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Abstract. A fair non-repudiation protocol should guarantee, (1) when
a sender sends a message to a receiver, neither the sender nor the receiver
can deny having participated in this communication; (2) no principals
can obtain evidence while the other principals cannot do so. This pa-
per extends the model in our previous work [12], and gives a sound and
complete on-the-fly model checking method for fair non-repudiation pro-
tocols under the assumption of a bounded number of sessions. We also
implement the method using Maude. Our experiments automatically de-
tect flaws of several fair non-repudiation protocols.

1 Introduction

Fair non-repudiation protocols intend a reliable exchange of messages in the
situation that each principal can be dishonest, who tries to take advantage of
other principals by aborting the communication or sending fake messages. A
fair non-repudiation protocol needs to ensure two properties, non-repudiation
and fairness. Non-repudiation means that when a sender sends a message to
a receiver, neither the sender nor the receiver can deny participation in this
communication. Fairness means no principals can obtain evidence while the other
principals cannot do so. Difficulties in verifying these security properties come
from various factors of infinity,

– each principal can initiate or respond to an unbounded number of sessions;
– each principal may communicate with an unbounded number of principals;
– each intruder can produce, store, duplicate, hide, or replace an unbounded

number of messages based on the messages sent in the network, following
the Dolev-Yao model [7].

– each dishonest principal may disobey the prescription of the protocol, send-
ing an unbounded number of messages it can generate.

This paper proposes a sound and complete on-the-fly model checking method
for fair non-repudiation protocols under the restriction of a bounded number of
sessions. This method is based on trace analysis. To the best of our knowledge,
this is the first model checking method applied to the non-repudiation property.

To describe non-repudiation protocols, we choose a process calculus based
on a variant of Spi calculus [1]. The calculus uses environment-based communi-
cation, instead of channel-based communication, with the following features.
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– The calculus excludes recursive operations, so that only finitely many ses-
sions are represented.

– To represent an unbounded number of principals, a binder is used to repre-
sent intended destination of messages [12].

– Following the Dolev-Yao model, a deductive system, which can generate
infinitely many messages, is exploited to describe abilities of intruders [3].

– Another deductive system is introduced to generate infinitely many messages
that dishonest principals may produce and send [17].

A finite parametric model is proposed by abstracting/restricting the infini-
ties. It is sound and complete under the restriction of a bounded number of ses-
sions. The on-the-fly model checking on the parametric model is implemented by
Maude, which successfully detects flaws of several fair non-repudiation protocols.

Due to the lack of space, we omit proofs of lemmas and theorems; these can
be found in the extended version [13].

2 Concrete model for protocol description

Assume four countable disjoint sets: L for labels, N for names, B for binder
names and V for variables. Let a, b, c, . . . indicate labels, m,n, A, B, . . . indicate
names, m, n, k, . . . indicate binder names, and let x, y, z, . . . indicate variables.

Definition 1 (Messages). Messages M, N, L . . . in a set M are defined itera-
tively as follows:

pr ::= n | x
M, N, L ::= pr | m[pr, . . . , pr] | (M, N) | {M}L | H(M)

A message is ground, if it does not contain any variables.

A binder, m[pr1, . . . , prn] is a message that can be regarded as a special name
indexed by its parameters. One usage of binders is to denote encryption keys. For
instance, +k[A] and −k[A] represent A’s public key and private key, respectively.

Definition 2 (Processes). Processes in a set P are defined as follows:

P, Q, R ::= 0 | aM.P | a(x).P | [M = N ]P | (new x)P | (νn)P |
let (x, y) = M in P | case M of {x}L in P | P + Q | P‖Q

Variables x and y are bound in a(x).P , (new x)P , let (x, y) = M in P , and
case M of {x}L in P . Sets of free variables and bound variables in P are
denoted by fv(P ) and bv(P ), respectively. A process P is closed if fv(P ) = ∅. A
name is free in a process if it is not restricted by a restriction operator ν. Sets of
free names and local names of P are denoted by fn(P ) and ln(P ), respectively.

A new process, summation P+Q that behaves like P or Q, intends a dishonest
principal that has several choices, such as aborting communication, or running
a recovery stage.
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Messages that the environment can generate are started from the current
finite knowledge, denoted by S (⊆ M), and deduced by an environmental de-
ductive system. Here, we presuppose a countable set E (⊆ M), for those public
names and ground binders, such as each principal’s name, public keys, and in-
truders’ names. The environmental deductive system is shown in Fig. 1.

S ` M
M ∈ E Env

S ` M
M ∈ S Ax

S ` M S ` N

S ` (M, N)
Pair intro

S ` (M, N)

S ` M
Pair elim1

S ` (M, N)

S ` N
Pair elim2

S ` {M}k[A,B] S ` k[A, B]

S ` M
Senc elim

S ` M S ` k[A, B]

S ` {M}k[A,B]
Senc intro

S ` {M}±k[A] S ` ∓k[A]

S ` M
Penc elim

S ` M S ` ±k[A]

S ` {M}±k[A]
Penc intro

Fig. 1. Environmental deductive system

A process P that describes a dishonest principal A can send out all messages
generated through `, and can also encrypt messages with A’s private key and
shared key. A P -deductive system is defined in Fig. 2.

S ` M

S `P M

S `P M

S `P {M}k[A,B]

S `P M

S `P {M}−k[A]

Fig. 2. A P -deductive system

An action is a term of form aM or a(M). It is ground if its attached message
is ground. The messages in a concrete trace s, represented by msg(s), are those
messages in output actions of the concrete trace s. We use s ` M to abbreviate
msg(s) ` M , and s `P M to abbreviate msg(s) `P M .

Definition 3 (Concrete trace and configuration). A concrete trace s is a
ground action string that satisfies each decomposition s = s′.a(M).s′′ implies
s′ ` M , and each s = s′.aM.s′′ implies s′ `P M , where P is a closed process
that contains the label a. ε represents an empty trace. A concrete configuration
is a pair 〈s, P 〉, in which s is a concrete trace and P is a closed process.

The transition relation of concrete configurations is defined by the rules
listed in Fig. 3. Two symmetric forms, (RSUM) of (LSUM), and (RCOM)
of (LCOM) are omitted from the figure. Furthermore, a function Opp is defined
for complemental key in decryption and encryption. Thus we have Opp(+k[A]) =
−k[A], Opp(−k[A]) = +k[A] and Opp(k[A,B]) = k[A,B].
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(INPUT ) 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉 s ` M
(OUTPUT ) 〈s, aM.P 〉 −→ 〈s.aM, P 〉

(DEC) 〈s, case {M}L of {x}L′ in P 〉 −→ 〈s, P{M/x}〉 L′ = Opp(L)
(PAIR) 〈s, let (x, y) = (M, N) in P 〉 −→ 〈s, P{M/x, N/y}〉
(NEW ) 〈s, (new x)P 〉 −→ 〈s, P{M/x}〉 s `P M

(RESTRICTION) 〈s, (νn)P 〉 −→ 〈s, P{m/n}〉 m /∈ fn(P )
(MATCH) 〈s, [M = M ]P 〉 −→ 〈s, P 〉

(LSUM) 〈s, P + Q〉 −→ 〈s, P 〉

(LCOM)

〈s, P 〉 −→ 〈s′, P ′〉
〈s, P‖Q〉 −→ 〈s′, P ′‖Q〉

Fig. 3. Concrete transition rules

For convenience, we say a concrete configuration 〈s, P 〉 reaches 〈s′, P ′〉 , if
〈s, P 〉 −→∗ 〈s′, P ′〉. A concrete configuration is a terminated configuration if no
transition rules can be applied to it. A sequence of consecutive concrete config-
urations is named a path. A concrete configuration 〈s, P 〉 generates a concrete
s′, if 〈s, P 〉 reaches 〈s′, P ′〉 for some P ′.

3 Representing protocols and security properties

3.1 Representing protocols

For simplicity of representation, we use several convenient abbreviations. Pair
splitting is applied to input and decryption.

a(x1, x2).P , a(x).let (x1, x2) = x in P

case M of {x1, x2}L in P , case M of {x}L in let (x1, x2) = x in P

Similarly, we write let (x1, x2, . . . , xn) = M in P , a(x1, x2, . . . , xn).P , and
case M of {x1, x2, . . . , xn}L in P for tuples of messages.

We will use a simplified variation of Zhou-Gollmann non-repudiation protocol
to illustrate how our system works. The full ZG protocol is proposed in [19].
Note that besides a standard flow description, a fair non-repudiation protocol
also contains a description on what are evidences for participated principals.

A −→ B : {B,NA, {M}K}−KA
(1)

B −→ A : {A,NA, {M}K}−KB
(2)

A −→ S : {B,NA,K}−KA
(3)

S −→ A : {A,B, NA,K}−KS
(4)

S −→ B : {A,B, NA,K}−KS
(5)

The evidence that A sends the message M to B (referred as M1) is the pair
of messages that B accepted in (1) and (5). In (1), A sends a signed message to
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B, and B can confirm that the intended receiver of (1) is B by decrypting it by
the public key +KA. In (5), B checks whether NA in (5) coincides with that in
(1). If they match, B can confirm that the TTP S has received K from A in (3).
Alternatively, the evidence that B receives the message M from A (referred as
M2) is the pair of the messages that A accepted in (2) and (4).

Fresh variables are used to denote the sub-messages that the principal can
use to deceive another principal. These variables are bound by the new primitive.
After receiving messages, each principal may abort the communication. Thus a
summation “ + ” is used to represent nondeterministic choices of a principal.

A , (νNA)(newx1, x2) a1{x1, NA, x2}−k[A]).a2(x3).
case x3 of {x4, x5, x6}+k[x1] in [x4 = A] [x5 = NA] [x6 = x2] (0+

(newx7, x8) a3{x7, x8}−k[A].a4(x9). case x9 of {x10, x11, x12, x13}+k[S]

in [x10 = A] [x11 = x1] [x12 = NA] [x13 = x8].0)

B , b1(y1).case y1 of {y2, y3, y4}+k[A] in[y2 = B] (0+

(new y5) b2{A, y5}−k[B].b3(y6).case y6 of {y7, y8, y9, y10}+k[S] in

[y7 = A] [y8 = B] [y9 = y3].0)

S , s1(z1).case z1 of {z2}+k[z3] in s2{z3, z2}−k[S].s2{z3, z2}−k[S].0

SY SZG ,A‖B‖S

3.2 Probing transformation

Given a process P , the context P [.] is obtained when all occurrences of 0 in P
are replaced by holes, [.]. Let φ(P ) be the set of holes in P [.].

Definition 4 (Probing transformation). Given a process P that represents a
protocol, a probing transformation is generated from P , by applying the following
two transformations, and returns a process (named a probing process).

– Declaration process insertion: Let P [.] be the context of P . Given a set ψ ⊆
φ(P ), and a message M , Pψ,M is a probing process generated from P , such
that holes in ψ are inserted by the same process cM.0 with a fresh label c
(named declaration process), and holes in φ(P )−ψ are inserted by 0 in P [.].

– Guardian process composition: A probing process Pg is formed of P composed
with a process c(x).0 with a fresh label c (named guardian process), that is,
P‖c(x).0.

Intuitively, declaration process insertion is used to show that a principal can
provide a message M at the end of the session. Guardian process composition is
used to check whether a message is observable in the environment.

3.3 Action terms

Definition 5. Let α range over the set of actions. Action terms are defined as
follows:

T ::= α | ¬T | T ∧ T | T ∨ T
σ ::= T | T ←↩ T | T ↪→F T
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Action terms inductively defined by T are state action terms, and those defined
by σ are path action terms. A state action term is also a path action term.

We define two relations: the relation |=t between a concrete trace and a state
action term, and |= between a concrete configuration and a path action term.

– s |=t α: there exists a ground substitution ρ from variables to ground mes-
sages such that αρ occurs in s.

– s |=t ¬T : s 6|=t T .
– s |=t T1 ∧ T2: s |=t T1 and s |=t T2.
– s |=t T1 ∨ T2: s |=t T1 or s |=t T2.
– 〈s, P 〉 |= T : for each concrete trace s′ generated by 〈s, P 〉, s′ |=t T holds.
– 〈s, P 〉 |= T1 ←↩ T2: for each concrete trace s′ generated by 〈s, P 〉, if there is

a ground substitution ρ such that s′ |=t T2ρ, then s′ |=t T1ρ, and T1ρ occurs
before T2ρ in s′.

– 〈s, P 〉 |= T1 ↪→F T2: for each concrete configuration 〈s′, P ′〉 reached by 〈s, P 〉,
if there is a ground substitution ρ such that s′ |=t T1ρ, then for every path
starting from 〈s′, P ′〉, there exists a concrete trace s′′ such that s′′ |=t T2ρ.

3.4 Representing security properties

For the simplified ZG protocol, evidences M1 and M2 in Section 3.1 correspond
to the two non-repudiation properties [21, 9], respectively.

– Non-repudiation of origin (NRO) is intended to protect against the sender’s
false denial of having sent the messages.

– Non-repudiation of receipt (NRR) is intended to protect against the re-
ceiver’s false denial of having received the message.

The evidence M1 (resp. M2) is the pair of messages in (1) and (5) (resp. (2)
and (4)). In the protocol description, they are messages received at b1 and b3
(resp. a2 and a4) as y1 and y6 (resp. x3 and x9). Then the declaration process
is evidA(y1, y6).0 (resp. evidB(x3, x9).0).

Each process may have several action paths, since it may contain the sum-
mation +. The probing transformation replaces 0 reachable by paths containing
both b1 and b3 (resp. a2 and a4) with the declaration process.

Ap , (νNA)(newx1, x2) a1{x1, NA, x2}−k[A]).a2(x3).
case x3 of {x4, x5, x6}+k[x1] in [x4 = A] [x5 = NA] [x6 = x2] (0+

(newx7, x8) a3{x7, x8}−k[A].a4(x9). case x9 of {x10, x11, x12, x13}+k[S]

in [x10 = A] [x11 = x1] [x12 = NA] [x13 = x8].evidB(x3,x9).0)

Bp , b1(y1).case y1 of {y2, y3, y4}+k[A] in[y2 = B] (0+

(new y5) b2{A, y5}−k[B].b3(y6).case y6 of {y7, y8, y9, y10}+k[S] in

[y7 = A] [y8 = B] [y9 = y3].evidA(y1,y6).0)

SY SZG
p ,Ap‖Bp‖S
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(PINPUT ) 〈ŝ, a(x).P 〉 −→p 〈ŝ.a(x), P 〉
(POUTPUT ) 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉

(PDEC) 〈ŝ, case {M}L of {x}L′ in P 〉 −→p 〈ŝθ, Pθ〉
θ = Mgu({M}L, {x}Opp(L′))

(PPAIR) 〈ŝ, let (x, y) = M in P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu((x, y), M)
(PNEW ) 〈ŝ, (new x)P 〉 −→p 〈ŝ, P{y/x}〉 y /∈ fv(P ) ∪ bv(P )

(PRESTRICTION) 〈ŝ, (νn)P 〉 −→p 〈ŝ, P{m/n}〉 m /∈ fn(P )
(PMATCH) 〈ŝ, [M = M ′]P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu(M, M ′)

(PLSUM) 〈ŝ, P + Q〉 −→p 〈ŝ, P 〉

(PLCOM)

〈ŝ, P 〉 −→p 〈ŝ′, P ′〉
〈ŝ, P‖Q〉 −→p 〈ŝ′, P ′‖Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

Fig. 4. Parametric transition rules

Characterization 1 (NRO in simplified ZG protocol) Given the descrip-
tion with probing process of simplified ZG protocol, the NRO is satisfied, if

〈ε, SY SZG
p 〉 |= a1{B, x, y}−k[A] ∧ a3{B, x, z}−k[A] ←↩

evidA({B, x, y}−k[A], {A,B, x, z}−k[S])

Characterization 2 (NRR in simplified ZG protocol) Given the descrip-
tion with probing process of simplified ZG protocol, the NRR is satisfied if

〈ε, SY SZG
p 〉 |= evidB({A, x, y}−k[B], {A,B, x, z}−k[S]) ↪→F

b2{A, x, y}−k[B] ∧ s2{A,B, x, z}−k[S]

4 Parametric simulation

All messages in concrete traces generated by transition rules in Fig. 3 are ground.
In this section, parametric traces, in which irrelevant messages to a protocol
execution are replaced with free variables, are presented.

4.1 Parametric model

Definition 6 (Parametric trace and configuration). A parametric trace ŝ
is a string of actions. A parametric configuration is a pair 〈ŝ, P 〉, in which ŝ is
a parametric trace and P is a process.

The transition relation of parametric configurations [3] is given by the rules
listed in Fig. 4. Two symmetric forms (PRSUM) of (PLSUM), and (PRCOM)
of (PLCOM) are omitted from the figure. A function Mgu(M1,M2) returns the
most general unifier of M1 and M2.

Definition 7 (Concretization and abstraction). Given a parametric trace
ŝ, if there exists a substitution ϑ that assigns each parametric variable to a ground
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message, and which satisfies s = ŝϑ, where s is a concrete trace, we say that s
is a concretization of ŝ and ŝ is an abstraction of s. ϑ is named a concretized
substitution.

According to the definition of parametric configurations, a concrete configura-
tion 〈ε, P 〉 is also a parametric configuration. We name it an initial configuration.
From an initial configuration, each concrete trace has an abstraction generated
by parametric transition rules. On the other hand, if a parametric trace has a
concretization, then the concretization is generated by concrete transition rules.
Otherwise the parametric trace cannot be instantiated to any concrete trace.

Theorem 1. (Soundness and completeness) Let 〈ε, P 〉 be an initial configura-
tion, and let s be a concrete trace. 〈ε, P 〉 generates s, if and only if there exists
ŝ, such that 〈ε, P 〉 −→∗

p 〈ŝ, P ′〉 for some P ′, and s is a concretization of ŝ.

4.2 Satisfiable normal form

Theorem 1 shows that each concrete trace generated by an initial configuration
has an abstraction. However, a parametric trace may or may not have concretiza-
tions.

Example 1. Consider a naive protocol, A sends a message {A,M}KAB
to B.

There exists a parametric trace b1({A, x}k[A,B]). Since k[A,B] was not leaked to
the environment, before A or B sends an encrypted message protected by k[A,B],
B cannot accept any message encrypted by k[A,B]. Thus, the parametric trace
b1({A, x}k[A,B]) has no concretizations.

We name a message like {A, x}k[A,B] a rigid message. A rigid message is the
pattern of a requirement of an input action. The requirement can only be satisfied
by the messages generated by a proper principal. If there are no appropriate
messages satisfying the requirement, the parametric trace has no concretizations.

Definition 8 (Rigid message). Given a parametric trace ŝ, {N}L in M is a
rigid message if

– M is included in an input action such that ŝ = ŝ′.a(M).ŝ′′, and
• if L is a shared key or a private key, then ŝ′ 6` L and ŝ′ 6` {N}L;
• if L is a public key, then there exists a rigid message, or at least one

name or binder in N , which cannot be deduced by the ŝ′, and ŝ′ 6` {N}L.
– M is included in an output action such that ŝ = ŝ′.aM.ŝ′′, and

• {N}L satisfies the above three conditions, and
• L is not known by the principal that contains the label a.

A parametric trace with a rigid message needs to be further substituted by
trying to unify the rigid message to the atomic messages in output actions of its
prefix parametric trace. Such unification procedures will terminate because the
number of atomic messages in the output actions of its prefix parametric trace is
finite. We name these messages elementary messages, and use el(ŝ) to represent
the set of elementary messages in ŝ.

Given a parametric trace ŝ and a message N , we say N is ρ̂-unifiable in ŝ, if
there exists N ′ ∈ el(ŝ) such that ρ̂ = Mgu(N, N ′).
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Definition 9 (Deductive relation). Let ŝ be a parametric trace such that
ŝ = ŝ1.l(M).ŝ2, in which l is an input or an output label. If there exists a rigid
message N in M such that N 6∈ el(ŝ1), and N is ρ̂-unifiable in ŝ1, then ŝ Ã ŝρ̂.

For two parametric traces ŝ and ŝ′, if ŝ Ã∗ ŝ′ and there is no ŝ′′ that satisfies
ŝ′ Ã ŝ′′, we name ŝ′ the normal form of ŝ. The set of normal forms of ŝ is
denoted by nfÃ(ŝ). “A parametric trace has concretizations” is equivalent to
there exists a parametric trace in its nfÃ(ŝ) that has concretizations.

Lemma 1. Let ŝ be a parametric trace, and let ŝ′ be a normal form in nfÃ(ŝ).
ŝ′ has a concretization, if and only if, for each decomposition ŝ′ = ŝ′1.l(M).ŝ′2 in
which l is either an input label or an output label, each rigid message N in M
satisfies N ∈ el(ŝ′1).

A satisfiable normal form is a normal form of ŝ that satisfies the requirements
in Lemma 1. snfÃ(ŝ) denotes the set of satisfiable normal forms of ŝ.

Theorem 2. A parametric trace ŝ has a concretization iff snfÃ(ŝ) 6= ∅.

4.3 Simulation on a parametric model

Definition 10. Let T be a state action term, and let ŝ be a parametric trace that
has concretizations. We say ŝ |=t T , if for each concretization s of ŝ, s |=t T .

Definition 11. Let σ be a path action term, and let 〈ŝ, P 〉 be a parametric
configuration, where ŝ has concretizations. We say 〈ŝ, P 〉 |= σ, if for each con-
cretization s of ŝ, where s = ŝϑ, 〈ŝϑ, Pϑ〉 |= σ.

An action α is ρ̂-unifiable in a parametric trace ŝ if the parametric message
in α can be unified to the message attached to the same label as α in ŝ, and ρ̂
is the result of the unification.

Lemma 2. Given a parametric trace ŝ,

1. ŝ |=t α if and only if, α is ρ̂-unifiable in ŝ, and for each satisfiable normal
form in snfÃ(ŝρ̂) satisfying ŝρ̂ρ̂′, αρ̂ρ̂′ occurs in ŝρ̂ρ̂′.

2. ŝ |=t ¬α if and only if snfÃ(ŝρ̂) = ∅ when α is ρ̂-unifiable in ŝ.
3. For any state action term T , ŝ |=t T is decidable.

Theorem 3. Given an initial configuration 〈ε, P 〉,
1. Given a state action term T , 〈ε, P 〉 |= T , if and only if for each parametric

trace ŝ generated by 〈ε, P 〉, ŝ |=t T .
2. Given two state action terms T1 and T2, 〈ε, P 〉 |= T2 ←↩ T1, if and only if for

each parametric trace ŝ generated by 〈ε, P 〉, if T1 is ρ̂-unifiable in ŝ, then for
each normal form in snfÃ(ŝρ̂) satisfying ŝρ̂ρ̂′, T2ρ̂ρ̂′ occurs before T1ρ̂ρ̂′.

3. Given two state action terms T1 and T2, 〈ε, P 〉 |= T1 ↪→F T2, if and only
if for each parametric configuration 〈ŝ′, P ′〉 reached by 〈ε, P 〉, if T1 is ρ̂-
unifiable in ŝ′, then for each terminated parametric configuration 〈ŝ′′ρ̂, P ′′ρ̂〉
reached by 〈ŝ′ρ̂, P ′ρ̂〉, either ŝ′′ρ̂ cannot deduce any satisfiable normal forms,
or T2ρ̂ρ̂′ occurs in each satisfiable normal form ŝ′′ρ̂ρ̂′ in snfÃ(ŝ′ρ̂).

Actually, Theorem 3 implicitly shows the algorithm to check whether a sys-
tem satisfies a path action term.
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5 Experimental results

We implement the on-the-fly model checking method using Maude [6], since
Maude can describe model generation rules by equational rewriting, instead of
describing a model directly. Thus each property can be checked at the same time
when a model is generated. It is named an on-the-fly model checking method.

Due to the space limitation, we have only explained the non-repudiation
property. Fairness for fair non-repudiation protocols [17, 9] that is classified into
FAIRO, FAIRR, and FAIRM, is presented in the extended version [13].

In experiments with one session bound, the attacks for NRO, FAIRO and
FAIRM of simplified ZG protocol were detected automatically. For comparison,
we also implemented the analysis for the full ZG protocol, which guarantees
those three properties 1. We also tested some protocols proposed by the ISO [8].

The results are summarized in Fig. 5, in which the column “protocol spec.”
is the number of lines for a protocol specific part. In addition to these lines, each
Maude file also contains about 400 lines for the common description.

protocols property protocol spec. states times(ms) flaws

Simplified ZG protocol NRO 50 513 3,954 detected
NRR 50 780 3,905 secure

FAIRO 55 770 2,961 detected
FAIRR 55 846 3,903 secure
FAIRM 50 4,109 45,545 detected

Full ZG protocol NRO 50 633 7,399 secure
FAIRO 55 788 3,394 secure
FAIRM 60 788 3,490 secure

ISO/IEC13888-2 M2 NRO 50 1,350 7,710 detected
FAIRO 65 1,977 6,827 detected
FAIRR 65 2,131 7,506 secure

ISO/IEC13888-3 M-h FAIRO 60 295 918 detected
FAIRR 60 305 1,040 secure

Fig. 5. Experimental results

The experiments were carried out using Maude 2.2, and were performed on
a Pentium 1.4 GHz, 1.5 GB memory PC, under Windows XP.

6 Related work

Gavin Lowe first used trace analysis on process calculus CSP, and implemented
a model-checker FDR to discover numerous attacks [14, 15]. In his work, the
intruder was represented as a recursive process. He restricted the state space to

1 For formal definitions of the properties of full ZG protocol, refer to [17].
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be finite by imposing upper-bounds upon messages generated by intruders, and
also upon the number of principals in the network.

Many of our ideas are inspired by Michele Boreale’s symbolic approach [3].
In his research, he restricted the number of principals and intruders, and repre-
sented that each principal explicitly communicates with an intruder. Our model
finitely describes an unlimited number of principals and intruders in the network.

David Basin et al. proposed an on-the-fly model checking method (OFMC) [4].
In their work, an intruder’s messages are instantiated only when necessary,
known as lazy intruder, which is similar to the use of a rigid message in our
model. Unlike our method, an intruder’s role is explicitly assigned. This is ef-
ficient, but the process needs to be performed several times to ensure that no
intruders can attack a protocol in any roles.

Schneider proposed a trace analysis to prove non-repudiation and fairness
properties of the ZG protocol based on CSP [17]. He used a deductive system to
describe a dishonest principal and failures of a process to define these properties.
We borrow the idea of the dishonest principal description from his research.

Jianying Zhou et al. proposed several non-repudiation protocols, and proved
their correctness by SVO logic in their papers and book [19–21]. We use their
definition for non-repudiation in this paper.

G. Bella and L. Paulson extended their previous Isabelle/HOL theorem prov-
ing approach for authentication property [2, 16] to the ZG protocol, and proved
the correctness of its non-repudiation and fairness properties [5]. The approach
need not restrict the number of states to be finite, yet cannot be fully automated.

There were several studies based on game-theoretic model checking method
on the fairness property. S. Kremer firstly analyzed several protocols, and also
summarized and compared many formal definitions of fairness in his thesis [11].
Recently, D. Kähler et al. proposed a more powerful AMC-model checking method
for verifying the fairness property [10].

V. Shmatikov et al. analyzed fairness of two contract signing protocols based
on a finite-state model checker Murϕ [18]. His model was limited to a bounded
number of sessions and principals, and bounded number of messages that an
intruder generates. We have released the bounds for principals and messages,
using a parametric abstraction on an unlimited number of messages.

7 Conclusion

This paper proposed a sound and complete on-the-fly model checking method
for fair non-repudiation protocols under the restriction of a bounded number
of sessions. It extended our previous work [12] to handle all infinity factors of
fair non-repudiation protocols. We implemented the method using Maude. It
successfully detected the flaws of several examples automatically.

Our future work will be: First, to extend the method with pushdown model
checking for recursive processes, so that a protocol with infinitely many sessions
can be analyzed. Second, to check properties of other kinds of fair exchange pro-
tocols, such as digital contract signing protocols, and certified e-mail protocols.
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