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Abstract
Pushdown systems are well understood as abstract models of pro-
grams with (recursive) procedures. Reps et al. recently extended
pushdown systems into weighted pushdown systems, which serve
as a generalized framework for solving certain kinds of meet-over-
all-path problems in program analysis. In this paper, we extend
weighted pushdown systems to conditional weighted pushdown
systems, by further specifying conditions under which a pushdown
transition rule can be applied, and show that model checking prob-
lems on conditional weighted pushdown systems can be reduced to
those on weighted pushdown systems.

There are wider applications of conditional weighted pushdown
systems when analyzing programs with objected-oriented features,
for which weighted pushdown systems is not precise enough under
a direct application. As an example, we lift a stacking-based points-
to analysis for Java designed in the framework of weighted push-
down systems to a more precise counterpart in the framework of
conditional weighted pushdown systems. In addition to the funda-
mental context-sensitivity in terms of valid paths, the lifted points-
to analysis algorithm further enjoys context-sensitivity with respect
to objected-oriented features, including call graph construction,
heap abstraction, and heap access. These context-sensitive prop-
erties are shown to be crucial to the analysis precision in practice.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model Checking

General Terms Reliability, Verification

Keywords Weighted Pushdown Systems, Model Checking

1. Introduction
Pushdown systems (PDSs) [15] are well understood as abstract
models of programs with (recursive) procedures. By encoding pro-
grams as pushdown systems, procedure calls and returns are guar-
anteed to be correctly paired with one another, which is called valid
paths. A traditional context-sensitive program analysis is to com-
pute precise analysis results, which are only (or as much as pos-
sible) involved with valid paths. We call program analysis stack-
based if it is derived by an encoding of the program as pushdown
systems or its variants.
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The notion of context-sensitivity bears a similarity to inline ex-
pansion, as if method calls are replaced with the body of all the
callees. As such, the typical approach to obtain context-sensitivity
is cloning-based, by creating a separate copy of a procedure for
different calling contexts within a bounded call depth. It is well
understood that, the cloning-based approach has an inherit limit
on handling (recursive) procedure calls, and the common choice
is to sacrifice context-sensitivity inside recursive procedure calls
[6, 18], such as the well-known cloning-based points-to analysis for
Java [18]. However, empirical study on practiced Java benchmarks
shows that, more than one thousand of methods are typically con-
tained within recursive procedures [19]. Taking Java points-to anal-
ysis as an instance, approximating recursions potentially threatens
precision [8], and cloning-based points-to analysis cannot scale un-
der deep context cloning.

Reps et al. recently extend pushdown systems into weighted
pushdown systems (WPDSs), by associating a value with each
pushdown transition rule. In particular, it is shown that clas-
sic Meet-Over-All-Path (MOVP) problems of certain kinds can
be solved as model checking problems on weighted pushdown
systems. Therefore, weighted pushdown systems is expected to
serve as a generalized framework for yielding new algorithms of
context-sensitive program analysis that naturally enjoy the context-
sensitivity with respect to valid paths.

In this work, we extend weighted pushdown systems to con-
ditional weighted pushdown systems (CWPDSs), by further asso-
ciating each transition rule with a regular language that specifies
conditions under which the transition rule can be applied. Such an
extension of weighted pushdown systems is motivated by the find-
ing that, weighted pushdown systems is not precise enough when
analyzing objected-oriented programs like Java. We also show that
model checking problems on CWPDSs can be reduced to model
checking problems on WPDSs. Our solution is inspired by the ex-
tension of LTL model checking on pushdown systems with simple
valuation to a counterpart with regular valuation.

Conditional weighted pushdown systems have a wider applica-
tions than those that weighted pushdown systems can directly ap-
plicable, by allowing an investigation on the calling contexts – the
(dynamic) history of procedure calls – during the analysis. A scal-
able stacking-based points-to analysis for Java is proposed in the
framework of weighted pushdown systems [10], which is context-
sensitive in terms of valid paths. We lift this analysis to a more
precise counterpart in the framework of conditional weighted push-
down systems. The lifted analysis further enjoys context-sensitivity
regarding object-oriented features, such as call graph construction,
heap abstraction, and heap access. These context-sensitive proper-
ties are shown to be essential to the precision of points-to analysis
on large-scale programs [8, 16].

This paper makes the following contributions:



• We extend weighted pushdown systems to conditional weighted
pushdown systems, and present model checking algorithms on
it. Such an extension provides the ability of modelling wider
application scenarios for which weighted pushdown systems
are not directly applicable for enough precision.

• We present a stacking-based points-to analysis for Java, as a
practical application of conditional weighted pushdown sys-
tems. In addition to valid paths, the lifted analysis further enjoys
context-sensitivity with respect to heap abstraction, call graph
construction, and heap access.

In the remainder of the paper: Section 2 gives a brief review on
weighted pushdown systems and an application to stacking-based
points-to analysis for Java. Motivations for extending weighted
pushdown systems are discussed in Section 3, by illustrating oc-
casions on which program analysis by weighted pushdown sys-
tems is not precise enough. We present conditional weighted push-
down systems and model checking algorithms on it in Section 4.
A lifted stacking-based points-to analysis algorithm by conditional
weighted pushdown systems is presented in Section 5. Section 6
discusses related work and Section 7 concludes the paper.

2. Preliminaries
2.1 Weighted Pushdown Systems

DEFINITION 1. A pushdown system is a five-tuple P = (Q,Γ,∆, q0,
ω0), where Q is a finite set of states called control locations, Γ is a
finite stack alphabet, and ∆ ⊆ Q×Γ×Q×Γ∗ is a finite set of tran-
sition rules, and q0 ∈ Q and ω0 ∈ Γ∗ are the initial control loca-
tion and stack contents, respectively. A transition rule (p, γ, q, ω) ∈
∆ is written as 〈p, γ〉 ↪→ 〈q, ω〉. A configuration of P is a pair of
〈q, ω〉 for q ∈ Q and ω ∈ Γ∗. A computation relation ⇒ on config-
urations is defined such that 〈p, γω′〉 ⇒ 〈q, ωω′〉 for all ω′ ∈ Γ∗

if there exists a transition rule r : 〈p, γ〉 ↪→ 〈q, ω〉 ∈ ∆, written
as 〈p, γω′〉 r⇒ 〈q, ωω′〉. The reflective and transitive closure of ⇒
is denoted by ⇒∗, and we write c

σ

⇒n c′ if c
r1⇒ c1

r2⇒ ...cn
rn⇒ c′

for any n ∈ N and c, c′, ci ∈ Q × Γ∗ with 1 ≤ i ≤ n and
σ = [r1, r2, ..., rn]. Given a set of configurations C, we define
pre∗(C) = {c′ | c′⇒∗c, for each c ∈ C, c′ ∈ Q×Γ∗}, and define
post∗(C) = {c′ | c⇒∗c′, for each c ∈ C, c′ ∈ Q× Γ∗}.

A pushdown system can be normalized (or simulated) by a
pushdown system for which |ω| ≤ 2 for each transition rule
〈p, γ〉 ↪→ 〈q, ω〉 [15]. In sequel, pushdown systems under con-
sideration are assumed to be normalized as above.

DEFINITION 2. A bounded idempotent semiring is S = (D,⊕,⊗, 0
, 1), where 0, 1 ∈ D, and

1. (D,⊕) is a commutative monoid with 0 as its unit element, and
⊕ is idempotent, i.e., a⊕ a = a for a ∈ D;

2. (D,⊗) is a monoid with 1 as the unit element;
3. ⊗ distributes over ⊕;
4. ∀a ∈ D, a⊗ 0 = 0 ⊗ a = 0;
5. The partial ordering � is defined on D such that ∀a, b ∈
D, a � b iff a⊕ b = a.

By Def. 5, it is guaranteed that there are no infinite descending
chains in D wrt �, and 0 is the greatest element.

DEFINITION 3. A weighted pushdown system is a triplet W =
(P, S, f), where P = (Q,Γ,∆, q0, ω0) is a pushdown system, S =
(D,⊕,⊗, 0, 1) is a bounded idempotent semiring, and f : ∆ → D
is a weight assignment function.

When developing program analysis in the framework of WPDSs,
the bounded idempotent semiring is typically used to model data

flows of the program. Typically, a weight element encodes the tra-
ditional program transformer, i.e., the changes of program states
(in the abstract domain); f ⊕ g combines data flows at the meet of
control flows; f ⊗ g composes sequential control flows; 1 denotes
identity function, and 0 implies program errors.

DEFINITION 4. Given a weighted pushdown system W = (P, S, f),
where P = (Q,Γ,∆, q0, w0). Assume σ = [r0, ..., rk] be a
sequence of pushdown transition rules for ri ∈ ∆ with 0 ≤ i ≤
k, and val(σ) = f(r0) ⊗ ... ⊗ f(rk). Given sets of regular
configurations C,C′ ⊆ Q×Γ∗, for each configuration c ∈ Q×Γ∗,

• the Generalized Pushdown Successor (GPS) problem is to find
GPS(c, C) =

⊕{val(σ) | c′ σ⇒∗ c, c′ ∈ C};
• the Generalized Pushdown Predecessor (GPP) problem is to

find GPP(c, C) =
⊕{val(σ) | c σ⇒∗ c′, c′ ∈ C};

• the Meet-Over-All-Valid-Path (MOVP) problem is to find
MOVP(C,C′) =

⊕{val(σ) | c σ⇒∗ c′, c ∈ C, c′ ∈ C′}.

Based on the finding that a regular set of configurations is
closed under forward and backward reachability, efficient algo-
rithms for solving the GPS and GPP problems are proposed us-
ing P-automaton techniques [13]. MOVP problems can be solved
based on the results of solving either GPS or GPP problems. We are
aware of two off-the-shelf implementations of weighted pushdown
model checking, Weighted PDS Library 1 and WPDS++ 2.

2.2 Stacking-based Points-to Analysis by WPDSs

We show how to yield program analysis by weighted pushdown
model checking, using the points-to analysis algorithm in [10] as
an example. Points-to analysis is a prerequisite of precise program
analysis on objected-oriented programs. It aims at computing a
points-to relation (denoted by �→) that maps a variable of reference
type to the set of objects it may point to at runtime. In particular,
a context-sensitive points-to analysis distinguishes the calling con-
texts in which a points-to relation is valid.

We apply a context-insensitive abstraction on heap, such that a
unique abstract heap object models concrete heap objects allocated
at the same heap allocation site. Thus, the number of abstract heap
objects are syntactically bounded to be finite. The set of abstract
heap objects is denoted by Obj, and the set of reference variables
(in the abstract domain) is denoted by Ref. In contrast to the
cloning-based approach, calling contexts are entirely managed by
the pushdown stack.

DEFINITION 5. Let P be the powerset constructor. We define D1

= {λx.s | s ∈ P(Obj)} and D2 = {λx.x ∪ s | s ∈ P(Obj)},
and a bounded idempotent semiring S = (D,⊕,⊗, 0, 1), such that

• The weighted domain D = D1 ∪D2 ∪ {0};
• 1 = λx.x, denoted by id;
• d1 ⊗ d2 = d1 ⊕ d2 = λx. d1(x)∪ d2(x) for d1, d2 ∈ D \ {0}
• d⊗ 0 = 0 ⊗ d = 0 for d ∈ D;

To be self-contained, Definition 5 recalls the bounded idem-
potent semiring used in the analysis, where λx.s ∈ D1 means
that a reference points to the set of abstract heap objects s; and
λx.x ∪ s ∈ D2 means that a reference may keep unchanged along
some paths and point to s along others. It is easy to see that, both
the distributivity of ⊗ over ⊕ and the associativity of ⊗ hold.

EXAMPLE 1. A Java code snippet is given in Fig. 1(a), and its en-
coding as weighted pushdown systems is given in Fig. 1(b), where
ol denotes an abstract heap object allocated at line l; Henv and sp

1 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
2 http://www.cs.wisc.edu/wpis/wpds++/index.php



0. public class Main {
1. public static void main(String[] args) {
2. Object x1 = new String();
3. Object x2 = new Object();
4. Object y1 = f1(x1);
5. Object y2 = f1(x2);
6. System.out.println(y1.equals(y2));
7. }
8. public static Object f1(Object a) {
9. return a;
10. }
11. }

(a) A Java Code Snippet

r0 : 〈Henv, sp〉 ↪→ 〈Henv,main〉 id

r2 : 〈Henv,main〉 ↪→ 〈x1,main〉 λx.{o2}
r3 : 〈Henv,main〉 ↪→ 〈x2,main〉 λx.{o3}
r4 : 〈x1,main〉 ↪→ 〈argf1 , f1 l4〉 id

r′4 : 〈retf1 , l4〉 ↪→ 〈y1,main〉 id
r5 : 〈x2,main〉 ↪→ 〈argf1 , f1 l5〉 id

r′5 : 〈retf1 , l5〉 ↪→ 〈y2,main〉 id
r8 : 〈argf1 , f1〉 ↪→ 〈a, f1〉 id

r9 : 〈a, f1〉 ↪→ 〈retf1 , f1〉 id
r10 : 〈retf1 , f1〉 ↪→ 〈retf1 , ε〉 id

(b) Weighted Pushdown System Encoding

Figure 1. A Java Code Snippet for Showing Valid Paths

are fresh symbols to denote the abstract heap environment and the
program entry point, respectively; ret and arg are fresh variables
to denote return values and formal arguments, respectively. These
variables are indexed with their method scope if necessary.

As shown in the figure, variables are encoded as control lo-
cations, methods, as well as return points of procedure calls,
are encoded the stack alphabet. For any variable v ∈ Ref,
MOVP(C,@(v))(v) returns the set of objects that v may point to,
where C = {〈Henv, sp〉} and @(p) = {〈p, ω〉 | ω ∈ Γ∗}. The
points-to analysis precisely infers {y1 �→ o2} and {y2 �→ o3}. In
contrast, an context-insensitive analysis would infer mix them. This
example illustrates the featured power of stacking-based program
analysis regarding valid paths.

3. Motivations
We use Example 2 to illustrate typical occasions on which the
aforementioned points-to analysis by WPDSs is not precise enough.

EXAMPLE 2. We consider the following analysis clients on the
Java code snippet in Fig. 2:

• whether variables c and d are aliased, i.e., whether these vari-
ables point to the same objects at runtime;

• whether downcasts at line 6 and 10 are safe, i.e., whether the
returned value of calling get() can only point to Integer objects
at line 6 and String objects at line 10, respectively.

We can conclude that at runtime, (i) c and d are not aliased,
and (ii) both downcasts at line 6 and 10 are safe. However, we
cannot infer the correct answer by performing the aforementioned
stacking-based points-to analysis, which imprecisely infers that,
any of variables c, d, int i, and str s may point to {o21, o31}.

The imprecision is due to the fact that, some kinds of data flows
are sensitive to the calling history because of object-oriented fea-
tures, but such dependency is missed when the program is modelled

1. public class Main {
2. public static void main(String[] args) {
3. A a = new A();
4. Object c = foo(a);
5. Object i = A.get(a);
6. Integer int i = (Integer) i;
7. A b = new B();
8. Object d = foo(b);
9. Object s = B.get(b);
10. String str s = (String) s;
11. }
12. public static Object foo(A x) {
13. return x.set();
14. }
15. }
16. public class A {
17. Object f;
18. Object[] arr;
19. A() { this.arr = new Object[1]; }
20. public Object set() {
21. this.f = new Integer(5);
22. this.arr[0] = this.f;
23. return this.f;
24. }
25. public static Object get(A x) {
26. return x.arr[0];
27. }
28. }
29. public class B extends A {
30. public Object set() {
31. this.f = new String();
32. this.arr[0] = this.f;
33. return this.f;
34. }
35. }

Figure 2. A Java Code Snippet for Ilustrating the Needs of Condi-
tional Extension of Weighted Pushdown Systems

as weighted pushdown systems. For instance, the failure of prov-
ing downcast safety for this example is attributed to, (i) context-
insensitive heap abstraction (at line 19), such that o3.arr and o7.arr
point to the same object o19; and (ii) mixing field read at line 26
under different calling contexts.

Fig. 3 illustrates the imprecision caused by the construction of
a context-insensitive call graph regarding the program fragments.
Each call edge is labelled with (i), and its corresponding return
edge is labelled with (i)′, for 1 ≤ i ≤ 4. There are two valid
control flows (1)-(2)-(2)′-(1)′ and (3)-(4)-(4)′-(3)′ starting from
the main() method. By encoding the program as (weighted) push-
down systems, it is guaranteed that any call and return edges are
correctly paired with one another. However, invalid control flows
of (1)-(4)-(4)′-(1)′ and (3)-(2)-(2)′-(3)′ still remain when pro-
ducing the analysis results, because control flows along edges (2)
and (4) depend on the type of objects xmay point to at line 13, i.e.,
obeying to the semantics of dynamic dispatch.

4. Conditional Weighted Pushdown Model
Checking

4.1 Conditional Weighted Pushdown Systems

We extend pushdown systems to conditional pushdown systems, by
further associating each transition rule with conditions that specify



Figure 3. Illustrating Context-Insensitive Call Graph Construction

when this rule can be applied, and correspondingly lift weighted
pushdown systems to conditional weighted pushdown systems.

DEFINITION 6. A conditional pushdown system is a 6-tuple Pc =
(Q,Γ,∆c, C, q0, ω0), where Q is a finite set of control locations,
Γ is a finite stack alphabet, C is a finite set of regular languages
over Γ, ∆c ⊆ Q × Γ × C × Q × Γ∗ is the set of transition rules,
and q0 ∈ Q and ω0 ∈ Γ∗ are the initial control location and
stack contents, respectively. A transition rule (p, γ, L, q, ω) ∈ ∆c

is written as 〈p, γ〉 L
↪→ 〈q, ω〉. A computation relation ⇒c on

configurations is defined such that 〈p, γω′〉 ⇒c 〈q, ωω′〉 for all

ω′ ∈ Γ∗ if there exists a transition rule 〈p, γ〉 L
↪→ 〈q, ω〉 and

ω′ ∈ L, written as 〈p, γω′〉 r⇒c 〈q, ωω′〉. The reflective and
transitive closure of ⇒c is denoted by ⇒∗

c , and for any n ∈ N, we

write c
σ

⇒n
c c

′ if c
r1⇒c c1

r2⇒c ...cn
rn⇒c c

′ for c, c′, ci ∈ Q × Γ∗

with 1 ≤ i ≤ n and σ = [r1, r2, ..., rn].

Note that, for the sake of efficiency, we do not play a condition
on the whole stack, because the topmost stack symbol is already
specified by the underlying pushdown transition rule.

DEFINITION 7. A conditional weighted pushdown system is a
triplet Wc = (Pc, S, f), where Pc = (Q,Γ, C,∆, q0, γ0) is a
conditional pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded
idempotent semiring, and f : ∆ → D is a function that designates
a weight to each pushdown transition rule.

We lift model checking problems in Definition 4 to conditional
weighted pushdown system, denoted by GPSc, GPPc and MOVPc,
respectively, which can be solved by a reduction to model checking
problems on weighted pushdown systems.

Given a regular language L, a condition automaton with respect
to L is a deterministic finite state automaton, denoted by A =
(S,Σ, δ, ṡ, F ), where S is the finite set of states, Σ is the finite
input alphabet, δ : S × Σ → S is the total transition function,
ṡ ∈ S is the initial state, and F ⊆ S is the set of final states.
The language recognized by the automaton A is denoted by L(A).
Without loss of generality, condition automata under consideration
have no ε transitions. We extend δ to be the type of S × Σ∗ → S
in the standard way, such that for each s ∈ S, δ(s, ε) = s and
δ(s, ωα) = δ(δ(s, ω), α) for each ω ∈ Σ∗ and α ∈ Σ.

Assume condition automata Ai = (Si,Σ, δi, ṡi,Fi) with i ∈
{1, 2}. We define the product automaton A of A1 and A2, denoted
by A1 ×A2, such that A1 ×A2 = (S1 × S2,Σ, δ, (ṡ1, ṡ2),F), where
δ(s1, s2) = (δ1(s1), δ2(s2)) for si ∈ Si with i ∈ {1, 2}, and
F = F1 × S2 ∪ S1 × F2. Let A = {A1, ..., An} be a finite set of
condition automata that have the same input alphabet. We denote
by Π1≤i≤nAi the product A1 × A2 × ... × An, and by si the ith

component of a state s from Π1≤i≤nAi, i.e., si ∈ Ai. It is easy to
see that, Π1≤i≤nAi is a condition automaton.

DEFINITION 8. Let φ be a function that designates a condition
automaton A with respect to any given regular language L, such
that (i) A has minimal states for L(A) = L; and (ii) for regular
languages L, L′ (over the same alphabet), condition automata φ(L)
and φ(L′) are identical if L = L′, otherwise the states of φ(L) and
φ(L′) are disjoint.

We also denote by REV(ω) the reverse of a word ω from some
language, and denote by LR the set {REV(ω) | ω ∈ L} of all
reversed words from L.

4.2 Solving Conditional WPDMC

As shown in Fig. 4, Algo. trans translates a conditional weighted
pushdown system to a corresponding weighted pushdown system,
by extending the stack alphabet. The idea of the translation is
to synchronize the underlying (weighted) pushdown system and
the product automaton Π0≤i≤nAi = (Ŝ,Γ, δ̂, ṡ, F̂ ), with read-
ing the stack symbols bottom-up. In sequel, we fix a CWPDS
Wc = (Pc, S, f) with Pc = (Q,Γ, C,∆, q0, γ0), and let Wt =
(P, S, f ′) be the WPDS translated from Wc by Algo. TRANS with
P = (Q,Γ′,∆, q0, γ′

0).

DEFINITION 9. A configuration 〈q, (γn, sn)(γn−1, sn−1)...(γ0, s0)〉
of Wt is consistent if s0 = ṡ and δ̂(si, γi) = si+1 for 0 ≤ i < n.
The set of consistent configurations of Wt is denoted by Confs.

DEFINITION 10. We define a function ρ : Confs → (Q×Γ)∗ that
maps each consistent configuration of Wt to some configuration
of Wc, such that for any 〈q, (γn, sn)(γn−1, sn−1)...(γ0, s0)〉 ∈
Confs, ρ(〈q, (γn, sn)(γn−1, sn−1)...(γ0, s0)〉) = 〈q, γnγn−1...γ0〉.
LEMMA 1. ρ is bijective.

Proof By the definition of ρ and consistent configurations, ρ is
easily seen to be injective, based on the fact that the product au-
tomaton Π1≤i≤nAi is deterministic. Furthermore, ρ can be proved
surjective, because δ̂ is total. �

According to Lemma 1, we are able to define the inverse of ρ,
denoted by ρ−1.

LEMMA 2. Given a computation sequence cs
σ

⇒∗
c ct of Wc. Let

c′s = ρ−1(cs) and c′t = ρ−1(ct). There exists σ′ of Wt such that

c′s
σ′
⇒∗ c′t with val(σ) = val(σ′).

Proof By an induction on the transition steps m of cs ⇒m
c ct.

When m = 0, the proof is trivial. Assume that the lemma holds

for m = k, i.e., for cs
σ

⇒k
c ct, there exists σ′ such that c′s

σ′

⇒∗ c′t
with val(σ) = val(σ′) of Wt. Let ct = 〈q, γnγn−1...γ0〉, and
c′t = ρ−1(ct) = 〈q, (γn, sn)(γn−1, sn−1)... (γ0, s0)〉 with s0 = ṡ.

Assume that there exists a transition rule r : 〈q, γn〉 Li
↪→

〈p, ω〉 ∈ ∆c, such that ct
r⇒c c for some configuration c ∈ Q×Γ.

By the definition of ⇒c, we have c = 〈p, ωγn−1...γ0〉 and
γ0...γn−1 ∈ L(Ai), where Ai = φ(LRi ). Since δ̂(s0, γ0...γn−1)
= sn, we know (sn)i is a final state of Ai. By Algo. TRANS, there



exists r′ : 〈q, (γn, sn)〉 ↪→ 〈p, ω′〉 ∈ ∆′, such that f(r′) = f(r).
Since val(σ·r) = val(σ)⊗f(r), we have val(σ·r) = val(σ′·r′)
by induction hypothesis.

Furthermore, there exists c′t
r′⇒ c′ with c′ = 〈p, ω′(γn−1, sn−1)

...(γ0, s0)〉. It is not hard to see that c′ = ρ−1(c), by a case analysis
on ω. For instance, if ω = γ′n ∈ Γ, then ω′ = (γ′

n, sn) ∈ Γ′ by the
algorithm construction and thus c′ = ρ−1(c). We can conclude the
lemma holds when m = k + 1, and thus prove the lemma. �

LEMMA 3. Given a computation sequence cs
σ

⇒∗ ct of Wt. Let
c′s = ρ(cs) and c′t = ρ(ct). There exists σ′ of Wc such that

c′s
σ′

⇒∗
c c

′
t with val(σ) = val(σ′).

Proof Similarly to the proof of Lemma 2, by an induction on the

transition steps m of cs
σ

⇒m ct. �

THEOREM 1. Given configurations Cs, Ct ⊆ Q × Γ∗ of Wc,
and configurations C′

s, C
′
t ⊆ Q × (Γ′)∗ of Wt, such that C′

s =
{ρ−1(c) | c ∈ Cs} and C′

t = {ρ−1(c) | c ∈ Ct}. We have

MOVPc(Cs, Ct) = MOVP(C′
s, C

′
t)

Proof Because ⊕ is idempotent and commutative, the proof is
straightforward by Lemma 2 and 3, according to the definition of
the MOVP problems. �

4.3 Discussions

Consider the translation algorithm in Fig. 4, it is easily seen that
|Γ′| ≤ |Γ| × |Ŝ| and |∆′| ≤ |∆| × |Ŝ|, because the product au-
tomaton Π1≤i≤n Ai is deterministic by construction. Let |H | be
the length of the longest descending chain of the weighted do-
main that may occur in the problem instance. Let Q and →0 be
states and transitions of the P-automaton accepting the given reg-
ular set of configurations C, respectively. According to the com-
plexity results of solving WPDSs [13], by extending the stack al-
phabet, (i) the time complexity of computing pre∗(C) for Wc is
O(|Ŝ| |Q|2 |∆| |H |), and (ii) the time complexity of computing
post∗(C) is O((|Ŝ|2 |Q| |∆| n2 + |Ŝ| |Q| |∆| n1 + |Q| n0) |H |),
where n2 = |{〈p′, γ′〉 | 〈p, γ〉 A

↪→ 〈p′, γ′γ′′〉 ∈ ∆}|, n1 = |Q\Q|,
and n0 = | →0 |. We can conclude that the time complexity in-
crease is linear in |Ŝ| for solving pre∗(C), and polynomial in |Ŝ|
for solving post∗(C), after extending WPDSs to CWPDSs.

There is an alternative approach to conducting the synchro-
nization algorithm in Fig. 4, by extending control locations of
the underlying pushdown system. The construction resembles
the extension on the stack alphabet. First, a product automaton
Π1≤i≤n Ai = (Ŝ,Γ, δ̂, ṡ, F̂ ) over all regular conditions is built,

and then for each transition rule r : 〈p, γ〉 Ai
↪→ 〈q, ω〉 ∈ ∆ with

Ai = (Si,Γ, δi, ṡi, Fi), the transition rules ∆′ of the translated
WPDSWt are generated as follows: for each s ∈ Ŝ, ∆′ consists of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(p, s), γ〉 ↪→ 〈(q, s), ν〉, if r : 〈p, γ〉 Ai
↪→ 〈q, ν〉

and si ∈ Fi;

〈(p, s), γ〉 ↪→ 〈(q, s), ε〉, if r : 〈p, γ〉 Ai
↪→ 〈q, ε〉

and si ∈ Fi;

〈(p, s), γ〉 ↪→ 〈(q, t), αβ〉, if r : 〈p, γ〉 Ai
↪→ 〈q, αβ〉

and si ∈ Fi and t = δ̂(s, β).

Let Wt = (P, S, f ′) with P = (Q′,Γ,∆′, q′0, γ0). We know
|Q′| ≤ |Q| × |Ŝ| and |∆′| ≤ |∆| × |Ŝ|, because the prod-
uct automaton Π1≤i≤n Ai is deterministic. By extending control
locations, (i) the time complexity of computing pre∗(C) for Wc

is O(|Ŝ|3 |Q|2 |∆| |H |), and (ii) the time complexity of com-
puting post∗(C) is O((|Ŝ|3 |Q| |∆| n2 + |Ŝ|2 |Q| |∆| n1 +

|Ŝ| |Q| n0) |H |). Therefore, the translation by extending the stack
alphabet is more efficient than the translation by extending control
locations in principle.

5. Applications
CWPDSs provide the facility of modelling wider application sce-
narios than those that WPDSs are directly applicable. These appli-
cation scenarios beyond the scope of WPDSs are characterized by a
dependency on the dynamic calling histories of the program. Such
a well-known application is analyzing programs with local security
checks on the state of the stack frames at runtime, e.g., the stack
inspection mechanism in the Java sandbox model for security.

Taking the simple stack inspection in Netscape 3.0 as an in-
stance, when a sensitive operation is to be launched, the stack in-
spection system will check the calling stack in a top-down man-
ner: (i) the access would be allowed if a procedure with enabled
privileges is found, and (ii) an exception would be thrown other-
wise. The stack inspection properties can be modelled as regular
languages, and it is straightforward to yield algorithms for program
analysis with stack inspection by CWPDSs.

In the following of this section, we present a new practical
application of CWPDSs to program analysis with object-oriented
features, using points-to analysis as an example. Points-to analysis
for object-oriented languages is a challenging task, because call
graph construction and points-to analysis are inter-dependent due
to dynamic language features like late binding.

5.1 Lifting Stacking-based Points-to Analysis by CWPDSs

We lift the stacking-based context-sensitive points-to analysis by
weighted pushdown systems [9] to a more precise counterpart in the
framework of conditional weighted pushdown systems. The lifted
analysis is also field-sensitive and flow-insensitive, with call graph
constructed on-the-fly.

Our analysis is an iterative procedure that computes two global
data structures: the call graph G and the points-to relation R of
the program. Initially, both the call graph and points-to relation are
empty sets. The analysis starts with analyzing the program entry
points (denoted by M0), and updates G and R until convergence. In
each iterative cycle,

• First, the program (i.e., the reachable methods detected so far)
is encoded as conditional weighted pushdown systems;

• Second, points-to information on the partial program is detected
by conditional weighted pushdown model checking;

• Third, obeying to the semantics of Java virtual machine, new
call edges, as well as new reachable methods, are (potentially)
discovered according to the updated points-to information.

Abstraction

DEFINITION 11. We denote by C the set of classes, and denote by
Ψ the set of method signatures. A method is identified by a pair of
its enclosing class C ∈ C and method signature ψ ∈ Ψ, denoted
by C.ψ. The set of method identifiers is denoted by C.Ψ ⊆ C × Ψ.

DEFINITION 12. Let L be the set of program line numbers, and let
RetPoint ⊆ C.Ψ×L be the set of return points of method invoca-
tions. We define C = (C.Ψ×{ }).RetPoint∗ as the set of abstract
calling contexts, where “ ” is a fresh symbol that indicates any-
where. For (m, )ω ∈ C with ω = (mn, ln)...(m1, l1)(m0, l0),
we define tail((m, )ω) = ω, and extend this this function to a
set of calling contexts element-wise.



A return point (m, l) ∈ RetPoint refers to a method invocation
site at line l in the method m. Being flow-insensitive, a calling
context (m, )(mn, ln)...(m1, l1)(m0, l0) ∈ C is with respect
to the method m that is called most recently, rather than specific
program execution points.

DEFINITION 13. Let C ⊆ C. We denote by ∼ an equivalence re-
lation on C which partitions C into disjoint (nonempty) equiva-
lence classes with a finite index. The set of all equivalence classes
in C with respect to ∼ is denoted by C/∼.

DEFINITION 14. A context-sensitive call graph of a program is
G = (M,E), where M ⊆ C.Ψ and E ⊆ M × L × (P(C) ∪
{ })×M . An element (m, l, L,m′) ∈ E is a context-sensitive call

edge, written as m
l,L→ m′. We define the set of calling contexts of

a method m as ACC(m) = {(m, )(mn, ln)...(m1, l1)(m0, l0) ∈
C | m0

l0,L0→ m1
l1,L1→ ... mn

ln,Ln→ m}.

DEFINITION 15. We define the set of abstract heap objects as
Obj = (L∪{ })×C.Ψ×C×(P(C)), and define R : Ref×P(C) →
2Obj be the function that stores the points-to relation.

In Java, a heap object is a dynamically created instance of either
a class or an array. Reference variables are typically local variables,
method parameters, array references, and static or instance fields
of reference types. Fields and array references can be regarded
as global variables. The abstraction on heap objects in Def. 15 is
context-sensitive, and Obj is finite because C/∼ has a finite index.

Furthermore, we take an over-abstraction on arrays such that
indices of an array is ignored, i.e., members of an array are not dis-
tinguished. We denote by [[o]] the unique representative for all mem-
bers of an array instance o. After bounding the set of abstract heap
objects to be finite, the nesting of arrays and field references be-
come finite correspondingly. In contrast to cloning-based approach,
there is a unique abstract reference for each local reference variable
in the analysis, and global references are cloned for methods inside
which they are referred to.

Modelling

Let Stmt be the set of program statements. We denote by A[[ ]] :
Stmt → P(↪→) the function that translates the program into
transition rules of conditional weighted pushdown systems. Fig. 5
gives the translation schemes on statements at line l(∈ L) in the
method C.ψ, and these statements do not contain explicit method
invocations. For simplicity, we omit the weight associated with a
transition rule r if f(r) = id. In the traditional way of modelling
a program as a pushdown system, global variables are explicitly
passed as parameters along procedure calls and returns. In contrast,
we model the heap memory as the global data structure (i.e., R).
The heap memory provides global references with cached data
flows (i.e., Ag , Af ), when they are locally referred inside methods
(only necessary for field read).

Table 6 gives translation schemes on statements that contains
explicit method invocations, where Ac denotes method calls, Ar
denotes method returns, and At denotes data flows from return
points to the corresponding calling procedures. Note that, the heap
environment Henv of the program is explicitly passed (as a parame-
ter) among any procedure calls and returns, to hold the thread con-
trol of the program.

Let Wc = (Pc, S, f) be the conditional weighted pushdown sys-
tem encoded from the target program, where Pc = (Q,Γ, C,∆, q0,
ω0}). The set of control locationsQ is encoded from Ref∪{Henv}.
The stack alphabet Γ is encoded from C.Ψ∪RetPoint. The choice
of the bounded idempotent semiring is the same as S in Def. 5.
Let q0 = Henv and w0 = sp. A set δ of dummy transition rules
leading to the actual program entry points is introduced, such that

A[[z = r0.f(r1, ..., rn)]] = Ac ∪Ar ∪At
where Ac = {〈r0, C.ψ〉 tail(L)

↪→ 〈thisC′.ψ′
, C′.ψ′ rp〉}

∪ {〈Henv, C.ψ〉 C

↪→ 〈Henv, C′.ψ′ rp〉}
∪ ⋃

ri∈Ref{〈ri, C.ψ〉
tail(L)
↪→ 〈argiC

′.ψ′
, C′.ψ′ rp〉}

Ar = {〈retC′.ψ′
, C′.ψ′〉 tail(L)

↪→ 〈retC′.ψ′
, rp)}

∪ {〈Henv, C′.ψ′〉 C

↪→ 〈Henv, rp〉}
At = {〈retC′.ψ′

, rp〉 tail(L)
↪→ 〈z, C.ψ〉}

∪ {〈Henv, rp〉 C

↪→ 〈Henv, C.ψ〉}
for each C′.ψ′ and L with (C.ψ, l, L, C′.ψ′) ∈ E, and
ψ′ is the method signature of f , and rp = (C.ψ, l).

A[[z = C′.f(r1, ..., rn)]] = Ac ∪ Ar ∪At
where Ac = {〈Henv, C.ψ〉 C

↪→ 〈Henv, C′.ψ′ rp〉}
∪ ⋃

ri∈Ref{〈ri, C.ψ〉
C

↪→ 〈argiC
′.ψ′

, C′.ψ′ rp〉}
Ar = {〈retC′.ψ′

, C′.ψ′〉 C

↪→ 〈retC′.ψ′
, rp)}

∪ {〈Henv, C′.ψ′〉 C

↪→ 〈Henv, rp〉}
At = {〈retC′.ψ′

, rp〉 C

↪→ 〈z,C.ψ〉}
∪ {〈Henv, rp〉 C

↪→ 〈Henv, C.ψ〉}
for each C′.ψ′ with (C.ψ, l, , C′.ψ′) ∈ E, and
ψ′ is the method signature of f , and rp = (C.ψ, l).

Figure 6. A[[ ]] : Stmt → P(↪→)

δ = {〈Henv, sp〉 C

↪→ 〈Henv, C.ψ〉 | C.ψ ∈ M0}, and f(r) = id
for each r from δ.

Analyzing

Points-to information is detected as model checking problems on
the CWPDS encoded from the target program, as given in Def. 16.

DEFINITION 16. Let Wc = (Pc, S, f) be the conditional weighted
pushdown system encoded from the target program, where Pc =
(Q,Γ, C,∆, q0, ω0}). For any reference v ∈ Ref in the method m,

R(v, L) = MOVPc(C,L)(v)

for each L ∈ ACC(m)/∼, where C = {〈q0, ω0〉}.

Solving the MOVPc problem of Wc is reduced to solving the
MOVP problem of the WPDS Wt translated from Wc by the al-
gorithm in Fig. 4. To solve MOVP(Cs, Ct) on Wt, we can (i) first
compute post∗(Cs), and then (ii) read out and combine the value
of all paths between Cs and Ct. Let H = 2|Obj| be the length of
the longest descending chain of the weighted domain, and T the
time to perform either ⊗ or ⊕. Assume the equivalence relation ∼
taken in the analysis has a finite index k. The time required to per-
form step (ii) can be ignored, and the worst case time complexity
of performing step (i) is O(k |Ŝ|2 |Ref|2 |Stmt| |Obj| |C.Ψ|H T ),
where Ŝ is states of the product of all condition automata of Wc.

Provided with the newly-detected points-to information, the call
graph is potentially updated with new call edges. Briefly, for each
statement s in the method C.ψ that dispatches a method invocation,



E = E∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{(C.ψ, l, L,C′.ψ′)}, if s contains r0.f(r1, ..., rn)
and the method C′.ψ′ will be
called according to the JVM
semantics,when o ∈ R(r0, L)
for r0 ∈ Ref.

{(C.ψ, l, , C′.ψ′)}, if s contains C′.f(r1, ..., rn)
for C′ ∈ C.

where ψ′ is the method signature of f .

5.2 Examples

We illustrate how to conduct the lifted points-to analysis, using the
Java code snippet in Example 2.

DEFINITION 17. Given an alphabet Γ and a fixed k, and let
kind(ω) denote the number of distinguished symbols appearing
in ω ∈ Γ∗. For a word ω = γ0γ1...γn ∈ Γ∗, we denote by ω(k)
the prefix ω′ = γ0γ1...γm of ω with 0 ≤ m ≤ n, such that
kind(ω′) ≤ k and kind(ω′γm+1) > k when m < n. We define
an equivalence relation ∼ on Γ∗ such that x ∼ y for x, y ∈ Γ∗ iff
x(k) and y(k) are the same.

One key issue of conducting program analysis by conditional
weighted pushdown systems is choosing an appropriate equiva-
lence relation ∼ that finitely partitions calling contexts. In practice,
it would induce a tradeoff between precision and scalability. Def.
17 provides an example of choosing ∼, with taking Kleene star into
account. It is easily seen that, the insights behind is how deep the
calling context would be looked into, and we will fix k = 3 when
illustrating the example.

Fig. 7 gives the core parts of the encoding (organized method-
wise) of the program in Fig. 2 as a CWPDS. Because pro-
gram lines are globally numbered, we simply write l for a re-
turn point (m, l), and write �l, C, L� for an abstract heap ob-
ject (l,m, C, L). In this example, the set C of regular condi-
tions is {{l3}, {l4}, {l5}, {l7}, {l8}, {l9}, {l13l4}, {l13l8}, C}.
Applying a context-sensitive heap abstraction, abstract heap ob-
jects allocated at line 9 are distinguished as �l19,Object[], l3� and
�l19,Object[], l7�, respectively. The lifted analysis can precisely
answer both questions posed in Example 2.

6. Related Work and Discussions
6.1 Points-to Analysis

Points-to analysis has been an active field over the past two
decades. At present, it remains a challenging task to design a scal-
able yet precise analysis under the current popular computing re-
sources. Existing practiced points-to analysis are cloning-based to
achieve context-sensitivity, as briefly discussed below.

One of the pioneer work is Andersen’s points-to analysis for C
programs [2]. It is a subset-based, flow-insensitive analysis that is
encoded as constraint solving problems. More specifically, pointer
assignments are described by subset constraints, e.g. x = y induces
pta(y) ⊆ pta(x). This analysis is the basis of many points-to anal-
ysis algorithms afterwards. The scalability of Andersen’s analysis
has been greatly improved by efficient constraint solvers. Ander-
sen’s analysis was leveraged to Java by annotated constraints [14].

The first scalable cloning-based context-sensitive Java points-
to analysis is presented in [18], in which programs and analysis
problems are encoded as rules in logic program Datalog. To handle
recursive procedures, calling contexts are cloned after merging
loops as equivalent classes. The BDD (Binary Decision Diagram)
based implementation, as well as the approximation on recursions,
enable the analysis to scale. As pointed out in [8], there are usually
many loops within the call graph, each of which typically consists

of a large number of methods. Though this analysis scales very
well to large-scale Java applications, a loss of precision is caused
by approximating recursions.

Reps, et al. present a general framework for program analy-
sis based on CFL-reachability [12], in which a points-to analysis
for C programs is discussed by formulating pointer assignments
as productions of context-free grammars. Inspired by this work,
Sridharan, et al. formulated Andersen’s analysis for Java [17] as
balanced-parentheses problems with respect to operations of field
read and write. A novel refinement-based analysis is later proposed
in [16]. It firstly performs a context-insensitive analysis, and later
recovers the precision on-demand by removing imprecise propaga-
tion of points-to sets as violating a grammar for balanced parenthe-
ses, with respect to both heap access and method calls. The afore-
mentioned refinement, as well as demand-driven manner, are essen-
tial to the success of this analysis regarding good performance on
precision and scalability (measured by downcast safety analysis).

SPARK[7] is a widely-used test-bed for experimenting with vari-
ous Java points-to analysis algorithms. It supports both equality and
subset-based points-to analysis, and provides various algorithms
for call graph construction, such as class hierarchy analysis (CHA),
rapid type analysis (RTA), on-the-fly algorithms such as the afore-
mentioned cloning-based context-sensitive points-to analysis for
Java [18]. It also provides variations regarding field-sensitivity. The
BDD-based implementation of the subset-based algorithms further
improves the efficiency.

Another stream of research examines calling contexts in terms
of sequences of objects on which methods are invoked, called
object-sensitivity [11]. Similar to call-site-strings based approach,
the sequence of receiver objects can be unbounded and demands
proper approximations. A recent empirical study compares the pre-
cision of subset-based points-to analysis with various abstractions
on context-sensitivity [8]. It shows that, context-sensitivity is cru-
cial to the analysis precision in practice, and points-to analysis with
object-sensitivity excels at precision and is more likely to scale.

For the sake of practical scalability, a context-insensitive ab-
straction on heap is commonly adopted in most of points-to anal-
ysis algorithms. Recently, some efforts are made on designing
points-to analysis with context-sensitive heap abstraction, e.g., the
analysis with full heap cloning within acyclic call paths in [6], and
the analysis with bounded heap cloning by merging equivalent call-
ing contexts in [19].

6.2 Stacking-based Program Analysis

Though WPDSs are well understood as a generalized framework
for analyzing programs with procedures on certain properties,
many problems remain to be investigated like,

• whether stacking-based analysis can provide the same precision
as cloning-based analysis on objected-oriented features, and

• whether stacking-based analysis can scale well to large practi-
cal applications. Retaining context-sensitivity within recursive
procedure calls is the major bottleneck to scalability.

To tackle with the second problem, we propose and develop
a scalable stacking-based points-to analysis for Java [9], with no
restriction on recursive procedure calls. The first step to scalability
is that, instead of passing global variables explicitly as parameters
along procedure calls and returns [12], we model the heap memory
as a global data structure, which provides global references with
synchronized cached data flows. To further accelerate the analysis,
we propose a two-staged iterative procedure, to diet most of local
iteration cycles for a substantial speedup.

In this paper, we investigate the precision of the stacking-based
analysis and propose CWPDSs. Our solution is inspired by the ex-
tension of LTL model checking on pushdown systems from simple



valuation to regular valuation [3]. The authors propose techniques
for solving model checking problems with regular valuation with
an eye on efficiency. They also present algorithms for checking
LTL properties on pushdown systems with check points, for pro-
gram analysis with stack inspection.

Our reduction algorithm by extending the stack alphabet resem-
bles one of their proposals with the following difference. In our
case, configurations that cannot be induced by ⇒c have to be ex-
cluded from the P-automaton construction, otherwise the invalid
value would be propagated. To this end, instead of modifying model
checking algorithms on WPDSs, a simple check is performed dur-
ing the translation (Fig. 4). Besides, for the sake of efficiency, we
place a condition on stack contents excluding the topmost stack
symbol. Such a concern has a slight effect on acceptance conditions
of condition automata, such that the initial state can be accepted.

In contrast to on-the-fly points-to analysis, an ahead-of-time
points-to analysis is proposed as one run of weighted pushdown
model checking [9]. The notion of valid paths are enriched such
that invalid control flows that violate Java semantics on dynamic
dispatch are detected as those carrying conflicted dataflow. The
analysis enjoys context-sensitivities regarding both call graph con-
struction and valid paths.

Tremendous improvements have been proposed on weighted
pushdown systems. Extended weighted pushdown systems (EW-
PDSs) are proposed, to provide a convenient abstraction mecha-
nism for local variables [4]. EWPDSs exclude the call to return
edge in the supergraph abstraction. Instead, a merge function is pro-
posed to restore the local variables of the caller when the callee
returns. Besides, a graph-theoretic algorithm is used to improve
the running time for model checking on (extended) weighted push-
down systems [5].

Alur et al. proposed an interesting class of language, so-called
visibly pushdown languages (VPLs), by driving the stack opera-
tions (correspondingly, the stack height) with inputs [1]. VPL is
in between balanced languages and deterministic context-free lan-
guages, yet enjoys good closure properties and decidability results
as regular languages. It would be interesting to see the possibility
of lifting regular conditions of CWPDS to VPLs.

7. Conclusions and Future Work
We extend weighted pushdown systems to conditional weighted
pushdown systems, by further associating each transition rule with
a regular language that specifies conditions under which the transi-
tion rule can be applied. We show that, the model checking prob-
lem on conditional weighted pushdown systems can be reduced to
the existing model checking problems on weighted pushdown sys-
tems. The increase of time complexity for model checking prob-
lems on weighted pushdown systems after extending to condi-
tional weighted pushdown systems, is polynomial (including a lin-
ear case) in the states of the product automata that recognizes the
union of regular conditions.

There are wider applications of conditional weighted pushdown
systems than those that weighted pushdown systems are directly
applicable. We lift a stacking-based points-to analysis algorithm
for Java in the framework of conditional weighted pushdown sys-
tems. In addition to the fundamental context-sensitivity in terms of
valid paths, the lifted analysis further enjoys context-sensitivity, re-
garding heap abstraction, call graph construction, and heap access.
These context-sensitive properties are shown to be crucial to the
analysis precision.

It would be interesting to evaluate the lifted points-to analysis in
practice. A practical tradeoff between precision and practical scala-
bility is expected, by a proper choice of the equivalence relation ∼
over calling contexts. For simplicity, the choice of ∼ is uniform on
the entire program in the current presentation. The choice of uni-

form partitions provides a way of encoding demand-driven style of
analysis regarding precision.
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Algorithm trans
Input: A conditional weighted pushdown system Wc = (Pc, S, f),

where Pc = (Q,Γ, C,∆, q0, γ0) with C = {L1, ..., Ln}
Output: A weighted pushdown system Wt = (P, S, f ′), where P = (Q,Γ′,∆′, q0, γ′

0)

0. let A = {A1, ..., An} with Ai = φ(LRi ) for 1 ≤ i ≤ n, and let Π1≤i≤nAi = (Ŝ,Γ, δ̂, ṡ, F̂ )

1. Γ′ := Γ × Ŝ, and γ′0 := (γ0, ṡ)
2. for each r ∈ ∆

3. if r : 〈p, γ〉 Ai
↪→ 〈q, ν〉 with Ai = (Si,Γ, δi, ṡi, Fi)

4. for each s ∈ Ŝ
5. if si ∈ Fi
6. then r′ := 〈p, (γ, s)〉 ↪→ 〈q, (ν, s)〉
7. ∆′ := ∆′ ∪ {r′} and f ′(r′) = f(r)

8. if r : 〈p, γ〉 Ai
↪→ 〈q, ε〉 with Ai = (Si,Γ, δi, ṡi, Fi)

9. for each s ∈ Ŝ
10. if si ∈ Fi
11. then r′ := 〈p, (γ, s)〉 ↪→ 〈q, ε〉
12. ∆′ := ∆′ ∪ {r′} and f ′(r′) = f(r)

13. if r : 〈p, γ〉 Ai
↪→ 〈q, αβ〉 with Ai = (Si,Γ, δi, ṡi, Fi)

14. for each s, t ∈ Ŝ
14. if si ∈ Fi and t = δ̂(s, β)
15. then r′ := 〈p, (γ, s)〉 ↪→ 〈q, (α, t)(β, s)〉
16. ∆′ := ∆′ ∪ {r′} and f ′(r′) = f(r)

Figure 4. An Algorithm Translating CWPDSs to WPDSs

A[[x = new T]] = {r : 〈Henv, C.ψ〉 tail(L)
↪→ 〈x,C.ψ〉 | f(r) = λx.{(l, C.ψ, T, tail(L))} for L ∈ ACC(C.ψ)/∼}

A[[x = y]] = {〈y, C.ψ〉 C

↪→ 〈x,C.ψ〉}
A[[x := (T)y]] = {〈y, C.ψ〉 C

↪→ 〈x,C.ψ〉}
A[[return x]] = {〈x,C.ψ〉 C

↪→ 〈ret, C.ψ〉}
A[[x := @this : T]] = {〈this, C.ψ〉 C

↪→ 〈x,C.ψ〉} ∪ Ae
where Ae =

{
{r : 〈Henv, C.ψ〉 C

↪→ 〈this, C.ψ〉 | f(r) = λx.{( , C.ψ, T,C)}}, if C.ψ ∈M0;
∅, otherwise.

A[[x := @parameterk : T]] = {〈argk, C.ψ〉
C

↪→ 〈x,C.ψ〉} ∪ Ap
where Ap =

{
{r : 〈Henv, C.ψ〉 C

↪→ 〈argk, C.ψ〉 | f(r) = λx.{( , C.ψ, T,C)}}, if C.ψ ∈M0;
∅, otherwise.

A[[x = y[i]]] = {〈[[o]], C.ψ〉 tail(L)
↪→ 〈x,C.ψ〉 | o ∈ R(y, L) for L ∈ ACC(C.ψ)/∼} ∪Ag

A[[y[i] = x]] = {〈x,C.ψ〉 tail(L)
↪→ 〈[[o]], C.ψ〉 | o ∈ R(y, L) for L ∈ ACC(C.ψ)/∼} ∪Ag

where Ag = {r : 〈Henv, C.ψ〉 C

↪→ 〈[[o]], C.ψ〉 | f(r) = λx.s for s = R([[o]],C), o ∈ R(y,C)}
A[[x = y.f ]] = {〈o.f, C.ψ〉 tail(L)

↪→ 〈x,C.ψ〉 | o ∈ R(y, L) for L ∈ ACC(C.ψ)/∼} ∪ Af
A[[y.f = x]] = {〈x,C.ψ〉 tail(L)

↪→ 〈o.f, C.ψ〉 | o ∈ R(y, L) for L ∈ ACC(C.ψ)/∼} ∪ Af
where Af = {r : 〈Henv, C.ψ〉 C

↪→ 〈o.f, C.ψ〉 | f(r) = λx.s for s = R(o.f,C), o ∈ R(y,C)}

Figure 5. A[[ ]] : Stmt → P(↪→)



main:

〈Henv, sp〉 C

↪→ 〈Henv,main〉 id

〈Henv,main〉 C

↪→ 〈a,main〉 λx.{�l3, A, ε�}
〈a,main〉 C

↪→ 〈x, foo l4〉 id

〈retfoo, l4〉 C

↪→ 〈c,main〉 id

〈a,main〉 C

↪→ 〈t, foo l5〉 id

〈retget, l5〉 C

↪→ 〈i,main〉 id

〈Henv,main〉 C

↪→ 〈b,main〉 λx.{�l7, B, ε�}
〈b,main〉 C

↪→ 〈x, foo l8〉 id

〈retfoo, l8〉 C

↪→ 〈d,main〉 id

〈b,main〉 C

↪→ 〈t, foo l9〉 id

〈retget, l9〉 C

↪→ 〈s,main〉 id

A:

〈Henv,main〉 {l3}
↪→ 〈�l3, A, ε�.arr,A〉 λx.{�l19,Object[], l3�}

〈Henv,main〉 {l7}
↪→ 〈�l7, A, ε�.arr,A〉 λx.{�l19,Object[], l7�}

foo:

〈x, foo〉 {l4}
↪→ 〈thisA.set,A.set l13〉 id

〈retA.set, l13〉 C

↪→ 〈retfoo, foo〉 id

〈x, foo〉 {l8}
↪→ 〈thisB.set,B.set l13〉 id

〈retB.set, l13〉 C

↪→ 〈retfoo, foo〉 id

〈retfoo, foo〉 C

↪→ 〈retA.set, ε〉 id

A.set:

〈Henv,A.set〉 C

↪→ 〈�l3, A, ε�.arr,A.set〉 λx.{�l19,Object[], l3�}
〈Henv,A.set〉 {l13l4}

↪→ 〈�l3, A, ε�.f,A.set〉 λx.{�l21, Integer, l13l4�}
〈�l3, A, ε�.f,A.set〉 {l13l4}

↪→ 〈[[�l19,Object[], l3�]],A.set〉 id

〈�l3, A, ε�.f,A.set〉 {l13l4}
↪→ 〈retA.set,A.set〉 id

〈retA.set,A.set〉 C

↪→ 〈retA.set, ε〉 id

A.get:

〈Henv,A.get〉 C

↪→ 〈�l3, A, ε�.arr,A.get〉 λx.{�l19,Object[], l3�}
〈Henv,A.get〉 C

↪→ 〈�l7, A, ε�.arr,A.get〉 λx.{�l19,Object[], l7�}
〈Henv,A.get〉 C

↪→ 〈[[�l19,Object[], l3�]],A.get〉 λx.{�l21, Integer, l13l4�}
〈Henv,A.get〉 C

↪→ 〈[[�l19,Object[], l7�]],A.get〉 λx.{�l31, String, l13l8�}
〈[[�l19,Object[], l3�]],A.get〉 {l5}

↪→ 〈retA.get,A.get〉 id

〈[[�l19,Object[], l7�]],A.get〉 {l9}
↪→ 〈retA.get,A.get〉 id

〈retA.get,A.get〉 C

↪→ 〈retA.get, ε〉 id

Figure 7. Core Parts of the Encoding of the Program in Fig. 2 as Conditional Weighted Pushdown Systems


