
Well-Structured Pushdown Systems

Xiaojuan Cai1 and Mizuhito Ogawa2

1 BASICS Lab, Shanghai Jiao Tong University, China
cxj@sjtu.edu.cn

2 Japan Advanced Institute of Science and Technology, Japan
mizuhito@jaist.ac.jp

Abstract. Pushdown systems (PDSs) model single-thread recursive pro-
grams, and well-structured transition systems (WSTSs), such as vec-
tor addition systems, are useful to represent non-recursive multi-thread
programs. Combining these two ideas, our goal is to investigate well-
structured pushdown systems (WSPDSs), pushdown systems with well-
quasi-ordered control states and stack alphabet.
This paper focuses on subclasses of WSPDSs, in which the coverabil-
ity becomes decidable. We apply WSTS-like techniques on classical P-
automata. A Post∗-automata (resp. Pre∗-automata) construction is com-
bined with Karp-Miller acceleration (resp. ideal representation) to char-
acterize the set of successors (resp. predecessors) of given configurations.
As examples, we show that the coverability is decidable for recursive
vector addition system with states, multi-set pushdown systems, and a
WSPDS with finite control states and well-quasi-ordered stack alphabet.

1 Introduction

There are two directions of infinite (discrete) state systems. A pushdown system
(PDS) consists of finite control states and finite stack alphabet, where a stack
stores the context. It is often used to models single-thread recursive programs.A
well-structured transition system (WSTS) [1, 10] consists of a well-quasi-ordered
set of states. A vector addition system (VAS, or Petri Net) is its typical example.
It often works for modeling dynamic thread creation of multi-thread program [2].
Our naive motivation comes from what happens when we combine them as a
general framework for modeling recursive multi-thread programs.

A 3-thread boolean-valued recursive program with synchronization is enough
to encode Post-correspondence-problem [19]. Thus, its reachability is undecid-
able. There are several decidable subclasses, which are typically reduced to single
stack PDSs with infinite control states and stack alphabet.

– Restrict the number of context switching (bounded reachability): Context-
bounded concurrent pushdown systems [18], and their extensions with dy-
namic thread creation [2].

– Restrict interleaves among stack operations: Multi-set pushdown systems
(Multi-set PDSs) to model multi-thread asynchronous programs [20, 13], and
Recursive Vector Addition System with States (RVASS) to model multi-
thread programs with fork/join synchronizations [3].

2

A popular decidable property of ordinary PDSs is the configuration reachabil-
ity, i.e., whether a target configuration is reachable from an initial configuration.
A P-automaton construction [9, 4, 7] is its classical technique such that a Post∗

automaton accepts the set of successors of an initial configuration, and a Pre∗

automaton accepts the set of predecessors of a target configuration.

A popular decidable property of WSTSs is coverability, i.e., whether an initial
configuration reaches to that covers a target configuration. There are forward
and backward techniques. As the former, Karp-Miller acceleration [8] for VASs
is well-known, which was generalized in [11, 12]. As the latter, an ideal (i.e., an
upward closed set) representation is immediate [1, 10], though less efficient. Note
that the reachability of WSTSs is not easy. For instance, the reachability of VASs
stays decidable, but it requires deep insight on Presburger arithmetic [16, 15].

Our ultimate goal is to study well-structured pushdown systems (WSPDSs),
pushdown systems with well-quasi-ordered control states and stack alphabet.
This paper focuses on subclasses of WSPDSs, in which the coverability becomes
decidable. We apply WSTS-like techniques on classical P-automata. A Post∗-
automata (resp. Pre∗-automata) construction is combined with Karp-Miller ac-
celeration (resp. ideal representation) to characterize the set of successors (resp.
predecessors) of given configurations. As examples, we show that the coverabil-
ity is decidable for RVASSs, Multi-set PDSs, and a WSPDS with finite control
states and WQO stack alphabet. The first one extends the decidability of the
state reachability of RVASSs [3] to the coverability, and the second one relaxes
finite stack alphabet of Multi-set PDSs [20, 13] to being well-quasi-ordered.

Related Work

Combining PDSs and VASs is not new. Process rewrite system (PRS) [17] is a
pioneer work on such combination. A PRS is a(n AC) ground term rewriting
system, consisting of the sequential composition “.”, the parallel composition
“|| ”, and finitely many constants, which can be regarded as a PDS with finite
control states and vector stack alphabet. The decidability of the reachability
between ground terms was shown based on the reachability of a VAS. However,
a PRS is rather weak to model multi-thread programs, since it cannot describe
vector additions between adjacent stack frames during push/pop operations.

An RVASS [3] allows vector additions during pop rules. The state reachability
was shown by reducing an RVASS to a Branching VASS [21]. Our WSPDS ex-
tends it to the coverability. A more general framework is a WQO automaton [5],
which is a WSTS with auxiliary storage (e.g., stacks and queues). Although in
general undecidable, its coverability becomes decidable under the compatibility
of rank functions with a WQO. A Multi-set PDS [13, 20] is a such instance.

Our drawback is difficulty to estimate complexity, due to the nature of well-
quasi-ordering. s For instance, the coverability of a Branching VAS (BVAS)
is 2EXPTIME-complete [6], and accordingly RVASS will be. Lower bounds of
various VAS are reported by reduction to fragments of first-order logic [14].
However, we cannot directly conclude such estimations.

3

2 Preliminaries

2.1 Well-structured transition system

A quasi-order (D,≤) is a reflexive transitive binary relation on D. An upward
closure of X ⊆ D, denoted by X↑, is the set of elements in D larger than those in
X, i.e., X↑ = {d ∈ D | ∃x ∈ X.x ≤ d}). A subset I is an ideal if I = I↑. Similarly,
a downward closure of X ⊆ D is denoted by X↓ = {d ∈ D | ∃x ∈ X.x ≥ d}. We
denote the set of all ideals by I(D). A quasi-order (D,≤) is a well-quasi-order
(WQO) if, for each infinite sequence a1, a2, a3, · · · in D, there exist i, j with i < j
and ai ≤ aj .

Definition 1. A well-structured transition system (WSTS) is a triplet M =
〈(P,�),→〉 where (P,�) is a WQO, and → (⊆ P × P) is monotonic, i.e.,
for each p1, q1, p2 ∈ P , p1 → q1 and p1 � p2 imply that there exists q2 with
p2 → q2 ∧ q1 � q2.

Given two states p, q ∈ P , the coverability problem is to determine whether
there exists q′ with q′ � q and p→∗ q′.

Vector addition systems (VAS) (equivalently, Petri net) are WSTSs with Nk
as the set of states and a subtraction followed by an addition as a transition rule.
The reachability problem of VAS is decidable, but its proof is complex [16, 15].
The coverability also attracts attentions and is implemented, such as in Pep. 3

Karp-Miller acceleration is an efficient technique for the coverability. If there is
a descendant vector (wrt transitions) strictly larger than one of its ancestors on
coordinates, values at these coordinates are accelerated to ω.

There is an alternative backward method to decide coverability for a general
WSTS. Starting from an ideal {q}↑, where q is the target state to be covered,
its predecessors are repeatedly computed. Note that, for a WSTS and an ideal
I(⊆ P), the predecessor set pre(I) = {p ∈ P | ∃q ∈ I.p → q} is also an ideal
from the monotonicity. Its termination is obtained by the following lemma.

Lemma 1. [10] (D,≤) is a WQO, if, and only if, any infinite sequence I0 ⊆
I1 ⊆ I2 ⊆ · · · in I(D) eventually stabilize.

From now on, we denote N (resp. Z) for the set of natural numbers (resp.
integers), and Nk (resp. Zk) is the set of k-dimensional vectors over N (resp. Z).
As notational convention, n,m are for vectors in Nk, z, z′ are for vectors in Zk,
ñ, m̃ are for sequences of vectors.

2.2 Pushdown system

We define a pushdown system (PDS) with extra rules, simple-push and nonstandard-
pop. These rules do not appear in the standard definition since they are encoded
into standard rules. For example, a non-standard pop rule (p, αβ → q, γ) is split

3 http://theoretica.informatik.uni-oldenburg.de/~pep/

4

into (p, α → pα, ε) and (pα, β → q, γ) by adding a fresh state pα. However,
later we will consider a PDS with infinite stack alphabet, and this encoding may
change the context. For instance, for a PDS with finite control states and infinite
stack alphabet, this encoding may lead infinite control states.

Definition 2. A pushdown system (PDS) is a triplet 〈P, Γ,∆〉 where

– P is a finite set of states,
– Γ is finite stack alphabet, and
– ∆ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ ∆

is denoted by (p, v → q, w).

We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗. A configu-
ration 〈p, w〉 is a pair of a state p and a stack content (word) w. As convention,
we denote configurations by c1, c2, · · ·. One step transition ↪→ between configu-
rations is defined as follows. ↪→∗ is the reflexive transitive closure of ↪→.

inter
(p, γ → p′, γ′) ∈ ∆
〈p, γw〉 ↪→ 〈p′, γ′w〉 push

(p, γ → p′, αβ) ∈ ∆
〈p, γw〉 ↪→ 〈p′, αβw〉 pop

(p, γ → p′, ε) ∈ ∆
〈p, γw〉 ↪→ 〈p′, w〉

simple-push
(p, ε→ p′, α) ∈ ∆
〈p, w〉 ↪→ 〈p′, αw〉 nonstandard-pop

(p, αβ → p′, γ) ∈ ∆
〈p, αβw〉 ↪→ 〈p′, γw〉

A PDS enjoys decidable configuration reachability, i.e., given configurations 〈p, w〉,
〈q, v〉 with p, q ∈ P and w, v ∈ Γ ∗, decide whether 〈p, w〉 ↪→∗ 〈q, v〉.

3 WSPDS and P-automata technique

3.1 P-automaton

A P-automaton is an automaton that accepts the set of reachable configurations
of a PDS. P-automata are classified into Post∗-automata and Pre∗-automata,

Definition 3. Given a PDS M = 〈P, Γ,∆〉, a P-automaton A is a quadruplet
(S, Γ,∇, F) where

– F is the set of final states, and P ⊆ S \ F , and
– ∇ ⊆ S × (Γ ∪ {ε})× S.

We write s
γ7→ s′ for (s, γ, s′) ∈ ∇ and Z⇒ for the reflexive transitive closure

of 7→; It accepts 〈p, w〉 for p ∈ P and w ∈ Γ ∗ if p
wZ=⇒ f ∈ F . We use L(A)

to denote the set of configurations that A accepts. We assume that an initial

P-automaton has no transitions s
γ7→ s′ with s′ ∈ P .

Let C0 be a regular set of configurations of a PDS, and let A0 be an initial P-
automaton that accepts C0. The procedure to compute post∗(C0) starts from A0,
and repeatedly adds edges according to the rules of a PDS until convergence. We
call this procedure saturation. Post∗-saturation rules are given in Definition 4,
which are illustrated in the following figure.

5

Definition 4. For a PDS 〈P, Γ,∆〉, let A0 be an initial P-automaton accepting
C0. Post∗(A0) is constructed by repeated applications of the following Post∗-
saturation rules.

(S, Γ,∇, F), (p
wZ=⇒ q) ∈ ∇

(S ∪ {p′}, Γ,∇∪ {p′ γ7→ q}, F)
(p, w → p′, γ) ∈ ∆, |w| ≤ 2

(S, Γ,∇, F), (p
γ7→ q) ∈ ∇

(S ∪ {p′, qp′,α}, Γ,∇∪ {p′ α7→ qp′,α
β7→ q}, F)

(p, γ → p′, αβ) ∈ ∆

3 WSPDS and P-automata technique

We will show P-automata techniques are correct (but without convergence) even
for PDS with infinite states and stack symbols, such as WSPDS defined in Sec-
tion 3.2. So in the rest part of this section, we use PDS to denote a general PDS
which might be infinite.

3.1 P-automaton

P-automaton is an automaton which exactly accepts the reachable configu-
rations of some PDS. Distinguished by the forward and backward of transi-
tions, P-automata technique is usually classified into Post∗-automata and Pre∗-
automata. These two methods have the same transformation effects [22].

Definition 3. Given a PDS M = �P,Γ,∆�, a P-automaton A is a quadruplet
(S,Γ,∇, F) where

– F is the set of final state, and P ⊆ S \ F ;
– ∇ ⊆ S × (Γ ∪ {�}) × S.

We write s
γ�→ s� for (s, γ, s�) ∈ ∇ and �⇒ for the transitive reflexive closure of

�→; It accepts �q, w� for q ∈ P and w ∈ Γ ∗ if p
w�=⇒ f ∈ F . We use L(A) to

denote the set of configurations A accepts.

The reachability problem from �p, w� to �q, v� can be reduced to whether �q, v�
is accepted by the Post∗-automaton constructed from A0 accepting {�p, w�}, or
whether �p, w� is accepted by the Pre∗-automaton constructed from A�

0 accept-
ing {�q, v�}.

Let C0 be a set of configurations for a PDS, the procedure for computing
post∗(C0) (pre∗(C0)) starts from an initial P-automaton A0 that accepts C0.
We repeatedly add edges according to the transitions rules of PDS until conver-
gence. We call this procedure saturation. The Post∗-saturation rules are given
in Definition 4 and illustrated in followed diagram.

Definition 4. For a PDS �P,Γ,∆�, let A0 be an initial P-automaton accept-
ing C0. Post∗(A0) is the result of repeated applications of the following Post∗-
saturation rules

(S,Γ,∇, F), (p
w�=⇒ q) ∈ ∇

(S ∪ {p�},Γ,∇∪ {p�
γ�→ q}, F)

(p, w → p�, γ) ∈ ∆, |w| ≤ 2

(S,Γ,∇, F), (p
γ�→ q) ∈ ∇

(S ∪ {p�, qp�,α},Γ,∇∪ {p�
α�→ qp�,α

β�→ q}, F)
(p, γ → p�,αβ) ∈ ∆

p, γ → p�,αβ p, �→ p�, γ p, γ → p�, γ� p, γ → p�, � p,αβ → p�, γ

p
⇓add

γ �� q

p�
α ��qp�,α

β

��

p� γ

⇓add �� p

p
⇓add

γ �� q

p�
γ�

�� p
⇓add

α �� q

p�
�

�� p
⇓add

α �� β �� q

p�
γ

��

For instance, consider a push rule (p, γ → p′, αβ). If p
γ7→ q is in ∇, then

p′
α7→ qp′,α

β7→ q is added to ∇. The intuition is, if, for v ∈ Γ ∗, 〈p, γv〉 is in
post∗(C0), then 〈p′, αβv〉 is also in post∗(C0) by applying rule (p, γ → p′, αβ).
The Pre∗-saturation rules to construct pre∗(C0) are similar, but in the reversal.

Remark 1. Post∗- (resp. Pre∗-) saturation introduces ε-transitions when apply-
ing standard pop rules (resp. simple push rules). ε-transitions make arguments
complicated, and we assume preprocessing on PDSs.

1. The bottom symbol ⊥ of the stack is explicitly prepared in Γ .
2. For Post∗-saturation, each standard pop rule p, α → q, ε is replaced with

(p, αγ → q, γ) for each γ ∈ Γ .
3. For Pre∗-saturation, each simple push rule p, ε → q, α is replaced with

(p, γ → q, αγ) for each γ ∈ Γ .

Lemma 2. Let 〈P, Γ,∆〉 be a PDS, and let A0 be an initial P-automaton ac-

cepting C0. Assume that p
wZ=⇒ q in Post∗(A0) and p ∈ P .

1. If q ∈ P , 〈q, ε〉 ↪→∗ 〈p, w〉;
2. If q ∈ S(A0)\P , there exists q′

vZ=⇒ q in A0 with q′ ∈ P and 〈q′, v〉 ↪→∗ 〈p, w〉.

Its proof is a folklore (also in [23]). Lemma 2 shows that each accepted
configuration is in post∗(C0) during the saturation process (soundness). On the
other hand, Post∗ saturation rules put immediate successor configurations, and
all configurations in post∗(C0) are finally accepted by Post∗(A0) (completeness).

Theorem 1. post∗(C0) = L(Post∗(A0)), and pre∗(C0) = L(Pre∗(A0)).

For an ordinary PDS (i.e., with finite control states and stack alphabet),
Post∗(A0) and Pre∗(A0) have bounded numbers of states. (Recall that each
newly added state qp,γ has an index of a pair of a state and a stack symbol.)

6

Thus, the saturation procedure finitely converges. For a PDS with infinite control
states and stack alphabet, although Post∗(A0) and Pre∗(A0) may not finitely
converge, they converge as limits (of set unions). The same statement to The-
orem 1 holds by Lemma 2’ (a generalized Lemma 2) in [23]. In later sections
(Section 4 and 5), we show when and how the finite convergence holds.

3.2 P-automata for Coverability

We denote the set of partial functions from X to Y by PFun(X,Y). Let�, the
quasi-ordering4 on Γ ∗, be the element-wise extension of ≤ on Γ , i.e., α1 · · ·αn �
β1 · · ·βm if and only if m = n and αi ≤ βi for each i.

Definition 5. A well-structured pushdown system (WSPDS) is a triplet M =
〈(P,�), (Γ,≤), ∆〉 where

– (P,�) and (Γ,≤) are WQOs, and
– ∆ ⊆ PFun(P, P) × PFun(Γ≤2, Γ≤2) is the finite set of monotonic transi-

tions rules (wrt � and �). We denote (p, w → φ(p), ψ(w)) if (φ, ψ) ∈ ∆,
p ∈ Dom(φ), and w ∈ Dome(ψ) hold.

A PDS is a WSPDS with finite P and finite Γ , and WSTS is a WSPDS with
a single control state and internal transition rules only (i.e., no push/pop rules).
Note thatDom(ψ) andDome(φ) are upward-closed sets from their monotonicity.
Instead of reachability, we consider the coverability on WSPDSs.

– Coverability: Given configurations 〈p, w〉, 〈q, v〉 with p, q ∈ P and w, v ∈
Γ ∗, we say 〈p, w〉 covers 〈q, v〉 if there exist q′ � q and v′�v s.t. 〈p, w〉 ↪→∗
〈q′, v′〉. Coverability problem is to decide whether 〈p, w〉 covers 〈q, v〉.

Remark 2. Thanks to an anonymous referee, the coverability of a WSPDS is
reduced to the state reachability. Let v = αn · · ·α1⊥ and v′ = βn · · ·β1⊥. For
fresh states qn, · · · , q1, q0 (incomparable wrt �), add transition rules

{(q′, x→ qn, ε) if x ≥ αn and q′ � q, (qi+1, x→ qi, ε) if x ≥ αi, (q1,⊥ → q0,⊥)}.

Then, the coverability (from 〈p, w〉 to 〈q, v〉) is reduced to the state reachability
(from 〈p, w〉 to q0). Note that the same technique (replacing ≥ and � with =)
does not work for the configuration reachability, since it violates the monotonic-
ity. Nevertheless, we keep focusing on the coverability, since

– Transition rules above are not permitted as an RVASS and a Multi-set PDS.
Thus, the coverability is still more than the state reachability at the level of
RVASSs and Multi-set PDSs.

– Proofs are mostly by induction on the saturation steps of P-automata con-
struction. The coverability fits for describing their inductive invariants.

4 In general, � is not a well-quasi-ordering, even if ≤ is.

7

There are two ways to decide the coverability. The forward method starts
from an initial configuration 〈p, w〉, and computes the downward closure of its
successor configurations. The backward method starts from a target configura-
tion 〈q, v〉, and computes the downward closure of its predecessor configurations.

– (Post) A accepts the downward closure of successors of C0, i.e., L(A) =⋃
i≥0(posti(C0)↓) = (

⋃
i≥0 post

i(C0))↓ = (post∗(C0))↓.

– (Pre) A accepts predecessors of the upward closure C↑0 of C0, i.e., L(A) =⋃
i≥0 pre

i(C↑0) = pre∗(C↑0).

Remark 3. As in Remark 1, we preprocess WSPDSs to eliminate standard pop
rules for Post∗-saturation and simple push rules for Pre∗-saturation. In later
decidability results on WSPDSs, the finiteness of transition rules is crucial. The
following replacement keeps the monotonicity and the finiteness.
- In Post∗-saturation, a standard pop rule ψ(γ) = ε is replaced with ψ′(γγ′) = γ′.
- In Pre∗-saturation, a simple push rule ψ(ε) = γ is replaced with ψ′(γ′) = γγ′.

4 Post∗-automata for coverability

Coverability is decidable if either Post∗ or Pre∗-saturation finitely converges. In
this section, we consider a strictly monotonic WSPDS with finitely many control
states, with Nk as stack alphabet, and without standard push rules. Such a PDS
is a Pushdown Vector Addition Systems. Our choice comes from that Post∗-
saturation for standard push rules introduce fresh states (which lead infinite
exploration), and the strict monotonicity validates Karp-Miller acceleration.

We write Nω for N ∪ {ω}. Let us fix the dimension k > 0 and let j(n) be
the j-th element of a vector n ∈ Nkω. The zero-vector is denoted by 0 with
j(0) = 0 for each j ≤ k. A sequence of vectors is denoted with a tilde, like ñ.
For J ⊆ [1..k], we define the following orderings on vectors:

– n <J n′ if j(n) < j(n′) for j ∈ J and j(n) = j(n′) for j 6∈ J .
– n ≤J n′ if j(n) ≤ j(n′) for j ∈ J and j(n) = j(n′) for j 6∈ J .
– n1 · · ·nl �J n′1 · · ·n′l′ if l = l′ and ni ≤J n′i for each i ≤ l.
– n1 · · ·nl �J n′1 · · ·n′l′ if n1 · · ·nl �J n′1 · · ·n′l′ and ni <J n′i for some i.

For example, (1, 2) <{2} (1, 3), (1, 2) ≤{1,2} (1, 3), (1, 2)(1, 1)�{1,2} (1, 3)(1, 1),

and (1, 2)(1, 1) 6�{1,2} (1, 3)(1, 1). We will omit J of ≤J if J = {1..k}.
If n <J n′, an acceleration n � n′ is given by n↑J where j(n↑J) = ω if j ∈ J ,

and j(n↑J) = j(n) otherwise. For example, (1, 2) � (2, 2) = (1, 2)↑{1} = (ω, 2).

Definition 6. Fix k ∈ N. A Pushdown Vector Addition Systems (PDVAS) is a
WSPDS 〈P, (Nk,≤), ∆〉 where

– P is finite.
– ∆ ∈ P × P × PFun((Nk)≤2,Nk) is finite and without standard push rules.
– ψ is effectively computed and strictly monotonic wrt�J for each rule (p, q, ψ) ∈
∆ and J ⊆ [1..k].

8

Strict monotonicity wrt�J is crucial for acceleration, which naturally holds
in VASs. A VAS transition n ↪→ n+ z holds n′ + z >J n+ z for each n′ >J n.
A WSPDS may have a non-standard pop rule (p,n1n2 → q,m), and we require
that the growth of either n1 or n2 leads the growth of m.

4.1 Dependency

Acceleration for a VAS occurs when a descendant is strictly larger than some
of its ancestors. However, for a PDVAS, such descendant-ancestor relation is
not obvious in a P-automaton. We introduce dependency V on P-automata
transitions 7→. The dependency is generated during Post∗-saturation steps.

Definition 7. For a PDS 〈P, Γ,∆〉, a dependency V over transitions of a
Post∗-automaton is generated during the saturation procedure, starting from ∅.

1. If a transition p′
β7→ q is added from a rule (p, α → p′, β) and transition

p
α7→ q, then (p

α7→ q)V (p′
β7→ q).

2. If a transition p′
γ7→ q is added from a rule (p, αβ → p′, γ) and transitions

p
α7→ q′

β7→ q, then (p
α7→ q′)V (p′

γ7→ q) and (q′
β7→ q)V (p′

γ7→ q).

3. Otherwise, we do not update V.

We denote the reflexive transitive closure ofV byV∗. Strict monotonicity leads
to the following lemma, which guarantees the soundness of accelerations.

Lemma 3. For a Post∗-automaton A of a PDVAS, if p
n7→ q V∗ p′ m7→ q′ and

p
n′7→ q ∈ ∇(A) for n′ >J n hold, there exists m′ >J m such that p′

m′Z=⇒ q′ ∈
∇(A) and p

n′7→ q V∗ p′ m′Z=⇒ q′.

Note that, if (p
n7→ q)V∗ (p

n17→ q) and n <J n1 hold, Lemma 3 concludes

(p
n7→ q)V∗ (p

n17→ q)V∗ (p
n27→ q)V∗ · · ·V∗ (p

ni7→ q)V∗ · · ·

with ni <J ni+1 for each i. Thus, we can safely apply the acceleration on J .

4.2 Post∗F -saturation

As in Section 4.1, accelerations will occur when p
n7→ q V∗ p n′7→ q and n <J n′

is found for some p, q and J during the Post∗-saturation steps. We combine
dependency generation and accelerations into the post saturation rules for a
PDVAS. This new saturation procedure is denoted by Post∗F , and a resulting
P-automaton is called a Post∗F -automaton.

We conservatively extend ψ in a PDVAS, from (Nk)≤2 → Nk to (Nkω)≤2 → Nkω
by ψ(ñ) = sup{ψ(ñ′) | ñ′ ∈ (Nk)≤2, ñ′ � ñ} for ñ ∈ (Nkω)≤2,

9

Definition 8. For a PDVAS 〈P, (Nk,≤), ∆〉, let A0 = (S0, (Nkω,≤), (∇0, ∅), F)
be an initial P-automaton accepting C0. Post∗F (A0) is the result of repeated ap-
plications of the following Post∗F saturation rules.

(S, Γ, (∇,V), F), p
ñZ=⇒ q

(S ∪ {p′}, Γ, (∇,V)⊕ (p′
n7→ q,V′), F)

(p, p′, ψ) ∈ ∆, ψ(ñ) = n

where V′ is the dependency newly added by Definition 7.5 The operation ⊕ is
defined as (∇,V)⊕ (p′

n7→ q,V′) =
(∇∪ {p′ n

′�n7−→ q},V ∪V′�) if there exists p′
n′7→ q ∈ ∇ such that

p′
n′7→ q V∗ ·V′ p′ n7→ q and n′ <J n for J 6= φ

(∇∪ {p′ n7→ q},V ∪V′) otherwise

where V′� is obtained from V′ by replacing its destination p′
n7→ q with p′

n′�n7−→ q.

Example 1. The following figure shows a Post∗-automaton A′ and a Post∗F -
automaton A of a PDVAS with transition rules ψ1, ψ2, ψ3, ψ4. An initial con-

figuration C0 = {〈p0,⊥〉} is accepted by A0. In A′, p2 17→ p0 is generated from

p1
07→ p0

17→ p0 by ψ3, and p1
27→ p0 is generated from p2

17→ p0 by ψ4. Sim-

ilarly, infinitely many p1
2kZ=⇒ p0’s (and others) are generated. In A, we have

(p1
07→ p0)V (p2

17→ p0)V (p1
27→ p0). An acceleration adds (p1

ω7→ p0) instead of

(p1
27→ p0). Then, p2

ω7→ p0 and p0
ω7→ p0 are added by ψ3 and ψ2, respectively. This

shows finitely convergence to A, and we obtain (post∗(C0))↓ = L(A)↓ ∩ (Nk)∗.

The Post∗F -saturation rules are similar to Post∗ but adding the dependency

relation � and accelerations. Acceleration happens if there exists p
n�
�→ q �∗

p
n�→ q ∧ n� < n. Instead of p

n�→ q, we consider to add the accelerated transition

p
n��n�→ q. The new dependency �� is the same as � but any relations with p

n�→ q

are changed to p
n��n�→ q We write (∇,��)⊕(p

n��n�→ q) to continue in case there are
more accelerations may happen after this acceleration. For example, transition

p
(1
2)�→ q is to be added, and we have p

(0
2)�→ q �∗ p

(1
2)�→ q and p

(2
1)�→ q �∗ p

(1
2)�→ q at

the very beginning. The second dependency pair does not lead to acceleration,

however, after the first acceleration, we get new transition p
(ω2)�→ q, and new

dependency pair p
(2
1)�→ q �∗ p

(ω2)�→ q is generated. Then one more acceleration is
fireable, i.e.,

∇⊕ (p
(1
2)�→ q) = ∇⊕ (p

(ω2)�→ q) = ∇⊕ (p
(ωω)�→ q) = ∇∪ {(p

(ωω)�→ q)}.

Example 2. The following figure shows the Post∗F construction of a PDVAS
whose transition rules given in below diagram. We start from C0 = {�p0, ��}.
The Post∗M automata is illustrated as A� which is not finitely converged. For

example, p2
1�→ p0 is generated from p1

0�→ p0
1�→ p0 by transition rule ψ3, and

p1
2�→ p0 is generated from p2

1�→ p0 by transition ψ4.

With acceleration and dependency, we have (p1
0�→ p0) � (p2

1�→ p0) �
(p1

2�→ p0). Therefore we can apply acceleration and (p1
ω�→ p0) is added instead

of (p1
2�→ p0) in A. Then p2

ω�→ p0 and p0
ω�→ p0 is added according to transition

rule ψ3 and ψ2 respectively. This leads to the finitely converged Post∗F automaton
A, and L(A�)↓ = L(A)↓ ∩ (Nk)∗.

ψ1 : p0, �→ p1, 0
ψ2 : p1, n → p0, n + 1
ψ3 : p1, n1n2 → p2, n1 + n2

ψ4 : p2, n → p1, n + 1

A0 : p0
⊥ �� f

A� :

p0
⊥ ��

1,3,···
ψ2 ��

f

p1

0

ψ1

��

2

ψ4

��

···,6,4

ψ4

��

p2

1

ψ3

��

3

ψ3

��
5,7,···

ψ3

��

A :

p0
⊥ ��

1,ω

ψ2 ��
f

p1

0

ψ1

��

ω

ψ4

��

p2

1

ψ3

��

ω

ψ3

��

�

An immediate observation is that Post∗F -saturation is sound, because con-
figurations accepted by Post∗-automata will be covered by Post∗F -automata
thanks to the monotonicity. However, the completeness of Post∗F -saturation,
i.e., whether all the configurations covered by Post∗F -automata can be coverable
starting from the initial configurations, is not so obvious. The dependency re-
lation makes accelerations safe, hence Lemma 5 and Lemma 4 guarantees the

An immediate observation is that each configuration in L(Post∗(A0)) is cov-
ered by some in L(Post∗F (A0)). The opposite follows from Lemma 4, which says
that the downward closure (in Nk) of a transition in Post∗F (A0) is included in
the downward closure of transitions in Post∗(A0). Its proof is found in [23].

Lemma 4. For a PDVAS, let A0 be an initial P-automaton. If p
n7→ q is in

Post∗F (A0), for each n′ ≤ n with n′ ∈ Nk, there exists n′′ such that p
n′′Z=⇒ q is

in Post∗(A0) and n′ ≤ n′′ ≤ n.

5 V′= ∅ if (p, p′, ψ) is a push rule; otherwise, the destination of V′ is p′
n7→ q.

10

Since a PDVAS does not have standard-push rules, the saturation procedure
does not add new states. Thus, the sets of states in Post∗F (A0) and Post∗(A0) are
the same. From Lemma 4, we can obtain L(Post∗F (A0))↓∩(Nk)∗ = (post∗(C0))↓.

Finite convergence of Post∗F -saturation follows from that {(p,n, q) | p, q ∈
S,n ∈ Nkω} is well-quasi-ordered. Thus, since accelerations can occur only finitely
many times on a path of V∗, the length of V∗ is finite. Since V∗ is finitely
branching, König’s lemma concludes that the V-tree is finite.

Theorem 2. For a PDVAS, if an initial P-automaton A0 with L(A0) = C0 is
finite, Post∗F (A0) finitely converges with L(Post∗F (A0))↓∩(Nk)∗ = (post∗(C0))↓.

4.3 Coverability of RVASS

In this section, we show that Recursive Vector Addition Systems with States
(RVASSs) [3] are special cases of PDVASs, and Theorem refthm:termination
implies decidability of its coverability.

Definition 9. [3] Fix k ∈ N. An RVASS 〈Q, δ〉 consists of finite sets Q and δ
of states and transitions, respectively. We denote

– q
z→ q′ if (q, q′, z) ∈ δ for z ∈ Zk, and

– q
q1q2−→ q′ if (q, q1, q2, q

′) ∈ δ.
The configuration c ∈ (Q × Nk)∗ represents a stack of pairs 〈p,n〉 where p ∈ Q
and n ∈ Nk. The semantics is defined by following rules:

q
z−→ q′ n + z ∈ Nk

〈q,n〉c↪→〈q′,n + z〉c
q
q1q2−→ q′

〈q,n〉c↪→〈q1,0〉〈q,n〉c
q
q1q2−→ q′

〈q2,n′〉〈q,n〉c↪→〈q′,n + n′〉c
The state-reachability problem of an RVASS is, given two states q0, qf , whether

there exist a vector n and a configuration c such that 〈q0,0〉 ↪→∗ 〈qf ,n〉c. Lemma
3 in [3] showed its decidability by a reduction to a Branching VASS [6]. Below,
Corollary 1 shows the decidability of the coverability. Note that the state reach-
ability is the coverability from 〈q0,0〉 to {〈qf ,0↑〉 any∗}.

The encoding from an RVASS to a PDVAS is straightforward by regarding a
configuration of an RVASS as a stack content in a PDVAS with a single control
state •, where 〈qi, (n1, · · · , nk)〉 ∈ Q×Nk is regarded as an element in Γ = N|Q|k

(0, · · · , 0︸ ︷︷ ︸
(i−1)k

, n1, · · · , nk, 0, · · · , 0︸ ︷︷ ︸
(|Q`i)k

)

Definition 10. For k ∈ N and an RVASS R = 〈Q, δ〉, a PDVAS MR =
({•}, Γ,∆) consists of Γ = N|Q|k and ∆ ⊆ {•} × {•} × PFun(Γ≤2, Γ) with

1. if (q, q′, z) ∈ δ, then (•, 〈q,n〉 → •, 〈q′,n + z〉) ∈ ∆.
2. if (q, q1, q2, q

′) ∈ δ, then
(a) (•, 〈q, ε〉 → •, 〈q1,0〉) ∈ ∆ and (b) (•, 〈q2,n〉〈q,m〉 → •, 〈q′,n+m〉) ∈ ∆.

Corollary 1. The coverability of an RVASS is decidable.

11

5 Pre∗-automata for coverability

When ∆ has no non-standard pop rules, Pre∗ does not introduce any fresh
states, and we will show that ideal representations leads finite convergence. In
this section, we assume that ∆ has no non-standard pop rules.

5.1 Ideal representation of Pre∗-automata

As mentioned in Section 3.2, we need to construct a Pre∗-automaton that ac-
cepts predecessors of an ideal C↑0 . A naive representation of such upward closures
may be infinite. Therefore, we use an ideal representation Pre∗F -automaton in
which transition labels and states are ideals. Thanks to WQO, an ideal is char-
acterized by its finitely many minimal elements, and ideals are well founded wrt
set inclusion.

Definition 11. For a WSPDS 〈(P,�), (Γ,≤), ∆〉, by replacing Γ with I(Γ) and
P ⊆ S \F with I(P) ⊆ S \F in Definition 3, we obtain the definition of a Pre∗F -
automaton A = (S, I(Γ),∇, F).

As notational convention, let s, t to range over S, ideals K,K ′ to range over
I(P), and I, I ′ over I(Γ). We denote w ∈ Ĩ for Ĩ = I1I2 · · · In, if w = α1α2 · · ·αn
and αi ∈ Ii for each i. We say that A accepts a configuration 〈p, w〉, if there is

a path K
ĨZ=⇒ f ∈ F in A and p ∈ K, w ∈ Ĩ. The ideal representation of an

initial P-automaton accepting C↑0 is obtained from a P-automaton accepting C0

by replacing each state p with {p}↑ and each transition label α with {α}↑.

Definition 12. Let A0 be an initial Pre∗F -automaton accepting C↑0 . Pre∗F (A0)
is the result of repeated applications of the following Pre∗F -saturation rules

(S, I(Γ),∇, F), K
ĨZ=⇒ s

(S, I(Γ),∇, F)⊕ {φ−1(K)
ψ−1(Ĩ)7−→ s}

if Ĩ ∈ I(Γ≤2) and (φ, ψ) ∈ ∆

where φ−1(K) 6= ∅, ψ−1(Ĩ) 6= ∅, and (S,Σ,∇, F)⊕ {K I7→ s} is
(S,Σ,∇, F) if (K ′

I′7→ s) ∈ ∇ with K ⊆ K ′ and I ⊆ I ′

(S,Σ, (∇ \ {K I′7→ s}) ∪ {K I′∪I7−→ s}, F) if (K
I′7→ s) ∈ ∇

(S ∪ {K}, Σ,∇∪ {K I7→ s}, F) otherwise

The ⊕ operator merges ideals associated to transitions. Assume that a new

transition K
I7→ s is generated. If there is a transition K ′

I′7→ s with the same s,

K ⊆ K ′, and I ⊆ I ′, the ideal of configurations starting from K
I7→ s is included

in that from K ′
I′7→ s. Thus, no needs to add it. If there is a transition K

I′7→ s
between the same pair K, s, then take the union I ∪ I ′. Otherwise, we add a new
transition.

12

It is easy to see that if φ ∈ PFun(X,Y) is monotonic, then, for any I ∈ I(Y),

φ−1(I) is an ideal in I(X). Completeness pre∗(C↑0) ⊆ L(Pre∗F (A0)) follows im-

mediately by induction on saturation steps. Soundness pre∗(C↑0) ⊇ L(pre∗(A0))
is guaranteed by Lemma 5, which is an invariant during the saturation procedure.

Lemma 5. Assume K
ĨZ=⇒ s in Pre∗F (A0). For each p ∈ K, w ∈ Ĩ,

– if s = K ′ ∈ I(P), then 〈p, w〉 ↪→∗ 〈q, ε〉 for some q ∈ K ′.
– if s 6∈ I(P), there exists K ′

Ĩ′Z=⇒ s in A0 such that 〈p, w〉 ↪→∗ 〈p′, w′〉 for

some p′ ∈ K ′ and w′ ∈ Ĩ ′.

Theorem 3. For an initial P-automaton A0 accepting C↑0 , L(Pre∗F (A0)) =

pre∗(C↑0).

Note that Theorem 3 only shows the correctness of Pre∗F -saturation. We do not
assume its finite convergence, which will be discussed in next two subsections.

5.2 Coverability of Multi-set PDS

As an example of the finite convergence, we show Multi-set pushdown system
(Multi-set PDS) proposed in [20, 13], which is an extension of PDS by attaching
a multi-set into the configuration. We directly give the definition of a Multi-set
PDS as a WSPDS. Note that, although a Multi-set PDS has infinitely many
control states, it finitely converges because of restrictions on decreasing rules.

Definition 13. A Multi-set pushdown system (Multi-set PDS) is a WSPDS
((Q× Nk,�), Γ, δ), where

– Q, Γ are finite and k = |Γ |,
– δ is a finite set of transition rules consisting of two kinds:

1. Increasing rules δ1 : (p, γ, q, w,n) for n ∈ Nk;
2. Decreasing rules δ2: (p,⊥, q,⊥,n) for n ∈ Nk.

Configuration transitions are defined by:

(p, γ, q, w,n) ∈ δ1
〈(p,m), γw′〉 ↪→ 〈(q,n + m), ww′〉

(p,⊥, q,⊥,n) ∈ δ2,m ≥ n

〈(p,m),⊥〉 ↪→ 〈(q,m− n),⊥〉

Note the decreasing rules are applied only when the stack is empty. A state in
Pre∗F -automata is in I(Q × Nk). Since Q is finite, we can always separate one
state into finitely many states such that each of which has the form of Q×I(Nk).
From Definition 12, we have two observations.

1. If transition (p,K)
γ7→ s is added from (q,K ′)

wZ=⇒ s by an increasing rule in
δ1, then K ⊇ K ′.

2. If transition (p,K)
⊥7→ s is added from (q,K ′)

⊥7→ s by a decreasing rule in
δ2, then K ⊆ K ′ and s is a final state.

13

Pre∗F -saturation steps by increasing rules always enlarge ideals of vectors.
By Lemma 1, eventually such ideals become maximal. Since stack alphabet is
(finite thus) well-quasi-ordered, newly generated transitions by increasing rules
are eventually caught by the first case of the ⊕ operator (in Definition 12). A
worrying case is by decreasing rules, which shrink ideals. Since WQO does not
guarantee the stabilization for I0 ⊃ I1 ⊃ · · ·, it may continue infinitely. For
instance, Pre∗F -saturation steps by decreasing pop rules may expand a path 7→∗
endlessly. Fortunately, decreasing rules of a Multi-set PDS occur only when the
stack is empty. In such cases, destination states of 7→ are always final states,
which are finitely many. Therefore, again they are eventually caught by the first
case of the ⊕ operator. Note that this argument works even if we relax finite
stack alphabet in Definition 13 to being well-quasi-ordered.

Corollary 2. The coverability problem for a Multi-set PDS (with well-quasi-
ordered stack alphabet) is decidable.

Example 2. Let 〈({a, b, c} × N,�), {α}, δ〉 be a Multi-set PDS with transition
rules given below. The set of configurations covering 〈c0,⊥〉 is computed by
Pre∗F -automaton A. We abbreviate ideal {pn}↑ by pn for p ∈ {a, b, c} and n ≥ 0.

A transition c1
⊥7→ f is generated from a1

α⊥Z=⇒ f by ψ3. However, it is not added

since we already have c0
⊥7→ f and {c1}↑ ⊆ {c0}↑.

14

– Given p, q ∈ Q and n, n� ∈ Nk, (p, n) � (q, n�) if and only if p = q and
n ≤ n�, so (Q × Nk,�) is a WQO;

– δ is a finite set of transition rules consisting of two kinds:
1. Increasing rules δ1 : (p, γ, q, w, n) for n ∈ Nk;
2. Decreasing rules δ2: (p,⊥, q,⊥, n) for n ∈ Nk.

Configuration transitions are defined by:

(p, γ, q, w, n) ∈ δ1

�(p, m), γw�� �→ �(q, n + m), ww��
(p,⊥, q,⊥, n) ∈ δ2, m ≥ n

�(p, m),⊥� �→ �(q, m − n),⊥�

Note the decreasing rules are applied only when the stack is empty. Our defini-
tion is slightly different from that in [21]. We allow vector additions with stack
operations, however, this can be equivalently split into two transitions of [21]:
one for stack operation and another for vector addition.

We know that the state in Pre∗F -automata will be in I(Q × Nk). Since Q
is finite, we always can separate one state into finite number of states, each of
which is in the form of Q×I(Nk). From Definition 12, we have two observations:

1. if transition (p, I)
γ�→ s is added from (q, I �)

w�=⇒ s and some increasing rule
in δ1, then I ⊇ I �.

2. if transition (p, I)
⊥�→ s is added from (q, I �)

⊥�→ s and some decreasing rule
in δ2, then I ⊆ I � and s is a final state.

There are only finite number of final states in A0 and Q is finite, so there will
be finite number of states (q, I) that connected to final states with ⊥ in Pre∗F -
automata by the definition of ⊕ operator and Lemma 1. Other states added by
decreasing rules will also be finite by observation 1 and Lemma 1. Therefore,
we have i) the total states of the converged Pre∗F -automata is finite and ii) the
labels between pairs of states are finite (Γ is finite). The decidable coverability
of Multi-set PDS is a corollary of Theorem 4 .

Corollary 2. The coverability problem for a Multi-set PDS is decidable.

Example 2. Let �({a, b, c} × N,�), {α}, δ� be an Multi-set PDS with transition
rules given in the following graph. The set of configurations covering �c0,⊥�
is computed by Pre∗F -automaton A. We abbreviate ideal {p0}↑ by p0 for p ∈
{a, b, c}. Transition c1 ⊥�→ f is generated from a1 α⊥�=⇒ f by applying ψ3 (see

Appendix A). It is omitted because we already have c0 ⊥�→ f .

δ1 = { ψ1 : (bn,α→ an+1,α),
ψ2 : (an,α→ bn, �),
ψ3 : (cn, �→ an,α)}

δ2 = { ψ0 : (bn,⊥ → cn−1,⊥)}

A0 : c0 ⊥ �� f

A : c0 ⊥ �� f c1⊥
ψ3

��

a1
α

ψ2 �� b1

⊥
ψ0

��

c0α

ψ3

��
α ψ3

��
a0

α

ψ2 �� b0

α

ψ1

��

α
ψ1

��

5.3 Finite control states

Assume that, for a monotonic WSPDS M = 〈P, (Γ,≤), ∆〉, P is finite and ∆
does not contain nonstandard-pop rules. Then, we observe that, in the Pre∗F -
saturation for M , i) the set of states is bounded by the state in A0 and P , and
ii) transitions between any pair of states are finitely many by Lemma 1. Hence,
Pre∗F saturation procedure finitely converges.

Theorem 4. Let 〈P, (Γ,≤), ∆〉 be a WSPDS such that P is finite and ψ−1(I)
is computable for any (p, p′, ψ) ∈ ∆. Then, its coverability is decidable.

Example 3. Let M = 〈{pi},N2, ∆〉 be a WSPDS with ∆ = {ψ1, ψ2, ψ3, ψ4} given
in the figure. An automatonA illustrates the pre∗-saturation starting from initial
A0 that accepts C = 〈p2, (0, 0)↑〉.

For instance, p1
(3,0)↑7−→ p1 in A is generated by ψ2, and p0

(3,2)↑7−→ p1 is added by

ψ3. Then repeatedly apply ψ1 twice to p0
(3,2)↑7−→ p1

(3,0)↑7−→ p1, we obtain p0
(3,0)↑7→ p1.

14

ψ1 : �p0, n� → �p0, (n + (1, 1))n�
ψ2 : �p1, n� → �p1, �� if n ≥ (3, 0)
ψ3 : �p0, n� → �p1, n − (0, 2)� if n ≥ (0, 2)
ψ4 : �p1, n� → �p2, �� if n ≥ (1, 0)

A0 : p2
(0,0)↑ �� f

A :

p1
(1,0)↑ψ4 ��

(3,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(2,0)↑ ∪ (1,2)↑

ψ1,3

��

(3,0)↑

ψ1,3

��

(1,0)↑ ∪ (0,1)↑ψ1

�� f

Case 2: Multi-set PDS As another example of finite convergence, we describe
Multi-set pushdown system (Multi-set PDS) proposed by [2, 3], which is an ex-
tension of PDS by attaching a multi-set into the configuration. We directly give
the definition of a Multi-set PDS as a WSPDS.

Definition 13. A Multi-set pushdown system (Multi-set PDS) is a WSPDS
((Q × Nk,�),Γ, δ), where

– Q, Γ are finite and k = |Γ |,
– Given p, q ∈ Q and n, n� ∈ Nk, (p, n) � (q, n�) if and only if p = q and

n ≤ n�, so (Q × Nk,�) is a WQO;
– δ is a finite set of transition rules consisting of two kinds:

1. Increasing rules δ1 : (p, γ, q, w, n) for n ∈ Nk;
2. Decreasing rules δ2: (p,⊥, q,⊥, n) for n ∈ Nk.

Configuration transitions are defined by:

(p, γ, q, w, n) ∈ δ1

�(p, m), γw�� �→ �(q, n + m), ww��
(p,⊥, q,⊥, n) ∈ δ2, m ≥ n

�(p, m),⊥� �→ �(q, m − n),⊥�
Note the decreasing rules are applied only when the stack is empty. Our defini-
tion is slightly different from that in [19]. We allow vector additions with stack
operations, however, this can be equivalently split into two transitions of [19]:
one for stack operation and another for vector addition.

We know that the state in Pre∗F -automata will be in I(Q × Nk). Since Q
is finite, we always can separate one state into finite number of states, each of
which is in the form of Q×I(Nk). From Definition 12, we have two observations:

1. if transition (p, I)
γ�→ s is added from (q, I �)

w�=⇒ s and some increasing rules
in δ1, then I ⊇ I �.

2. if transition (p, I)
⊥�→ s is added from (q, I �)

⊥�→ s and some decreasing rules
in δ2, then I ⊆ I � and s is a final state.

There are only finite number of final states in A0 and Q is finite, so there will
be finite number of states (q, I) that connected to final states with ⊥ in Pre∗F -
automata by the definition of ⊕ operator and Lemma 1. Other states added by
decreasing rules will also be finite by observation 1 and Lemma 1. Therefore,
we have i) the total states of the converged Pre∗F -automata is finite and ii) the
labels between pairs of states are finite (Γ is finite). The decidable coverability
of Multi-set PDS is a corollary of Theorem 4 .

Corollary 2. The coverability problem for a Multi-set PDS is decidable.

6 Conclusion

This paper investigated well-structured pushdown systems (WSPDSs), pushdown
systems with well-quasi-ordered control states and stack alphabet, and devel-
oped two proof techniques to investigate the coverability based on extensions of
classical P-automata techniques. They are,

– when a WSPDS has no standard push rules, the forward P-automata con-
struction Post∗ with Karp-Miller acceleration, and

– when a WSPDS has no non-standard pop rules, the backward P-automata
construction Pre∗ with ideal representations.

We showed decidability results of coverability under certain conditions, which
include recursive vector addition system with states [3], multi-set pushdown sys-
tems [20, 13], and a WSPDS with finite control states and WQO stack alphabet.
The first one extended the decidability of the state reachability in [3] to that of
the coverability, and the second one relaxed finite stack alphabet of Multi-set
PDSs [20, 13] to being well-quasi-ordered.

Our current results just opened the possibility of WSPDSs. Among lots of
things to do, we list few for future works.

– Currently, we have few examples of WSPDSs. For instance, parameterized
systems would be good candidates to explore.

– Currently, we are mostly investigating with finite control states. However,
we also found that a naive extension to infinite control states weakens the
results a lot. We are looking for alternative conditions.

– Our decidability proofs contain algorithms to compute, however the estima-
tion of their complexity is not easy due to the nature of WQO. We hope
that a general theoretical observation [22] would give some hints.

– Our current forward method is restricted to VASs. We also hope to apply
Finkel and Goubault-Larrecq’s work on ω2-WSTS [11, 12] to generalize.

Acknowledgements

The authors would like to thank Prof.Alain Finkel and anonymous referees for
valuable comments. This work is supported by the NSFC-JSPS bilateral joint
research project (61011140074), NSFC projects (61003013,61100052,61033002),
NSFC-ANR joint project (61261130589), and JSPS KAKENHI Grant-in-Aid for
Scientific Research(B) (23300008).

15

References

1. Abdulla, P., Cerans, K., Jonsson, C., Yih-Kuen, T.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation 160(1–2)
(2000) 109–127

2. Atig, M., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent pro-
grams with dynamic creation of threads. TACAS’09. LNCS 5505 (2009) 107–123

3. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. Principles of
Programming Languages (POPL’12), ACM (2012) 203–214

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. CONCUR’97. LNCS 1243 (1997) 135–150

5. Chadha, R., Viswanathan, M.: Decidability results for well-structured transition
systems with auxiliary storage. CONCUR’07. LNCS 4703 (2007) 136–150

6. Demri, S., Jurdziński, M., Lachish, O., Lazic, R.: The covering and boundedness
problems for branching vector addition systems. Journal of Computer and System
Sciences 79(1)(2012) 23–38

7. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. CAV’00. LNCS 1855 (2000) 232–247

8. Finkel, A.: A generalization of the procedure of Karp and Miller to well structured
transition systems. ICALP’87. LNCS 267 (1987) 499–508

9. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Electronic Notes Theoretical Computer Science 9(1997) 27–37

10. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! The-
oretical Computer Science 256(1–2) (2001) 63–92

11. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part I: Completions.
STACS’09. (2009) 433–444. available at http://www.stacs-conf.org

12. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, Part II: Complete
WSTS. ICALP’09. LNCS 5556 (2009) 188–199

13. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs.
Principles of Programming Languages (POPL’07). ACM (2007) 339–350

14. Lazić, R.: The reachability problem for vector addition systems with a stack is not
elementary, manuscript, available at http://rp12.labri.fr. (2012)

15. Leroux, J.: Vector addition system reachability problem. Principles of Program-
ming Languages (POPL’11), ACM (2011) 307–316

16. Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM
Journal Computing 13(3) (1984) 441–460

17. Mayr, R.: Process rewrite systems. Information and Computation 156 (1999)
264-286

18. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
TACAS’05. LNCS 3440 (2005) 93–107

19. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Programming Languages and Systems 22(2) (2000) 416–430

20. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. CAV’06. LNCS 4144 (2006) 300–314

21. Verma, K., Goubault-Larrecq, J.: Karp-Miller trees for a branching extension of
VASS. Discrete Mathematics & Theoretical Computer Science 7(1)(2005)217–230

22. Weiermann, A.: Complexity bounds for some finite form of Kruskal’s theorem.
Journal of Symbolic Computation 18 (1994) 463–488

23. Xiaojuan, C., Ogawa, M.: Well-structured pushdown system, Part 1: Decid-
able classes for coverability. JAIST Research Report IS-RR-2013-001 (2013)
http://hdl.handle.net/10119/11347.

