
Formal Semantics Extraction
from MIPS Instruction Manual

Quang Thinh Trac and Mizuhito Ogawa

Japan Advanced Institute of Science and Technology
{tracthinh, mizuhito}@jaist.ac.jp

Abstract. This study proposes a semi-automatic extraction of the for-
mal semantics of MIPS architecture from the pseudocode description in
MIPS instruction manual. Among 127 collected instructions, we focus
on the 63 instructions of the CPU category. After manually preparing
21 primitive functions in the pseudocode description, their semantics are
successfully generated as Java methods, which are unified to a dynamic
symbolic execution tool SyMIPS. We perform an empirical study on 3219
MIPS32 IoT malware collected from ViruSign and observe that SyMIPS
successfully traces 2412 samples, in which SyMIPS finds the dead condi-
tional branch, e.g., in DDOS-Y. The rest is interrupted by either timeout,
stack overflow, or exceptions, which current SyMIPS does not cover.

Keywords: Dynamic Symbolic Execution, MIPS32, IoT malware

1 Introduction

Symbolic execution has been developed mostly for high-level programming lan-
guages, e.g., JPF-SE [1] for Java and Klee [4] for C. Recently, symbolic execution
tools are extended to binary code. An early example is McVeto[11], followed
by KLEE-MC[2], Mayhem[5], MiAsm[6], CoDisasm[3], BE-PUM[9], Angr[10],
Corana[13]. Most of them are developed for x86 except Corana for ARM.

When we consider IoT devices, various architectures exist. Smaller CPUs,
MPU (Micro Processor Unit), are either 32 bits or 64 bits, e.g., ARM Cortex-A,
MIPS32, MIPS64, MC68000, Sparc (by Fujitsu), PowerPC, and x86. Controllers,
MCU (Micro Controller Unit), are up to 32 bits, e.g., ARM Cortex-M7, Z80, PIC,
AVR, MSP430 (TI), and RL78 (Runesas). When we develop binary symbolic
execution tools, the large variation forces huge human effort. Good news is:

1. Each instruction set often has a concrete manual in rigid English.
2. MPUs and MCUs have shallow caches and mostly do not allow out-of-order

execution. Avoiding multi-threads, weak memory models, and floating-point
arithmetic, the operational semantics framework simply becomes the transi-
tions on the environment consisting of memory, stack, registers, and flags.

3. Various debuggers and emulators are often available, which implement the
semantics of instruction sets.

2 QT. Trac and M. Ogawa

They suggest (semi-)automatic extraction of the formal semantics from English
manuals. Furthermore, by comparing with the execution between existing de-
buggers/emulators and the generated symbolic execution tool, the conformance
testing can resolve the ambiguity in natural language processing.

For extracting the semantics, the following three sections are essential.

– Format section shows the name of the instruction and its operands.
– Operation section shows how the environment is updated. Some instruction

sets also have the pseudo-code descriptions, e.g., x86 and MIPS.
– Flag Update section shows the change of the boolean condition. Some in-

struction sets have no flags, e.g., MIPS, and the condition is set on registers.

Following to BE-PUM for x86 [8] and Corana for ARM [13]), this study in-
vestigates a semi-automatic extraction of the formal semantics of MIPS instruc-
tions. Among MIPS variations, we focus on MIPS32 (release 5) from MIPS32
instruction set manual1, which has the emulator MARS. Among 127 collected
MIPS32 instruction specifications, we focus on 63 of the CPU category. After
preparing a Java template describing the operational semantics framework, we
manually prepare 21 primitive functions in the pseudocode description, which
successfully instantiate the Java template for all 63 instructions. The generated
Java code is inserted into a dynamic symbolic execution tool SyMIPS2. We per-
form an empirical study on 3219 MIPS32 IoT malware in ViruSign3 and observe
that SyMIPS successfully traces 2412 samples. The rest is interrupted by either
timeout, stack overflow, or exceptions, which current SyMIPS does not cover.
Note that SyMIPS finds the dead conditional branch, e.g., in DDOS-Y.

Related Work

The first trial of a formal semantics extraction appears for x86 [8] for extending
BE-PUM [9], which introduced the sentence-level similarity analysis to detect
flag updates. The experiment shows that among 530 collected specifications from
Intel Developer’s Manual4, Java method descriptions of 299 x86 instructions are
successfully generated by manually preparing 30 primitive functions, which not
only enlarged the BE-PUM support to the total 400 instructions but also found
5 human bugs in manually implemented 200 instructions.

The formal semantics extraction for ARM [13] is more challenging, since the
ARM manual is described only in English. By manually preparing 228 seman-
tics interpretation rules, the experiment shows that among 1039 collected ARM
Cortex-M specifications from ARM manual5, 662 instructions are successfully
processed. Note that both apply the conformance testing by using the existing
emulators, i.e., Ollydbg 6 for x86 and µVision7 for ARM.
1 https://www.mips.com/products/architectures/mips32-2
2 https://github.com/tracquangthinh/SyMIPS
3 https://www.virusign.com
4 https://www.felixcloutier.com/x86
5 https://developer.arm.com
6 http://www.ollydbg.de
7 http://keil.com/mdk5/uvision

Formal Semantics Extraction from MIPS Instruction Manual 3

2 Formal Semantics of MIPS

2.1 MIPS Architecture

MIPS is a RISC instruction set, which were introduced in 1985. MIPS assumes
a load/store architecture (or known as register-register architecture, in which
the memory access is limited to the load and store instructions. A conventional
MIPS processor contains the following components:

1. Registers: is a small set of high-speed storage cells inside the CPU. MIPS
provides 32 general-purpose registers.

2. Memory: is the 32-bits addressing space.
3. Stack: is taken as a special area of the memory.

In contrast to x86 and ARM, MIPS have no flags. Instead, it uses general reg-
isters for storing the boolean conditions. Furthermore, the MIPS instructions
except for the load/store, lb, sb, lw, sw, cannot directly access memory.

2.2 MIPS Instruction Manual

The specification of the MIPS instructions is collected and extracted from the
MIPS32 (release 5) instruction set manual. They are in the PDF format and
consist of four prime sections including format, purpose, description and
operation. Table 2.2 shows an example of the specification of instruction ADDI.
Among four sections, format and operation are used to obtain Java methods.

Format ADDI rt, rs, immediate

Purpose To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description The 16-bit signed immediate is added to the 32-bit value in GPR rs to
produce a 32-bit result.
– If the addition results in 32-bit 2’s complement arithmetic overflow,

the destination register is not modified and an Integer Overflow
exception occurs.

– If the addition does not overflow, the 32-bit result is placed into
GPR rt.

Operation temp ← (rs[31]||rs[31..0]) + sign extend(immediate)

if temp[32] 6= temp[31] then

SignalException(IntegerOverflow)

else

rt ← sign extend(temp[31..0])

endif

2.3 Java Methods as Formal Semantics

We describe the formal semantics of MIPS instructions by Java methods with a
Java class BitVec, originally prepared for Corana [13]. The value of the BitVec

class is a pair 〈bs, s〉, where bs is a 32-bit vector variable in the BitSet class
and s is a string variable that stores a symbolic value in the BitVector theory.
We manually prepare 21 primitive functions appearing in the pseudocode. An
example below is a generated Java method of the instruction ADDI

4 QT. Trac and M. Ogawa

public void ADDI(Character rt, Character rs,

int immediate){

BitVec temp = add(concat(val(rs).get(31),

val(rs).get(0, 31)), signExtend(immediate));

if(notEqual(temp.get(32), temp.get(31))){

signalException(IntegerOverflow);

} else { write(rt,signExtend(temp.get(0, 31))); }

}

3 Specification Extraction

3.1 Operation Extraction

The operation section describes the pseudo-code. It is the most important field
for extracting MIPS formal semantics and generating Java executable code. How-
ever, MIPS Instruction Set manual obeys general common knowledge on the
syntax and the semantics of the pseudo-code. Following to x86 formal semantics
extraction [8], we manually prepare a context-free grammar including 17 rules
for parsing the pseudo-code. We used ANTLR (ANother Tool for Language
Recognition)8 to generate a parser, which results the abstract syntax tree.

Representation of BitVector Theory String variables are used to store val-
ues in BitVector theory of the SMT format and the primitive functions compute
32-bit values. Below is an example of a primitive function and.

BitVec and(BitVec m, BitVec n) {

String symbolic = "(bvand "+ m.symbolic +

" " + n.symbolic + ")";

BitSet concrete = m.and(n);

return new BitVec(concrete, symbolic); }

3.2 Conformance Testing

JDart[7] is a dynamic symbolic tool built on the top of Java PathFinder[12].
After converting the pseudo-code to Java methods, we use JDart to generate
the test cases of Java methods to cover all feasible execution paths of MIPS
instructions. Then we apply the conformance testing by comparing the executed
results of Java methods and MARS9 - a trusted emulator of MIPS32.

1. Apply JDart for the symbolic execution on a generated Java method, and
generate test cases to cover its all feasible branches.

2. Execute the generated Java method and the instruction on the trusted em-
ulator MARS with all generated test cases, and compare their results.

8 https://www.antlr.org
9 http://courses.missouristate.edu/KenVollmar/mars

Formal Semantics Extraction from MIPS Instruction Manual 5

4 Dynamic Execution Tool: SyMIPS

A preliminary version of a dynamic symbolic execution tool SyMIPS10 (Symbolic
Execution for MIPS) adopts Capstone (as a single-step disassembler) and Z311

(as a backend SMT solver),

4.1 Environment Updates

SyMIPS updates the environment and the path condition when executing an in-
struction, based on the BitVec class and 21 primitive methods (Section 2.3). For
instance, ADDI r2, r3, 3 set r2 to r3 + 3 and updates symbolic values. For the
BitSet value ci and the symbolic values si with i ∈ {2, 3}, the pre-environment
preEnv r2 : 〈c2, s2〉; r3 : 〈c3, s3〉 is updated to the post-environment postEnv

r2 : 〈c3 + 3, ((sign extend 1)((extract 30 0)(bvadd (concat

((extract 31 31) r3)((extract 30 0) r3)) #x00000003)))〉
r3 : 〈c3 , s3〉

4.2 Path Conditions Generation

The path condition is updated when a conditional jump occurs. Returning to
the example above , we assume that the next instruction is beq r2 r4 offset

while offset is the destination of the jump instruction. This instruction beq

compares two registers r2 and r4, then if r2 equals to r4, it branches to the
offset. The path conditions of the true and false branches are updated as:

pctrue = pc ∧ (= ((sign extend 1)((extract 30 0)

(bvadd(concat ((extract 31 31) r3)

((extract 30 0) r3)) #x00000003))) r4)

pcfalse = pc ∧ (not (= ((sign extend 1)((extract 30 0)

(bvadd (concat ((extract 31 31) r3)

((extract 30 0) r3)) #x00000003))) r4))

4.3 SyMIPS versus BE-PUM, Corana

BE-PUM was originally implemented manually and later the formal semantics
extraction of 299 x86 instructions extends BE-PUM [8]. Compared to BE-PUM,
SyMIPS and Corana are generated from scratch and share the use of the BitVec
class. However, there are several differences:

10 https://github.com/tracquangthinh/SyMIPS
11 https://github.com/Z3Prover/z3

6 QT. Trac and M. Ogawa

1. ARM uses the flags and the conditional suffix to implement conditional ex-
ecutions. In contrast, MIPS only uses general registers.

2. ARM instructions treat 32-bit general registers as the word-size values and
do not require to access single bits during the execution. Meanwhile, MIPS
handles registers in the level of bits by producing get as a primitive function.
For instance, the ADDI instruction uses a conditional statement to decide
whether an overflow occurs. By using the get function, ADDI accesses the
31st and 32th single bits of the temporary variable temp.

5 Experiments and Results

5.1 SyMIPS Performance

We perform experiments on MIPS32 IoT malware (taken from ViruSign) to
see the performance of SyMIPS. Note that current SyMIPS implementation is
preliminary. We try 3219 samples on Ubuntu 18.04 with Intel Core i5-6200U
CPU, 2.30GHz and 8GB. The results are summarized below.

Types of Executions Number of samples

Finished 2412

Interrupted
Out of Memory 415

Jump to Kernel Space/ System Calls 79
Fail to read binary format 313

Total 3219

Average Size 178.8 KB

Range(seconds)Number of Samples
Size(KBs) Execution Time

Min Max Average Min Max Average

0 - 10 1658 0.5 638 165

1.21 991.22 17.46

10 - 20 941 30 763 111
20 - 30 155 47 198 138
30 - 40 36 59 240 153
40 - 50 154 121 301 200
50 - 60 74 142 1156 312
>60 201 124 531 292

5.2 Handling Dynamic Jumps by SyMIPS

Although IoT malware rarely uses obfuscation techniques, identifying the desti-
nation of indirect jumps is essential to understand the control structure.

0x401898 lw t9, -0x7fe0(gp)

0x40189c nop

0x4018a0 addiu t9, t9, 0x19bc

0x4018a4 jalr t9

0x4019c8 addiu sp, sp, -0x20

0x4019cc sw ra, 0x18(sp)

(a) Trace of the indirect jump

0x4004e8 slti v0, v0, 2

0x4004ec beqz v0, 0x40049c

0x4004f0 nop

0x4004f4 lw v1, 0x44(fp)

0x4004f8 addiu v0, zero, 1

(b) The true branch is UNSAT

Formal Semantics Extraction from MIPS Instruction Manual 7

Indirect Jump Example (a) shows an indirect jump jalr at 0x4018a4 in
ELF:Mirai-ACL. SyMIPS finds the destination 0x4019c8 by concolic testing.
Conditional Jump Example (b) shows a conditional jump beqz at 0x4004ec

in ELF:DDoS-Y. SyMIPS detects that the true branch is unsatisfiable. It always
goes to 0x4004f0 and the code fragment starting at 0x40049c is dead code.

6 Conclusion

We proposed a semi-automatic formal semantics extraction of MIPS32 instruc-
tions from their manual. Consequently, a preliminary version of a dynamic sym-
bolic execution tool SyMIPS for MIPS32 was presented. The experiments on
3219 IoT malware taken from ViruSign successfully analyzed 2412 samples, in-
cluding the detection of dead conditional branches, e.g., in DDOS-Y.
Acknowledgement This study is partially supported by JSPS KAKENHI
Grant-in-Aid for Scientific Research (B)19H04083. The original content was ac-
cepted as the master thesis [14].

References

1. S. Anand, C.S. Pasareanu, and W. Visser. JPF-SE: A Symbolic Execution Exten-
sion to Java PathFinder. TACAS, pp.134–138. 2007.

2. R. Anthony. Methods for Binary Symbolic Execution. Ph.D Dissertation, Stanford
University, December 2014.

3. G. Bonfante, J. Fernandez, JY. Marion, B. Rouxel, F. Sabatier, and A. Thierry.
CoDisasm: Medium Scale Concatic Disassembly of Self-Modifying Binaries with
Overlapping Instructions. ACM SIGSAC, pp.745–756, 2015.

4. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. OSDI, 2009.

5. SK. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing Mayhem on Binary
Code. IEEE S&P, pp.380–394, 2012.

6. F. Desclaux. Miasm : Framework de reverse engineering. 2012.
7. K. Luckow, M. Dimjasevic, D. Giannakopoulou, F. Howar, M. Isberner, T. Kahsai,

Z. Rakamaric, and V. Raman. JDart: A Dynamic Symbolic Analysis Framework.
TACAS, pp.442–459, 2016.

8. H.L.Y. Nguyen. Automatic Extraction of x86 Formal Semantics from Its Natural
Language Description. Master’s Thesis, School of Information Science, JAIST,
March 2018.

9. M.H. Nguyen, M. Ogawa, and T.T. Quan. Obfuscation Code Localization Based
on CFG Generation of Malware. FPS, pp.229–247, 2015.

10. Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. (State of) The Art
of War: Offensive Techniques in Binary Analysis. IEEE S&P, pp.138–157, 2016.

11. A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and
T. Reps. Directed Proof Generation for Machine Code. CAV, pp.288–305. 2010.

12. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. IEEE
ASE, pp.3–11, 2000.

13. V.A. Vu and M. Ogawa. Formal Semantics Extraction from Natural Language
Specifications for ARM. FM, pp.465–483, LNCS 11800, 2019.

14. Q.T. Trac, Generating a Dynamic Symbolic Execution Tool from MIPS Specifia-
tions. Master’s Thesis, School of Information Science, JAIST, September 2019.

