Complete Axiomatization of an Algebraic Construction of Graphs

Mizuhito Ogawa ${ }^{1}$
Japan Advanced Institute of Science and Technology
1-1 Asahidai Tatsunokuchi Nomi Ishikawa, 923-1292 Japan
mizuhito@jaist.ac.jp

Abstract

This paper presents a complete (infinite) axiomatization for an algebraic construction of graphs, in which a finite fragment denotes the class of graphs with bounded tree width.

1 Introduction

A graph is a flexible relational structure for describing problems. However, solving graph problems can be difficult, partially because graphs lack an obvious recursive construction.

The algebraic construction of graphs opens the possibility for graph algorithms that could be applied:

- efficient programming methodologies, such as depth-first search, divide-and conquer, and dynamic programming, which would enable us to design a new graph algorithm, and
- program transformation techniques, which are well-developed in the functional programming community [FS96,Erw97,SHTO00].

This is especially true for graphs with bounded tree width [RS86]. The class of graphs with bounded tree width is limited, but still contains interesting application areas; for instance, the control flow graphs of GOTO-free C programs have tree widths of at most 6 [Tho98], and those of practical Java programs mainly have at most 3 [GMT02]

A notable feature is that many NP-hard graph problems for general graphs are reduced to linear-time for graphs with bounded tree width [Cou90,BPT92]. This corresponds to the fact that algebraic constructions become finitely generated for a class of graphs with bounded tree width [BC87,ACPS93,OHS03], though they are infinitely generated for general graphs.

However, the algebraic structures referred above are not initial, i.e., the same graph could have several different expressions. Clarifying such equivalence could lead

- a debugging opportunity of programs, i.e., programs must have no conflicts with axioms, and
- efficient algorithm design for graph properties, such as graph isomorphism.

Our ultimate aim is to give a complete (finite) axiomatization for graphs with bounded tree width. This is half done; this paper presents the complete (infinite) axiomatization for an algebraic construction of general graphs, in which a finite fragment denotes graphs with bounded tree width. The idea of the proof for ground cases comes from [BC87]; our work further extends the completeness result to non-ground cases.

This paper is organized as follows. Section 2 prepares basic notations. Section 3 presents an algebraic construction of graphs with infinite signatures, which is a variation of those in [ACPS93]. Section 4 gives the complete (infinite) axioms for ground terms, and Section 5 extends them to non-ground terms. Section 6 is a brief overview of related work, and Section 7 discusses future work.

2 Preliminaries

Let F be a set of function symbols and X a countably infinite set of variables. Each function symbol f is supposed to have its arity $\operatorname{ar}(f)$. A function symbol c such that $\operatorname{ar}(c)=0$ is called a constant symbol. The set of all terms, denoted by $T(F, X)$, built from F and X is defined as follows:

1. Constant symbols in F and variables in X are terms.
2. If t_{1}, \ldots, t_{n} are terms, and f is a function symbol in F such that $\operatorname{ar}(f)=n$, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
$\mathcal{V}(t)$ denotes the set of variables occurring in a term t. A term without variables is called a ground term, and a term in which each variable occurs at most once is called a linear term. The set of ground terms is denoted by $T(F)$ for the set F of underlying function symbols.

Let \square be a fresh special constant symbol. A context $C[]$ is a term built from $F \cup \square$ and X. When $C[]$ is a context with $n \square$'s and t_{1}, \cdots, t_{n} are terms, $C\left[t_{1}, \cdots, t_{n}\right]$ denotes the term obtained by replacing the i-th \square from the left in $C[]$ with t_{i} for each $i=1, \ldots, n$.

Definition 1. A term rewriting system (TRS) is a set R of rewrite rules. A rewrite rule is a pair of terms denoted by $l \rightarrow r$ satisfying two conditions: (1) l is not a variable and (2) $\mathcal{V}(l) \supseteq \mathcal{V}(r)$.

If $t=C[l \theta]$ and $s=C[r \theta]$ for $l \rightarrow r \in R$ and a substitution $\theta, t \rightarrow_{R} s$ is a (one-step) reduction and $l \theta$ is called a redex.

A TRS R is terminating (or, strongly normalizing, $\mathbf{S N}$ for short) if there are no infinite rewrite sequences $t_{1} \rightarrow_{R} \cdots \rightarrow_{R} t_{n} \rightarrow_{R} \cdots$.

Throughout the paper, we will use G, G^{\prime} for (k-terminal) graphs, S for a set, X for a set of variables, s, t for terms, h, i, j, k, l for indices, and x, y for variables, s, t for terms, α, β for maps, θ for a substitution, and σ, τ for permutations. k is also often used for the number of terminals. l (resp. r) is sometimes used for the left-hand (resp. right-hand) side of a rewriting rule in a TRS.

3 Algebraic construction of graphs

In this paper we consider graphs with undirected edges, with at most one edge between any two vertices, and with no edge between a vertex and itself. (Extensions to multiple edges between vertices and to loops connecting a vertex to itself are easy, and sketched in Remark 2 of Section 4.) A k-terminal graph G is a graph with k distinguished vertices, called terminals, numbered 1 through k. The set of vertices of G is denoted $V(G)$, the set of edges of G is denoted by $E(G)$, and we write $G[i]$ for the i 'th terminal of G, where $1 \leq i \leq k$. Ordinary graphs are obtained as 0-terminal graphs.

A k-terminal graph G is a pair of a graph and a tuple of its k distinct vertices, called terminals. The i-th terminal in a k-terminal graph G with $1 \leq i \leq k$ is denoted by $G[i]$ (like an array-like notation). Ordinary graphs are obtained as 0 -terminal graphs after removal of terminals. For simplicity, we consider simple graphs (i.e., undirected and without multiple edged) without loops; but, the extensions to directed graphs, graphs with multiple edges, and/or graphs with loops are straightforward. The set of vertices of G is denoted by $V(G)$ and the set of edges of G is denoted by $E(G)$. The number of edges from a vertex v is denoted by $\# e(v)$.

Definition 2. Let B_{k} be sorts for $k \geq 0$. Let $l_{k}^{i}, \oplus_{k}, r_{k}, \sigma_{k}^{i}, e^{2}, \mathbf{0}$ be function symbols with sorts below

$$
\begin{cases}e^{2}: B_{2}, & l_{k}^{i}: B_{k-1} \rightarrow B_{k}, \\ 0: \oplus_{k}: B_{k} \times B_{k} \rightarrow B_{k}, \\ 0: & r_{k}: B_{k} \rightarrow B_{k-1}, \\ \sigma_{k}^{j}: B_{k} \rightarrow B_{k} .\end{cases}
$$

where $i \leq k, j<k$, and $k \geq 0$ (For readability, \oplus_{k} is an infix operation and the rest are prefix). Let \mathcal{B}_{n} be the set of well-sorted ground terms in

$$
T\left(\left\{\mathbf{0}, e^{2}, l_{k}^{i}, r_{k}, \oplus_{k}, \sigma_{k}^{j} \mid 1 \leq i \leq k \leq n, 1 \leq j<k\right\}\right)
$$

and $\mathcal{B}_{\infty}=\cup_{n=0}^{\infty} \mathcal{B}_{n}$.
A term $t \in \mathcal{B}_{k}$ is interpreted as a k-terminal graph (defined below) by interpreting function symbols $l_{k}^{i}, \oplus_{k}, r_{k}, \sigma_{k}^{i}, e^{2}, \mathbf{0}$ as following operations. This interpretation is denoted by $\psi(t)$.

Definition 3. Let $\psi\left(e^{2}\right)$ be the edge with two terminals and $\psi(\mathbf{0})$ be the empty graph. We define operations among k-terminal graphs as
$-\psi\left(l_{k}^{i}(t)\right)$ is a lifting for $1 \leq i \leq k$, i.e., insert a new isolated terminal (as a new vertex) to $\psi(t)$ at the i-th position in $k-1$ terminals.
$-\psi\left(r_{k}(t)\right)$ removes the last terminal from $\psi(t)$.
$-\psi\left(s \oplus_{k} t\right)$ is a parallel composition for $k \geq 0$, i.e., fuse each i-th terminal in $\psi(s)$ and $\psi(t)$ for $1 \leq i \leq k$.
$-\psi\left(\sigma_{k}^{i}(t)\right)$ is a permutation, i.e., permute the i-th terminal and the $i+1$-th terminal in $\psi(t)$ for $1 \leq i<k$.

Fig. 1. An example of the algebraic construction

Example 1. Fig. 1 shows that the algebraic construction of a (0-terminal) graph. Each operation, underlined in $r_{1}\left(r_{2}\left(e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2} \oplus_{2} l_{2}^{1}\left(r_{2}\left(e^{2}\right)\right)\right) \oplus_{3} l_{3}^{2}\left(e^{2}\right)\right)\right)\right)$, is figured in lower columns.

Remark 1. Each permutation σ on $\{1, \cdots, k\}$ is generated from σ_{k}^{i} 's. For instance, a circular permutation is generated as

$$
\sigma_{k}^{j-1} \cdots \sigma_{k}^{i}=\left(\begin{array}{ccc}
i i+1 & \cdots & j \\
j & i & \cdots \\
j-1
\end{array}\right)
$$

for $1 \leq i<j \leq k$.
Although we do not show the definition of graphs with bounded tree width, the characterization of graphs with tree width at most k is given by the following theorem. This theorem is obtained similar to that in [ACPS93].

Theorem 1. For $k \geq 0, \psi\left(\mathcal{B}_{k+1}\right)$ is the set of graphs with tree width at most k (by neglecting terminals).

4 Complete axiomatization of graphs : ground cases

A k-terminal graph could be denoted by different algebraic expressions; for instance, see Example 2.

Example 2. Two terms below are equivalent and both denote the (0-terminal) graph in Fig. 1.

$$
\begin{aligned}
& \left.r_{1}\left(r_{2}\left(e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2} \oplus_{2} l_{2}^{1}\left(r_{2}\left(e^{2}\right)\right)\right) \oplus_{3} l_{3}^{2}\left(e^{2}\right)\right)\right)\right)\right) \\
& r_{1}\left(r_{2}\left(\left(e^{2} \oplus_{2} l_{2}^{1}\left(r_{2}\left(e^{2}\right)\right)\right) \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2}\right) \oplus_{3} l_{3}^{2}\left(e^{2}\right)\right)\right)\right)
\end{aligned}
$$

In this section, we show that the (infinite) set of axioms \mathcal{E}_{∞} (in Fig. 3) is sound and complete for ground terms (Theorem 2 and 3). The key of the proof is the existence of a canonical form that denotes a graph in which all vertices are terminals (see Example 3). Then, canonical forms denoting an isomorphic graph are converted each other by the associativity and commutativity rules of the parallel composition \oplus_{k} 's (AC1 and AC2 in Fig. 3) and suitable permutations σ_{k}^{i} 's among terminals.

Example 3. Fig. 3 shows a transformation to obtain a canonical form of the expression in Example 1, where R_{1} will be defined in Definition 6. The underlined parts correspond to the rewrite steps. (The infix operation \oplus_{4} has the commutative associative axioms, and we omit parenthesis in the last line for readability.)
$\left.r_{1}\left(r_{2}\left(e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2} \oplus_{2} \underline{l_{2}^{1}\left(r_{2}\right.}\left(e^{2}\right)\right)\right) \oplus_{3} l_{3}^{2}\left(e^{2}\right)\right)\right)\right)$
$\rightarrow_{R_{1}} r_{1}\left(r_{2}\left(e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2}\right)\right)\right), \oplus_{3} l_{3}^{2}\left(e^{2}\right)\right)\right)\right)$
$\left.\rightarrow_{R_{1}} r_{1}\left(r_{2}\left(e^{2} \oplus_{2} r_{3}\left(\underline{l_{3}^{1}\left(r_{3}\right.}\left(l_{3}^{3}\left(e^{2}\right) \oplus_{3} l_{3}^{1}\left(e^{2}\right)\right)\right) \oplus_{2} l_{3}^{2}\left(e^{2}\right)\right)\right)\right)$
$\rightarrow_{R_{1}} r_{1}\left(r_{2}\left(e^{2} \oplus_{2} r_{3}\left(r_{4}\left(\underline{l_{4}^{1}\left(l_{3}^{3}\left(e^{2}\right) \oplus_{3} l_{3}^{1}\left(e^{2}\right)\right)}\right) \oplus_{3} l_{3}^{2}\left(e^{2}\right)\right)\right)\right)$
$\rightarrow_{R_{1}} r_{1}\left(r_{2}\left(e^{2} \oplus_{2} r_{3}\left(\underline{\left.r_{4}\left(l_{4}^{1}\left(l_{3}^{3}\left(e^{2}\right)\right) \oplus_{4} l_{4}^{1}\left(l_{3}^{1}\left(e^{2}\right)\right)\right) \oplus_{3} l_{3}^{2}\left(e^{2}\right)\right)}\right)\right)\right.$

Increase
$\rightarrow_{R_{1}} r_{1}\left(r_{2}\left(\underline{e^{2} \oplus_{2}} r_{3}\left(r_{4}\left(l_{4}^{1}\left(l_{3}^{3}\left(e^{2}\right)\right) \oplus_{4} l_{4}^{1}\left(l_{3}^{1}\left(e^{2}\right)\right) \oplus_{4} l_{4}^{4}\left(l_{3}^{2}\left(e^{2}\right)\right)\right)\right)\right)\right.$,
of terminals

Fig. 2. Example of transformation to a canonical form (ground case)

Definition 4. k-terminal graphs G_{1}, G_{2} are isomorphic if there exists a one-to-one onto map $\alpha: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that

- For $v \in V\left(G_{1}\right)$, if v is the i-th terminal of G_{1} with $1 \leq i \leq k$, then $\alpha(v)$ is the i-th terminal of G_{2}, and vice versa.
- For $v, v^{\prime} \in V\left(G_{1}\right)$, if $\left(v, v^{\prime}\right)$ is an edge of G_{1}, then $\left(\alpha(v), \alpha\left(v^{\prime}\right)\right)$ is an edge of G_{2}, and vice versa.

Definition 5. Two terms s, t of sort B_{k} are equivalent if the k-terminal graphs $\psi(s), \psi(t)$ are isomorphic.
\mathcal{E}_{k} in Fig. 3 is the set of axioms indexed by k. Let $\mathcal{E}_{\infty}=\cup_{k=1}^{\infty} \mathcal{E}_{k}$ and $\mathcal{E}_{\leq n}=\cup_{k=1}^{n} \mathcal{E}_{k}$. By regarding each equation (axiom) as a left-to-right rewrite

$$
\begin{array}{rlrll}
t_{1} \oplus_{k} t_{2} & = & t_{2} \oplus_{k} t_{1} & \begin{aligned}
\text { (Commut.) } & (\mathrm{AC} 1) \\
\left(t_{1} \oplus_{k} t_{2}\right) \oplus_{k} t_{3} & = \\
t_{1} \oplus_{k}\left(t_{2} \oplus_{k} t_{3}\right) & \\
\text { (Assoc.) } & (\mathrm{AC} 2)
\end{aligned} \\
l_{k}^{j}\left(l_{k-1}^{i}(t)\right) & = & l_{k}^{i}\left(l_{k-1}^{j-1}(t)\right) & 1 \leq i<j \leq k & (l-\mathrm{Com}) \\
l_{k}^{i}\left(t_{1} \oplus_{k-1} t_{2}\right) & =l_{k}^{i}\left(t_{1}\right) \oplus_{k} l_{k}^{i}\left(t_{2}\right) & 1 \leq i \leq k & (l-\mathrm{Dist}) \\
l_{k-1}^{i}\left(r_{k-1}(t)\right) & = & r_{k}\left(l_{k}^{i}(t)\right) & 1 \leq i<k & (\mathrm{E} 1) \\
t_{1} \oplus_{k-1} r_{k}\left(t_{2}\right) & =r_{k}\left(l_{k}^{k}\left(t_{1}\right) \oplus_{k} t_{2}\right) & & (\mathrm{E} 2) \\
\left.t \oplus_{k} l_{k}^{k}\left(\cdots l_{1}^{1}(\mathbf{0})\right)\right) & = & t & & (\mathrm{E} 3) \\
e^{2} \oplus_{2} e^{2} & = & e^{2} & & (\mathrm{E} 4) \\
\sigma_{k}^{j}\left(l_{k}^{i}(t)\right) & = & l_{k}^{i}\left(\sigma_{k-1}^{j-1}(t)\right) & 1 \leq i<j<k & (\sigma 1-\mathrm{a}) \\
\sigma_{k}^{i}\left(l_{k}^{i}(t)\right) & = & l_{k}^{i+1}(t) & 1 \leq i<k & (\sigma 1-\mathrm{b}) \\
\sigma_{k}^{i}\left(l_{k}^{i+1}(t)\right) & = & l_{k}^{i}(t) & 1 \leq i<k & (\sigma 1-\mathrm{c}) \\
\sigma_{k}^{j}\left(l_{k}^{i}(t)\right) & =l_{k}^{i}\left(\sigma_{k-1}^{j}(t)\right) & 1<j+1<i \leq k & (\sigma 1-\mathrm{d}) \\
\sigma_{2}^{1}\left(e^{2}\right) & = & e^{2} & & (\sigma 2) \\
\sigma_{k}^{i}\left(t_{1} \oplus_{k} t_{2}\right) & =\sigma_{k}^{i}\left(t_{1}\right) \oplus_{k} \sigma_{k}^{i}\left(t_{2}\right) & 1 \leq i<k & (\sigma 3) \\
\sigma_{k-1}^{i}\left(r_{k}(t)\right) & = & r_{k}\left(\sigma_{k}^{i}(t)\right) & 1 \leq i<k-1 & (\sigma 4) \\
r_{k-1}\left(r_{k}\left(\sigma_{k}^{k-1}(t)\right)\right) & =r_{k-1}\left(r_{k}(t)\right) & & (\sigma 5)
\end{array}
$$

Fig. 3. Axioms \mathcal{E}_{k} of the algebraic construction of graphs
rule), its reflexive symmetric transitive closure (i.e., the finite application of axioms in \mathcal{E}_{∞}) is denoted by $=\mathcal{E}_{\infty}$.

It is easy to see that each axiom in \mathcal{E}_{∞} is sound.
Theorem 2. (Soundness for ground terms) Let s, t be ground terms in \mathcal{B}_{∞}. Then, s and t are equivalent if $s=\mathcal{E}_{\infty} t$.

Theorem 3. (Completeness for ground terms) Let s, t be ground terms in \mathcal{B}_{∞}. Then, $s=\mathcal{E}_{\infty} t$ if s and t are equivalent.

Definition 6. For axioms in \mathcal{E}_{∞}, let TRSs R_{1} and R_{2} be defined as

$$
\left\{\begin{array}{l}
R_{1}=\left\{(E 1),(E 2),(E 2)^{\prime},(l-D i s t),(\sigma 3),(\sigma 4)\right\}, \\
R_{2}=\{(\sigma 1),(\sigma 2),
\end{array}\right.
$$

where $(E 2)^{\prime}$ is $r_{k}\left(t_{1}\right) \oplus_{k-1} t_{2} \rightarrow r_{k}\left(t_{1} \oplus_{k} l_{k}^{k}\left(t_{2}\right)\right)$ for each k.
Lemma 1. R_{1} and R_{2} are terminating.
Proof. Let $\delta(t, f)$ be the number of occurrences of a function symbol f in a term t, and let $\Delta(t, g, f)$ be the sum of all $\delta(s, f)$ where s is a subterm of t such that $\operatorname{root}(s)=g$. We define the weight $\omega(t)$ of a term t by

$$
\omega(t)=\left(\omega_{\oplus, r}(t), \omega_{l, r}(t)+\omega_{l, \oplus}(t)+\omega_{\sigma, r}(t)+\omega_{\sigma, \oplus}(t)\right)
$$

where

$$
\begin{aligned}
& \omega_{\oplus, r}(t)=\Sigma_{j, k} \Delta\left(t, \oplus_{k}, r_{j}\right), \\
& \omega_{l, r}(t)=\Sigma_{i, j, i^{\prime}, j^{\prime}} \Delta\left(t, l_{j}^{i}, r_{j^{\prime}}\right), \\
& \omega_{l, \oplus}(t)=\Sigma_{i, j, k} \Delta\left(t, l_{j}^{i}, \oplus_{k}\right), \\
& \omega_{\sigma, r}(t)=\Sigma_{i, j, i^{\prime}, j^{\prime}} \Delta\left(t, \sigma_{j}^{i}, r_{j^{\prime}}\right), \\
& \omega_{\sigma, \oplus}(t)=\Sigma_{i, j, k} \Delta\left(t, \sigma_{j}^{i}, \oplus_{k}\right),
\end{aligned}
$$

and define the lexicographic order on the weight. Then, for each reduction of R_{1} the weight $\omega(t)$ decreases, and R_{1} is $\mathbf{S N}$. Similarly, each reduction of R_{2} decreases the weight $\omega_{\sigma, l}(t)=\Sigma_{i, j, i^{\prime}, j^{\prime}} \Delta\left(t, \sigma_{j}^{i}, l_{j^{\prime}}^{i}\right)$, and R_{2} is $\mathbf{S N}$.

Definition 7. Let $t \in \mathcal{B}_{\infty}$ be a ground term of sort $B_{k}, n=|V(\psi(t))|$, and $m=|E(\psi(t))| \cdot t$ is a canonical form if either

$$
t=r_{k+1}\left(\cdots r_{n}\left(l_{n}^{n}\left(\cdots l_{1}^{1}(\mathbf{0})\right)\right)\right)
$$

or there exist
$-R_{n, k}[]=r_{k+1}\left(\cdots r_{n}[]\right)$ with $0 \leq k<n$,
$-P_{n}[, \cdots$,$] consists of \oplus_{n}$'s,

- $L_{i}[]$ has the form $l_{n}^{u_{i, n-2}}\left(\cdots l_{3}^{u_{i, 1}}[]\right)$ with $u_{i, n-2}>\cdots>u_{i, 1}$ for $1 \leq i \leq m$,
such that $t=R_{n, k}\left[P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right]\right]\right]$.
Lemma 2. For any term s, there exists a canonical form $t \in \mathcal{B}_{n}$ such that $s=\mathcal{E}_{\leq n} t$ where $n=|V(\psi(t))|$.

Proof. We first show that there exists t^{\prime} in the form $t^{\prime}=R_{n, k}\left[P^{\prime}\left[L_{1}^{\prime}\left[c_{1}\right], \cdots, L_{l}^{\prime}\left[c_{l}\right]\right]\right]$ with $s=\mathcal{E}_{\leq n} t^{\prime}$ where
$-R_{n, k}[]=r_{k+1} \cdots r_{n}[]$,

- $P^{\prime}[]$ consists of \oplus_{j} 's, and
$-L_{1}^{\prime}[], \cdots, L_{l}^{\prime}[]$ consist of l_{j}^{i} 's and $\sigma_{k^{\prime}}^{i^{\prime}}$'s.
$-c_{i}$ is either e^{2} or $\mathbf{0}$,
From Lemma 1, s has an R_{1}-normal form t^{\prime} of the form $R_{n, k}\left[P^{\prime}\left[L_{1}^{\prime}\left[c_{1}\right], \cdots, L_{l}^{\prime}\left[c_{l}\right]\right]\right]$. Since all vertices in e^{2} are terminals and $l_{j}^{i}, \sigma_{j}^{i}$ preserves a set of terminals, all vertices of each $L_{i}^{\prime}\left[e^{2}\right]$ are terminals. r_{i} and \oplus_{j} do not change the number of vertices, thus each \oplus_{j} in $P^{\prime}[]$ satisfies $j=n=|V(\psi(t))|$. Further, from Lemma 1 each $L_{i}^{\prime}\left[c_{i}\right]$ has an R_{2}-normal form, i.e., a σ_{k}^{j}-free term.

If $|E(\psi(s))|=0$, this means $\psi(s)$ consists of isolated vertices and all c_{i} 's are $\mathbf{0}$. Thus, $L_{i}^{\prime}[]=l_{k}^{k}\left(\cdots\left(l_{1}^{1}[]\right)\right)$ by (l-Com) and s is reduced to a canonical form $R_{n, k}\left[L_{1}[\mathbf{0}]\right]$ by (AC1), (AC2), and (E3).

If $|E(\psi(s))|>0$, we can sort each $L_{i}^{\prime}[]$ by (l-Com). Since there exists $c_{i}=e^{2}$, we can erase 0's by (AC1), (AC2), and (E3). Thus we assume $c_{i}=e^{2}$ for each i. If $L_{i}^{\prime}\left[c_{i}\right]$ and $L_{j}^{\prime}\left[c_{j}\right]$ are equal, we can eliminate redundant $L_{i}^{\prime}\left[c_{i}\right]$'s by (AC1), (AC2), and (E4). Since each $L_{i}^{\prime}\left[c_{i}\right]$ corresponds to an edge in $\psi(s)$ (i.e., the number of $L_{i}^{\prime}\left[c_{i}\right]$'s is the number of edges in $\psi(s)$), we obtain a canonical form $t=R_{n, k}\left[P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right]\right]\right]$ by (l-Com) (from-right-to-left direction).

Definition 8. Let $e(n, i, j)=l_{n}^{n} \cdots l_{j+1}^{j+1} \cdot\left(l_{j}^{j-1} \cdots l_{i+2}^{i+1} \cdot l_{i+1}^{i-1} \cdots l_{3}^{1}\left(e^{2}\right)\right.$ for $1 \leq i<$ $j \leq n$ (here we omit apparent parenthesis for readability).

Lemma 3. Let $s \in \mathcal{B}_{\infty} . \psi(s)$ contains an edge between the i-th and the j-th vertices, if, and only if, a canonical form of s contains e (n, i, j).

Sketch of proof of Theorem 3 Let $s, t \in \mathcal{B}_{\infty}$ such that $\psi(s)$ and $\psi(t)$ are equivalent. Assume that an isomorphism $\alpha: V(\psi(s)) \rightarrow V(\psi(t))$ satisfies the conditions in Definition 4. If $|E(\psi(s))|=|E(\psi(t))|=0$, they have the unique canonical form from Lemma 2 and obviously the theorem holds. We assume $|E(\psi(s))|=|E(\psi(t))|>0$.

From Lemma 2, we can assume that both s and t are canonical. Let $s=$ $R_{n, k}\left[P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right]\right]\right]$ and $t=R_{n, k}\left[P_{n}^{\prime}\left[L_{1}^{\prime}\left[e^{2}\right], \cdots, L_{m}^{\prime}\left[e^{2}\right]\right]\right]$ where $n=$ $|V(\psi(s))|=|V(\psi(t))|$ and $m=|E(\psi(s))|=|E(\psi(t))|$. Thus, α can be regarded as the permutation σ on $\{k+1, \cdots, n\}$.

Non-trivial permutation needs at least two elements, so we can assume $k \leq$ $n-2$. Then from ($\sigma 4$) and $(\sigma 5), r_{k+1}^{k+1}\left(\cdots r_{n}^{n}\left(\sigma_{n}^{i}(t)\right)=r_{k+1}^{k+1}\left(\cdots r_{n}^{n}(t)\right)\right.$ for $k+1 \leq$ $i \leq n-1$. Since a permutation over $\{k+1, \cdots, n\}$ is generated by σ_{n}^{i} 's for $k+1 \leq i \leq n-1, r_{k+1}^{k+1}\left(\cdots r_{n}^{n}(\sigma(t))=r_{k+1}^{k+1}\left(\cdots r_{n}^{n}(t)\right)\right.$. Thus, it is enough to show

$$
\sigma\left(P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right]\right]\right)=\mathcal{E}_{\leq n} P_{n}^{\prime}\left[L_{1}^{\prime}\left[e^{2}\right], \cdots, L_{m}^{\prime}\left[e^{2}\right]\right]
$$

Since $\psi(s)$ and $\psi(t)$ are isomorphic, if there is an edge between the i-th and j-th vertices of $\psi(s)$, there is an edge between the $\alpha(i)$-th and $\alpha(j)$-th vertices of $\psi(t)$, and vice versa. Thus, if there is an edge between the i-th and j-th vertices in $\psi(s)$, then, form Lemma 3, there uniquely exist $L_{k}\left[e^{2}\right]$ and $L_{k}^{\prime}\left[e^{2}\right]$ such that $L_{k}\left[e^{2}\right]=\mathcal{E}_{\leq n} e(n, i, j)$ and $L_{k}^{\prime}\left[e^{2}\right]=\mathcal{E}_{\leq n} e(n, \alpha(i), \alpha(j))$.

Since $\sigma(e(n, i, j))=e(n, \alpha(i), \alpha(j))$,

$$
\sigma\left(P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right]\right]\right)=\mathcal{E}_{\leq n} P_{n}^{\prime}\left[L_{1}^{\prime}\left[e^{2}\right], \cdots, L_{m}^{\prime}\left[e^{2}\right]\right]
$$

holds from $(A C 1),(A C 2),(\sigma 2)$, and $(\sigma 3)$.
Remark 2. The extensions to directed graphs, graphs with multiple edges, and/or graphs with loops are as follows:

- The removal of (E4) in Fig. 3 gives the sound and complete axioms for graphs with multiple edges.
- By adding a constant l^{1} as a 1 -terminal graph that consists of the unique terminal and the unique edge from the terminal to the terminal itself, we obtain the algebraic construction of graphs with loops. The axioms are preserved for this extension.
- For digraphs, instead of an edge e^{2}, we use e_{+}^{2} and e_{-}^{2}, where e_{+}^{2} is the directed edge from the first terminal to the second, and e_{-}^{-}is opposite. Then, the replacement of $\sigma_{2}^{1}\left(e^{2}\right)=e^{2}(\sigma 2)$ with $\sigma_{2}^{1}\left(e_{+}^{2}\right)=e_{-}^{2}$ and $\sigma_{2}^{1}\left(e_{-}^{2}\right)=e_{+}^{2}$ lead the sound and complete axioms for directed graphs.

5 Complete axiomatization of graphs : non-ground cases

In this section, we extend the result of soundness (Theorem 2) and completeness (Theorem 3) for ground terms to general terms. In this extension, we need additional axioms ($\Sigma 1$) and ($\Sigma 2$) in Fig. 4, which present the defining relation of the permutation group [Wey39].

Lemma 4. [Wey39] For any permutation σ and σ^{\prime} that are expressed as products of σ_{k}^{i} 's with $1 \leq i<k$, they are equivalent as a map if and only if $\sigma=\mathcal{G}_{k} \sigma^{\prime}$, where \mathcal{G}_{k} consists of $(\Sigma 1)$ and ($\Sigma 2$) axioms in Fig. 4.

$$
\begin{align*}
\sigma_{k}^{i} \cdot \sigma_{k}^{i}(G) & =G & & 1 \leq i<k \\
\left(\sigma_{k}^{i-1} \cdot \sigma_{k}^{i}\right)^{3}(G) & =G & & 1<i<k
\end{align*}
$$

Fig. 4. Additional axioms \mathcal{G}_{k} of the algebraic construction of graphs

Example 4. Consider the permutation of 1 and 3 among $\{1,2,3\}$
which is represented as $\sigma_{3}^{2} \cdot \sigma_{3}^{1} \cdot \sigma_{3}^{2}$ or $\sigma_{3}^{1} \cdot \sigma_{3}^{2} \cdot \sigma_{3}^{1}$. This equivalence is obtained by $=\mathcal{G}_{k}$ as

$$
\begin{aligned}
\sigma_{3}^{2} \cdot \sigma_{3}^{1} \cdot \sigma_{3}^{2} & ={ }_{\Sigma 2} \sigma_{3}^{2} \cdot \sigma_{3}^{1} \cdot\left(\sigma_{3}^{1} \cdot \sigma_{3}^{2}\right)^{3} \cdot \sigma_{3}^{2} \\
& =\sigma_{3}^{2} \cdot\left(\sigma_{3}^{1} \cdot \sigma_{3}^{1}\right) \cdot \sigma_{3}^{2} \cdot \sigma_{3}^{1} \cdot \sigma_{3}^{2} \cdot \sigma_{3}^{1} \cdot\left(\sigma_{3}^{2} \cdot \sigma_{3}^{2}\right) \\
& ={ }_{\Sigma 1}\left(\sigma_{3}^{2} \cdot \sigma_{3}^{2}\right) \cdot \sigma_{3}^{1} \cdot \sigma_{3}^{2} \cdot \sigma_{3}^{1} \\
& ={ }_{\Sigma 1} \sigma_{3}^{1} \cdot \sigma_{3}^{2} \cdot \sigma_{3}^{1}
\end{aligned}
$$

Remark 3. For ground terms, $(\Sigma 1)$ and ($\Sigma 2$) in Fig. 4 are not required, because the same can be performed by $(\sigma 1-\mathrm{d})$ and $(\sigma 2)$ in Fig. 3.

Let X_{k} be a set of variables with sort B_{k}. The i-th terminal of x is denoted by $x[i]$. Let $X=\cup_{k} X_{k}$. The set of well-sorted terms in

$$
T\left(\left\{\mathbf{0}, e^{2}, l_{k}^{i}, r_{k}, \oplus_{k}, \sigma_{k}^{j} \mid 1 \leq i \leq k \leq n, 1 \leq j<k\right\}, X\right)
$$

is denoted by $\mathcal{B}_{\infty}(X)$. Define a substitution $\theta_{\mathbf{0}}$ by $x \theta_{\mathbf{0}}=l_{k}^{k} \cdots l_{1}^{1}(\mathbf{0})$ for each variable $x \in X_{k}$.

Definition 9. For $s, t \in \mathcal{B}_{\infty}(X)$, s and t are equivalent if, for each ground substitution $\theta, \psi(s \theta)$ and $\psi(t \theta)$ are isomorphic.

The next theorem is immediate.

Theorem 4. (Soundness) Let s, t be terms in $\mathcal{B}_{\infty}(X)$. Then s and t are equivalent if $s=\mathcal{E}_{\infty} \cup \mathcal{G}_{\infty} t$.

Difficult part is completeness.
Theorem 5. (Completeness) Let s, t be terms in $\mathcal{B}_{\infty}(X)$. Then $s=\mathcal{E}_{\infty} \cup \mathcal{G}_{\infty} t$ if s and t are equivalent.

Similar to the ground case, we first consider a canonical form of a term t. The set of variables that appear in a term t in $\mathcal{B}_{\infty}(X)$ is denoted by $\mathcal{V}(t)$.

Definition 10. Let $t\left(\in \mathcal{B}_{\infty}(X)\right)$ be a term of sort $B_{k}, n=\left|V\left(\psi\left(t \theta_{0}\right)\right)\right|, m=$ $\left|E\left(\psi\left(t \theta_{0}\right)\right)\right|$, and $\mathcal{V}(t)=\left\{x_{1}, \cdots, x_{m^{\prime}}\right\} . t$ is a canonical form if either

$$
t=r_{k+1}\left(\cdots r_{n}\left(l_{n}^{n}\left(\cdots l_{1}^{1}(\mathbf{0})\right)\right)\right)
$$

or there exist
$-R_{n, k}[]=r_{k+1}\left(\cdots r_{n}[]\right)$,

- $P_{n}[, \cdots$,$] consists of \oplus_{n}$'s,
- $L_{i}[]$ has the form $l_{n}^{u_{i, n-2}}\left(\cdots l_{3}^{u_{i, 1}}[]\right)$ with $u_{i, n-2}>\cdots>u_{i, 1}$ for $1 \leq i \leq m$,
- $L_{m+i}[]$ has the form $l_{n}^{u_{i, n-d_{i}}^{\prime}}\left(\cdots l_{d_{i}+1}^{u_{i, 1}^{\prime}}[]\right)$ with $u_{i, n-d_{i}}^{\prime}>\cdots>u_{i, 1}^{\prime}$ for $x_{i} \in$ $X_{d_{i}}$ and $1 \leq i \leq m^{\prime}$,
- G_{i} is $\sigma_{i}\left(x_{i}\right)$ for some combination σ_{i} of $\sigma_{d_{i}}^{j}$'s for $1 \leq i \leq m^{\prime}$,
such that

$$
t=R_{n, k}\left[P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right], L_{m+1}\left[G_{1}\right], \cdots, L_{m+m^{\prime}}\left[G_{m^{\prime}}\right]\right]\right]
$$

Define Center $(t)=\psi\left(R_{n, k}\left[P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right]\right]\right]\right)$. For a ground substitution θ, let Inner $(t, \theta)=V(\operatorname{Center}(t))$ and $\operatorname{Outer}(t, \theta)=V(\psi(t \theta)) \backslash \operatorname{Inner}(t, \theta)$. We say a vertex is inner if it is in Inner (t, θ), and outer otherwise.

Lemma 5. Center (t) is isomorphic to $\psi\left(t \theta_{0}\right)$.
Example 5. Fig. 5 shows the conversion of

$$
t=r_{2} \cdot p_{2}\left(e^{2}, r_{3} \cdot p_{3}\left(l_{3}^{1} \cdot p_{2}\left(e^{2}, l_{2}^{1} \cdot r_{2}\left(e^{2}\right)\right), \sigma_{3}^{2} \cdot \sigma_{3}^{1} \cdot \sigma_{3}^{2} \cdot l_{3}^{2}(x)\right)\right)
$$

to a canonical form. The circle expresses a substitution to a variable x, and the parenthesis for σ_{k}^{i} and the commutative associative operator \oplus_{4} are omitted.

The next lemma is similarly proved as the proof of Lemma 2.
Lemma 6. For any term $s \in \mathcal{B}_{\infty}(X)$, there exists a canonical form $t \in \mathcal{B}_{n}$ such that $s=\mathcal{E}_{\leq n} t$ where $n=|V(\operatorname{Center}(t))|$.

When terms s and t are equivalent, without loss of generality, we can assume that s and t are canonical forms. Let us fix canonical forms s and t.

Lemma 7. If s and t are equivalent, $\mathcal{V}(s)=\mathcal{V}(t)$.

$$
\begin{aligned}
& \left.\left.r_{2}\left(e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2} \oplus_{2} \underline{l_{2}^{1}\left(r_{2}\right.}\left(e^{2}\right)\right)\right) \oplus_{3} \sigma_{3}^{2} \cdot \sigma_{3}^{1} \cdot \underline{\sigma_{3}^{2}\left(l_{3}^{2}\right.}(x)\right)\right)\right) \\
& \left.\rightarrow^{+} r_{2}\left(e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(\underline{e^{2} \oplus_{2} r_{3}\left(l_{3}^{1}\left(e^{2}\right)\right)}\right) \oplus_{3} \sigma_{3}^{2} \cdot \underline{\sigma_{3}^{1}\left(l_{3}^{3}\right.}(x)\right)\right)\right) \\
& \left.\left.\rightarrow^{+} r_{2}\left(e^{2} \oplus_{2} r_{3}\left(\underline{l_{3}^{1}\left(r_{3}\right.}\left(l_{3}^{3}\left(e^{2}\right) \oplus_{3} l_{3}^{1}\left(e^{2}\right)\right)\right) \oplus_{3} \underline{\sigma_{3}^{2}\left(l_{3}^{3}\right.}\left(\sigma_{2}^{1}(x)\right)\right)\right)\right) \\
& \rightarrow^{+} r_{2}\left(e^{2} \oplus_{2} r_{3}\left(r_{4}\left(\underline{l_{4}^{1}}\left(l_{3}^{3}\left(e^{2}\right) \oplus_{3} l_{3}^{1}\left(e^{2}\right)\right)\right) \oplus_{3} l_{3}^{2}\left(\sigma_{2}^{1}(x)\right)\right)\right) \\
& \rightarrow \quad r_{2}\left(e^{2} \oplus_{2} r_{3}\left(\underline{r_{4}\left(l_{4}^{1}\left(l_{3}^{3}\left(e^{2}\right)\right) \oplus_{4} l_{4}^{1}\left(l_{3}^{1}\left(e^{2}\right)\right)\right) \oplus_{3} l_{2}^{3}\left(\sigma_{2}^{1}(x)\right)}\right)\right) \\
& \rightarrow \quad r_{2}\left(e^{2} \oplus_{2} r_{3}\left(r_{4}\left(l_{4}^{1}\left(l_{3}^{3}\left(e^{2}\right)\right) \oplus_{4} l_{4}^{1}\left(l_{3}^{1}\left(e^{2}\right)\right) \oplus_{4} l_{4}^{4}\left(l_{3}^{2}\left(\sigma_{2}^{1}(x)\right)\right)\right)\right)\right) ~ \\
& \text { Center }(t)
\end{aligned}
$$

Fig. 5. Example of transformation to a canonical form (non-ground case)

Proof. Assume $\mathcal{V}(s) \neq \mathcal{V}(t)$. Without loss of generality, we can assume that $x \in \mathcal{V}(s)$ and $x \notin \mathcal{V}(t)$. From Lemma 5, Center (s) and Center (t) are isomorphic. Let $n=|V(C e n t e r(s))|=|V(C e n t e r(t))|$.

Consider a ground substitution θ that substitutes a term denoting K_{n+1} (complete graph with $n+1$ vertices) to x, and $l_{k}^{k} \cdots l_{1}^{1}(\mathbf{0})$ otherwise (for those that in X_{k}). Then, $|V(\psi(s \theta))|>|V(\psi(t \theta))|=n$, and the contradiction.

Lemma 8. If s and t are equivalent, each variable x occurs the same times both in s and t.

Proof. Assume that x occurs in s more than in t. Similar to Lemma 7, consider a ground substitution θ that substitutes a term denoting K_{n+1} (complete graph with $n+1$ vertices) to x, and $l_{k}^{k} \cdots l_{1}^{1}(\mathbf{0})$ otherwise (for those that in X_{k}). Then, $|V(\psi(s \theta))|>|V(\psi(t \theta))|$, and the contradiction.

For notational clarity, we consider conditional linearization of a term.
Definition 11. Conditional linearization of a term t is obtained by renaming different occurrences of the same variable x to distinct variables $x^{\prime}, x^{\prime \prime}, \cdots$, associated with the side condition $\mathcal{C}=\left\{x^{\prime}=x^{\prime \prime}=\cdots\right\}$.

Example 6. Conditional linearization of a term $p_{3}\left(l_{3}^{1}\left(p_{2}(x, y)\right), l_{3}^{2}(x)\right)$ is

$$
p_{3}\left(l_{3}^{1}\left(p_{2}\left(x^{\prime}, y\right)\right), l_{3}^{2}\left(x^{\prime \prime}\right)\right) \text { with }\left\{x^{\prime}=x^{\prime \prime}\right\}
$$

From now on, we consider conditional linearization of canonical forms s and t. Let us fix $\mathcal{V}(s)(=\mathcal{V}(t))$ as $\left\{x_{1}, \cdots, x_{m}\right\}$ with the side condition $\mathcal{C}:\left\{x_{i}=x_{j}\right\}$. Note that from Lemma 7 and 8, such \mathcal{C} is well-defined.

Next we define $x_{i}[t, j]$, which is the vertex in $\operatorname{Center}(t)$ that corresponds to the j-th terminal in $\psi(x \theta)$ for each ground substitution θ.

Definition 12. We borrow the notation from Definition 10. Let t be a canonical form $t=R_{n, k}\left[P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right], L_{m+1}\left[G_{1}\right], \cdots, L_{m+m^{\prime}}\left[G_{m^{\prime}}\right]\right]\right]$ and let $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ be the tuple of terminals of

$$
\psi\left(P_{n}\left[L_{1}\left[e^{2}\right], \cdots, L_{m}\left[e^{2}\right], L_{m+1}\left[G_{1}\right], \cdots, L_{m+m^{\prime}}\left[G_{m^{\prime}}\right]\right] \theta_{\mathbf{0}}\right)
$$

Assume that a variable x_{i} in t is of the sort $B_{d_{i}}$ and let

$$
L_{m+i}\left[G_{i}\right]=l_{n}^{u_{n-d}}\left(\cdots\left(l_{d_{i}+1}^{u_{1}}\left[\sigma_{i}\left(x_{i}\right)\right]\right)\right)
$$

with $u_{n-d_{i}}>\cdots>u_{1}$. Define $x_{i}[t, j]=v_{\sigma_{i}^{-1}\left(w_{j}\right)}$ where

$$
\left\{w_{1}, \cdots, w_{d_{i}}\right\}=\{1, \cdots, n\} \backslash\left\{u_{1}, \cdots, u_{n-d_{i}}\right\}
$$

with $w_{1}<\cdots<w_{d_{i}}$.
Example 7. In Example 5, $x[t, 1]=v_{3}$ and $x[t, 2]=v_{1}$.
Below, we define a marker substitution $\theta_{\mathcal{M}}$, which distinguishes each terminal $x_{i}[t, j]$ by the pair of its outer neighborhoods; these neighborhoods are distinguished each other by the number of edges in $\psi\left(t \theta_{\mathcal{M}}\right)$.

Since the number of edges and the neighborhood relation are preserved by an isomorphism, an isomorphism between $\psi\left(s t \theta_{\mathcal{M}}\right)$ and $\psi\left(t \theta_{\mathcal{M}}\right)$ induces the isomorphism between Center (s) and $\operatorname{Center}(t)$ that maps $x_{i}[s, j]$ to $x_{i^{\prime}}[t, j]$ with $x_{i}=x_{i^{\prime}} \in C$.

Definition 13. Let term ${ }_{1}, \cdots$, term $_{d}$ be vertices, and let $c h_{0}, \cdots, h_{d}$ be their children. A rooted tree with the root vertex v and its m children is denoted by $\operatorname{br}(v, m)$. For $d \leq h$, a marker forest $M F(h, d)$ is a d-terminal graph such that

$$
\begin{aligned}
& V(M F(h, d))) \\
& \quad= \begin{cases}\phi & \text { if } d=0 \\
V\left(b r\left(c h_{0}, h-d\right)\right) \cup\left(\bigcup_{1 \leq i \leq d} V\left(b r\left(c h_{i}, h+2 i-2\right)\right)\right. & \\
\left.\cup\left\{\text { term }_{i}\right\}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& E(M F(h, d)) \\
& \quad=\left\{\begin{aligned}
\phi & \text { if } d=0 \\
E\left(b r\left(c h_{0}, h-d\right)\right) \cup\left(\cup_{1 \leq i \leq d} E\left(b r\left(c h_{i}, h+2 i-2\right)\right)\right) & \\
\cup\left\{\left(\text { term }_{i}, c h_{i-1}\right),\left(\text { term }_{i}, c h_{i}\right),\left(c h_{0}, c h_{i}\right)\right\} & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

A marker term $M t(h, d)$ is a term that denote $M F(h, d)$.

Lemma 9. In $M F(h, d), h+1 \leq \# e\left(c h_{i}\right) \leq h+2 d+1$ for each $0 \leq i \leq d$ and $\# e\left(c h_{i}\right)<\# e\left(c h_{j}\right)$ if $i<j$. More precisely, $\# e\left(c h_{i}\right)=h+2 i+1$ for $0 \leq i<d$ and $\# e\left(c h_{d}\right)=h+2 d$.

Fig. 6. d-terminal graph $M F(h, d)$

Definition 14. Without loss of generality, we can assume that x_{1}, \cdots, x_{l} are the representatives under the side condition C of t (i.e., x_{1}, \cdots, x_{l} are mutually distinct and for each $x \in \mathcal{V}(t)$ there exists some x_{i} such that C contains $x=x_{i}$ with $1 \leq i \leq l$). Let $x_{i} \in X_{d_{i}}$.

Let $n=\left|V\left(\psi\left(t \theta_{0}\right)\right)\right|$. The marker substitution $\theta_{\mathcal{M}}$ (see Fig. 6) is a ground substitution such that

$$
\left\{\begin{array}{l}
x_{1} \theta_{\mathcal{M}}=\operatorname{Mt}\left(n+2, d_{1}\right) \\
x_{i+1} \theta_{\mathcal{M}}=\operatorname{Mt}\left(n+2+\sum_{j=1}^{i} d_{j}, d_{i+1}\right) \quad \text { for } 1 \leq i<l .
\end{array}\right.
$$

Example 8. In Example 5, $x \theta_{\mathcal{M}}=\operatorname{Mt}(6,2)$ (see Fig 7).

Fig. 7. Substitute $M F(6,2)$ to x in Example 5

Lemma 10. Let $v \in \psi\left(t \theta_{\mathcal{M}}\right)$ and $n=|V(C e n t e r(t))|$. If v is inner, $2 \leq$ $\# e(v) \leq n+2$. If v is outer, either $\# e(v)=1$ or $\# e(v)>n+2$.

Lemma 11. If s and t are equivalent, an isomorphism α between $\left.\psi\left(s \theta_{\mathcal{M}}\right)\right)$ and $\left.\psi\left(t \theta_{\mathcal{M}}\right)\right)$ satisfies :
$-\alpha$ is an isomorphism between Center (s) and Center (t).

- For each x_{i}, there exists $x_{i^{\prime}}$ with $x_{i}=x_{i^{\prime}} \in \mathcal{C}, \alpha\left(\psi\left(x_{i} \theta_{\mathcal{M}}\right)\right)=\psi\left(x_{i^{\prime}} \theta_{\mathcal{M}}\right)$, and $\alpha\left(x_{i}[s, j]\right)=x_{i^{\prime}}[t, j]$.
Proof. From Lemma 10, $\alpha(V($ Center $(s))=V($ Center $(t))$.
Let $n=|V(\operatorname{Center}(s))|$. For $c h_{0}$ in $\psi\left(x_{i} \theta_{\mathcal{M}}\right)$, there exists $x_{i^{\prime}}$ and with $x_{i}=x_{i^{\prime}} \in \mathcal{C}$ and $\psi\left(x_{i^{\prime}} \theta_{\mathcal{M}}\right)$ such that $\alpha\left(c h_{0}\right)=c h_{0}^{\prime}$ for $c h_{0}^{\prime}$ in $\psi\left(x_{i^{\prime}} \theta_{\mathcal{M}}\right)$ by construction. Since the unique neighborhood of $c h_{0}$ satisfying $2 \leq \# e\left(c h_{0}\right) \leq n+2$ is term $_{1}, \alpha\left(\right.$ term $\left._{1}\right)=$ term $_{1}^{\prime}$ with term $_{1}^{\prime}$ in $\psi\left(x_{i^{\prime}} \theta_{\mathcal{M}}\right)$. Since ch $_{1}$ is the unique neighborhood of $c h_{0}$ that has more then $n+2$ edges, $\alpha\left(c h_{1}\right)$ must be $c h_{1}^{\prime}$. Repeating similar construction, Lemma is proved.

Sketch of proof of Theorem 5 By using the isomorphism α in Lemma 11, similar to the proof of Theorem 3, we obtain the proof of Theorem 5.

6 Related Work

There are many works on algebraic constructions of graphs, including

- [FS96,Erw97] for functional programming,
- [CS92,Has97] from the categorical view point,
- [MSvE94,AA95] for term graphs,
- [Gib95] for directed acyclic graphs, and
- [BC87,ACPS93,OHS03] for graphs with bounded tree width.

Among them, only [BC87,ACPS93,OHS03] characterize the class of graphs with bounded tree width. Bauderon and Courcelle presented the complete axiomatization for ground terms [BC87,Cou90] in their formalization. Their algebraic construction consists of the function symbols

$$
\left\{\begin{array}{lll}
\oplus_{m, n}: B_{m} \times B_{n} \rightarrow B_{m+n}, & e^{2}: B_{2} & \text { (edge) } \\
\theta_{i, j, n}: B_{n} \rightarrow B_{n}, & \mathbf{1}: B_{1} & \text { (vertex) } \\
\sigma_{\alpha}: B_{m} \rightarrow B_{n}, & \mathbf{0}: B_{0} & \text { (empty), }
\end{array}\right.
$$

where their interpretation ψ is

- $\psi\left(\oplus_{m, n}\left(t_{1}, t_{2}\right)\right)$ is a disjoint union of $\psi\left(t_{1}\right)$ and $\psi\left(t_{2}\right)$,
- $\psi\left(\theta_{i, j, n}(t)\right)$ fuses i-th and j-th terminals for $1 \leq i<j \leq n$, and
- $\psi\left(\sigma_{\alpha}(t)\right)$ renumbers $\alpha(i)$-th terminal as i-th terminal for $\alpha:[1 . . m] \rightarrow[1 . . n]$.
and their complete axiomatization is shown in Fig. 8.
This paper gives the complete axiomatization for the variation of the algebraic construction given in [ACPS93]. Our choice of formalization comes from its compatibility with SP Term, since SP Term seems the most suitable data structure for programming on graphs with bounded tree width [OHS03]. The idea for the proof of the completeness for ground cases (Section 4) comes from [BC87]; this paper further extends the result to non-ground cases (Section 5).

7 Conclusion and Future Work

This paper presents the complete axiomatization for the variation of the algebraic construction given in [ACPS93]. Compared to the original algebraic construction in [ACPS93], we add σ_{k}^{i} (which is needed for completeness; the parallel composition p_{k} has the different infix notation \oplus_{k} for readability), and omit s_{k}, which is defined as

$$
s_{k}\left(t_{1}, \cdots, t_{k}\right)= \begin{cases}r_{2}\left(e^{2} \oplus_{2} l_{2}^{1}\left(t_{1}\right)\right) & \text { if } k=1 \\ r_{k+1}^{k+1}\left(l_{k+1}^{1}\left(t_{1}\right) \oplus_{k+1} \cdots \oplus_{k+1} l_{k+1}^{k}\left(t_{k}\right)\right) & \text { if } k \geq 2\end{cases}
$$

Our final goal is to give the complete (finite) axiomatization of SP Term $S P_{k}$ [OHS03], which precisely denotes graphs with tree width at most k. SP Term would be the most desirable algebraic construction for writing a functional

$$
\begin{align*}
& (s \oplus t) \oplus u \quad=\quad s \oplus(t \oplus u) \tag{R1}\\
& \sigma_{\beta} \cdot \sigma_{\alpha}(t)=\sigma_{\alpha \cdot \beta}(t) \tag{R2}\\
& \sigma_{i d}(t) \quad=\quad t \tag{R3}\\
& \theta_{i, j, n} \cdot \theta_{i^{\prime}, j^{\prime}, n}(t)=\theta_{i^{\prime}, j^{\prime}, n} \cdot \theta_{i, j, n}(t) \tag{R4-1}\\
& \theta_{i, j, n} \cdot \theta_{j, k, n}(t)=\theta_{i, j, n} \cdot \theta_{i, k, n}(t) \tag{R4-2}\\
& \theta_{i, j, n} \cdot \theta_{j, k, n}(t)=\theta_{i, k, n} \cdot \theta_{j, k, n}(t) \tag{R4-3}\\
& \theta_{i, i, n}(t) \quad=\quad t \tag{R5}\\
& \sigma_{\alpha}(s) \oplus \sigma_{\alpha^{\prime}}(t) \quad=\quad \sigma_{(\neg m \cdot \alpha) \oplus\left(\alpha^{\prime} \cdot \iota_{p}\right)}(t \oplus s) \tag{R6}\\
& \text { if } \alpha:[p] \rightarrow[n], \alpha^{\prime}:\left[p^{\prime}\right] \rightarrow[m] \\
& \theta_{i, j, m}(s) \oplus \theta_{i^{\prime}, j^{\prime}, n}(t)=\theta_{i, j, m} \cdot \theta_{m+i^{\prime}, m+j^{\prime}, m+n}(s \oplus t) \tag{R7}\\
& \theta_{i, n+1, n+1}(t \oplus \mathbf{1})=\quad \sigma_{i d \downarrow_{\lfloor n]} \oplus(n+1 \mapsto i)}(t) \tag{R8}\\
& \theta_{i, j, n} \cdot \sigma_{\alpha}(t) \quad=\quad \sigma_{\alpha} \cdot \theta_{\alpha(i), \alpha(j), n}(t) \quad \text { if } \alpha:[n] \rightarrow[n] \tag{R9}\\
& \sigma_{\alpha} \cdot \theta_{i, j, n}(t)=\sigma_{\beta} \cdot \theta_{i, j, n}(t) \tag{R10}\\
& \text { if } \alpha(m), \beta(m) \in\{i, j\} \text { or } \alpha(m)=\beta(m) \text { for each } m \text {. } \\
& t \oplus \mathbf{0} \quad=\quad t \tag{R11}\\
& \text { where } \alpha \cdot \iota_{p}(i+p)=\alpha(i) \text { and } \rightharpoondown_{m} \cdot \alpha(j)=m+\alpha(j) .
\end{align*}
$$

Fig. 8. Axioms of algebraic construction of graphs in [BC87,Cou90]
program on graphs with bounded tree width, because it has only 2 functional constructors: the series composition s_{k} and the parallel composition \oplus_{k} (though it has relatively many constants $e_{k}(i, j)$ and \mathbf{k}, which can be treated in a homogeneous way). We will use two approaches, one from rewriting and another from graph theory.

- We already know the complete axioms on \mathcal{B}_{∞}, which consist of terms constructed from $l_{k}^{i}, \oplus_{k}, r_{k}, \sigma_{k}^{i}, e^{2}, \mathbf{0}$. We can define $s_{k}, e_{k}(i, j), \mathbf{k}$ like "macros". Can we deduce equations on "macros" from equations on terms constructed from original function symbols?
- Minimal separator of a graph is essential for graphs with bounded tree width. We hope that the Menger-like property [Tho90] would help.

Acknowledgments

The author thanks Aart Middeldorp and Masahiko Sakai for information about references, and Philip Wadler for indicating an extension to non-ground cases. Thanks also to Jeremy Gibbons, Zhenjiang Hu, and Aki Takano for fruitful discussions. This research is supported by Special Coordination Funds for Promoting Science and Technology by Ministry of Education, Culture, Sports, Science and Technology, PRESTO by Japan Science and Technology Agency, and Kayamori Foundation of Informational Science Advancement.

References

[AA95] Z.M. Ariola and Arvind. Properties of a first-order functional language with sharing. Theoretical Computer Science, 146(1-2):69-108, 1995.
[ACPS93] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction. Journal of the Association for Computing Machinery, 40(5):1134-1164, 1993.
[BC87] M. Bauderon and B. Courcelle. Graph expressions and graph rewritings. Mathematical System Theory, 20:83-127, 1987.
[BPT92] R.B. Borie, R.G. Parker, and C.A. Tovey. Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica, 7:555-581, 1992.
[Cou90] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 5, pages 194-242. Elsevier Science Publishers, 1990.
[CS92] V.-E. Căzănescu and G. Stefănescu. A general result on abstract flowchart schemes with applications to study of accessibility, reduction and minimization. Theoretical Computer Science, 99:1-63, 1992.
[Erw97] M. Erwig. Functional programming with graphs. In Proc. 1997 ACM SIGPLAN International Conference on Functional Programming, ICFP '97, pages 52-65. ACM Press, 1997. SIGPLAN Notices 32(8).
[FS96] L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with embedded functions (or, programs from outer space). In Proc. 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL'96, pages 284-294. ACM Press, 1996.
[Gib95] J. Gibbons. An initial-algebra approach to directed acyclic graphs. In B. Moller, editor, Mathematics of Program Construction, MPC'95, pages 282-303, 1995. Lecture Notes in Computer Science, Vol. 947, SpringerVerlag.
[GMT02] J. Gustedt, O.A. Mæhle, and A. Telle. The treewidth of Java programs. In Proc. 4 th Workshop on Algorithm Engineering and Experiments, ALENEX 2002, pages 86-97, 2002. Lecture Notes in Computer Science, Vol. 2409, Springer-Verlag.
[Has97] M. Hasegawa. Models of sharing graphs, 1997. PhD thesis, University of Edinburgh.
[MSvE94] M.J.Plasmeijer M.R. Sleep and M.C.J.D. van Eekelen, editors. Term Graph Rewriting, Theory and Practice. Wiley, 1994.
[OHS03] M. Ogawa, Z. Hu, and I. Sasano. Iterative-free program analysis. In Proc. 8th ACM SIGPLAN International Conference on Functional Programming, ICFP'03, pages 111-123. ACM Press, 2003. Uppsala, Sweden.
[RS86] N. Robertson and P.D. Seymour. Graph minors II. algorithmic aspects of tree-width. Journal of Algorithms, 7:309-322, 1986.
[SHTO00] I. Sasano, Z. Hu, M. Takeichi, and M. Ogawa. Make it practical: A generic linear-time algorithms for solving maximum-weightsum problems. In Proc. 5th ACM SIGPLAN International Conference on Functional Programming, ICFP'00, pages 137-149. ACM Press, 2000. Montreal, Canada.
[Tho90] R. Thomas. A Menger-like property of tree-width: The finite case. Journal of Combinatorial Theory, Series B, 48:67-76, 1990.
[Tho98] M. Thorup. All structured programs have small tree width and good register allocation. Information and Computation, 142:159-181, 1998.
[Wey39] H. Weyl. Classical groups. Princeton University Press, 1939.

