
Original Entry Point detection
based on graph similarity

Thanh-Hung Pham1 and Mizuhito Ogawa1

Japan Advanced Institute of Science and Technology, Japan
hung.pthanh@gmail.com and mizuhito@jaist.ac.jp

Abstract. This paper proposes a method for packer identification and
OEP (Original Entry Point) detection based on the graph similarity on
control flow graphs of packed codes. Packed code consists of an unpacking
stub and a packed payload, which is recovered to the original after the
unpacking stub executes. In this paper, the CFGs of packed code are
generated by a DSE (Dynamic Symbolic Execution) tool BE-PUM on
x86-32/Windows. We define the template of the unpacking stub as the
pair of the average of Weisfeiler-Lehman histogram vectors and the end
sequence. Next, each template is computed packer-wise (i.e., processing
packed codes by the same packer) for the ease of covering a new packer.
We use the total of 71 samples packed by 12 packers. For unknown packed
code, we will find the templates in its CFG generated by BE-PUM.

Among them, the CFG fragment with the highest cosine similarity is
regarded as the unpacking stub, which also detects the used packer and
the OEP as the jump destination from the exit.

Our first experiment is performed on 700 non-malware samples (of which
the original payload is also known) packed by 12 packers above. The used
packer is correctly identified for 689 and the OEP is correctly detected
for 688. Further, we apply the method to 1239 malware samples. Among
them, 1089 samples are detected packed by unknown packer and among
them 150 samples are detected as packed by the 11 packers (except for
TELOCK) and their OEPs are detected. We conclude that our method
is highly effective as long as we have access to an executable of a target
packer to compute its templates.

Keywords: Original Entry point detection · Packer Identification· Graph
similarity.

1 Introduction

Malware threat increases every year. Not only new techniques are introduced,
but also a systematic development becomes popular, such as the use of a packer.
It is said that more than 80% of recent malware is obfuscated by packers to
bypass anti-virus software. For x86, more than 50 popular packers are available
on the net, and they often encrypt the payload which is decrypted at runtime by
unpacking stubs (Fig 1). Hence, the detection of the used packer and the OEP

2 Thanh-Hung Pham and Mizuhito Ogawa

(Original Entry Point) is important to understand the hidden actions of the pay-
load of malware. Control obfuscations, such as indirect jumps, code flattening,
opaque predicates (mixing dead code), and self-modification, are mostly in the
unpacking stub. It is believed that DSE (Dynamic Symbolic Execution) [1, 2]
is the most powerful de-obfuscation, which exhaustively traces feasible control
paths only. We adopt a DSE tool BE-PUM [3] on x86-32/Windows to obtain
precise control flow graphs of packed code.

Fig. 1: Packing and Unpacking Process

This paper proposes a
method for the packer identi-
fication and the OEP (Orig-
inal Entry Point) detection
based on the graph similar-
ity of CFGs (Control Flow
Graphs) of packed codes.
Packed code consists of an un-
packing stub and a packed
payload, which is recovered to
the original after the unpack-
ing stub executes. We start
with the hypothesis that the
CFG of the unpacking stub

characterizes a packer. Note that when the original payloads and used pack-
ers are known (e.g., pack the payload by ourselves) we can identify the un-
packing stub. Fig 4 (Section 4) shows preliminary observation on UPX, FSG,
and Mew, respectively. A packer may have different patterns of CFGs of the
unpacking stubs (e.g., WINUPACK has 2), but the pattern of the unpacking
stubs converges regardless of the payloads. Our tool for the graph similarity is
a Weisfeiler-Lehman histogram vector (Section 3) of a CFG, which is computed
iteratively by relabeling each node with the collection of neighbor’s labels [4].

First, to confirm the hypothesis, we classify 771 samples packed by 12 packers
(UPX v3.95, ASPACK v2.12, FSG v1.0, YODA v1.3, MEW SE v1.2, PACKMAN
v1.0, PECOMPACT v2.xx, PETITE v2.1, WINUPACK v0.39 Final, JDPACK
v1.01, MPRESS v2.xx, and TELOCK v0.98) by a clustering algorithm DBSCAN
wrt the graph similarity, (which is the cosine similarity [5] on Weisfeiler-Lehman
histogram vectors). We observe that when the allowance eps of DBSCAN is small
enough (e.g., eps = 0.02), (1) each class does not cross different packers, and
(2) the end sequence (the prefix of the exit of an unpacking stub) is the same in
each class. Hence, we define the template of the class as the pair of the average
of Weisfeiler-Lehman histogram vectors (of CFGs of the unpacking stubs) and
the end sequence. The length of the vector rapidly increases with respect to the
number k of the diameter, and we set k = 2.

Next, we prepare the templates of 12 packers, using 71 packed samples. For
the ease of introducing a new packer, we compute them packer-wise (i.e., clus-
tering code packed by the same packer). Finally, for an unknown code, BE-PUM
incrementally generates the CFG. When the end sequence matches with the tail

Original Entry Point detection based on graph similarity 3

of a CFG fragment, we check the similarity between its Weisfeiler-Lehman his-
togram vector and that in prepared templates. Among them, the CFG fragment
with the highest cosine similarity is regarded as the unpacking stub, which also
detects the used packer and the OEP as the jump destination from the exit.

We perform experiments on 700 non-malware samples (which are packed by
12 packers mentioned above). Our method correctly detects the packer for 689,
and the OEP for 688. For the packer identification, VirusTotal (a database
collected from various resources) identifies 699 beyond our result, but the OEP
detection result is distinguished from others, e.g., GUnpacker and QuickUnpack

find 525 and 283, respectively. Further, 1239 malware samples are examined.
Among them, 1089 are detected packed by unknown packer and 150 are packed
by the 11 packers (except for TELOCK). Our main contributions are,

1. Apart from dynamic analysis based on dirty page tracing, we observe the
control flow generated by DSE tool BE-PUM [3] (when we have access to an
executable of a target packer).

2. We combine statistical similarity (Weisfeiler-Lehman kernel) with the sym-
bolic evidence (the end sequence of the unpacking stub) to characterize the
unpacking stub. This pair is called the template of a packer.

The paper is constructed as follows. Section 2 introduces basic terminologies
and BE-PUM. Section 3 describes Weisfeiler-Lehman Kernel. In Section 4, we
discuss our hypothesis about CFGs of unpacking stubs. Section 5 describes our
method for the packer identification and the OEP detection. Then, our experi-
mental results are shown in Section 6. Finally, Section 7 concludes the paper.

Related works. Most of the OEP detection is based on a dynamic analysis.
If a packed code is fully executed, the original payload must be somewhere in
the memory. Polyunpack [6] first applies the static disassembly and then runs
dynamic analysis. If an executed instruction is different from disassembly, it
is regarded as unpacked. Omniunpack [7] observes some sensitive system calls.
When such a call is detected, it scans the memory page to find unpacked code.
Since the original payload is often unpacked in a newly allocated memory, most
of OEP detection tools monitors and/or hooks the access to a dirty page (i.e.,
write occurs on a write-protected page) by setting a write protection on a newly
allocated area. OllyBonE1 is a plugin of Ollydbg, and tries to stop when the
control jumps to a newly allocated region. It prepares a Windows kernel driver
for the page protection of a specified region, and set a target memory area and an
exception break-on-execute. When the control flow moves to the address inside
the protected area, it is regarded as the OEP. However, it fails when packers use
anti-debugging with the API IsDebuggerPresent@kernel32.dll.

The candidates of the OEP are explored either on-the-fly or ahead-of-time.
Renovo [8] is built on the top of an emulation environment, TEMU2. It stores

1 http://www.joestewart.org/ollybone
2 http://bitblaze.cs.berkeley.edu/temu.html

4 Thanh-Hung Pham and Mizuhito Ogawa

a shadow copy of the memory space of the target file and monitors runtime
updates. Alternatively, the entry of recently generated code and data is regarded
as the OEP. QuickUnpack3 set the OEP breakpoints, following to a common
strategy, e.g., pushing breakpoints at jump instruction and inspecting near popa.
QuickUnpack chooses the last trigger to OEP breakpoints as the OEP.

The ahead-of-time search of the candidates for the OEP first prepares the
candidate list and check it. In [9], OEP candidates are collected at the page
faults. They are checked by the entropy (since an encrypted code has larger
entropy, i.e., more random) and the number of API calls placed in the memory.
PinDemonium [10] detects OEP candidates whether the memory dump (using
Scylla [11]) can reconstruct the library function table. Junstin [12] is often used
to collect the OEP candidates. It monitors the control flow and selects an OEP
candidate when jumps to a dirty page. It reduces the candidates by heuristics,
e.g., Unpacker Memory Avoidance (avoid unlikely pages containing unpacked
code), Stack Pointer Check (check the stack pointer whether the same as the
start of the execution), and Command-line Argument Access (check whether the
command-line argument is put to the stack at the dirty page access). [13] tried
to reduce the OEP candidates by identifying decryption routines (by watching
writing instructions and written areas) and sorts the candidates. [14] follows [13],
and further watching branching instructions to identify decryption routines and
tracking system parameters related to the main function. Then, the nearest to
the structured exception handler installation (which is located at the last write
on fs:[0] during the system startup) is regarded as the OEP. Apart from the
dirty page tracing, [15] combines statistical and symbolic signs which is the pair
of the entropy and the single instruction (either JMP, JCC, CALL, or RET).

The graph similarity is applied for malware detection and analyses [16, 17].
After obtaining CFGs of packed codes by the symbolic execution Angr4, the
former uses CNN on CFGs and the latter uses the (1-dimensional) Weisfeiler-
Lehman kernel on a call graph. However, they do not care to distinguish the
unpacking stubs and the payloads. Apart from them, we apply the symbolic
execution BEPUM [3] and the graph similarity to classify the targets, instead of
their machine learning techniques.

2 Preliminaries

2.1 Terminologies on graph

We denote the concatenation of two strings s1 and s2 by s1.s2. For a directed
graph G = (V,E) with E ⊆ V × V and v ∈ V , let

ancestors(v) = {u | (u, v) ∈ E} successors(v) = {u | (v, u) ∈ E}.
N(v) = (ancestors(v) ∪ successors(v)) \ {v}

3 https://www.aldeid.com/wiki/QuickUnpack
4 https://angr.io/

h

Original Entry Point detection based on graph similarity 5

The indegree deg−(v) and outdegree deg+(v) of v ∈ V is |ancestors(v)| and
|successors(v)|, respectively. v ∈ V is a source node (resp. sink node) if deg−(v) =
0 (resp. deg+(v) = 0). We also sometimes denote u → v if (u, v) ∈ E. A directed
graph G is acyclic if there are no v ∈ V with a cycle v →+ v.

Assuming a DFS on G, we have the order among children nodes. We say,

– Forward edge: from an ancestor to a direct descendant.
– Cross edge: from a righter node to a lefter node.
– Retreating edge: from a descendant to an ancestor.
– Back edge: Retreating edges (u, v) such that v dominates u, i.e., every path

from the roof of the DFS tree to u traverses v.

Definition 1. Let G = (V,E) be a directed acyclic graph. For u ∈ V , the pre-
decessor graph from u is a graph PreGu = (Vu, Eu) with

Vu = {v ∈ V | v ∗→ u} Eu = E ∩ (Vu × Vu) (1)

If G is clear from the context, we may omit it as Preu.

The label of G = (V,E) is a labelling function lG : V → Σ. When lG(u) = σ,
σ ∈ Σ is the label of u ∈ V .

2.2 De-obfuscation for CFG generation

Obfuscation techniques. The difficulty of analyzing packed malware comes
from the use of obfuscation techniques introduced by a packer. When a program
is obfuscated (e.g., encryption), it may not be interpreted statically. Hence, these
packed codes can evade firewall and antivirus scanners. Typical obfuscation tech-
niques are classified into 14 [18], which are further classified into 6 groups [19].

1. Entry/code placing obfuscation (Code layout): overlapping functions,
overlapping blocks, and code chunking.

2. Self-modification code (Dynamic code): overwriting and packing/unpacking.
3. Instruction obfuscation: Indirect jump.
4. Anti-tracing: SEH (structural exception handler) and 2API (the use of

special APIs, LoadLibrary and GetProcAddress in kernel32.dll).
5. Arithmetic operation: Obfuscated constants and checksumming.
6. Anti-tampering: Timing check, anti-debugging, anti-rewriting, and hard-

ware breakpoints. Anti-rewriting consists of stolen bytes and checksumming.

Among them, Anti-tampering contains VM-awareness and trigger-based be-
havior, which often affects on dynamic analysis and monitoring.

– Anti-Debugging: It detects the presence of a debug mode by specific API
calls, e.g.,CALL kernel32.IsDebuggerPresent

– Stolen bytes: This calls VirtualAlloc to allocate a buffer, and the unpacked
code is written on this area.

– Timing Check: This checks timing anomaly compared to the native Windows
environment.

– Hardware breakpoint: Jump destination is stored in debug registers, such as
DR0, DR1, DR2, and DR3.

6 Thanh-Hung Pham and Mizuhito Ogawa

BE-PUM for CFG generation DSE is considered to be the most power-
ful tool for de-obfuscation [2, 19]. For instance, DSE overcomes anti-tampering
techniques since it can generate satisfiable test instances as long as it is on an
executable path. Alternatively, DSE will not explore dead code (e.g., opaque
predicate) since the constraint for it is detected unsatisfiable.

BE-PUM (Binary Emulation for PUshdown Model)5 [3] is a DSE tool for
binary code on Intel x86/Win32 architecture, which generates the precise CFG
of a binary code (including malware). Overall, the architecture of BE-PUM can
be illustrated by three main components, which are a CFG storage, a binary
emulator, and a symbolic execution (Fig. 2). BE-PUM also adopts JackStab
0.8.3 [20] for one-step disassembly (i.e., interpret one instruction from a given
address), Z3 4.3 [21] for a constraint solver (with the bitvector backend theory).

Fig. 2: The architecture of BE-PUM [19]

The frontiers in the left-hand side of Fig 2 store symbolic states (described
by the path constraints on symbolic values) at the leaves of currently explored
traces. BE-PUM selects one from it and tries to apply the one-step symbolic
execution. If it is an indirect jump, one-step testing by a satisfiable instance
decides the next destination before the application of symbolic execution. It
extends one step of the possible traces, and the path constraint is expanded.
This procedure terminates when either the exploration has converged or comes to
unknown instructions, unknown system calls, or unknown addresses. Currently,
BE-PUM supports about 400 x86 instructions and >1000 Win32 APIs.

5 https://github.com/NMHai/BE-PUM

h

Original Entry Point detection based on graph similarity 7

3 Weisfeiler-Lehman Kernel

In order to deal with the graph isomorphism, the 1-dimensional Weisfeiler-
Lehman test has been introduced [4]. It performs with multiple iterations to
relabel nodes by compressing the current node labels with the concatenation of
the sorted string of node labels of neighboring nodes.

Fig. 3: Weisfeiler-Lehman algorithm

Let G = (V,E, ℓ) be a labelled graph with the labelling function ℓ : V → Σ.
We assume that Σ is a totally ordered set. Let l0 = ℓ and i > 0. li : V → Σ∗ is
the labeling function after the i-th iteration, which is computed by the following
steps. Let v ∈ V and we assume a total order on Σ.

– Step 1: Mi : V → M(Σ∗) is a multiset-labeling function such that Mi(v) =
{li−1(u) | u ∈ N(v)}.

– Step 2: si : V → Σ∗ is defined by

1. Mi(v) is sorted in the ascending order (wrt the lexicographic extension)
as Mi(v) = (li−1(u1), li−1(u2), · · · , li−k(uk)).

2. si(v) = li−1(v).li−1(u1).li−1(u2). · · · .li−k(uk).

– Step 3: li := si.

Fig. 3 shows an analogy of the computation of the Weisfeiler-Lehman Kernel
of a graph with the n-gram of a word. n-gram collects the labels of the sequence of
the length n. At the i-step, the Weisfeiler-Lehman histogram vector inductively
computes the collection of labels in the diameter i of each node. The Weisfeiler-
Lehman Kernel continues to compute until the label converges, whereas we use
an approximation up to i = 2.

8 Thanh-Hung Pham and Mizuhito Ogawa

For the graph isomorphism, [4] further performs the label compression by
defining a partial function fi : Σ

∗ → Σ. Adding to the steps above, fi is incre-
mentally defined starting from f0(σ) = σ for σ ∈ Σ.

– Step 2’: For w = si(v),

fi(w) =

{
fi−1(w) if w ∈ Dom(fi−1)
v′ otherwise, v′ is a fresh label added to Σ

– Step 3’: li := fi ◦ si.

With the label compression, the labeling function l1 will converge, i.e., ∃j >
0.lj+1 = lj . Then, for two labeled graph G = (V,E), G′ = (V ′, E′), after both
of the labeling functions li, l

′
i converge at i = j, we can simply compare the

histogram vectors of {lj(v) | v ∈ V } and {l′j(v) | v ∈ V ′}. If and only if they are
equal, G and G′ are isomorphic.

For the CFG similarity, we simplify to directed acyclic graphs after removing
retreating edges. Then, we also simplify the algorithm with

– No label compression: We use only Step 1 and Step 2 and the histogram
of {li(v) | v ∈ V, i ≤ j} at the iteration j is called a j-th Weisfeiler-Lehman
histogram vector.

– Ancestors instead of neighbors: In Step 1,N(v) instead of ancestors(v).

4 Control flow graph of unpacking stub

4.1 The CFG of the unpacking stub characterizes a packer

We start with our observation that a packed code has a similar unpacking stub
regardless of the original payload. The left hand side of Fig. 4 shows the compar-
ison of two CFGs of the packed code by UPX. From this observation, we further
set the hypothesis that a similar class of CFGs of unpacking stubs does not cross
different packers. If it works, we can identify the used packer and the unpacking
stub by the graph matching. (We confirm it by our preliminary experiments in
Section 6.) Note that the graph matching will be not exact, since even if the
CFGs are in the same class, they may have different offsets, which make binary
codes different. To remedy this, we apply the graph similarity, i.e., the cosine
similarity [5] on Weisfeiler-Lehman histogram vectors, after annealing the labels
by stripping arguments from the instructions.

When we know both the unpacking stub and the original payload, we can
identify the body of the unpacking stub as the difference between the memory
image after the execution of the packed code and the original payload. Hence, in
theory, the CFG of unpacking stubs will be the predecessor graph at the exit of
the unpacking stub. However, we sometimes observe a path from the unpacked
payload to the unpacking stub. This looks strange since the original payload
does not know the unpacking stub in advance. We observe that this happens
when the unpacking stub and the unpacked payload call the same API (Fig 5),

Original Entry Point detection based on graph similarity 9

Fig. 4: The similarly among predecessor graphs in the same packer

and this is because the CFG generated by BE-PUM is context-insensitive, i.e.,
there are no criteria to distinguish different call-sites.

Fig. 5: Unpacking DAG construction

10 Thanh-Hung Pham and Mizuhito Ogawa

To remedy the situation, we simply strip the retreating edges in the CFG, and
then taking the preceding graph at the exit of the unpacking stub. We call it the
unpacking DAG. Note that the unpacking DAG avoids a loop in the unpacking
stub (e.g., a decrypting loop), which may reduce the size of the unpacking DAG
much smaller than the original CFG. The right-hand side of Fig. 4 shows the
unpacking DAG examples of UPX, FSG, and Mew. They look similar.

As the last remark, a retreating edge in a directed graph depends on the order
of nodes travelled in the DFS. However, CFGs of most programs are reducible
[22, 23], hence retreating edges in this graph are also back-edges and uniquely
selected. In case not reducible, we prepare the DFS strategy that prioritizes
visiting a child node with an API call, which intends to remove a return edge
from a shared API call both from the payload and the unpacking stub.

End sequence Although these predecessor graphs at the exit of unpacking
stubs are clearly classified, they still are not identical. To compensate for the
approximation, we observe that the end sequence of these graphs in the same
class is consistent. Here, the end sequence is the opcode sequence of the last m
instructions in these graphs. Currently, we set m = 5. The table below shows
several end sequences (proceeding left-to-right) for UPX, FSG, and MEW.

Packer the end sequence of unpacking stub

UPX pushl, cmpl, jne, subl, jmp

FSG je, decb, jne, decb, je

MEW GETPROCADDRESS-KERNEL32-DLL, stosl, testl, jne, ret

The end sequence of unpacking stubs has an important role in our method
because Weisfeiler-Lehman kernel is a statistical method and it just approxi-
mates a graph into a vector. However, an end sequence is a symbolic property.
Therefore, it can reduce the number of unpacking stub candidates and confirm
again whether a node in a graph is the exit of an unpacking stub.

4.2 Confirming hypothesis by clustering packed codes

After intuitive observation, we confirm our hypothesis by clustering 771 samples
packed by 12 packers (UPX v3.95, ASPACK v2.12, FSG v1.0, YODA v1.3, MEW
SE v1.2, PACKMAN v1.0, PECOMPACT v2.xx, PETITE v2.1, WINUPACK
v0.39 Final, JDPACK v1.01, MPRESS v2.xx, and TELOCK v0.98). After taking
Weisfeiler-Lehman histogram vectors of the CFGs of unpacking stubs (since we
know both the original payload and the used packer), the clustering algorithm
DBSCAN with the cosine similarity is applied. The table shows the results of
DBSCAN with fixed parameters min sample = 2 and metric = cosine. We
observe the change wrt eps from 0.1 to 0.02.

eps 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02
number of class 11 11 12 14 16 16 18 18 21
Hypothesis (1) False False False False False False True True True
Hypothesis (2) False False False False False False False False True

Original Entry Point detection based on graph similarity 11

We observe that when the allowance eps of DBSCAN is small enough,

(1) each class does not cross different packers, and
(2) the end instruction sequence (the prefix of the exit of an unpacking stub of

the length 5) is the same in each class.

More precisely, eps = 0.04 is enough for (1), and eps = 0.02 satisfies both.

5 Packer Identification end OEP detection using
template matching

In Section 4, we observe that Weisfeiler-Lehman histogram vectors and the end
sequence characterize each class of unpacking stubs. We define a template of a
packer by the pair of the average of Weisfeiler-Lehman histogram vectors and
the end sequence. Note that some packers may have several templates.

5.1 Template setup for each packer

Clustering procedure The process of template setup for a fixed packer in-
cludes 5 steps. We use the CFG of a packed code generated by BE-PUM.

– Step 1: Generate the unpacking DAGs of the unpacking stub.
– Step 2: Compute their Weisfeiler-Lehman histogram vector.
– Step 3: Apply the 0-aligning, i.e., fulfilling 0 to make the dimensions of

vectors the same.
– Step 4: Apply the clustering algorithm DBSCAN with the cosine similarity.
– Step 5: Pair the average of Weisfeiler-Lehman histogram vectors in each

cluster and the end sequence (if it is consistent).

At Step 4, we apply DBSCAN with eps = 0.05. However, some clusters have
inconsistent end sequences. In such a case, we decrease the eps value by the step
0.01 and perform again the clustering until stabilized.

5.2 Template matching for packer identification and OEP detection

When we face an unknown packed code, the template-matching process consists
of 4 steps. We use the CFG of a packed code generated by BE-PUM.

– Step 1: During incremental DFS trace of the CFG, remove a retreating edge
and generate the predecessor graph at each node.

– Step 2: Compute its Weisfeiler-Lehman histogram vector.
– Step 3: If the end sequence of the predecessor graph matches that in a tem-

plate, check the similarity between the Weisfeiler-Lehman histogram vectors.
– Step 4: Choose the template of the maximum similarity.

The node at Step 4 (the sink node of the predecessor graph) is recognized as
the exit of the unpacking stub, and the OEP is detected as the jump destination
from it. The packer is identified simultaneously. Fig. 6 shows an example of steps
3 and 4, in which the node 7 is the exit of the unpacking stub, the node 8 is the
OEP, and P is the used packer.

12 Thanh-Hung Pham and Mizuhito Ogawa

Fig. 6: Template matching for Packer Identification and OEP detection

6 Experiment

A packed code with the used packer name and the original payload is taken
from Git Hub pages67 (the latter for TELOCK). We prepare CFGs of packed
code by BE-PUM with a time limit of 1 hour, which results in 771 samples. We
also prepared 1259 samples of malware from VXHeaven. Windows environment
of BE-PUM is set to Windows 7-32bit except for TELOCK. Telock requires
sysenter, which currently works in BE-PUM only with Windows XP 32-bit.
The experimental environments are built on VMware Workstation Pro 17 with
Host OS Ubuntu 20.04 and Processor 13th Gen Intel(R) Core(TM) i9-13900K
3.00 GHz. Details of experiments are shown at the GitHub Link8.

6.1 Testing on non-malware samples

In this experiment, we used 71 samples for obtaining templates, and 700 samples
for testing. Our proposed method is compared with

– Packer identification: VirusTotal (1), PyPackerDetect9(2), BE-PUM [19]
(which finds the used packer by the frequency of obfuscation techniques).

– OEP detection: Gunpacker v0.510(3), QuickUnpack v2.211(4).

Among OEP detection tools mentioned in Related Work, we could not find
access to most of them [7–9,13–15], except for Polyunpack [6] source12.

Roughly speaking, the execution time depends on the number of nodes in
the CFG. Our method takes mostly around 6 sec for 550 nodes, and 260 sec for
3500 nodes, respectively, whereas GunUnpacker and QuickUnpack take 1-2 sec.

6 https://github.com/chesvectain/PackingData
7 https://github.com/packing-box/dataset-packed-pe
8 https://github.com/hungpthanh/oep-detection-based-on-graph-similarity
9 https://github.com/cylance/PyPackerDetect

10 https://webscene.ir/tools/show/GUnPacker-v0.5
11 https://www.aldeid.com/wiki/QuickUnpack
12 https://github.com/PlatonovIvan/PolyUnpack

h
h

Original Entry Point detection based on graph similarity 13

Packer Samples
Packer Identification OEP detection
(1) (2) BE-PUM Ours (3) (4) Ours

UPX v3.95 85 85 30 84 85 78 85 85
ASPACK v2.12 68 68 68 68 68 56 68 68

FSG v1.0 75 75 75 75 75 70 75 75
PECOMPACT v2.xx 27 27 27 27 27 0 8 27

MEW SE v1.2 75 75 75 75 75 74 8 75
YODA’s Cryptor v1.3 74 74 74 62 74 73 8 74

PETITE v2.1 34 34 34 34 34 0 8 34
WINUPACK v.039 final 26 26 26 26 15 26 4 15

MPRESS v2.xx 78 78 0 78 78 0 8 78
PACKMAN v1.0 79 79 79 0 79 79 8 78
JDPACK v1.01 52 51 0 0 52 45 2 52
TELOCK v0.98 27 27 27 27 27 24 1 27

Total 700 699 515 556 689 525 283 688

6.2 Observation on the result of experiments

For the packer identification, our method correctly detects the packer for 689,
next to VirusTotal (a database collected from various resources) for 699.

Fig. 7: WINUPACK templates

– The failure of PyPackerDetect and BE-
PUM would come from the obsolete se-
tups, i.e., the supported versions of pack-
ers seem too old. The packer identifica-
tion of BE-PUM is in built-in service [19],
which compares the frequency of the oc-
currences of obfuscation techniques, called
metadata signature. BE-PUM also detects
whether packed by the presence of over-
write the code (e.g., self-modification, en-
cryption). However, the metadata signa-
tures are not updated (which causes fail-
ures for UPX and YODA), and BE-PUM
does not support PACKMAN and JD-
PACK. Similarly, PyPackerDetect fails
on MPRESS and JDPACK.

– Our method for the packer identification
fails on 11 samples byWINUPACK, which
report “unknown packer”. The reason is,
although WINUPACK has at least 2 tem-
plates (Fig 7), our method found only the
left one due to a small number of samples
(the total 71 for 12 packers) for the tem-
plate setup.

14 Thanh-Hung Pham and Mizuhito Ogawa

For the OEP detection, our method correctly detects the OEP for 688,
whereas GunUnpacker and QuickUnpack find 525 and 283, respectively.

Fig. 8: PACKMAN failure

– Our method fails 11 samples in WIN-
UPACK (of which the packer identifica-
tion already fails) and 1 sample in PACK-
MAN. This shows that once the used
packer is correctly identified, our OEP de-
tection is mostly correct. Fig. 8 shows the
irregular behavior of the failed sample of
PACKMAN. We observed that there is an
instruction jmp start, which strangely
repeats the unpacking process one more
time before jumping to the OEP.

– The table below shows the metadata sig-
nature of BE-PUM [19], in which the num-
ber in the top column indicates the cate-
gories of obfuscation techniques [18], e.g.,
(3) overwriting and (4) Packing-unpacking. Gunpacker fails on PECOM-
PACT, PETITE, and MPRESS, which seem to have significantly more (3)
overwriting and (4) Packing-unpacking obfuscations.

Packer
Average frequency of obfuscation techniques

0 1 2 3 4 5 6 7 8 9 10 11 12 13
UPX 0 2.27 0.53 0.1 16.14 17.41 0.41 11 5.57 0.28 0.16 0.03 0.13 0.13

ASPACK 2 0 0 0.5 76.73 8.97 0 1.5 12.92 0 0 0 2 0
FSG 0 0.09 1.54 0.13 14.27 27.34 0.28 16.05 3.74 0 0.16 0.03 0.14 0.1

PECOMPACT 0.53 0.61 0.7 1.12 106.56 18.8 1.06 6.89 20.63 0 0.04 0 3.03 1.01
MEW 0.3 0 2.65 0.03 55.84 27.66 0.29 14.38 16.67 0.01 0.13 0.02 0.15 0.1
YODA 0 1.77 5.08 0.14 17.15 25.12 1.11 16.75 13.84 1.01 0.17 0.89 0.14 0.96
PETITE 0 0.03 1.65 3.46 180.79 9.31 2.4 1.81 26.44 0.05 0.11 0 0.25 0.12

WINUPACK 0.47 0.47 0.1 0.09 21.12 22.91 0.07 2.24 4.67 0.76 0.04 0 0.01 0.03
MPRESS 0 0 1.94 1.88 93.81 0.94 0 0.94 9.82 0 0 0 0 0

PACKMAN 0.48 0 0 0.02 6.87 4.8 0 0.94 0.97 0 0 0 0.99 0
JDPACK 3.09 5.59 0.33 0.07 19.32 27.16 0.16 16.62 2.81 0 0.23 0.01 1.07 0.05
TELOCK 0 2.94 3.96 0 37.42 7.56 9.81 0.21 11.33 0 0.02 0 0 1.98

6.3 Experiment on real malware

We also tried 5190 malware samples taken from VXHeaven. Among them, BE-
PUM generates CFGs for 1239 within a 1-hour timeout.

From them, our method detects 1089 packed by unknown packers (i.e., be-
yond the prepared templates of 11 packers) and 150 are identified the used
packer names (among 11 packers except for Telock). For them, the OEPs are
also reported. The table shows the identified packers.

Original Entry Point detection based on graph similarity 15

Packer UPX ASPACK FSG PECOMPACT YODA WINUPACK MPRESS

Sample 80 26 1 9 13 20 1

When a packer is identified, our method also detects the OEP, though cur-
rently, we cannot verify its correctness. However, the end sequence of the un-
packing stub would rarely match by luck, and their similarity to our template is
higher than 0.51, among them, 133 samples have a similarity of more than 0.7.

7 Conclusion

This paper proposed a method for the packer identification and the OEP (Origi-
nal Entry Point) detection based on the graph similarity of CFGs (Control Flow
Graphs) of packed codes. The CFG generation of packed code owes fully on a
DSE tool BE-PUM [3] on x86-32/Windows. Our tool for the graph similarity is
a Weisfeiler-Lehman histogram vector (Section 3) of a CFG, which is computed
iteratively by relabeling each node with the collection of neibor’s labels [4].

First, we confirmed the hypothesis that the CFG of the unpacking stub char-
acterizes a packer by the clustering of 771 samples packed by 12 packers (UPX,
ASPACK, FSG, Yoda, Mew, Packman, PECOMPACT, Petite, WINUPACK,
JDPACK, MPRESS, and TELOCK). Second, we set the template, which is
the pair of the average of Weisfeiler-Lehman histogram vectors and the end se-
quence. Experiments showed the effectiveness of our method, especially on the
OEP (Original Entry Point) detection. For 700 non-malware samples (which are
packed by 12 packers above), our method correctly detected the packer for 689,
and the OEP for 688. For 1239 malware samples, 1089 were detected packed by
unknown packer and 150 were packed by the 11 packers (except for TELOCK).
Throughout the experiments, when the packer identification succeeds, the OEP
seems to be correctly detected (except for 1 case packed by PACKMAN). The
impact on the OEP detection is much more substantial than on packer identifi-
cation, since analyzing the original payload would give new sights on malware.

Future work In the future, we would like to extend our methods to many other
packers. Particularly, we also extend our methods to packers using vm-protect
techniques (i.e., themida). In addition, the limitation of our current work is that
we need to access the packer’s executable to generate the templates. We hope
to tackle custom packers, of which executables are not accessible.

Acknowledgement

This research is partially supported by JSPS KAKENHI 20K20625 (Grant-in-
Aid for Challenging Research).

16 Thanh-Hung Pham and Mizuhito Ogawa

References

1. J.C.King. “Symbolic Execution and Program Testing”, CACM, 19, 385-394, 1976.
2. J.Salwan, S.Bardin, M.-L.Potet. “Symbolic Deobfuscation: From Virtualized Code

Back to the Original,” DIMVA, LNCS 10885, 372–392, 2018.
3. N.M.Hai, M.Ogawa, Q.T.Tho. “Obfuscation Code Localization Based on CFG

Generation of Malware”, FPS, LNCS 9482, 229-247, 2015.
4. N.Shervashidze, P.Schweitzer, E.J.van Leeuwen, K.Mehlhorn, K.M.Borgwardt.

“Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res. 12, 2539-2561, 2011.
5. Wikipedia.“Cosine similarity,” https://en.wikipedia.org/wiki/Cosine_

similarity.
6. P.Royal, M.Halpin, D.Dagon, R.Edmonds, W.Lee. “PolyUnpack: Automating the

Hidden-Code Extraction of Unpack-Executing Malware”, ACSAC, 289-300, 2006.
7. L.Martignoni, M.Christodorescu, S.Jha, “OmniUnpack: Fast, Generic, and Safe

Unpacking of Malware”, ACSAC, 431-441, 2007.
8. M.Kang, P.Poosankam, H.Yin. “Renovo: A hidden code extractor for packed exe-

cutables”, WORM’07, 46-53, 2007.
9. R.Isawa, M.Kamizono, D.Inoue, “Generic Unpacking Method Based on Detecting

Original Entry Point”, NIP, LNCS 8226, 593-600, 2013.
10. S.D’Alessio, S.Mariani. “PinDemonium: a DBI-based generic unpacker for Win-

dows executables”, BlackHat, 1-56, 2016.
11. NtQuery.“Scylla - x64/x86 imports reconstruction,” https://github.com/

NtQuery/Scylla.
12. F.Guo, P.Ferrie, T.C.Chiueh. “A Study of the Packer Problem and Its Solutions”,

RAID, LNCS 5230, 98-115, 2008.
13. R.Isawa, D.Inous, K.Nakao. “An original entry point detection method with

candidate-sorting for more effective generic unpacking”, IEICE Trans. E98-D(4),
883-893, 2015.

14. G.M.Kim, J.Park, Y.H.Jang, Y.Park. “Efficient Automatic Original Entry Point
Detection”, Journal of Information Science and Engineering, 35, 887-901, 2019.

15. G.Jeong, E.Choo, J.Lee, M.Bat-Erdene, H.Lee. “Generic unpacking using entropy
analysis”, MALWARE, 98-105, 2010

16. A.V.Phan, L.M.Nguyen, H.Y.L.Nguyen, L.T.Bui. “DGCNN: A convolutional neu-
ral network over large-scale labeled graphs”, Neural Networks 108, 533-543, 2018.

17. C.-H.B.Van Ouytsel, A.Legay. “Malware Analysis with Symbolic Execution and
Graph Kernel,” NordSec, LNCS 13700, 292–310, 2022.

18. K.A.Roundy,B.P.Miller. “Binary-code obfuscations in prevalent packer tools,”
ACM Comput.Surv.46, 4:1–4:32, 2013.

19. M.H.Nguyen, M.Ogawa, Q.T.Tho. “Packer Identification Based on Metadata Sig-
nature”, SSPREW-7, 1-11, 2017.

20. J.Kinder, F.Zuleger, H.Veith. “An Abstract Interpretation-Based Framework for
Control Flow Reconstruction from Binaries”, VMCAI, LNCS 5403, 214-228, 2009.

21. L.de Moura, N.Bjørner. “Z3: An Efficient SMT Solver”, TACAS, LNCS 4963, 337-
340, 2008.

22. D.E. Knuth. “An empirical study of FORTRAN programs”, Software Practice and
Experience, 1(2), 105–134, 1971.

23. M.S.Hecht, J.D.Ullman.“Flow Graph Reducibility”, ACM STOC, 238-250, 1972.

https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla

	Original Entry Point detection based on graph similarity

