
Applying Clustering Techniques for Refining Large
Data Set: Case Study on Malware
Yoon Myet Thwe, Mizuhito Ogawa

Japan Advanced Institute of Science and Technology (JAIST)
Nomi, Japan

{yoonmyetthwe96,mizuhito}@jaist.ac.jp

Pham Ngoc Dung
Le Quy Don Technical University

Ha Noi, Viet Nam
phamdunghc1@gmail.com

Abstract—Malware databases have been unintentionally col-
lecting garbage (incomplete malware) together with malware
through the Internet. This paper focuses on finding garbage
(incomplete malware) from large malware datasets using binary
pattern matching and speed up the matching by using nested
clustering as a preprocessing. To verify the effectiveness of our
method, we conduct experiments on various malware datasets.
The results show that our method works efficiently while main-
taining high accuracy.

Index Terms—binary pattern matching, nested clustering,
malware, incomplete malware

I. INTRODUCTION

Malware, also known as malicious software represents one
of the most harmful programs that threaten the individuals’ pri-
vacy and computer’s security. Surfing the internet, the number
of new malicious software has increased exponentially making
cybersecurity a target for spreading these threats. Malware in-
fections are among the most frequently encountered threats in
computer security and it has also been increasing periodically.
With the successive evolution, the modern malware created
with obfuscation techniques becomes a great challenge for
antivirus software vendors and malware researchers. Malware
analysts seek for the malware samples to inspect the malicious
behaviors and threat techniques and try to develop defenses
against malware attacks. For the same purpose, many malware
databases are collecting the new malware samples periodically
and share the samples with the malware analysts to aid in their
research.

While collecting malware files through the network, un-
expected interruptions like network failures may cut out the
downloading process of a malware sample, resulting as an
incomplete file as a prefix of the other. We call it a garbage,
which would lead to incorrect bias when applying statistical
analyses. For instance, the comparison of three deep learning
approaches is performed on IoT malware dataset of 15,000
samples [1], in which one-third of it is garbage. Typical
malware indexing is made by MD5, i.e, the MD5 hash function
iteratively computes the hash value of a binary file from the
top to the end and a proper prefix looks like a totally different
file.

Since the proportions of collected garbage files are not
small enough to be negligible, we try to filter the garbage
from the malware samples. This research aimed to implement

the method for refining the data set by detecting garbage
among the mixture of malware with garbage files. We define
each garbage is a proper prefix of a complete malware and
checking a pair is an easy binary pattern matching. However,
if target data sets become huge, the number of combinations to
compare grows in a quadratic manner. Instead, we investigate
an application of clustering techniques as a preprocessing.
Then, each data set is decomposed into a certain number
of clusters consisting of similar binary codes, and the binary
pattern matching of pairs of malware is limited to each cluster.

Sometimes clustering result in a quite imbalanced decom-
position and to obtain more balanced clusters, we introduce
the nested clustering method. The main contributions of this
research can be summarized as follows:

• Comparing the different clustering algorithms to find the
most suitable one for clustering malware binary files.

• Grouping the data set into relevant small clusters using
nested k-means clustering algorithm.

• Combing binary pattern matching together with quick sort
algorithm to detect garbage from each cluster simultane-
ously.

• Comparing the nested k-means clustering algorithm with
the ordinary binary pattern matching to evaluate the
efficiency of nest clustering.

II. GARBAGE DETECTION

Pattern matching is a conventional and existing problem in
the field of computer science. It is one of the most basic
mechanisms that supports various programming languages.
Various real-world applications make use of pattern matching
algorithm as a key role in their tasks. The patterns are
generally in the shape of either a sequence or tree structure.
For the sequence patterns, string matching involves as a one-
dimensional pattern matching.

Typical pattern matching of binary strings is checking and
locating the occurrence of one pattern, g built over a binary
alphabet in another larger binary string, m, in which each
character in both g and m is represented by a single bit. Unlike
pattern recognition, the match has to be exactly the same in
pattern matching.



A. Binary Pattern Matching

In case of searching garbage from malware data set, count-
ing the occurrence of g inside m is not necessary as the garbage
file is just an incomplete file or prefix part of a malware file.
Therefore, we just need to compare g and m, each bit by
bit. Let g has a shorter length by bit then m. Then, matching
procedure starts from comparing the first bit of each binary
string and continue the matching process till the last bit of the
g matched with the current bit, but not the last bit of the m. If
g has the exact same bits as m, g is decided as a garbage file.
But if the current bit of each file does not match with each
other anymore while comparing process, we assume that both
of them are not garbage files.

Fig. 1: A garbage comparison with relative malware

Algorithm 1 describes the workflow of pattern matching
procedure for binary files. The algorithm takes binary files
as input and sets of malware files and garbage files. Finding
garbage from binary files consists of two main steps. First, the
input data set is sorted in descending order. Rather than pattern
matching the random binary files, making the files in order
and comparing them later help in accelerating the matching
performance.

The binary files are sorted using the quicksort algorithm,
whose worst-time complexity is O(n2) but average-case com-
plexity is O(n log n). Besides quick sort, we also tried
the merge sort algorithm with worst-case complexity of
O(n log n). As the innermost loop of the quick sort algorithm
is simpler, it can also get about 2 to 3 times faster than
the merge sort. Moreover, quicksort does not use additional
storage space to perform sorting while merge sort requires
a temporary array to merge the final sorted arrays. More
importantly, sorting binary files with quick sort practically
faster than with merge sort. These reasons drive the decision
to use quicksort in sorting the data set before the matching
process. Binary pattern matching takes place as a second step.
Since the string pattern is just the binary alphabet, we use
exclusive or (xor) binary operation for comparing each bit of
two files. According to the xor logical rules, if any of the
resulting bits evaluates as 1, matching process stops and none
of the files are assumed as garbage. If there is no resulting
bit as 1 till the end of the shorter file, we marked that shorter
file as garbage. The algorithm for matching two binary files

is described in Algorithm 2.

Algorithm 1: The algorithm for finding garbage from
malware data set
Input : S - Binary data set
Output: M – Malware data set, G – Garbage data set
Q← QuickSort(S); #Q[i] ≥ Q[j] ∀i < j
temp← S[0];
M ← [temp];
G← [];
for i← 1 to length(Q)− 1 do

res←Matching(Q[i], temp);
if res is − 1 then

G.append(Q[i]);
continue;

else
M.append(Q[i]);
temp← Q[i];

end
end
return M,G;

Algorithm 2: The algorithm for comparing two binary
files
Input : b,b’ – binary files
Output: The result of matching
buf1 ← bytearray(b.read());
buf2 ← bytearray(b′.read());
min length← minlength(buf1), length(buf2);
for i← 0 to min length do

if buf1[i] xor buf2[i] > 0 then
break;

end
end
if i < min length then

return 0;
else if i < length(buf1) then

return 1;
else

return −1;
end

B. Malware Database

For practical malware analysis, there are some sources that
freely provide malware samples. In this research, we collect
the data from VirusShare.com website1, a malware repository
collecting, indexing, and freely sharing samples of malware to
analysts, researchers, and the information security community.
We collect 30 malware data sets from Virusshare, in which
some of them contain 131,072 samples and some have 65536
samples in each. To evaluate the scalability for the algorithms,
we enlarge the data sets by making the combinations of two
to five collected data sets.

1https://virusshare.com/

https://virusshare.com/


For this research, 55,763 IoT malware samples are supplied
by Yokohama National University, which are collected using
IoTPOT [2].

C. Garbage Rate

First, we naively tried the binary pattern matching on each
collected malware data set to see the exact garbage rate of each
set. TABLE I shows the average execution time and average
garbage rate percentage of malware data sets with the different
number of files inside. The entire result can be checked on Jaist
webpages 23.

In VirusShare malware sets, the average percentage of
garbage rate of each is around 4%, ranging from 1% to 8%.
Execution time varies from one data set to another depending
on the size of the data set. IoT malware data set contains a
significant amount of garbage in it, which is more than 40%
of the data set. From TABLE I, we can see that the percentage
of garbage composition increases with the number of samples
of data set. However, it is tedious and time-consuming to
find garbage from large data set only with the binary pattern
matching algorithm. To be able to handle the data sets with
the enormous number of samples, we intend to speed up the
matching process with higher efficiency.

TABLE I: Average number of garbage, garbage rate and
execution time of different datasets

No. of File Avg. Size Avg. Time Avg. No. of
Garbage

Avg. Garbage
Rate

55,763 (IoT) 6.2 GB 1.17 hrs 23,056 41.3%
131,072 40 GB 2.75 hrs 3,670 2.8%
262,144 88 GB 9.50 hrs 6,554 2.5%
393,216 146 GB 15.75 hrs 15,728 4.0%
524,288 191 GB 18.45 hrs 25,165 4.8%
655,360 199 GB 20.00 hrs 35,146 5.4%

III. CLUSTERING AS PREPROCESSING
Instead of comparison on all pairs in a dataset, we try

to split the huge data set into groups of similar samples. In
this section, we make a comparison among five unsupervised
clustering methods: k-means, hierarchical clustering, density-
based spatial clustering (DBSCAN), spectral clustering and
balanced iterative reducing and clustering using Hierarchies
(Birch).

Aiming for this research, the required abilities of the clus-
tering algorithms to be able to handle large are the scalability,
execution time and performance (how efficiently the algorithm
can make partitions over the data set). All of the algorithms
have limitations due to some specific conditions of data or
the parameter specifications of the algorithm. Theoretically, it
is difficult to assume which algorithm is better than which
algorithm or which one is the best of all. Therefore, we make
practical experiments over the malware database to find out
the most suitable clustering algorithm for our research.

Rather than just experimenting their clustering performance
of these five algorithms, we combine each algorithm with

2http://www.jaist.ac.jp/∼mizuhito/tools.html
3http://www.jaist.ac.jp/∼s1710443/results.html

binary pattern matching algorithm, so that overall performance
can be assessed. The accuracy will be evaluated by comparing
the final results (number of garbage) with the result get by
using only binary pattern matching.

A. Experiments on Malware

For the first experiment, we set the number of clusters as
30 for the algorithms (k-means, agglomerative hierarchical
clustering, spectral clustering, and birch) which required pre-
defined cluster value. We fixed the feature size as 512 for each
binary file to feed as input to the clustering model. For other
parameters, we mostly used the default value selected by the
Scikit-learn libraries for clustering algorithms.

To verify the performance of the combination of clustering
algorithms and binary pattern matching algorithm, we conduct
the experiments on ten data sets among the downloaded
malware data sets from Virusshare malware database, having
either 65536 or 131072 samples in each. Accuracy is simply
computed based on the total amount of garbage found by using
binary pattern matching algorithm only.

Accuracy =
No. of garbage found by (Clustering + BPM)

No. of garbage found by BPM

The results of executing clustering algorithms together with
binary pattern matching are expressed in TABLE II and
TABLE III. All experiments are performed on Ubuntu 18.4
installation powered by an Intel i7-4770 K Core(TM) 3.50
GHz CPU and 32GB of RAM.

B. Result

According to the results from TABLE II, hierarchical
clustering and spectral clustering take the longest time for
execution. The other algorithms got the similar execution time.
Regarding the accuracy comparison, spectral clustering has
the lowest accuracy. spectral clustering mostly creates the data
clusters with unbalanced files. Some clusters contain more than
half of the total files of data set while others only contain very
few files. This clustering behavior might probably decrease the
accuracy of the algorithm.

The performance comparison of the algorithms over bigger
dataset is presented in TABLE III. Birch cannot handle the data
set with 131072 files. Since it uses all available memory space,
memory error occurs during processing the algorithm. We tried
with higher threshold values but it can still not cluster the data
set. Spectral clustering has the best accuracy among all but it
also takes too much time for execution. Although DBSCAN
is as fast as k-means, its accuracy is the lowest while other
algorithms get nearly 100%. Although the resulting clusters of
every algorithm take similar time for the matching process, the
clustering time varies depending on each algorithm. Among
them, k-means with linear time complexity takes the shortest
time for clustering. The results from both tables show that k-
means is the fastest algorithm with great accuracy. Because of
these facts, we choose the k-means algorithm for clustering
process for this research.

http://www.jaist.ac.jp/~mizuhito/tools.html
http://www.jaist.ac.jp/~s1710443/results.html


TABLE II: Comparison of different clustering algorithms in
terms of execution time and accuracy (65,536 files)

Algorithm (+ BPM) Avg. Clustering
Time

Avg. Matching
Time

Avg.
Accuracy

K-means 2 min 10 min 100%
Birch 2 min 10 min 100%
Hierarchical Clustering 25 min 13 min 100%
DBSCAN 18 min 9 min 80.6%
Spectral Clustering 2 hr 10 min 100%

TABLE III: Comparison of different clustering algorithms in
terms of execution time and accuracy (131,072 files)

Algorithm (+ BPM) Avg. Clustering
Time

Avg. Matching
Time

Avg.
Accuracy

K-means 0.5 hr 1 hr 99.919%
Birch - - -
Hierarchical Clustering 1 hr 1.5 hr 99.886%
DBSCAN 1 hr 1 hr 56.728%
Spectral Clustering 5.5 hr 1.5 hr 100%

IV. PARAMETER SPECIFICATION FOR K-MEANS

The k-means clustering is one of the simplest and frequently
used unsupervised learning algorithms, especially in data min-
ing and statistics. In this research, we specify two parameters
for the k-means algorithm, which includes:
• Number of clusters, k: being a partitioning algorithm, k-

means required the fixed number of clusters to form k
groups of data points.

• Input data size: as k-means required the fixed size of input
data to compare the similarity (distance difference), we
limit the data size of malware binary files

Apart from the above parameters, we make a choice of
distance matrix to be used in comparing similarity among the
data points. Although there are many other metrics to find the
closest distance, we apply commonly used Euclidean distance.
As we work on binary data, the Hamming distance would be
an alternative choice for finding the distance.

The k-means uses an iterative refinement method to produce
its final clustering based on the number of clusters defined by
the user and the data set. Initially, k-means randomly chooses
k numbers as the mean values of k clusters, called centroids,
and find the nearest data points of the chosen centroids to
form k clusters by measuring the distances between each
centroid and the data points using the distance matrix. It
then iteratively recalculates the new centroids for each cluster
until the algorithm converges to one optimum value. K-means
clustering would be suited with the numerical data with a low
dimensionality because numerical data is used to compute the
mean value. The type of data best suited for k-means clustering
would be numerical data with a relatively lower number of
dimensions.

A. Number of Clusters, k

The number of clusters should be determined appropriately
as they also affect the clustering result. There is no standard
answer for how correct is the chosen number of clusters.
Different shaped and sized data sets have different appropriate

Fig. 2: The elbow method showing the optimal k

k value. To select the optimal k, we apply the elbow method.
It can be said to be the most well-known method which gives
a visual measure to find the best pick for the value of k.

Elbow method measures the sum of squared errors for
different numbers of clusters. The sum of squared errors means
the sum of the squared distance of each data points from its
centroid of a cluster. Just like k-means, we use Euclidean
distance as a distance metric. After plotting the sum of squares
at each number of clusters matched with the respective number
of clusters, we can see a point with a slope from steep to
shallow, decreasing in error sum. That point is an elbow point
and it determines the optimal number of clusters [3].

In Fig. 2, the bend indicates that the bigger number of
clusters beyond the third have small decreases in error sum,
pointing that the optimal number of clusters is 30. Therefore,
we chose value 30 for the number of clusters for the clustering
process in our further experiments.

B. Input Data Size

In the process of matching the binary files, the algorithm
requires the whole data information of binary files to compare
one file with another. However, if we feed the whole malware
files to the clustering algorithm, it will make the processing
time extremely long which is not good for dealing with huge
data set. Moreover, more data feature does not always tend to
better accuracy, it also makes the model confuse in partitioning
the data set. Therefore, we find out what data size for each
malware file would be enough for k-means clustering. We
tested on IoT malware dataset with the data size of 512, 1024,
2048, and 4096 setting the number of clusters, k from 10 to
100. These data sizes are compared with each other in terms
of accuracy and execution time. Then, the comparison of how
these two data size affect the clustering performance is carried
out to select the better one.

In Fig. 3, it can be seen that the execution time decrease
gradually with the increase in cluster size for 512 data size.
There is also an apparent decrease in execution time at the



Fig. 3: Comparison of data sizes 512 and 4096 in terms of
execution time

Fig. 4: Comparison of data sizes 512 and 4096 in terms of
accuracy

cluster value 30. In 4096 data size, the decreasing execution
time is unstable and every clustering takes more time than the
data size of 512. Here, we focus on the two sizes: 512 and
4096 to make the difference more clear, as the differences
among 512, 1024, 2048, and 4096 data sizes grow slightly
with the increment of data size.

To get a better choice of the input data size, we also compare
the accuracy of how precisely the algorithm makes clusters
with each data size. First, we make clustering using different
data sizes and then find the garbage file with binary pattern
matching in each cluster. Again, we take the result of binary
pattern matching itself to compute the accuracy of garbage
finding after clustering. In Fig. 4, the accuracy with 4096 is
not as good as 512 data size, even though the results are closed
to 100%. According to the results of comparing different input
sizes, we decide to use 512, which gives the highest accuracy
with the lowest execution time, as an input size of k-means
clustering algorithm.

V. NESTED CLUSTERING

We speed up the binary pattern matching algorithm by
initially sorting the data set using quick-sort before matching
the binary files. As for the clustering process, we modify
the ordinary k-means algorithm by iterative clustering. We
have experienced that some algorithms like DBSCAN, make
the unbalanced clusters, that is the numbers of data points
in a cluster differ a lot. Large clusters take time in finding

garbage. Although k-means works better in clustering than
other algorithms, there are some clusters, even ten times larger
than the others. To reduce such kind of unbalanced clusters,
we develop the nested clustering algorithm.

A. Nested Clustering Algorithm

For nested k-means algorithm, we need to specify two
parameters: the number of clusters (k) and the fixed limit of
files in each cluster (f ).

The algorithm includes three parts.
1) First, the data set is separated into k clusters once with

k-means algorithm.
2) If there is a cluster that has more than f , we execute

k-means again with the new number of clusters. New k
will be defined by dividing the total number of files in
the current cluster by f . The k-means clustering iterates
until the number of files in cluster doesn’t exceed the
limit f . Note that, there may also be some clusters that
cannot be partitioned anymore despite the second trial
of k-means. In that case, we avoid the iteration on these
clusters.

3) Finally, binary pattern matching is applied on each
resulting clusters.
The clustering and garbage filtering procedures are
shown in Algorithm 3.

B. Garbage Detection using Nested Clustering

As nested k-means is just an extended algorithm of the
ordinary k-means by using it more than for iterative clustering,
we stick with previously observed parameter specifications.
TABLE IV present the performance comparison among binary
pattern matching and pattern matching after clustering with
nested k-means. Apparently, nested k-means works faster and
still maintains the high accuracy of found garbage. Clustering
cannot be guaranteed that every garbage will be in the same
cluster with its related malware file. Therefore, some garbage
files may fail to be detected. Experimental results show that
the nested k-means algorithm accurately clusters the malware
files, which speeds up the pattern matching process two to
three times faster while maintaining the high accuracy.

TABLE IV: Performance comparison in terms of time and
accuracy

No. of File BPM Nested K-means + BPM

Avg. Time Avg. Time Avg. No. of
Missed Garbage Avg. Acc.

55,763 (IoT) 1.17 hrs 0.75 hr 0 100%
131,072 2.75 hrs 1.50 hrs 2 99.812%
262,144 9.50 hrs 3.75 hrs 3 99.392%
393,216 15.75 hrs 6.75 hrs 6 99.963%
524,288 18.45 hrs 8.30 hrs 10 99.962%
655,360 20.00 hrs 12.45 hrs 14 99.960%

VI. RELATED WORK

In the literature, there are some nested clustering algorithms
that have been proposed for various analyses. The approach
proposed by Xia et al. [4]. classifies the freeway operating



Algorithm 3: Nested k-means algorithm for finding
garbage from malware data set

Input : S - Binary data set, k – number of clusters, f –
maximum number of files

Output: M – Malware data set, G – Garbage data set
C ← Kmeans(S, k);#C − list of clusters
i← 0;
while i < len(C) do

if len(C[i]) > f then
k′ ← (len(K[i]/f) + 1);#k′ −
new number of clusters

C ′ ← (S, k′);;
j = 0;
while i < len(C ′) do

if len(C ′[i]) = 0 then
del(C ′[i]);
j ← j − 1;

end
i← i+ 1;

end
if len(C ′) > 1 then

C.extend(C ′);
del(C[i]);
i← i− 1;

end
i← i+ 1;

end
end
for i← 0 to length(C)− 1 do

M,G← parallel bpm(C[i]);
end
return M,G;

condition into different flow phases. They apply the Bayesian
Information Criterion (BIC) to determine the optimum number
of clusters and use an agglomerative clustering algorithm.
After grouping the traffic data into a specific number of
clusters, the clustering process is repeated on all sub-clusters
until the dissimilarity between the data points is not significant
enough for further clustering. This technique is dedicated to
performing effectively for data mining in a broad range of
roadways analysis.

Li et al. [5] tried to detect nested clusters (clusters composed
of sub-clusters) or clusters of multi-density (clusters formed
in different densities) in a data set such as a geographical data
set. This research discovers the hierarchical-structured clusters
of nested data set. Agglomerative k-means is embedded in the
generation of cluster tree at a different level of clustering.
Then, cluster validation techniques are used to evaluate clus-
ters generated at each level. Based on the evaluated result,
the agglomerative k-means is iterated for the clusters with the
nested structure or different densities.

These approaches perform nested clustering based on the
cluster evaluation or the optimum number of clusters. As

for our nesting k-means clustering, we try to reduce the
unbalanced sub-clusters by iterative clustering, not depending
on the number of clusters.

Furthermore, nested clustering approach is used to aid
in the decision-making process of autonomous learning [6].
Instead of building a decision tree, this approach looks for
a hierarchical structure of rules of execution. It applies the
algorithm in a nested manner and a solution is driven when
the algorithm converges.

VII. CONCLUSION

This research presents our study on refining large malware
data set, by separating the garbage (incomplete binary files)
from the large data set. The faster the algorithm, the better in
dealing with the large data sets in our case. Thus, we made the
clustering process nested to reduce unbalanced clusters and use
the advantage of quicksort to accelerate the matching process.
By using the combination of the pattern matching algorithm
and iterative clustering with simple machine learning method,
we obtain the optimal results. Based on our experimental
results, our approach detects garbage files within a short
time with high accuracy. We successfully found out almost
every unnecessary garbage from the collected data sets from
Virusshare and IoT malware data set.

REFERENCES

[1] K. D. T. Nguyen, T. M. Tuan, S. H. Le, A. P. Viet, M. Ogawa and N. L.
Minh. Comparison of Three Deep Learning-based Approaches for IoT
Malware Detection, 2018 10th International Conference on Knowledge
and Systems Engineering (KSE), pp. 382-388, Ho Chi Minh City, (2018)

[2] Yin Minn Pa Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama
and C. Rossow. IoTPOT: A Novel Honeypot for Revealing CurrentIoT
Threats, Journal of Information Processing, vol.24, no.3, pp. 522-533,
(2016)

[3] K. Mahendru. How to Determine the Optimal K for K-Means,
(2019, Jun 17), https://medium.com/analytics-vidhya/how-to-determine-
the-optimal-k-for-k-means-708505d204eb

[4] J. Xia and M. Chen. A Nested Clustering Technique for Freeway Oper-
ating Condition Classification, Computer-aided Civil and Infrastructure
Engineering, vol.22, no.6, pp.430-437 (2007)

[5] Xutao Li,Yunming Ye,Mark Junjie Li and Michael K. Ng. On Cluster
Tree for Nested and Multi-Density Data Clustering, Pattern Recognition,
vol.43, no.9, pp.3130-3143 (2010)

[6] James S. Albus and Alberto Lacaze and Alex Meystel. Algorithm of
Nested Clustering for Unsupervised Learning, Proceedings of Tenth
International Symposium on Intelligent Control, pp.197-202 (1995)


	INTRODUCTION
	GARBAGE DETECTION
	Binary Pattern Matching
	Malware Database
	Garbage Rate

	CLUSTERING AS PREPROCESSING
	Experiments on Malware
	Result

	PARAMETER SPECIFICATION FOR K-MEANS
	Number of Clusters, k
	Input Data Size

	NESTED CLUSTERING
	Nested Clustering Algorithm
	Garbage Detection using Nested Clustering

	RELATED WORK
	CONCLUSION
	References

