset-
Type)))

213. load register specify by rt with sign extend Type.BYTE from memory → write(xt, load(Type.BYTE,
signedExt(add(val(xn), val(xm)), 32)))

214. load register with two word value from label → write(xt, load(Type.BYTE, val(label))); write(xt,
load(Type.BYTE, val(label)))

215. load 〈 byte | Type.BYTE 〉 from memory address → write(xt, load(Type.BYTE, val(xn)))

216. load register specify by rt with zero extend Type.BYTE from memory → write(xt, load(Type.BYTE,
zeroExt(add(val(xn), val(xm)), 32)))

217. load xt, xt2 with 〈 sign | unsigned 〉 halfword value from memory→ write(xt, load(Type.HALFWORD,
add(val(xn), val(offset), offsetType))); write(xt2, load(Type.HALFWORD, add(val(xn), val(offset),
offsetType)))

218. load register specify by rt with sign extend 〈 halfword value | Type.HALFWORD 〉 from memory →
write(xt, load(Type.HALFWORD, signedExt(add(val(xn), val(xm)), 32)))

219. load register specify by rt with zero extend 〈 halfword value | Type.HALFWORD 〉 from memory →
write(xt, load(Type.HALFWORD, zeroExt(add(val(xn), val(xm)), 32)))

220. load 〈 register with word value from memory | word from memory address 〉 → write(xt, load(Type.WORD,
add(val(xn), val(offset), OffsetType.TYPE1)))

221. load xt, xt2 with word value from memory → write(xt, load(Type.WORD, add(val(xn), val(offset),
offsetType))); write(xt2, load(Type.WORD, add(val(xn), val(offset), offsetType)))

222. load register specify by rt with word value from memory→ write(xt, load(Type.WORD, add(val(xn),
val(xm))))

223. 〈 load register specify by rt from word in memory specify by label | load register with word value from
pc-relative memory address 〉 → write(xt, load(Type.WORD, val(label)))

224. load Type.WORD from memory address → write(xt, load(Type.WORD, val(xn)))

225. write to rt → write(xt, result)

226. 〈 two floating-point | two source register | operand register | first and second operand register | first
and second operands | rn and rm 〉 → xn, xm

227. two register → xt, xt2

228. 〈 result be not round before accumulation | imm be ignore by processor | if required, it can be retrieve
by exception handler to determine what service be be request | memory address to load from be sum
of value in register specify by xn, xm | result be not round before addition | result value be 32 if no
bits be set and zero if bit[31] be set | it clear width bits in rd, start at low bite position lsb | it replace
width bits in rd start at low bite position lsb, with width bits from rn start at bit[0] | other bits in rd
be unchanged | do nothing | convert to integer 〉 →

	Introduction
	Motivation
	Problem Statement
	Related Work
	Contributions
	Thesis Structure

	Preliminaries
	Natural Language Processing Techniques
	Sentence Syntax Parsing
	TF-IDF Score
	Cosine Similarity Measure

	Machine Learning Techniques
	Probabilistic Distributions
	Latent Dirichlet Allocation

	IoT Malware Analysis
	Obfuscation Techniques
	Typical Approaches
	Malware Analysis Based on Control Flow Graph
	Dynamic Symbolic Execution
	On-the-fly CFG Generation
	BE-PUM for x86/Windows

	ARM Formal Semantics
	ARM Processor
	Architecture
	Cortex Series
	Instructions

	Formal Semantics of ARM
	Abstract Environment
	Operational Transitions
	Java Specifications as Semantics

	Semantics Extraction Overview

	Syntax Normalization and Semantics Interpretation
	Instructions Normalization
	Automatic Instructions Selection
	Rewriting Rules Preparation

	Dynamic Symbolic Executor Generation
	Generation Overview
	Operations Code Generation
	Flags Update Detection
	Path Conditions Generation

	Conformance Testing
	Automatic Tests Generation
	Test Case Structure
	Testing Procedure

	Experiments
	Instruction Selection Strategy
	Successfully Generated Instructions
	Discussion
	Running Example of the Generated DSE Tool

	Conclusion and Future Directions
	Result and Conclusion
	Future Directions

	Bibliography
	Appendix
	 This dissertation was prepared according to the curriculum for the collaborative education program organized by Japan Advanced Institute of Science and Technology and University of Engineering and Technology, Vietnam National University.

