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Abstract

Since the last decades, malware has been growing exponentially with fast
infection rate. With the successive evolution, the modern malware created
with obfuscation techniques becomes a great challenge for antivirus software
vendors and malware researchers. Malware analysts seek for the malware
samples to inspect the malicious behaviors and threat techniques and try to
develop defenses against malware attacks. For the same purpose, many mal-
ware databases are collecting the new malware samples periodically and share
the samples with the malware analysts to aid in their research. Intention-
ally, these malware sources have been collecting and storing the garbage files
together with the malware samples. Unexpected interruptions like network
failures can cut out the downloading process of malware sample, resulting as
an incomplete file as a prefix of the other. We call it a garbage, which would
lead to incorrect bias when applying statistical analyses.

Our goal of this research is to refine the malware data sets by finding the
garbage files among the new collected samples. Each garbage is a prefix of
a complete malware and checking a pair is an easy binary pattern matching.
However, if target data sets become huge, the number of combinations to
compare grows in the square manner. Instead, we investigate an application
of clustering techniques as a preprocessing. Then, each data set is decom-
posed into certain numbers of clusters consisting of similar binary codes, and
the binary pattern matching of pairs of malware is limited to each cluster.
Our target data sets start with raw data sets of IoT malware (5,763 malware
samples) collected at Yokohama National University and further check on
data taken from VirusShare, from 2012 June 15 till November 27 and from
2019 January 20 to February 12, as the total more than 1TB. They consist
of 30 folders containing either 65536 or 131072 samples in each. In addition,
we combined two to five of these data folders to see the behavior.

We observed that the data sets from Virusshare include 1 to 8 percent
amount of garbage while IoT malware raw data set provided by Yokohama
National University has more than 40 percent of garbage. These experiments
drive us to speed up the binary pattern matching algorithm to be able to
handle larger data sets.

We tested five unsupervised clustering methods: k-means, hierarchical
clustering, DBSCAN, spectral clustering and Birch. Among these methods,
k-means turns out to be the most suitable algorithm to cluster the malware
data sets in terms of runtime and accuracy. Although it can separate the



data set more accurately than other algorithms, some resulting clusters are
unbalanced with the number of files in them.

We implemented nested clustering algorithm to reduce the unbalanced
data clusters. We applied k-means iteratively until the number of files in
every resulting cluster is less than the limited amount. Then, the binary
pattern matching is processed to find the garbage in each cluster. Based
on our experimental results, it can be seen that the combination of nested
clustering and matching process executes two to three times faster than the
matching process by oneself. Besides, it maintains the higher accuracy of
matching garbage.
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Chapter 1

Introduction

1.1 Motivation

Malware, also known as malicious software represents one of the most harm-
ful programs that threaten the individuals’ privacy and computer’s security.
Surfing the internet, the number of new malicious software has increased ex-
ponentially making cybersecurity a target for spreading these threats. Mal-
ware infections are among the most frequently encountered threats in com-
puter security and it has also been increasing periodically. The increased
number of malware samples have been creating many challenges for antivirus
companies.

CNN Tech stated that more than 317 million of new malware was detected
last year implying that a huge amount of malware were generated day by
day[1]. On the other hand, many malware collecting systems like honeypot
have been collecting the newly created large amount of malicious programs
(malware) for the purpose of registering them after examining and classifying
the malware according to their characteristics. Developing new techniques
and defenses against malware threats will be followed up afterward.

While collecting malware files through the network, some of them might
not be completely transferred to the destination due to some interruptions
such as a network outage or system failures. As a result, the prefix of some
malware will be collected as a garbage file together with the next attempt
of collecting the complete malware. The proportions of collected garbage
files are not small enough to be negligible. Finding such garbage files from
malware databases as a preprocessing step could bring accurate analytical
results and high efficiency for malware analyses.

This research aimed to implement the method for refining the data set
by detecting garbage among the mixture of malware with garbage files. We
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proposed a novel method for detecting garbage from large malware databases
using malware binary information.

1.2 Contributions

Dealing with large databases required speedy and scalable techniques. This
study focuses on modifying the garbage detection technique to be fast enough
to handle huge data set. Our contributions are summarized as follows:

• Grouping the data set into relevant small clusters using nested k-means
clustering algorithm

• Combing binary pattern matching together with quick sort algorithm
to detect garbage from each cluster simultaneously

• Comparing the efficiency of nested k-means clustering algorithm other
clustering algorithms

As a final step, we evaluated the performance and accuracy of our proposed
method for refining the malware databases.
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Chapter 2

Malware Database

2.1 PC and IoT malware

Over the last decades, computers have become increasingly popular and com-
puter technology has made several important impacts on our society. Mean-
while, the Internet has been established as an indispensable part of daily life.
Not long after the introduction of the PC, computer viruses evolved and have
become ever more sophisticated and troublesome. Cybercriminals designed
computer programs, called malicious software or malware, to penetrate and
harm computers without user’s content. So far, malicious software is mostly
focused to target PCs running on Microsoft Windows OS, the most widely
used operating system.

As the Internet becomes an indispensable tool, the focus of malware au-
thors and operators slowly but steadily started expanding towards the In-
ternet of Things (IoT) malware. The Internet of Things (IoT) is a system
of extending the interconnection among computing devices through the In-
ternet to share the resources and improve user experiences. IoT devices are
everywhere and are taking part in more and more aspects of modern life
every single day. As the current IoT devices are typically CPU-controlled
micro-computers, many existing malicious threats infecting the computers
through the Internet can also attack the IoT devices[2]. Malware develop-
ers take advantage of IoT and advanced interconnecting protocol to widely
spread their malicious software.

2.2 Evolution of the Threats

As technology advanced with years, malware becomes more complex. Mal-
ware authors use sophisticated techniques to enhance the malware effects,
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Figure 2.1: Malware evolution throughout 10 years

with increasing variety. According to the Cisco 2018 annual cybersecurity
report[3], the evolution of malware was one of the most significant develop-
ments. The abundant amount of malware grew significantly during 2000 and
2010. From then and till now, the sophisticated malware has been evolving
rapidly[4].

AV-test institute collected and analyzed the evolution of malware through-
out ten years. Form the (Figure 2.1), we can see the excessive growing number
of malware year by year.

2.3 Garbage Data

Dealing with malware instant growth in volume and variety become more and
more challenging not only for industry area but also for academic research.
Malware researchers frequently seek malware samples to analyze threat tech-
niques and develop defenses. For the purposes of malware statics, analysis
and to catch up with its trend, many AV vendors and malware collecting
systems try to gather the released malware.

While collecting the malware through the Internet to the collecting servers,
some of them might not be transferred successfully to the servers since net-
work interruptions could happen, unfortunately. We named such kind of in-
completely collected files as garbage data. Therefore, the malware databases
have been collecting garbage files unintentionally while collecting a significant
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amount of malware samples.
In this research, we figure out how to filter the garbage data from the

malware samples. We performed clustering analysis as a first step of the
data refining process. Garbage finding process will be carried out after ob-
taining the separated groups of malware samples. Clustering can be done by
different algorithms which vary in the way of determining the difference or
similarity among the data samples to formed the clusters and how proficiently
they can find those clusters. We will be using the well-known k-means algo-
rithm for clustering. Along with k-means, other clustering algorithms such
as spectral clustering, hierarchical clustering, density-based spatial clustering
(DBSCAN) and balanced iterative reducing and clustering using hierarchies
(Birch) will be tested on large malware data set. To be able to handle the
massive amount of data samples, we upgraded the simple k-means algorithm
into nested k-means. The results obtained from these clustering techniques
will be compared on scalability, performance and accuracy validations.

2.4 Binary Pattern Matching

Pattern matching is a conventional and existing problem in the field of com-
puter science. It is one of the most basic mechanisms that supports various
programming languages. Various real-world applications make use of pattern
matching algorithm as a key role in their tasks. The patterns are generally in
the shape of either a sequence or tree structure. For the sequence patterns,
string matching involves as a one-dimensional pattern matching.

Typical pattern matching of binary strings is checking and locating the
occurrence of one pattern, g built over a binary alphabet in another larger
binary string, m, in which each character in both g and m is represented by a
single bit. Unlike pattern recognition, the match has to be exactly the same
in pattern matching.

In case of searching garbage from malware data set, counting the occur-
rence of g inside m is not necessary as the garbage file is just an incomplete
file or prefix part of a malware file. Therefore, we just need to compare g
and m, each bit by bit. Let g has a shorter length by bit then m. Then,
matching procedure starts from comparing the first bit of each binary string
and continue the matching process till the last bit of the g matched with the
current bit, but not the last bit of the m. If g has the exact same bits as
m, g is decided as a garbage file. But if the current bit of each file does not
match with each other anymore while comparing process, we assume that
both of them are not garbage files. The binary pattern matching algorithm
is implemented using python language.
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Figure 2.2: A garbage comparison with relative malware

Algorithm 1 describes the workflow of pattern matching procedure for
binary files. The algorithm takes binary files as input and sets of malware
files and garbage files. Finding garbage from binary files consists of two
main steps. First, the input data set is sorted in ascending order. Rather
than pattern matching the binary files with various sizes, making the files
in order and comparing them later help in accelerating the matching per-
formance. The binary files are sorted by the length size using quick sort
algorithm, whose worst-time complexity is O(n2) but average-case complex-
ity is O(nlogn). Besides quick sort, we also tried the merge sort algorithm
with worst-case complexity of O(nlogn). Even though Quicksort has O(n2)
in the worst case, that can happen only when the elements are already sorted
in ascending or descending order, which is a very rare case in malware data
set. As the innermost loop of quick sort algorithm is simpler, it can also get
about 2 to 3 times faster than the merge sort. Moreover, quick sort does not
use additional storage space to perform sorting while merge sort requires a
temporary array to merge the final sorted arrays. More importantly, sorting
binary files with quick sort practically faster than with merge sort. These
reasons drive the decision to use quick sort in sorting the data set before
the matching process. Binary pattern matching takes place as a second step.
Since the string pattern is just the binary alphabet, we use exclusive or (xor)
binary operation for comparing each bit of two files. According to the xor
logical rules, if any of the resulting bits evaluates as 1, matching process
stops and none of the files are assumed as garbage. If there is no resulting
bit as 1 till the end of the shorter file, we marked that shorter file as garbage.
The algorithm for matching two binary files is described in algorithm 2.
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Algorithm 1: The algorithm for finding garbage from malware data
set

Input : S - Binary data set
Output: M – Malware data set, G – Garbage data set
Q← QuickSort(S); #Q[i] ≥ Q[j] ∀i < j temp← S[0];
M ← [temp];
G← [];
for i← 1 to length(Q)− 1 do

res←Matching(Q[i], temp);
if res is − 1 then

G.append(Q[i], temp);
continue;

else
S ′.append(Q[i]);
temp← Q[i];

end

end
return M,G;

Algorithm 2: The algorithm for comparing two binary files

Input : b,b’ – binary files
Output: The result of matching
buf1 ← bytearray(b.read());
buf2 ← bytearray(b′.read());
min length← minlength(buf1), length(buf2);
for i← 0 to min length do

if buf1[i] xor buf2[i] > 0 then
break;

end

end
if i < min length then

return 0;
else if i < length(buf1) then

return 1;
else

return −1;
end
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2.5 Collected Garbage Data

For the purpose of practical malware analysis, there are some free sources
that provide malware samples. Malware researchers make contributions with
some malware sources to analyze the attacks and techniques. In this research,
we collected the data from VirusShare.com website[5], a malware repository
collecting, indexing, and freely sharing samples of malware to analysts, re-
searchers, and the information security community.

2.5.1 Dataset

We collected 30 malware data sets from Virusshare, in which some of them
contain 131,072 samples and some have 65536 samples in it. These data sets
are listed in table 2.1, expressing their size, the number of files in each data set
with the time added to the Virusshare database. To evaluate the scalability
for the algorithms, we enlarge the data sets by making the combinations of
two to five collected data sets, presented in table 2.2

Recently, a survey for IoT malware detection with deep learning ap-
proaches had been conducted over 15,000 malware samples supplied by Yoko-
hama National University[6]. For this research, we also received 55,763 mal-
ware samples collected with IoTPOT2, by Yokohama National University.

2.5.2 Result

First, we simply tried the binary pattern matching algorithm by oneself to
know the garbage percentage of each collected and combined malware data
set. The average percentage of garbage composition for a data set is around
4%, ranging from 1C to 8%. Execution time varies from one data set to
another depending on the size of the data set. IoT malware data set contains
a significate amount of garbage in it, which is more than 40% of the data set.
Table 2.3 shows the average execution time and average garbage composition
percentage of malware data sets with the different number of files inside.
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Table 2.1: Collected malware data sets from VirusShare

Data ID No. of Files Size Uploaded Time
VirusShare 00000 131,072 21.6 GB 2012-06-15
VirusShare 00002 131,072 59.1 GB 2012-06-16
VirusShare 00003 131,072 39.8 GB 2012-06-16
VirusShare 00004 131,072 30.6 GB 2012-06-16
VirusShare 00005 131,072 34.9 GB 2012-06-17
VirusShare 00006 131,072 53.8 GB 2012-06-29
VirusShare 00007 131,072 66.3 GB 2012-07-06
VirusShare 00008 131,072 75.9 GB 2012-07-07
VirusShare 00009 131,072 64.1 GB 2012-07-14
VirusShare 00010 131,072 45.3 GB 2012-09-15
VirusShare 00011 131,072 38.1 GB 2012-09-22
VirusShare 00012 131,072 37.4 GB 2012-09-25
VirusShare 00013 131,072 28.2 GB 2012-10-05
VirusShare 00014 131,072 38.7 GB 2012-10-11
VirusShare 00015 131,072 37.9 GB 2012-10-20
VirusShare 00016 131,072 38.8 GB 2012-10-25
VirusShare 00017 131,072 45.5 GB 2012-10-25
VirusShare 00018 131,072 39.5 GB 2012-10-29
VirusShare 00019 131,072 37.3 GB 2012-10-31
VirusShare 00020 131,072 55.5 GB 2012-11-05
VirusShare 00021 131,072 75.4GB 2012-11-20
VirusShare 00022 131,072 77.7 GB 2012-11-27
VirusShare 00323 65,536 23.6 GB 2018-06-30
VirusShare 00350 65,536 22.4 GB 2019-01-20
VirusShare 00351 65,536 18.3 GB 2019-01-20
VirusShare 00352 65,536 13.7 GB 2019-01-20
VirusShare 00353 65,536 15.5 GB 2019-01-29
VirusShare 00354 65,536 15.5 GB 2019-01-31
VirusShare 00355 65,536 12.8 GB 2019-02-08
VirusShare 00356 65,536 16.5 GB 2019-02-11
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Table 2.2: The combinations of Virusshare data sets

No. of Combining Datasets No. of Files Data ID

2 262,144

VirusShare 00002 00003
VirusShare 00003 00004
VirusShare 00004 00005
VirusShare 00005 00006
VirusShare 00007 00008
VirusShare 00011 00012
VirusShare 00015 00016
VirusShare 00016 00017

3 393,216

VirusShare 00004 00005 00006
VirusShare 00007 00008 00009
VirusShare 00011 00012 00013
VirusShare 00015 00016 00017

4 524,288

VirusShare 00006 00007
00008 00009

VirusShare 00011 00012
00013 00014

VirusShare 00015 00016
00017 00018

5 655,360
VirusShare 00015 00016 00017

00018 00019

Table 2.3: Average garbage percentage and execution time of different data
sets

No.of Files Avg. File Size Avg. Execution Time Avg. Garbage (%)

55,763 (IoT) 6.2 GB 1.17hrs 41.3%
131,072 40 GB 2.75 hrs 2.8%
262,144 88 GB 9.50 hrs 2.5%
393,216 146 GB 15.75 hrs 4.0%
524,288 191 GB 18.45 hrs 4.8%
655,360 199 GB 20.00 hrs 5.4%
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Chapter 3

Clustering Techniques

Clustering is a task of gathering the data points into a number of groups
based on their similarity such that the data points in each group are more
similar to each other than the data points from other groups. The resulting
groups having similar data points are called clusters. The major difference
from other machine learning analyses such as classification and regression is
the type of data set used to train the models. This fact also defines whether
the machine learning technique is a supervised or unsupervised approach.
While classification or regression model uses a data set which contains data
points tagged with associated class labels (supervised learning), clustering
only required the data set having data points without provided with the
labels (unsupervised learning).

To find the most suitable clustering technique, we compare five differ-
ent algorithms: k-means, spectral clustering, hierarchical clustering, density-
based spatial clustering (DBSCAN) and balanced iterative reducing and
clustering using hierarchies (Birch). They can be distinguished into three
categories[7]:

1. Partitioning

2. Hierarchical

3. Density-based

Partitioning algorithms separate the data set into the specified number of
clusters based on the similarity or distance among the data samples. Hierar-
chical algorithms compose the clusters in the hierarchical structure. Density-
based algorithms find the dense regions among data samples to form clusters
and low-density regions create boundaries between the clusters.

In this chapter, we provide the detail of the clustering algorithms. For
implementing the clustering algorithms, we referred the source code from
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Keras and Scikit-learn frameworks. Since the data samples we used are
unlabeled malware files, we choose the unsupervised learning algorithms that
are known to be working well with large data set.

3.1 K-means Algorithm

K-means clustering is one of the simplest and frequently used unsupervised
learning algorithms, especially in data mining and statistics. Being a par-
titioning algorithm, its goal is to form groups of data points based on the
number of clusters, represented by the variable k. K needs to be predefined
before the execution. K-means uses an iterative refinement method to pro-
duce its final clustering based on the number of clusters defined by the user
and the data set. Initially, k-means randomly chooses k as the mean values
of k clusters, called centroids, and find the nearest data points of the chosen
centroids to form k clusters. Then, it iteratively recalculates the new cen-
troids for each cluster until the algorithm converges to one optimum value.
K-means clustering would be suited with the numerical data with a low di-
mensionality because numerical data is used to compute the mean value. The
type of data best suited for K-Means clustering would be numerical data with
a relatively lower number of dimensions. The algorithm works as follow:

1. K points are randomly initialized as centroids of clusters based on the
predefined value of k.

2. To form the k clusters, every data points of the data set are assigned
to the nearest centroid by the distance.

The Euclidean distance is used to in calculating the distance between
each data points and the initialized centroids. Although there are many
other metrics to find the closest distance, we apply Euclidean distance
because several previous research about clustering analysis gained great
outcomes using the Euclidean distance.

3. The centroids are recalculated by averaging all of the data points as-
signed in each cluster so that the total intra-cluster variance can be
reduced.

4. Step 2 and 3 iterate until some criteria is met.

Criteria are normally, when there are no changes in the centroids’ val-
ues, the sum of distances between the data points and the centroid of
each cluster does not change anymore, the data points assigned to the
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clusters are the same as the previous assignment or the maximum itera-
tion number has reached in case the algorithm is given a fixed iteration
times[8].

Advantages

− Since k-means is a simple clustering algorithm, it can be implemented
easily.

− K-means has only a few computations, only computing and comparing
distance among data points and grouping clusters. Thus, it can be
computationally faster than hierarchical clustering, having the time
complexity of O(n), where n is the number of data samples.

− It can scale up to large data set.

− Additionally, It can also easily adapts to new data samples.

Disadvantages

− The number of clusters, k has to be specified manually.

− The clustering results can vary depending on initial values. K-means
also randomly select the initial centroids for k clusters. Therefore,
the results can be different from one execution and another, lacking
inconsistency.

− K-means has difficulty with clustering data sets of varying sizes and
density.

− K-means cannot identify outliers. The outliers or noises of the data set
can effect in clustering process as the cluster might drag the outliers in
or outliers can themselves becomes a cluster [9].

3.2 Hierarchical Clustering

Hierarchical clustering algorithms seek to build a hierarchy of cluster. It
works well for the data set with nested clusters, eg. geometrical data. It starts
with some initial clusters and gradually converge to the solution. Hierarchical
clustering has two categories: agglomerative and divisive. The agglomerative
approach initially takes each data point as an individual cluster and the
iteratively merge the clusters until the final cluster contains all data points
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in it. According to how this approach merges the clusters, it is also called a
bottom-up approach. As an opposite technique of agglomerative clustering,
divisive clustering techniques follow top-down flow which starts from a single
cluster having all data points in it and iteratively split the cluster into smaller
ones until each cluster contains one data point. For our research, we use
agglomerative approach for clustering malware data set.

Agglomerative hierarchical clustering algorithm includes the following
steps:

1. As an initial step, the algorithm takes each data point as a single cluster
and we decide a specific proximity matrix to determine the distance
between the clusters.

There are four distance functions available for proximity matrix: single
linkage (min), average linkage, complete linkage and ward (max)[10].
Single linkage means the distance between two clusters is defined as
the minimum distance between one point of the first cluster and an-
other point of the second cluster. Complete linkage takes a maximum
distance of two data points value as the distance between two clusters.
Average linkage calculates the distance of all data points from the first
cluster with all others from the second cluster and takes the average
distance as the distance between the clusters. Ward is similar to av-
erage linkage except that it uses the sum of squares to calculate the
distance between the points. In this research, we use ward as a distance
function.

2. To find the closest pair of clusters, it computes the similarity (distance)
between each of the clusters.

3. Then, the similar clusters are merged to form a cluster according to
the distance function.

4. Iteration through step 2 and 3 continues until all data points are merged
into one last cluster.

In general, hierarchical clustering is forming a single tree of clusters where
each node is representing the clusters and each data point starts as a tree
leaf. The root of the tree is the final cluster containing all of the data points
(Figure 3.2) shows how hierarchical clustering cut out the k clusters from the
final cluster (complete tree). In the figure, the algorithm successively forms a
single tree of clusters and then cut at a certain level k, resulting in 4 clusters.

14



Figure 3.1: A dendrogram representing the clustering technique of hierarchi-
cal clustering algorithm

Advantages

− The number of clusters is not necessarily required to be specified.

− Like k-means, hierarchical clustering algorithms are easy to implement.

− It can output the hierarchical structure of a cluster tree(dendrogram),
which can help in deciding the number of clusters.

Disadvantages

− The main drawback of hierarchical clustering is its time complexity.
Comparing with other algorithms, it has a relatively higher complexity
of O(n2logn), n being the number of data points.

− There are no backtrackings which mean once one cluster is created, the
membership data points cannot be moved around.

− Depending on the choice of the distance matrix, it can be sensitive to
noises and outliers. Besides, it can face difficulty in handling different
sized and convex-shaped clusters[11].
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3.3 Density-based Spatial Clustering (DBSCAN)

One clustering technique that does not require the specification of the number
of clusters is DBSCAN. However, DBSCAN basically requires two parame-
ters: eps and min samples. Eps specifies the maximum distance between
two data samples in which one of them is supposed to be a neighborhood of
another which is a core point of a cluster. Min samples defines the minimum
numbers of samples that have to be in the neighborhood together with the
core sample. It assumes that a cluster is a dense region with data points
that is greater than min samples within the range of eps of the core point
and each cluster is separated from another by lower density.

The steps in the DBSCAN algorithm includes:

1. It starts with an arbitrary starting data point that has not been vis-
ited. The neighborhood of this point is extracted using the maximum
distance eps.

2. If its neighborhood contains the sufficient number of points according
to min samples, the clustering begins. That starting point becomes the
core point of the cluster as well. Otherwise, the point is assumed as
noise. Later on, this point can probably be a in the neighborhood of
other point and hence be a part of a cluster. In either case, this point
is marked as a visited point.

3. The points in the neighborhood of the core point are then used to
search their respective neighborhood points since these points are still
new un-visited points.

4. This process of steps 2 and 3 is repeated until all points in the cluster
have been visited and labeled forming the density-connected cluster.

5. Then, the new un-visited point in the data set is retrieved and the
algorithm repeats through step 1 to 4 until all points have been visited
and become either noise or part of a cluster[12].

Advantages

− DBSCAN performs well with the data set insisting of high-density clus-
ters versus low-density clusters.

− It is resistant to noise and can handle outliers of the data set.

− It can also handle different shaped and sized clusters.
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− Unlike k-means, the number of clusters does not need to be defined in
advance.

Although DBSCAN has an advantage of not requiring the pre-defined value
for the number of clusters, the distance value, eps becomes challenging to
estimate. Especially when the clusters have varying density. As it can sepa-
rately define high-density clusters from low-density clusters, it performs well
for the case like crime Incident or crime rate statistics.

Disadvantages

− Although DBSCAN can separate the high-density clusters from low-
density clusters, it does not work well with clusters of varying densities
or similar density.

− Also, it cannot handle high dimensional data well[13].

3.4 Spectral Clustering

3.5 Spectral Clustering

Spectral clustering makes use of the k-means algorithm as a step of its al-
gorithm. Lately, it becomes popular due to its simple implementation and
great performance with graph-based clustering. Three main steps to perform
spectral clustering are as follows:

1. First, it creates a similarity graph for all data points.

There are different ways to construct a similarity graph such as ε-
neighborhood graph, k-nearest neighbor graphs, and a fully connected
graph. Among them, we use k-nearest neighbor graphs in this research.
Each data point in the data set is represented as a vertex. When one
vertex is among the k-nearest neighbor of another vertex, it is assumed
that these vertices are connected. The resulting graph is known as the
k-nearest neighbor graph. After connecting the associated vertices, the
weights of the connecting edges are added by the similarity of their
endpoints or by using 0-1 weight[14].

2. From the resulting similarity graph, the associated Laplacian matrix is
computed by subtracting the weight matrix from the (diagonal) degree
matrix. Then, compute the eigenvectors of the Laplacian matrix to
define a feature vector for each object.
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3. Finally, clustering algorithm k-means is applied with these features to
separate objects into clusters[15].

Advantages

− In k-means case, the membership data points can be assumed in a
spherical area as the centroid is normally at the center of the cluster.
Spectral Clustering does not make such kind of strong assumption and
can cluster the data more accurately.

− It gives better results than other algorithms.

Disadvantages

− As it uses k-means algorithm for clustering in the last step, clustering
results may vary depending on the initial centroids.

− For large data sets, the time complexity can be computationally high
since the algorithm has to compute eigenvalues and eigenvectors and
perform clustering over these eigenvectors[16].

3.6 Balanced Iterative Reducing and Clus-

tering using Hierarchies (Birch)

Birch is a multiphase clustering algorithm used to perform hierarchical clus-
tering over large data sets. It builds a clustering feature (CF) tree, which
is a hierarchical data structure for multiphase clustering. This algorithm is
often mentioned as two-step clustering because it consists of two main steps.
These steps include:

1. Birch scans the data set to build an initial CF tree and stores the
clustering features of the data.

CF tree is a height-balanced tree in which the leaf node stores the
cluster of data points in the form of clustering features (CF). Each CF
is represented by a tuple of three numbers (N, LS, SS).

Given n-dimentional data points in the cluster,
CF = (N,LS,SS)
N = the number of data points in the cluster,
LS = the linear sum of the data points in the cluster,
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SS = the squared sum of the data points in the cluster,

Non-leaf node or parent node stores the tuple of CF summations of its
child nodes. CF = (CF1 + CF2 + ... + CFN), where
CF = ((N1 + N2 + ... +NN), (LS1 + LS2 + ... +LSN), (SS1 + SS2
+ ... +SSN))
CF = clustering feature stored in the parent node, resulting from the
summations of child clustering features
CF1, CF2, ..., CFN = clustering features stored in the child node
Brich algorithm requires two paramenters: branching factor (B) and
threshold (T). Branching factor specifies the maximum number of sub-
clusters in each non-leaf node. When new data points are scanned
and the number of sub-clusters exceeds the value of branching factor,
the node is split into two nodes owning respective sub-clusters in each.
The radius of the sub-cluster should be less than the threshold value.
Otherwise, a new sub-cluster is created. Birch algorithm makes full
use of available memory to constructs the hierarchical CF tree with
clusters of data features while minimizing I/O cost. To avoid running
out of memory, the threshold can be adjusted by increasing the value.
However, it is hard to figure out a suitable threshold value.

2. Then, Birch applies the existing clustering algorithm on the leaf nodes
of CF tree[17].

(Figure 2.2) shows the basic structure of hierarchical CF tree and relations
among leaf nodes, non-leaf nodes, and the root node.

Advantages

− Birch can make good clustering with a single scan of the database

− Same as k-means, it has linear time complexity, O(n) where n is the
number of data samples.

Disadvantages

− Like k-means, it prefers spherical shaped and similar sized data clusters
as it uses the threshold value to limit the cluster boundary[18].
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Figure 3.2: Basic structure of hierarchical CF tree

3.7 Space and Time Complexity

The following table 3.1 shows the comparison of five different clustering al-
gorithms in terms of space and time complexity.

Table 3.1: Space and time complexity of different clustering algorithms

Clustering Type Algorithm Time Complexity Space Complexity

Partitioning K-means O(n) O(n)

Birch O(n) O(n)

Hierarchical Agglomerative O(n2logn)) O(n2)

DBSCAN O(n2) O(n2)

Density-based Spectral O(n3) O(n2)
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Chapter 4

Comparison of Clustering
Algorithms

In this chapter, we make a comparison of several clustering algorithms men-
tioned in the previous chapter. Aiming for this research, the required abili-
ties of the clustering algorithms to be able to handle large are the scalability,
execution time and performance (how efficiently the algorithm can make par-
titions over the data set). Each algorithm has its own strength and drawback
as described in the previous chapter. All of the algorithms have limitations
due to some specific conditions of data or the parameter specifications of the
algorithm. Theoretically, it is difficult to assume which algorithm is better
than which algorithm or which one is the best of all. Therefore, we make
practical experiments over the malware database to find out the most suitable
clustering algorithm for our research.

Rather than just experimenting their clustering performance of these five
algorithms, we combine each algorithm with binary pattern matching algo-
rithm, so that overall performance can be assessed. The accuracy will be
evaluated by comparing the final results (number of garbage) with the result
get by using only binary pattern matching.

4.1 Experiments on Malware

For the first experiment, we set the number of clusters as 30 for the algo-
rithms (k-means, agglomerative hierarchical clustering, spectral clustering,
and birch) which required pre-defined cluster value. We fixed the feature
size as 512 for each binary file to feed as input to the clustering model. For
other parameters, we mostly used the default value selected by the Scikit-
learn libraries for clustering algorithms.
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To verify the performance of the combination of clustering algorithms
and binary pattern matching algorithm, we conduct the experiments on ten
data sets among the downloaded malware data sets from Virusshare malware
database. Accuracy is simply computed based on the total amount of garbage
found by using binary pattern matching algorithm only.

Accuracy =
no. of garbage found by BPM

no. of garbage found by (Clustering + BPM)

Among them, eight malware data sets: VirusShare 00350, VirusShare 00351,
VirusShare 00352, VirusShare 00353, VirusShare 00354, VirusShare 00355
and VirusShare 00356 include 65536 malware files and the average size of
data set is 19 GB. The results of executing clustering algorithms together
with binary pattern matching are expressed in table 4.1. The other sets:
VirusShare 00002, VirusSharee 00003, and VirusShare 00009, have 131072
malware files in each and the average size of the data set is 50 GB. Table 4.2
shows the executed results over these data sets.

All experiments are performed on Ubuntu 18.4 using 2 GPU: GeForce
RTX 2080 and GeForce GTX 780. The host system itself is running a Ubuntu
18.4 installation powered by an Intel i7-4770 K Core(TM) 3.50 GHz CPU
and 32GB of RAM.

4.2 Result

According to the results from table 4.1, hierarchical clustering and spectral
clustering take the longest time for execution. The other algorithms got
the similar execution time. Regarding the accuracy comparison, spectral
clustering has the lowest accuracy. spectral clustering mostly creates the
data clusters with unbalanced files. Some clusters contain more than half
of the total files of data set while others only contain very few files. This
clustering behavior can probably decrease the accuracy of the algorithm.

In table 4.2, we can see the difference between the performance of the
algorithms. Birch cannot handle the data set with 131072 files. Since it
uses all available memory space, memory error occurs during processing the
algorithm. We tried with higher threshold values but it can still not cluster
the data set. Spectral clustering has the best accuracy among all but it
also takes too much time for execution. Although DBSCAN is as fast as
k-means, its accuracy is the lowest while other algorithms get nearly 100%.
The results from both tables show that k-means is the fastest algorithm with
great accuracy. Because of these facts, we choose the k-means algorithm for
clustering process for this research.
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Table 4.1: Comparison of different clustering algorithms in terms of execution
time and accuracy (65536 files)

Algorithm (+ BPM) Avg. Execution Time Avg. Accuracy

K-means 12 min 100%
Birch 15 min 100%
Hierarchical Clustering 1 hr 100%
DBSCAN 16 min 80.6%
Spectral Clustering 2 hrs 100%

Table 4.2: Comparison of different clustering algorithms in terms of execution
time and accuracy (131072 files)

Algorithm (+ BPM) Avg. Execution Time Avg. Accuracy

K-means 2 hrs 99.9%
Birch - -
Hierarchical Clustering 4 hrs 99.8%
DBSCAN 2 hrs 56.7%
Spectral Clustering 8 hrs 100%
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Chapter 5

Parameter Specification

Based on the experimental results from the previous chapter, k-means algo-
rithm is chosen to do clustering the malware data set. Applying k-means
requires some parameters to be specified overhead. In this chapter, we will
describe the parameter specifications for the k-means algorithm

5.1 Feature Size

In the process of matching the binary files, the algorithm requires the whole
data information of binary files to compare one file with another. However,
if we feed the whole malware files to clustering algorithm, it will make the
processing time extremely long which is not good for dealing with huge data
set. Moreover, more data feature does not always tend to better accuracy, it
can also make the model confuse in partitioning the data set. Therefore, we
find out what data size for each malware file would be enough for k-means
clustering. We tested on IoT malware dataset with the data size of 512, 1024,
2048, and 4096 setting the number of clusters, k from 10 to 100. These data
sizes are compared with each other in terms of accuracy and execution time.
Then, the comparison of how these two data size can affect the clustering
performance is carried out to select the better one.

In figure (5.1), it can be seen that the execution time decrease gradually
with the increase in cluster size for 512 data size. There is also an apparent
decrease in execution time at the cluster value 30. In 4096 data size, the
decreasing execution time is unstable and every clustering takes more time
than the data size of 512. Here, we focus on the two sizes: 512 and 4096
to make the difference more clear, as the differences among 512, 1024, 2048,
and 4096 data sizes grow slightly with the increment of data size.

To get a better choice of the input data size, we also compare the accuracy

24



Figure 5.1: Comparison of data sizes 512 and 4096 in terms of execution time

Figure 5.2: Comparison of data sizes 512 and 4096 in terms of accuracy
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of how precisely the algorithm can make clusters with each data size. First,
we make clustering using different data sizes and then find the garbage file
with binary pattern matching in each cluster. Again, we take the result of
binary pattern matching itself to compute the accuracy of garbage finding
after clustering. In figure (5.2), the accuracy with 4096 is not as good as
512 data size, even though the results are closed to 100%. According to
the results of comparing different input sizes, we decide to use 512, which
gives the highest accuracy with the lowest execution time, as an input size
of k-means clustering algorithm.

5.2 Optimal Number of Clusters, K

Being one of the partitioning methods, k-means algorithm requires a pre-
defined k, the number of clusters. The number of clusters should be deter-
mined appropriately as they can affect the clustering result. There is no
standard answer for how correct is the chosen number of clusters. Different
shaped and sized data sets have different appropriate k value. To select the
optimal k, we apply the elbow method. It can be said to be the most well-
known method which gives a visual measure to find the best pick for the
value of k.

Elbow method measures the sum of squared errors for different numbers
of clusters. The sum of squared errors means the sum of the squared distance
of each data points from its centroid of a cluster. Just a k-means, we use
Euclidean Distance as a distance metric. After plotting the sum of squares
at each number of clusters matched with the respective number of clusters,
we can see a point with a slope from steep to shallow, decreasing in error
sum. That point is an elbow point and it determines the optimal number of
clusters[19].

In figure (5.3), the bend indicates that the bigger number of clusters be-
yond the third have small decreases in error sum, pointing that the optimal
number of clusters is 30. We used the IoT malware data set, VirusShare 00350
to VirusShare 00356 to find the optimal k for each data set, most of the re-
sults point out the optimal k around 30. Therefore, we choose value 30 for
the number of clusters for the clustering process in our further experiments.
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Figure 5.3: The elbow method showing the optimal k
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Chapter 6

Nested Clustering

In our previous chapters, we have made practical experiments to find the
most suitable clustering algorithm along with its optimal parameters. K-
means performs well with binary pattern matching in searching garbage from
malware samples. Although we tested the algorithms on multiple malware
data sets, k-means gives the high stable accuracy and fastest execution time
among five different clustering algorithms.

However, our aim of this research is not only just finding the garbage
from the data set but also making the algorithm as fast as possible. As we
have seen in the table 2.3, the amount of garbage in the malware data set
increases when we collect more malware files a data set. Thus, the faster
the algorithm, the more efficient the algorithm so that we can find as much
garbage as possible in a malware database.

We speed up the binary pattern matching algorithm by initially sorting
the data set using quick-sort before matching the binary files. As for the
clustering process, we modify the ordinary k-means algorithm by iterative
clustering. We have experienced that some algorithms like DBSCAN, make
the unbalanced clusters, that is the number of data points in a cluster is
not equal with the others. This can lead to low accuracy in finding garbage.
Although k-means can cluster better than other algorithms, there is still
some unbalanced clusters in the result. Again, the purpose of clustering the
malware files before the matching process is to help the matching algorithm
find the garbage easier and faster. Instead of comparing one file with the
whole malware data set, it is better to compare only with similar files within
the cluster. If the clusters are not well-balanced in the number of files, the
clustering process cannot give great help to the binary pattern matching
stage. Therefore, we created the nested clustering algorithm using k-means.
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6.1 Nested K-means Algorithm

For nested k-means algorithm, we need to specify two parameters: the num-
ber of clusters (k) and the maximum number of files in each cluster (f).

The algorithm includes three parts.

1. First, the data set is separated into k clusters once with k-means algo-
rithm.

2. The second step entirely depends on the results gained from the first
step. If there is a cluster that has more file than f, we execute k-means
again with the new number of clusters. New k will be defined by
dividing the total number of files in the current cluster by f. After the
k-means clustering with new k, we then check again whether is there
any cluster exceeding the maximum number of files in each cluster. If
so, k-means will be executed again. Step 2 will iterate until there are
no unbalanced clusters, which means clusters exceeding the maximum
number of files, f.

However, there are also some clusters that cannot be partitioned any-
more despite the second trial of k-means. In that case, we do not iterate
k-means clustering for such kind of clusters again. Forced clustering
might lead to low accuracy in the file matching process.

3. Finally, binary pattern matching is used to find garbage from the final
clusters resulting from the nested k-means clustering.

The clustering and garbage filtering procedures are shown in the pseudo-
code in the algorithm 3.
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Algorithm 3: Nested k-means algorithm for finding garbage from mal-
ware data set

Input : S - Binary data set, k – number of clusters, f – maximum
number of files

Output: M – Malware data set, G – Garbage data set
C ← Kmeans(S, k); #K − list of clusters
i← 0;
while i < len(C) do

if len(C[i]) > f then
k′ ← (len(K[i]/f) + 1); #k − new number of clusters
C ′ ← (S, k′);;
j = 0;
while i < len(C ′) do

if len(C ′[i]) = 0 then
del(C ′[i]);
j ← j − 1;

end
i← i + 1;

end
if len(C ′) > 1 then

C.extend(C ′);
del(C[i]);
i← i− 1;

end
i← i + 1;

end

end
for i← 0 to length(C)− 1 do

M,G← parallel bpm(C[i]);
end
return M,G;
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6.2 Dataset and Parameter Specification

Through our earlier experiments, we have learned the suitable parameters
for k-means clustering algorithm. The input data size 512 takes less time
in execution and the optimal number of clusters, k turns out to be 30 mea-
sured with the elbow method. K-means shows better performance than other
algorithms using these parameters. As nested k-means is just an extended
algorithm of the ordinary k-means by using it more than for iterative clus-
tering, we stick with these parameter specifications. To make sure that these
parameters can also bring great performance in nest k-means clustering, we
made a few testings with other values. We increased the parameter values.
The processing time increases and the accuracy decreases with the increase
in the number of clusters and the input data size. Therefore, we proceed
most of our execution with 512 for the input data and 30 as the number of
clusters. When dealing with larger data sets with more than 262,144 sam-
ples, we set the number of clusters value as 50 to avoid having too many files
in a cluster.

In this experiment, we used the data sets: Virusshare 00000 to VirusShare
00022, listed in table 2.1, having 131,072 samples in each and use every com-
bined data sets, described in table 2.2, in a total of 38 data sets of varying
numbers of files. To have a clear comparison, we find the average of the
execution time and accuracy of the data sets of the same number of files
respectively. Besides, we also used the IoT malware data set supplied by the
Yokohama National University.

6.3 Result

Table 6.1: Performance comparison in terms of execution time and accuracy

No. of File
BPM Nest K-means + BPM

Avg. Execution Time Avg. Execution Time Avg. Accuracy
55,763 1.17 hrs 0.75 hrs 100.0%
131,072 2.75 hrs 1.50 hrs 99.9%
262,144 9.50 hrs 3.75 hrs 98.9%
393,216 15.75 hrs 6.75 hrs 99.9%
524,288 18.45 hrs 8.30 hrs 99.9%
655,360 20.00 hrs 12.45 hrs 99.9%

Table 6.1 present the performance comparison among binary pattern match-
ing and pattern matching after clustering with nested k-means. Apparently,
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nested k-means works fastest among all. It can still maintain the high ac-
curacy of found garbage. The resulting clusters and the number of files in
each cluster varies depending on the total number of files included in the set,
shown in table 6.3 Clustering cannot be guaranteed that every garbage will
be in the same cluster with its related malware file. Therefore, some garbage
files are failed to be detected when clustering is used as a a preprocessing
step of pattern matching. Table 6.2 shows the missed garbage files, related
malware file and the clusters that includes the garbage and malware. As an
example case, we used VirusShare 00000 to get that results. From the above
analysis, we can conclude that nested k-means algorithm can accurately clus-
ter the malware files, which speed up the pattern matching process two to
three times faster.

Table 6.2: The missed garbage files of VirusShare 00000 data set

(Garbage, Cluster No. of Garbage) (Malware, Cluster No. of Malware)
VirusShare 90ed09c271774df
3146af8ce8d6d8d52, C - 96

VirusShare 92d88b4eaa2213c
914a62a830285ad78, C - 82

VirusShare fe5760b4a3eb895
b3039fc322f3dea0d, C - 92

VirusShare 7855867ed973953
0e698ffa63f3588d6, C - 102

VirusShare d029410010484ea
900e1ece20a14f272, C - 55

VirusShare 085dfcef851c6b2
dc90502fc9b990071, C - 102

VirusShare 179ce69c89130af
6a0dc38796765d7d2, C - 55

VirusShare bcfee9d55d58f376
61aae3a8fc7fa6f4, C - 99

VirusShare 44d88612fea8a8f
36de82e1278abb02f, C - 82

VirusShare f23ddc28faac06f
f61c7bd52ff76d6c7, C - 103

VirusShare aa231800b145f2b
d92f96e0509cc27c2, C - 55

VirusShare c97b10a7c225710
323d4f5656c50cdd4, C - 102

VirusShare a57e3ade32103e1
f21e27030d122eed9, C - 56

VirusShare 38996d70cebb9c9
243bd04bdc4f21761, C - 99

VirusShare 3fb4fc50717a00c
6d82a4cee79c9679b, C - 91

VirusShare 63c3ab4e6c12354
71ddf31f1e1de0f90, C - 106
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Table 6.3: Resulting number of clusters and number of files in a cluster

No. of Files No. of Cluster No. of Files in Cluster
55,763 (IoT) 52 400 ∼ 1800

131,072 30 ∼ 90 300 ∼ 5000
262,144 80 ∼ 90 400 ∼ 5000
393,216 90 ∼ 100 1000 ∼ 6000
524,288 100 ∼ 150 1000 ∼ 9000
655,360 134 1000 ∼ 15000
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Chapter 7

Related work and Conclusion

7.1 Related Work

In the literature, there are some nested clustering algorithms that have been
proposed for various analyses. The approach proposed by Xia et al[20]. clas-
sifies the freeway operating condition into different flow phases. They apply
the Bayesian Information Criterion (BIC) to determine the optimum num-
ber of clusters and use an agglomerative clustering algorithm. After grouping
the traffic data into a specific number of clusters, the clustering process is
repeated on all sub-clusters until the dissimilarity between the data points is
not significant enough for further clustering. This technique is dedicated to
performing effectively for data mining in a broad range of roadways analysis.

Li et al. [21] tried to detect nested clusters (clusters composed of sub-
clusters) or clusters of multi-density (clusters formed in different densities)
in a data set such as a geographical data set. This research discovers the
hierarchical-structured clusters of nested data set. Agglomerative k-means is
embedded in the generation of cluster tree at a different level of clustering.
Then, cluster validation techniques are used to evaluate clusters generated
at each level. Based on the evaluated result, the agglomerative k-means is
iterated for the clusters with the nested structure or different densities.

These approaches perform nested clustering based on the cluster evalua-
tion or the optimum number of clusters. As for our nesting k-means cluster-
ing, we try to reduce the unbalanced sub-clusters by iterative clustering, not
depending on the number of clusters.

Furthermore, nested clustering approach is used to aid in the decision-
making process of autonomous learning [22]. Instead of building a decision
tree, this approach looks for a hierarchical structure of rules of execution. It
applies the algorithm in a nested manner and a solution is driven when the
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algorithm converges.

7.2 Conclusion and Future Work

This thesis presents our study on refining large malware data set, by sep-
arating the garbage (incomplete binary files) from the large data set. The
faster the algorithm, the better in dealing with the large data sets in our case.
Thus, we made the clustering process nested to reduce unbalanced clusters
and use the advantage of quick sort to accelerate the matching process. By
using the combination of the pattern matching algorithm and iterative clus-
tering with simple machine learning method, we obtain the optimal results.
Based on our experimental results, our approach gives high accuracy within
a short time. We successfully found out almost every unnecessary garbage
from the collected data sets from Virusshare and IoT malware data set.

The number of garbage composition gets higher with the increasing num-
ber of malware samples in the data set. In this research, we have made
experiments over some malware folders of Virusshare and IoT malware set.
Aiming to give a good aid to malware analyses, We expect the current system
can be modified to accelerate the process to be able to deal with bigger data
sets. Despite the excessive growth rate of malware, the method for automatic
and labeling of new malware samples is still in lack. We hope to make use
of our approach as a preprocessing step of malware families identification or
malware clustering.
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