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Abstract. A timed extension of input-driven pushdown automata (also
known as visibly pushdown automata and as nested word automata)
under the event-clock model was introduced by Nguyen and Ogawa
(“Event-clock visibly pushdown automata”, 2009), who showed that this
model can be determinized using the method of region construction.
This paper proposes a new, direct determinization procedure for these
automata: an n-state nondeterministic automaton with k different clock
constraints is transformed to a deterministic automaton with 2n2

states,

2n2+k stack symbols and the same clock constraints as in the original au-
tomaton. The construction is shown to be asymptotically optimal with
respect to both the number of states and the number of stack symbols.
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1 Introduction

Timed automata (TA), introduced by Alur and Dill [2], are finite automata op-
erating in real time. These automata enjoy decidability of the emptiness prob-
lem (equivalently, the state reachability problem) and are implemented as UP-
PAAL [7] for safety checking. The decidability of emptiness holds under various
extensions of the model equipped with a pushdown store, such as the Dense-
Timed Pushdown Automata (DTPDA) of Abdulla et al. [1] with ages (represent-
ing local clocks), which are further analyzed by Clemente and Lasota [11].

Although the emptiness problem for timed automata is decidable, timed au-
tomata are not closed under complementation, and their nondeterministic case
cannot generally be determinized. Their inclusion problem is decidable only in
the case of a single clock [18], and becomes undecidable for two clocks [2].

As an alternative timed device, the class of event-clock automata (ECA) was
introduced by Alur et al. [3] and further studied by Geeraerts et al. [12]: this
class allows determinization and complementation, and hence it enjoys decidable
inclusion problem. An ECA is defined with a “prophecy clock” and a “history
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clock” bound to each input symbol. The history clock←−xa associated with an input
symbol a is always reset when a is read, and the prophecy clock −→xa predicts the
next occurrence of a.

In general, when a stack is introduced, this often destroys the decidability
of the inclusion problem, since asynchronous behavior of two stacks disrupts a
direct product of two devices. Even starting from finite automata, adding the
stack makes the inclusion undecidable.

To remedy this, a constraint on the synchronous behaviour of stacks is im-
posed upon the model. The resulting input-driven pushdown automata [14,10]
(IDPDA), also known as visibly pushdown automata [5] and as nested word
automata [6], are defined over an alphabet split into three parts: left brack-
ets Σ+1, on which the automaton must push one stack symbol, right brackets
Σ−1, on which the automaton must pop one stack symbol, and neutral symbols
Σ0, on which the automaton ignores the stack. Unlike the standard pushdown
automata, IDPDA are closed under all Boolean operations, and they can be
determinized [10]. An extensive study of this model was initiated by Alur and
Madhusudan [5,6], who, in particular, established a lower bound on the deter-
minization complexity, accordingly starting a line of research on the succinctness
of description for this model [16], and also defined a Büchi-like extension for in-
finite strings, which has also received further attention [13,17].

Event-clock visibly pushdown automata, which combine the ideas of input-
driven pushdown and event-clock automata, were proposed by Nguyen and
Ogawa [19], who proved that this model can be determinized. Their work was fol-
lowed and extended by Bhave et al. [8] and Bozzelli et al. [9]. This paper revisits
this model, with the aim to improve the determinization procedure. In addition,
the model is further extended by introducing special event clocks recording the
duration of the call/return relation. The resulting model is called event-clock
input-driven pushdown automata (ECIDPDA).

The proposed determinization procedure is direct, in the sense that it does
not rely on the classical discretization or “untime translation” method, and is
not based on the region construction, which handles the extension by the age of
a stack symbol in Bhave et al. [8]. Even though direct determization was once
used by Alur and Madhusudan [4] for determinizing event-clock finite automata
with only history clocks (←−xa), this idea, up to the authors’ knowledge, did not
receive any further development in the literature; in particular, all the existing
work on input-driven/visibly pushdown event-clock automata relies on more
sophisticated determinization constructions.

As per the proposed construction, presented in Section 3, any given n-state
nondeterministic automaton with k different clock constraints and with any num-
ber of stack symbols is transformed to a deterministic automaton with 2n

2

states,
2n

2+k stack symbols and the same clock constraints as in the original automaton.
Furthermore, in Section 4, this construction is shown to be asymptotically opti-
mal both with respect to the number of states and with respect to the number
of stack symbols.
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2 Definitions

Event-clock automata operate on timed strings over an alphabet Σ, that is, se-
quences of the form w = (a1, t1) . . . (an, tn), where a1 . . . an ∈ Σ∗ is a string, and
t1 < . . . < tn are real numbers indicating the time of the symbols’ appearance.

For input-driven pushdown automata, the alphabet Σ is split into three dis-
joint classes: Σ = Σ+1∪Σ−1∪Σ0, where symbols in Σ+1 are called left brackets,
symbols in Σ−1 are right brackets, and Σ0 contains neutral symbols. An input-
driven pushdown automaton always pushes one stack symbol upon reading a
left bracket, pops one stack symbol upon reading a right bracket, and does not
access the stack on neutral symbols. Typically, a string over such an alphabet is
assumed to be well-nested with respect to its left and right brackets, but Alur
and Madhusudan [5] adapt the definition to handle ill-nested inputs.

The proposed event-clock input-driven pushdown automata (ECIDPDA) op-
erate on timed strings over an alphabet Σ = Σ+1 ∪Σ−1 ∪Σ0. These automata
operate like input-driven pushdown automata, and additionally can evaluate cer-
tain constraints upon reading each input symbol. These constraints refer to the
following clocks, each evaluating to a real number:

– a symbol history clock ←−xa, with a ∈ Σ, provides the time elapsed since the
symbol a was last encountered;

– a symbol prediction clock −→xa, with a ∈ Σ, foretells the time remaining until
the symbol a will be encountered next time;

– a stack history clock ←−−−xpush, defined on a right bracket, evaluates to the time
elapsed since the matching left bracket;

– a stack prediction clock −−→xpop, defined on a left bracket, foretells the time
remaining until the matching right bracket.

These values are formally defined as follows.

Definition 1. Let Σ = Σ+1∪Σ−1∪Σ0 be an alphabet. The set of clocks over Σ
is C(Σ) = {←−xa | a ∈ Σ }∪{−→xa | a ∈ Σ }∪{←−−−xpush,

−−→xpop}. Then the value of a clock
from C(Σ) on a timed string w = (a1, t1) . . . (an, tn) at position i ∈ {1, . . . , n} is
defined as follows.

←−xa = ti − tj , for greatest j < i with aj = a
−→xa = tj − ti, for least j > i with aj = a

←−−−xpush = ti − tj , if aj ∈ Σ+1 and ai ∈ Σ−1 match each other
−−→xpop = tj − ti, if ai ∈ Σ+1 and aj ∈ Σ−1 match each other

In each case, if no such j exists, then the value of the clock is undefined.

The original model by Nguyen and Ogawa [19] used only symbol history
clocks ←−xa and symbol prediction clocks −→xa. Stack history clocks ←−−−xpush were first
introduced by Bhave et al. [8], who called them the age of stack symbols. As
compared to the definition of Bhave et al. [8], another clock type, the stack
prediction clock −−→xpop, has been added to the model for symmetry.
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Fig. 1. Clock values for the string w = (0.1, c)(0.2, <)(0.4, <)(0.5, c)(0.7, >)(0.8,>)(1, d),
at the last right bracket, as in Example 1.

A clock constraint is a logical formula that restricts the values of clocks at the
current position: clock values can be compared with constants, and any Boolean
combination of such conditions can be expressed.

Definition 2. Let Σ = Σ+1 ∪ Σ−1 ∪ Σ0 be an alphabet. The set of clock con-
straints over Σ, denoted by Φ(Σ), consists of the following formulae.

– For every clock C ∈ C(Σ) and for every non-negative constant τ ∈ R, the
following are atomic clock constraints: C 6 τ ; C > τ .

– If ϕ and ψ are clock constraints, then so are (ϕ ∨ ψ), (ϕ ∧ ψ) and ¬ϕ.

Let w = (a1, t1) . . . (an, tn) be a timed string, let i ∈ {1, . . . , n} be a position
therein. Each clock constraint can be either true or false on w at position i.

– C 6 τ is true if the value of C on w at position i is defined and is at most
τ .

– C > τ is true if the value of C on w at i is defined and is at least τ .

– (ϕ ∨ ψ) is true on w at i, if so is ϕ or ψ;

– (ϕ ∧ ψ) is true on w at i, if so are both ϕ and ψ;

– ¬ϕ is true on w at i, if ϕ is not.

The following abbreviations are used: C = τ stands for (C 6 τ ∧ C > τ);
C < τ stands for (C 6 τ ∧ ¬(C > τ)); C > τ stands for (C > τ ∧ ¬(C 6 τ)).

Example 1. Let Σ = Σ+1 ∪ Σ−1 ∪ Σ0, with Σ+1 = {<}, Σ−1 = {>} and
Σ0 = {c, d}. Let w = (0.1, c)(0.2, <)(0.4, <)(0.5, c)(0.7, >)(0.8,>)(1, d) be a
well-nested timed string over Σ, illustrated in Figure 1. Then, the values of
the clocks at position 6 (the last right bracket) are: ←−−−xpush = 0.8 − 0.2 = 0.6,
←−x< = 0.4, ←−xc = 0.3, ←−x> = 0.1, −→xd = 1 − 0.8 = 0.2, and ←−xd, −→x<, −→xc, −→x>, −−→xpop
are undefined. Accordingly, the clock constraint ←−−−xpush > 0.1 ∨ −→xc > 0 is true,
whereas ←−xc > 0.1 ∧ −→xd < 0.2 is false.
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An event-clock automaton is equipped with a finite set of such clock con-
straints. At each step of its computation, it knows the truth value of each of
them, and can use this information to determine its transition. The following
definition is based on Nguyen and Ogawa [19] and on Bhave et al. [8].

Definition 3. A nondeterministic event-clock input-driven pushdown automa-
ton (ECIDPDA) is an octuple A = (Σ+1, Σ0, Σ−1, Q,Q0, Γ, 〈δa〉a∈Σ , F ), where:

– Σ = Σ+1 ∪Σ−1 ∪Σ0 is an input alphabet split into three disjoint classes;
– Q is a finite set of states;
– Γ is the pushdown alphabet;
– Q0 ⊆ Q is the set of initial states;
– for each neutral symbol c ∈ Σ0, the state change is described by a partial

function δc : Q× Φ(Σ)→ 2Q;
– the transition function by each left bracket symbol < ∈ Σ+1 is δ< : Q ×
Φ(Σ)→ 2Q×Γ , which, for a given current state and the truth value of clock
constraints, provides zero or more transitions of the form (next state, symbol
to be pushed);

– for every right bracket symbol > ∈ Σ−1, there is a partial function δ> : Q×
(Γ ∪ {⊥}) × Φ(Σ) → 2Q specifying possible next states, assuming that the
given stack symbol is popped from the stack, or the stack is empty (⊥);

– F ⊆ Q is the set of accepting states.

The domain of the transition function by each symbol must be finite.
An accepting computation of A on a timed string w = (a1, t1) . . . (an, tn)

is any sequence (q0, α0), (q1, α1), . . . , (qn, αn), with q0, . . . , qn ∈ Q, and
α0, . . . , αn ∈ Γ ∗, that satisfies the following conditions.

– It begins in an initial state q0 ∈ Q0 with the empty stack, α0 = ε.
– For each i ∈ {1, . . . , n}, with ai = c ∈ Σ0, there exists a clock constraint ϕi

that is true on w at position i, with qi ∈ δc(qi−1, ϕi) and αi = αi−1.
– For each i ∈ {1, . . . , n}, with ai = < ∈ Σ+1, there exists a clock constraint
ϕi that is true on w at position i, with (qi, s) ∈ δ<(qi−1, ϕi) and αi = sαi−1
for some s ∈ Γ .

– For each i ∈ {1, . . . , n}, with ai = > ∈ Σ−1, if αi−1 = sβ for some s ∈ Γ
and β ∈ Γ ∗, then there exists a clock constraint ϕi that is true on w at
position i, with qi ∈ δ>(qi−1, s, ϕi) and αi = β

– For each i ∈ {1, . . . , n}, with ai = > ∈ Σ−1, if αi−1 = ε, then there exists a
clock constraint ϕi that is true on w at position i, with qi ∈ δ>(qi−1,⊥, ϕi)
and αi = ε.

– The computation ends in an accepting state qn ∈ F with any stack contents.

The language recognized by A, denoted by L(A), is the set of all timed strings,
on which A has at least one accepting computation.

Definition 4. A nondeterministic event-clock input-driven pushdown automa-
ton A = (Σ+1, Σ0, Σ−1, Q,Q0, Γ, 〈δa〉a∈Σ , F ) is said to be deterministic if the
following conditions hold.
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1. There is a unique initial state: |Q0| = 1.
2. Every transition function δa, with a ∈ Σ0 ∪Σ+1, satisfies |δa(q, ϕ)| 6 1 for

all q ∈ Q and ϕ ∈ Φ(Σ), and whenever δa(q, ϕ) and δa(q, ϕ′), with ϕ 6= ϕ′,
are both non-empty, the clock constraints ϕ and ϕ′ cannot both be true at
the same position of the same string.

3. Similarly, every transition function δ>, with > ∈ Σ−1, satisfies
|δ>(q, s, ϕ)| 6 1 for all q ∈ Q, s ∈ Γ ∪ {⊥} and ϕ ∈ Φ(Σ), and when-
ever δc(q, s, ϕ) and δ(q, s, ϕ′), with ϕ 6= ϕ′, are both non-empty, the clock
constraints ϕ and ϕ′ cannot both be true at the same position of the same
string.

The first result of this paper is that nondeterministic event-clock input-driven
pushdown automata can be determinized. Determinization results for a very sim-
ilar model were earlier given by Nguyen and Ogawa [19] and by Bhave et al. [8].
However, their constructions relied on the method of region construction, in
which the space of clock values is discretized. On the other hand, the construc-
tion in the present paper has the benefit of being direct, in the sense that the
transition function for a deterministic automaton directly simulates the transi-
tions of a nondeterministic automaton. Later it will be proved that this easier
construction is also optimal with respect to the number of states and stack sym-
bols. The proposed construction is not much more difficult than the construction
for standard input-driven pushdown automata, without time.

3 Direct determinization of event-clock IDPDA

The classical construction for determinizing a standard (untimed) input-driven
pushdown automaton [10,6], is based upon considering a nondeterministic au-
tomaton’s behaviour on a left bracket and on a matching right bracket at the
same time, while reading the right bracket. This is achieved by computing a
behaviour relation R ⊆ Q × Q of the original automaton inside brackets, and
then using it to simulate these two moments in the computation at once. In this
way, the stack symbol pushed while reading the left bracket is matched to the
symbol popped while reading the right bracket, and all possible computations
of this kind can be considered at once.

In the event-clock case, the nondeterministic decisions made on a left bracket
are based upon the clock values at that time, and if the simulation of these de-
cisions were deferred until reading the matching right bracket, then those clock
values would no longer be available. Since event-clock automata cannot manip-
ulate clock values explicitly, they, in particular, cannot push the clock values
onto the stack for later use. What can be done is to test all elementary clock
constraints while reading the left bracket, store their truth values in the stack,
and later, upon reading the right bracket, use this information to simulate the
behaviour of the original automaton on the left bracket. This idea is implemented
in the following construction, which uses the same set of states as the classical
construction [10,6], but requires more complicated stack symbols.
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Theorem 1. Let A = (Σ+1, Σ0, Σ−1, Q,Q0, Γ, 〈δa〉a∈Σ , F ) be a nondetermin-
istic event-clock input-driven pushdown automaton. Let Ψ be the set of atomic
constraints used in its transitions. Then there exists a deterministic event-clock
input-driven pushdown automaton with the set of states Q′ = 2Q×Q, and with
the pushdown alphabet Γ ′ = 2Q×Q ×Σ+1 × 2Ψ , which recognizes the same set of
timed strings as A.

Proof. States of the deterministic automaton B are sets of pairs (p, q) ∈ Q×Q,
with each pair meaning that there is a computation of the original automaton
A on the longest well-nested suffix of the input that begins in the state p and
ends in the state q. The initial state of B is q′0 = { (q0, q0) | q0 ∈ Q0 }.

For a neutral symbol c ∈ Σ0 and a state P ∈ Q′, the transition δ′c(P ) ad-
vances all current computations traced in P by the next symbol c. Each compu-
tation continues by its own transition, which requires a certain clock constraint
to be true. Whether each clock constraint ϕ ∈ Φ(Σ) is true or false, can be
deduced from the truth assignment to the atomic constraints. For every set of
atomic constraints S ⊆ Ψ , let ξS =

∧
C∈S C ∧

∧
C∈Ψ\S ¬C be a clock constraint

asserting that among all atomic constraints, exactly those belonging to S are
true. Then, for every set S, the new automaton has the following transition.

δc(P, ξS) = { (p, q′) | ∃(p, q) ∈ P, ∃ϕ ∈ Φ(Σ) : q′ ∈ δc(q, ϕ), ϕ is true under S }

On a left bracket < ∈ Σ+1, the transition of B in a state P ∈ Q′ pushes the
current context of the simulation onto the stack, and starts the simulation afresh
at the next level of brackets, where it will trace the computations beginning
in different states p′ ∈ Q. A computation in a state p′ is started only if any
computations of A actually reach that state. In addition, B pushes the current
left bracket (<), as well as the truth value of all atomic constraints at the present
moment, S ⊆ Ψ . This is done in the following transitions, defined for all S ⊆ Ψ .

δ′<(P, ξS) =
({

(p′, p′)
∣∣ ∃(p, q) ∈ P, ∃ϕ ∈ Φ(Σ) : ϕ is true under S,

p′ ∈ δ<(q, ϕ)
}
, (P,<, S)

)
If a matching right bracket (>) is eventually read, then B shall pop (P,<, S)
from the stack and reconstruct what has happened to each of the computations
of A in P at this point and further on. On the other hand, if this left bracket
(<) is unmatched, then the acceptance shall be determined on the basis of the
computations traced on the inner level of brackets.

When B encounters a matched right bracket > ∈ Σ−1 in a state P ′ ⊆
Q × Q, it pops a stack symbol (P,<, S) ∈ Γ ′ containing the matching left
bracket (< ∈ Σ+1), the data on all computations on the current level of brackets
simulated up to that bracket (P ⊆ Q × Q), and the truth value of all atomic
clock constraints at the moment of reading that bracket (S ⊆ Ψ).

Then, each computation in P is continued by simulating the transition by
the left bracket (<), the behaviour inside the brackets stored in P ′, and the
transition by the right bracket (>), all at once. Let u<v> be the longest well-
nested suffix of the string read so far. Every computation of A on u, which begins
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Fig. 2. (left) A computation of a nondeterministic event-clock IDPDA; (right) Its sim-
ulation by a deterministic event-clock IDPDA.

in a state p and ends in a state q, is represented by a pair (p, q). Upon reading
the left bracket (<), the automaton A makes a transition to a state p′, pushing
a stack symbol s, along with checking a clock constraint ϕ. The automaton B
can now check the same clock constraint by using the set S of atomic clock
constraints that held true at the earlier left bracket (<). For every set of atomic
constraints S′ ⊆ Ψ ′, the following transition is defined.

δ′>(P ′, (P,<, S), ξS′) =
{

(p, q′′)
∣∣

∃(p, q) ∈ P,∃(p′, q′) ∈ P ′,∃s ∈ Γ,∃ϕ,ϕ′ ∈ Φ(Σ) : ϕ is true under S,

(p′, s) ∈ δ<(q, ϕ), ϕ′ is true under S′, q′′ ∈ δ>(q′, s, ϕ′)
}

When B reads an unmatched right bracket > ∈ Σ−1 while in a state
P ⊆ Q × Q, it continues the existing computations on the new bottom level of
brackets.

δ>(P,⊥, ξS) = { (p′, p′) | ∃(p, q) ∈ P, ∃ϕ : p′ ∈ δ>(q,⊥, ϕ), ϕ is true under S }

The set of accepting states reflects all computations of A ending in an
accepting state.

F ′ = {P ⊆ Q×Q | there is a pair (p, q) in P, with q ∈ F }

A formal correctness claim for this construction reads as follows.

Claim. Let uvw be a timed string, where v is the longest well-nested suffix of
uv, and let P ⊆ Q×Q be the state reached by B on uvw after reading uv. Then
a pair (p, q) is in P if and only if there is a computation of A on uvw that passes
through the state p right after reading u, and later, after reading the following
v, enters the state q.

The claim can be proved by induction on the bracket structure of an input
string.

Applying the claim to the whole input string shows that B accepts this string
if and only if one of the computations of A on the same input string is accepting.

ut
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It is interesting to note that the above determinization construction does not
rely on the exact form of clock constraints: the resulting deterministic automaton
checks only the constraints used by the original nondeterministic automaton,
and only communicates the results through the stack in the form of Boolean
values. Therefore, the same construction would apply verbatim for any kind of
constraints on the pair (input string, current position) expressible in the model.
In particular, the extended model of Bozzelli et al. [9] can be determinized in
the same way.

Another thing worth mentioning is that for the particular set of clock con-
staints assumed in this paper, the determinization construction in Theorem 1
can be improved to eliminate all references to the stack prediction clock (−−→xpop),
at the expense of using more states. This construction shall be presented in the
upcoming full version of this paper.

4 A lower bound on the determinization complexity

The timed determinization construction in Theorem 1 produces 2n
2

states and
2n

2+k stack symbols, where n is the number of states in the nondeterministic
automaton and k is the number of atomic clock constraints. It shall now be
proved that this construction is asymptotically optimal. The following theorem,
proved in the rest of this section, is a timed extension of a result by Okhotin,
Piao and Salomaa [15, Thm. 3.2].

Theorem 2. For every n and for every k, there is an O(n)-state nondetermin-
istic ECIDPDA over an alphabet of size k +O(1), with nk stack symbols and k
atomic constraints referring only to symbol history clocks, such that every deter-
ministic ECIDPDA recognizing the same timed language must have at least 2n

2

states and at least 2n
2−O(n)+k stack symbols.

The automaton is defined over the following alphabet: Σ+1 = {<},
Σ−1 = {>}, Σ0 = {a, b, c,#} ∪ { ei | 1 6 i 6 k }. For a set of pairs R =
{(i1, j1), . . . , (i`, j`)} ⊆ {1, . . . , n}2, let uR ∈ {a, b,#}∗ be the string that lists
all pairs in R in the lexicographical order, under the following encoding.

uR = #ab#ai1bj1 #ai2bj2 . . .#ai`bj`#ab

For every set of symbols X = {ei1 , . . . , ei`} ⊆ {e1, . . . , ek}, let vX =
e1 . . . ekei1 . . . ei` be the string that first lists all the symbols in {e1, . . . , ek},
and then only the symbols in X.

Now, let m > 1 be the number of levels in the string to be constructed,
let s1, . . . , sm, sm+1 ∈ {1, . . . , n} be numbers, let R1, . . . , Rm ⊆ {1, . . . , n}2 be
relations, and let X1, Y1, . . . , Xm, Ym ⊆ {e1, . . . , ek} be 2m sets of symbols. This
information is encoded in the following string.

w = vX1
<uR1

vX2
<uR2

. . . vXm
<uRm︸ ︷︷ ︸

w1

csm+1vYm>c
sm . . . vY2>c

s2vY1
>cs1︸ ︷︷ ︸

w2
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Fig. 3. A nondeterministic event-clock IDPDA checking the validity of a well-formed
string.

The string is made timed by saying that the duration of each named substring
is 1 time unit, and in each substring vXi

, its first k symbols occur more than 0.5
time units earlier than the subsequent left bracket (<), whereas its remaining
symbols representing the elements of Xi occur less than 0.5 time units earlier
than the left bracket. Similarly, in each string vYi

, its first k symbols occur more
than 0.5 time units earlier than the next right bracket (>), while its remaining
symbols occur less than 0.5 time units earlier than the bracket. This allows an
event-clock automaton to see the set Xi using clock constraints while reading
the left bracket (<), and to see Yi while at the right bracket (>). For the clock
constraints not to see anything else, the first k symbols of vX , and the first and
the last three symbols uR, occur at predefined time independent of X and R.

A timed string is said to be well-formed if it is defined as above, for some m,
si, Ri, Xi and Yi. A well-formed string is valid, if (si, si+1) ∈ Ri and Xi∩Yi 6= ∅
for each i.

Lemma 1. For every n and k, there exists a nondeterministic ECIDPDA using
O(n) states, nk stack symbols and k clock constraints, which accepts every valid
well-formed string and does not accept any invalid well-formed string.

Proof (a sketch). The automaton operates as in Figure 3. At the left bracket
following each vXi

, it guesses si and ei, using a clock constraint ←−xei < 1 to
check that ei ∈ Xi, pushes the pair (si, ei) and remembers si in its state. While
reading uRi , it guesses any si+1 with (si, si+1) ∈ Ri and remembers si+1 in its
state. On each csi+1 , the automaton checks that the current state is si+1 and
forgets its value. On the following right bracket, the automaton pops the pair
(si, ei), verifies that ei ∈ Yi using a constraint←−xei < 1, and keeps si in its current
state. ut

Lemma 2. For every n and k, every deterministic ECIDPDA that accepts every
valid well-formed string and does not accept any invalid well-formed string must
have at least 2n

2

states.

Although the bound is the same as in the untimed case [15], an event-clock
automaton could potentially use its clocks to reduce the number of states. Still,
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it is proved that on a string v{e1}<uRc
tv{e1}>c

s, after reading uR, a determin-
istic automaton must remember the entire relation R in its internal state, for
otherwise it would not be able to check whether the pair (s, t) is in R, as no
information on R could be obtained using any clock constraints.

Lemma 3. For every n and k, every deterministic ECIDPDA that accepts every
valid well-formed string and does not accept any invalid well-formed string must
have at least 2n

2−o(1)+k stack symbols.

Proof. The proof is modelled on the proof by Okhotin, Piao and Salomaa [15,
Lemma 3.4], with the clock constraints added. The argument uses binary rela-
tions that are both left-total and right-total: that is, relations R ⊆ {1, . . . , n}2
in which, for every x ∈ {1, . . . , n}, there is an element y with (x, y) ∈ R, and,
symmetrically, for every y, there is an element x with (x, y) ∈ R. There are at

least 2n
2 − 2n · 2n(n−1) = 2n

2−O(n) such relations,
Fix the number of levels m > 1, let R1, . . . , Rm ⊆ {1, . . . , n}2 be left- and

right-total relations, and let X1, . . . , Xm ⊆ {e1, . . . , ek} be non-empty sets of
symbols. These parameters define the first part w1 of a well-formed string. It is
claimed that, after reading w1, a deterministic automaton somehow has to store
all relations R1, . . . , Rm and all sets X1, . . . , Xm in the available memory: that
is, in m stack symbols and in one internal state.

Suppose that, for some R1, . . . , Rm, R
′
1, . . . , R

′
m ⊆ {1, . . . , n}2 and

X1, . . . , Xm, X
′
1, . . . , X

′
m ⊆ {e1, . . . , ek}, with (R1, . . . , Rm, X1, . . . , Xm) 6=

(R′1, . . . , R
′
m, X

′
1, . . . , X

′
m), the automaton, after reading the corresponding first

parts w1 and w′1, comes to the same state with the same stack contents.

w1 = vX1
<uR1

vX2
<uR2

. . . vXm
<uRm

w′1 = vX′1<uR′1vX′2<uR′2 . . . vX′m<uR′m

First, as in the argument by Okhotin, Piao and Salomaa [15, Lemma 3.4],
assume that these parameters differ in an i-th relation, with (s, t) ∈ Ri \R′i. Let
si = s. Since all relations Ri−1, . . . , R1 are right-total, there exists a sequence
of numbers si−1, . . . , s1, with (sj , sj+1) ∈ Rj for all j ∈ {1, . . . , i− 1}. Similarly,
let si+1 = t. Since the relations Ri+1, . . . , Rm are left-total, there is a sequence
si+2, . . . , sm+1, with (sj , sj+1) ∈ Rj for all j ∈ {i + 1, . . . ,m}. Construct the
following continuation for w1 and w′1.

w2 = csm+1vXm
>csm . . . vX2

>cs2vX1
>cs1

The concatenation w1w2 is then well-formed and valid, whereas the concatena-
tion w′1w2 is well-formed and invalid, because (si, si+1) /∈ R′i. But, while reading
w2, the automaton cannot tell w1 from w′1 using history clocks, and thus the
automaton either accepts both concatenations or rejects both of them, which is
a contradiction.

Now assume that the prefixes w1 and w′1 use the same relations R1, . . . , Rm
and differ in an i-th set, with e ∈ Xi \X ′i. Since all relations are left-total, there
exists a sequence of numbers s1, . . . , sm, sm+1, with (sj , sj+1) ∈ Rj = R′j for all
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j ∈ {1, . . . ,m}. This time, the continuation includes the sequence of numbers
and takes all sets Xj from w1, except for Xi, which is replaced by {e}.

w2 = csm+1vXm
>csm . . . vXi+1

>csi+1v{e}>c
sivXi−1

>csi−1 . . . vX1
>cs1

Then, both concatenations w1w2 and w′1w2 are well-formed. However, the con-
catenation w1w2 is valid, whereas w′1w2 is invalid, because X ′i ∩ {e} = ∅. Hence
the automaton again either accepts or rejects both strings, and a contradiction
is obtained.

This shows that, for each m > 1, the automaton must be able to reach at
least (2n

2−2n ·2n(n−1))m(2k−1)m distinct configurations after reading different
strings of the given form. Then, |Γ |m · |Q| cannot be less than this number, and

for m large enough this inequality holds only if |Γ | > 2n
2−o(1)+k. ut

The proof of Theorem 2 follows from Lemmata 1–3. It implies that the de-
terminization construction in Theorem 1 is asymptotically optimal both with
respect to the number of states and to the number of stack symbols.
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