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Abstract. This paper presents the raSAT SMT solver for polynomial
constraints, which aims to handle them over both reals and integers with
simple unified methodologies: (1) raSAT loop for inequalities, which
extends the interval constraint propagation with testing to accelerate
SAT detection, and (2) a non-constructive reasoning for equations over
reals, based on the generalized intermediate value theorem.

1 Introduction

Polynomial constraint solving is to find an instance that satisfies a given sys-
tem of polynomial inequalities/equations. Various techniques for solving such
a constraint are implemented in SMT solvers, e.g., Cylindrical algebraic
decomposition (RAHD [19, 18], Z3 4.3 [13]), Virtual substitution (SMT-
RAT [5], Z3 3.1), Interval constraint propagation [2] (iSAT3 [7], dReal [10,
9], RSolver [20], RealPaver [11]), and CORDIC (CORD [8]). For integers, Bit-
blasting (MiniSmt [23]) and Linearization (Barcelogic [3]) can be used.

This paper presents the raSAT SMT solver3 for polynomial constraints over
reals. For inequalities, it applies a simple iterative approximation refinement,
raSAT loop, which extends the interval constraint propagation (ICP) with test-
ing to boost SAT detection (Section 3). For equations, a non-constructive rea-
soning based on the generalized intermediate value theorem [17] is applied (Sec-
tion 4). Implementation with soundness guarantee and optimizing strategies is
evaluated by experiments (Section 5).

Although raSAT has been developed for constraints over reals, constraints
over integers are easily adopted, e.g., by stopping interval decompositions when
the width becomes smaller than 1, and generating integer-valued test instances.

raSAT has participated SMT Competition 2015, in two categories of main
tracks, QF NRA and QF NIA. The results, in which Z3 4.4 is a reference, are,

– 3rd in QF NRA, raSAT solved 7952 over 10184 (where Z3 4.4, Yices-NL
and SMT-RAT solved 10000, 9854 and 8759, respectively.)

3 Available at http://www.jaist.ac.jp/~s1310007/raSAT/index.html



2 Vu Xuan Tung, To Van Khanh, and Mizuhito Ogawa

– 2nd in QF NIA, raSAT solved 7917 over 8475 (where Z3 4.4 and AProVE
solved 8459 and 8270, respectively).

A preliminary version of raSAT was orally presented at SMT workshop 2014 [22].

2 SMT solver for polynomial constraints

Definition 1. A polynomial constraint ψ is defined as follow

ψ ::= g(x1, ..., xn) � 0 | ψ ∧ ψ | ψ ∨ ψ | ¬ψ (1)

where (� ∈ {>,≥, <,≤,=, 6=}) and g(x1, · · · , xn) is a polynomial with integer
coefficients over variables x1, · · · , xn. We call g(x1, · · · , xn) � 0 an atomic poly-
nomial constraint (APC). When x1, · · · , xn are clear from the context, we denote
g for g(x1, · · · , xn), and var(g) for the set of variables appearing in g.

An SMT solver decides whether ψ is satisfiable (SAT), i.e., whether there
exists an assignment of reals (resp. integers) to variables that makes ψ true. We
organize the raSAT SMT solver in a very lazy approach for an arithmetic theory
T over reals (resp. integers). As a preprocessing, raSAT converts a polynomial
constraint into conjunctive normal form (CNF) by Tseitin conversion [21]. In
addition, the APCs are preprocessed so that the constraint becomes a CNF
containing only > and =. Then, first, each APC is assigned a Boolean value
(true or false) by an SAT solver such that ψ is evaluated to true. Second, the
boolean assignment is checked for consistency against the theory T .

raSAT is one of the interval constraint propagation (ICP) based SMT solvers,
as well as iSAT [7] and dReal [10]. In ICP [2], interval arithmetic (IA) [16] plays
a central role. raSAT implements Classical Interval (CI) [16] and four kinds of
Affine Intervals (AI) [4, 14]. We fix their notations. Let R be the set of real
numbers and R∞ = R∪{−∞,∞}. We naturally extend the standard arithmetic
operations on R to those on R∞ as in [16]. The set of all intervals is denoted
by I = {[l, h] | l ≤ h ∈ R∞}. A box for a sequence of variables x1, · · · , xn is
B = I1 × · · · × In for I1, · · · , In ∈ I.

A conjunction ϕ of APCs is IA-valid (resp. IA-UNSAT ) in a box B if ϕ is
evaluated to true (resp. false) by IA over B. In this case, B is called a IA-valid
(resp. IA-UNSAT ) box with respect to ϕ. Since IA is an over approximation
of arithmetical results, IA-valid (resp. IA-UNSAT) in B implies valid (resp.
UNSAT) in B. If neither of them holds, we call IA-SAT (as shown below),
which cannot decide the satisfiability at the moment. Note that if ϕ is IA-valid
in B, ϕ is SAT.
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3 ICP and raSAT loop for inequality

Since ICP is based on IA, which is an over-approximation, it can be applied to
decide SAT/UNSAT of inequalities and UNSAT of equalities, but not for SAT
of equalities. We first explain ICP for (a conjunction of) inequalities and then
extend it as a raSAT loop for SAT detection acceleration. Handling the presence
of equations will be shown in Section 4.

Starting with a box B ((−∞,∞)n by default), ICP [2] tries to detect SAT
of ϕ in B by iteratively contracting boxes (by backward propagation of inter-
val constraints) and decomposing boxes (when neither IA-valid nor IA-UNSAT
detected) until either an IA-valid box is found or no boxes remain to explore.

The raSAT loop [14] intends to accelerate ICP for SAT detection by testing.
Figure below illustrates the raSAT loop, in which “Test-SAT” in B means that
a satisfiable instance is found by testing in B, and “Test-UNSAT”, otherwise.

Limitation of ICP and raSAT loop for inequality ICP concludes SAT
when it identifies a valid box by IA. Although the number of boxes may be
exponential, if I1, · · · , In are bounded, ICP always detects SAT of the inequalities
ψ as Fig.(a) and detects UNSAT of ψ if not touching as illustrated in Fig.(b,c).
If I1, · · · , In are not bounded, adding to touching cases, a typical case of failure
in UNSAT detection is a converging case as Fig.(d).

(a) SAT detection (b) UNSAT detection (c) Touching case (d) Convergent case

4 Generalized intermediate value theorem for equations

Handle equations in raSAT is illustrated by the intermediate value theorem
(IVT) for a single equation g(x) = 0. If we find t1, t2 with g(t1) > 0 and g(t2) < 0,
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g = 0 holds in between. For multi-variant equations, we apply a custom version
(Theorem 1) of the generalized IVT [17, Theorem 5.3.7].

4.1 Generalized intermediate value theorem

Let B = [l1, h1]× · · · [ln, hn] be a box over V = {x1, · · · , xn}, and let V ′ =
{xi1 , · · · , xik} be a subset of V . We denote B↓V ′ = {(r1, · · · , rn) ∈ B | ri =
li for i = i1, ..., ik} and B↑V ′ = {(r1, · · · , rn) ∈ B | ri = hi for i = i1, ..., ik}.
Given an assignment θ : V ′ 7→ R, which assigns a real value to each variable
in V ′, B|θ = {(r1, · · · , rn) ∈ B | ri = θ(xi) if xi ∈ V ′}.

Definition 2. Let
m∧
j=1

gj = 0 be a conjunction of equations over V . A sequence

(V1, · · · , Vm) is a check basis of (g1, · · · , gm) in B, if, for each j, j′ ≤ m,

1. ∅ 6= Vj ⊆ var(gj),
2. Vj ∩ Vj′ = ∅ if j 6= j′, and
3. either gj < 0 on B↑Vj

and gj > 0 on B↓Vj
, or gj < 0 on B↑Vj

and gj > 0
on B↓Vj

.

Theorem 1. For a conjunction of polynomial inequalities/equations

ϕ =

m∧
j=1

gj > 0 ∧
m′∧

j=m+1

gj = 0

and B = [l1, h1]× · · · [ln, hn], assume that the followings hold.

1. For ϕ1 ∧ϕ2 =
m∧
j=1

gj > 0, ϕ1 is IA-valid in B and ϕ2 is Test-SAT in B with

an assignment θϕ2 : Vϕ2 7→ R such that θϕ2(xi) ∈ [li, hi] for each xi ∈ Vϕ2 ,
where Vϕ2

is the set of variables in ϕ2.
2. A check basis (Vm+1, · · · , Vm′) over V \ Vϕ2 of (gm+1, · · · , gm′) in B|θϕ2

exists.

Then, ϕ has a SAT instance in B.

Example 1 illustrates Theorem 1 for V = {x, y} with m = 0 and m′ = n = 2.

Example 1. Given two equations g1(x, y) = 0 and
g2(x, y) = 0. Assuming that there exists a box
B = [c1, d1]× [c2, d2] such that

– g1(c1, y) < 0 for y ∈ [c2, d2], g1(d1, y) > 0 for
y ∈ [c2, d2], and

– g2(x, c2) < 0 for x ∈ [c1, d1], g2(x, d2) > 0 for
x ∈ [c1, d1].

Thus, g1(x, y) = 0 and g2(x, y) = 0 share a root in B.
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Limitation of the generalized IVT for equality
There are two limitations on applying Theorem 1.

– The number of variables (dimensions) must be no
less than the number of equations.

– Trajectories of equations must be crossing. For in-
stance, it may fail to show SAT if two equation
g1 = 0, g2 = 0 are touching, as in the right figure.

4.2 raSAT loop with generalized IVT

Theorem 1 is added into the raSAT loop as in Figure below. We borrow nota-
tions ϕ, ϕ1, and ϕ2 from Theorem 1. The label “>: IA-valid” means that the
conjunction of inequalities appearing in the input is IA-valid. Similar for “=: IA-
SAT” and “>: Test-SAT”. The label “Test-SAT over Vϕ2

⊆ V ” means that a
test instance to conclude Test-SAT of ϕ2 is generated on Vϕ2

and the generalized
IVT is applied over V \Vϕ2 in the box B|θϕ2

(described by “IVT over V \Vϕ2”).

Example 2. Suppose ϕ is g1 > 0∧g2 = 0∧g3 = 0 where g1 = cd−d, g2 = a−c−2,
and g3 = bc−ad−2. The initial box storage contains only B = [−2, 3.5]×[−5, 0]×
[0, 1.5]× [−5,−0.5] as the initial range of (a, b, c, d).
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Figure above shows the flow of the raSAT loop with IVT, where a label [...], B
is for a pair of a box storage and a currently exploring box B, and θ for a test
instance. The backward interval constraint propagation reduces B, B1, and B3

to B′, B′1, and B′3, respectively.

5 Implementation and Experiments

5.1 Implementation of raSAT

In raSAT implementation, the SAT solver miniSAT [6] manages the Boolean
part of the DPLL procedure. There are several notable features of raSAT.

Soundness raSAT uses the floating point arithmetic, and round-off errors
may violate the soundness. To get rid of such pitfalls, raSAT integrates an IA
library [1] which applies outward rounding [12] of intervals. For the soundness
of Test-SAT, iRRAM4, which guarantees the round-off error bounds, confirms
that a SAT instance found by the floating point arithmetic is indeed SAT.

Affine interval Various IAs, including Classical Interval (CI) [16] and 4 vari-
ations, AF1, AF2, EAI,CAI, of Affine Intervals (AI) [4, 15, 14], are implemented
as a part of raSAT. At the moment, AF2 and CI are used by default, and the
choice option will be prepared in the future releases.

AI introduces noise symbols ε’s, which are interpreted as values in [−1, 1].
Variations of AIs come from how to (over) approximate the multiplication of
noise symbols in a linear formula. Although the precision is incomparable, AI
partially preserve the dependency among values, which is lost in CI. For instance,
let x ∈ [2, 4] = 3 + ε. Then, x− x is evaluated to [−2, 2] by CI, but [0, 0] by AI.
The example below shows the value dependency. Let h(x, y) = x3 − 2xy for x =
[0, 2] = 1 + ε1 and y = [1, 3] = 2 + ε2. CI estimates h(x, y) as [−12, 8], and AF2

does as −3−ε1−2ε2 +3ε+ +3ε± (evaluated to [−9, 6]). Such information is used
to design SAT-directed heuristics for choosing a variable at a box decomposition.

SAT-directed heuristics The variable selection strategy is, (1) select the
least likely satisfiable APC with respect to SAT-likelihood, and (2) choose the
most likely influential variable in the APC with respect to the sensitivity.

Suppose AI estimates the range range(g,B) of a polynomial g in a box B as
[c1, d1]ε1 + · · ·+ [cn, dn]εn, which is evaluated by instantiating [−1, 1] to εi.

– The SAT-likelihood of an APC g > 0 is |range(g,B)∩ (0,∞)|/|range(g,B)|.
– The sensitivity of a variable xi in g > 0 is max(|ci|, |di|).

For instance, the SAT-likelihood of h(x, y) above is 0.4 = 6
9−(−6) by AF2 and

the sensitivity of x and y are 1 and 2 by AF2, respectively.
When selecting a box, raSAT adopts the largest SAT-likelihood, where the

SAT-likelihood of a box is the least SAT-likelihood among APCs on it. Thus, the
box storage in the raSAT loop with IVT is implemented as a priority queue.

4 Available at http://irram.uni-trier.de
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The effect of the heuristics is examined with 18 combinations of the least,
largest (with respect to measures), and random variable/box choices. Among
them, only the combination above shows visible differences from the random
choices, especially on SAT detection for quite large problems, such that it detects
11 SAT (including 5 problems marked “unknown”) in Zankl/Matrix2∼5, whereas
others detect at most 5 SAT (with at most 1 problem marked “unknown”).

5.2 Experiments

Comparison with other SMT solvers Our comparison has two views, (1)
ICP-based solvers, e.g., iSAT3 and dReal, and (2) other SMT-solvers, which
are superior than raSAT at the SMT competition 2015, e.g., Z3 4.4 and SMT-
RAT 2.05. After the competition, raSAT has been improved on the backward
interval constraint propagation [2]. They are compared on SMT-LIB benchmarks
2015-06-016 with timeout of 2500 seconds on an Intel Xeon E7-8837 2.66GHz
and 8GB RAM. Note that

– iSAT3 requires bounded intervals, and its bound of variables is set to
[−1000, 1000]. For other tools (including raSAT), it is kept (−∞,∞).

– dReal decides δ-SAT, instead of SAT, which allows δ-deviation on the eval-
uation of polynomials for some δ > 0. Note that δ-SAT does not imply SAT.
δ for dReal is set to its default value (0.001).

Table 1 shows the numbers of solved problems in each benchmark of the QF NRA
category in SMT-LIB. The “Time” row shows the cumulative running time of
successful cases. In the “Benchmark” column, the numbers of SAT/UNSAT prob-
lems are associated if already known. “*” means δ-SAT.

Unknown Problems in SMT-LIB In SMT-LIB benchmark, many prob-
lems are marked “unknown”. Among such unknown inequality problems, raSAT
solves 15 (5 SAT, 10 UNSAT), Z3 4.4 solves 36 (13 SAT, 23 UNSAT), and SMT-
RAT 2.0 solves 15 (3 SAT, 12 UNSAT). For problems with equations, raSAT
and SMT-RAT 2.0 solve 3 UNSAT problems, and Z3 4.4 solves 492 (276 SAT,
216 UNSAT). For large problems, UNSAT can be detected by finding a small
UNSAT core among APCs, whereas SAT detection requires to check all APCs.

For unknown problems, SAT results are easy to check. Although Z3 4.4
outperforms others, it is worth mentioning that raSAT also detects SAT on
several quite large problems in Zankl/Matrix-2∼5, which often have more than
50 variables (Meta-Tarski and Matrix-1 have mostly less than 10 and 30 vari-
ables, respectively). For instance, Z3 4.4 solely solves Matrix-3-7, 4-12, and 5-6
(which have 75, 200, and 258 variables), and raSAT solely solves Matrix-2-3, 2-
8, 3-5, 4-3, and 4-9 (which have 57, 17, 81, 139, and 193 variables). SMT-RAT
2.0 shows no new SAT detection in Zankl/Matrix-2∼5.

5 https://github.com/smtrat/smtrat/releases/download/v2.0/rat1 linux64.zip
6 http://smtlib.cs.uiowa.edu/benchmarks.shtml
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Benchmark (inequality only) raSAT iSAT3 dReal Z3 4.4 SMT-RAT

zankl (SAT ) 28 16 103∗ 54 15

zankl (UNSAT) 10 12 0 23 13

meti-Tarski (SAT)(3220) 2940 2774 3534∗ 3220 3055

meti-Tarski (UNSAT)(1526) 1138 1242 1172 1523 1298

hong (UNSAT)(20) 20 20 20 8 3

Total 4136 4064 1192 4828 4384

Time(s) 12363.34 1823.83 11145.23 64634.91 124823.17

Benchmark (with equations) raSAT iSAT3 dReal Z3 4.4 SMT-RAT

zankl (SAT )(11) 11 0 11∗ 11 11

zankl (UNSAT)(4) 4 4 4 4 4

meti-Tarski (SAT)(1805) 1313 1 1994∗ 1805 1767

meti-Tarski (UNSAT)(1162) 1011 1075 965 1162 1114

kissing (SAT)(42) 6 0 18∗ 36 7

kissing (UNSAT)(3) 0 0 1 0 0

hycomp (SAT) 0 0 317∗ 254 33

hycomp (UNSAT) 1931 2279 2130 2200 1410

LassoRanker (SAT) 0 16 0∗ 120 0

LassoRanker (UNSAT) 0 27 0 118 0

Total 4276 3750 3100 5710 4346

Time(s) 5978.58 4522.84 32376.47 124960.95 102940.90

Table 1: Comparison among SMT solvers on SMT-LIB benchmark (∗ = δ-SAT)

6 Conclusion

This paper presented an SMT solver raSAT for polynomial constraints over
reals using simple techniques, i.e., interval arithmetic and the generalized inter-
mediate value theorem. Among ICP based SMT solvers, iSAT3 requires bounded
intervals for inputs and SAT detection of equations is limited (e.g., a SAT in-
stance in integers). dReal handles only δ-SAT. raSAT pursues the theoretical
limitation of SAT/UNSAT detection based on ICP.

ICP-based techniques have essential limitations on completeness. These lim-
itations often appear with multiple roots and/or 0-dimensional ideals, and our
next step is to combine computer algebraic techniques as a last resort. For in-
stance, we observe during experiments that raSAT fails the touching cases with
generally a rapid convergence until a box cannot be decomposed further (e.g., a
box becomes smaller than the roundoff error limit). When such a box is detected,
we plan to apply an existing package of Gröbner basis.
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