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Abstract. We introduce the class of event-clock visibly pushdown au-
tomata (ECVPAs) as an extension of event-clock automata. The class of
ECVPAs, on one hand, can model simple real-time pushdown systems
and, on the other hand, is determinizable and closed under Boolean op-
erations. We also show that for a timed visibly pushdown automaton A
and an ECVPA B, the inclusion problem L(A) ⊆ L(B) is decidable.

1 Introduction

Timed automata (TAs) were introduced by Alur and Dill in [2], and have become
a standard modeling formalism for real-time systems. A timed automaton is
a finite automaton augmented with a finite set of real-valued clocks, in which
constraints on the clocks are used to restrict the behaviors of an automaton. The
theory of timed automata allows the solution of certain verification problems
for real-time systems [2, 10, 6], e.g., reachability and safety properties. These
solutions have been implemented in automatic tools such as UppAal 1. However,
the general verification problems (i.e., language inclusion) for timed automata is
undecidable. Therefore, for the verification purpose, one has to work either with
deterministic specifications or with a restricted class of timed automata which
has the required closure properties. One such restricted case is the class of event-
clock automata (ECAs) [3, 12, 13]. The key feature of these automata is that they
have a pair of implicit clocks associated with each input symbol. The event clocks
record the time elapsed since the last occurrence of the associated symbol, as
well as the time that will elapse before the next occurrence of the associated
symbol. When an ECA reads a timed word, clock valuations depend only on
the input word itself rather than on the choice of nondeterministic transitions.
Hence, ECAs are determinizable and closed under Boolean operations.

During the last years, there has been much extensive research on the inclu-
sion problem for timed automata [11, 8, 7]. In particular, it was shown that the
inclusion problem L(A) ⊆ L(B), for timed automata A and B, becomes decid-
able if B has at most one clock [11]. The key idea of the proof is to encode
this inclusion problem as the reachability problem for well-structured transition
systems. However, over infinite timed words, one clock is enough to make the
inclusion problem undecidable [1].
1 http://www.uppaal.com/



A timed pushdown automaton (TPDA) [5] is a timed automaton augmented
with a pushdown stack. Decision problems for TPDAs such as emptiness is de-
cidable [5]. However, the inclusion problem for TPDAs is undecidable, since
the corresponding problem is already undecidable for pushdown automata. One,
therefore, has to deal with formalism of less expressive power. One such candi-
date is the class of visibly pushdown automata (VPAs) [4], in which the stack
pushes and pops are determined explicitly by an input alphabet. VPAs are closed
under all Boolean operations, and the inclusion problem for VPAs is decidable.
Motivated by real-time software verification, Emmi and Majumdar [8] intro-
duced timed visibly pushdown automata (TVPAs) as the timed extension of
VPAs. However, for TVPAs A and B, the inclusion problem L(A) ⊆ L(B) is
undecidable even when B has exactly one clock [8].

In this paper, inspired by the ideas of ECAs [3] and VPAs [4], we introduce the
class of event-clock visibly pushdown automata (ECVPAs). The class of ECVPAs
is expressive enough to specify common context-free real-time properties such as
“if p holds when a procedure is invoked, then the procedure must return within
d time units and q must hold at the return state”. Besides, the class of ECVPAs
is closed under all Boolean operations. Our results are summarized as follows:

– We show the essence behind the notion of event clocks is that every ECVPA
can be translated into an untimed VPA, which interprets timing constraints
symbolically, and vice-versa. Therefore, the closure properties and the de-
cidability results of ECVPAs can be reduced to those of VPAs.

– We use the translation technique to prove that the inclusion problem L(A) ⊆
L(B) for a TVPA A and an ECVPA B is decidable.

– We show that class of duration automata (DAs) [14] is a special case of
ECVPAs. Thus, the inclusion problem for DAs is decidable.
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Fig. 1. Relationships between involved classes of TPDAs

Structure of the paper. In Section 2 we introduce the class of ECVPAs. Sec-
tion 3 shows how to translate ECVPAs into untimed VPAs that express timing
constraints symbolically, and vice-versa. The closure properties and decidability
results of ECVPAs are reduced to those of VPAs. Section 4 presents subcases of
TPDAs with decidable inclusion problems. Section 5 reports some related works.
Finally, we conclude the paper in Section 6.



2 Event-Clock Visibly Pushdown Automata

2.1 Event clocks

In this subsection we give a brief description for event clocks. Readers are referred
to [3] for more details.

Let R+ and Q+ denote the set of non-negative real numbers and non-negative
rational numbers, respectively. Given a finite alphabet Σ, a timed word w̄ over Σ
is a finite sequence (a0, t0)(a1, t1) · · · (an, tn) of symbols ai ∈ Σ that are paired
with nonnegative real numbers ti ∈ R+ such that the sequence t̄ = t0t1 · · · tn of
time-stamps is nondecreasing (i.e., ti ≤ ti+1 for all 0 ≤ i < n). We denote the
timed word w̄ by the pair (ā, t̄), where ā ∈ Σ∗ is an untimed word over Σ. The
set of all finite timed words over Σ is denoted by TΣ∗. A timed language is a
set of timed words.

Definition 1 (Event Clocks [3]). For each symbol a ∈ Σ, we use two implicit
clocks xa (event-recording) and ya (event-predicting). Along a timed word, the
clock xa measures the time since the last occurrence of symbol a, and ya measures
the time to the next occurrence of symbol a. If there are no last (resp., next)
occurrence of a, the value of xa (resp., ya) is “undefined”, denoted by ⊥.

Remark 1. The notation ⊥ denotes the “undefined” value, and the bottom-of-
stack symbol of visibly pushdown automata (defined in the next subsection).

Let CΣ = {xa|a ∈ Σ} ∪ {ya|a ∈ Σ} be the set of event-recording and event-
predicting clocks. Define R+

⊥ = R+ ∪ {⊥} and Q+
⊥ = Q+ ∪ {⊥}.

Definition 2 (Event-clock valuation [3]). For each timed word w̄ = (a0, t0)
(a1, t1) · · · (an, tn), a clock valuation over w̄ is a function νw̄

j : CΣ → R+
⊥ which

specifies the values of the clocks (in CΣ) at position j in w̄.

νw̄
j (xa) =

{
tj − ti If ∃i < j : ai = a, and ∀k : i < k < j ⇒ ak 6= a

⊥ otherwise

νw̄
j (ya) =

{
ti′ − tj If ∃i′ > j : ai′ = a, and ∀l : j < l < i′ ⇒ al 6= a

⊥ otherwise

Definition 3 (Event-clock constraint [3]).

– The clock constraints compare clock values to Q+
⊥, i.e, to rational constants

or to the special value ⊥. The clock constraints over CΣ are interpreted with
respect to the clock-valuation function ν from CΣ to R+

⊥: the atom ⊥ ≤ ⊥
evaluates to True, and all other comparisons that involve ⊥ (e.g., ⊥ ≥ 3)
evaluate to False.

– For simplicity, let Φ(CΣ) denote the set of event-clock constraints over CΣ.
– For the clock-valuation ν and an event-clock constraint ϕ ∈ ΦΣ, we write

ν |= ϕ (resp., ν 2 ϕ) to denote that according to ν the constraint ϕ evaluates
to True (resp., False).



2.2 Event-Clock Visibly Pushdown Automata

A pushdown alphabet is a set Σ = Σc ∪ Σr ∪ Σi that comprises three disjoint
finite alphabets in which Σc is a finite set of calls, Σr is a finite set of returns,
and Σi is a finite set of internal symbols. We formally define event-clock visibly
pushdown automata over the pushdown alphabet Σ as follows:

Definition 4 (Event-clock visibly pushdown automaton). An event-clock
visibly pushdown automaton (ECVPA) on finite timed words over Σ is a tuple
M = 〈Q,Σ,Q0, Γ,∆, F 〉, where Q is a finite set of locations, Q0 ⊆ Q is a finite
set of initial locations, Γ is a finite stack alphabet that contains a special symbol ⊥
(bottom-of-stack symbol), F ⊆ Q is a set of final locations, and ∆ = ∆c∪∆r∪∆i

is the transition relation,

– ∆c ⊆ Q×Σc × Φ(CΣ)×Q× (Γ\{⊥}) is a push-transition relation
– ∆r ⊆ Q×Σr × Φ(CΣ)× Γ ×Q is a pop-transition relation
– ∆i ⊆ Q×Σi × Φ(CΣ)×Q is an internal-transition relation.

The intuition behind the transition relation is briefly explained as follows:

– (q, a, ϕ, q′, γ) ∈ ∆c is a push-transition, where on reading a when the clock
valuation satisfies ϕ the symbol γ is pushed onto the stack and the location
changes to q′.

– (q, a, ϕ, γ, q′) ∈ ∆r is a pop-transition, where on reading a when the clock
valuation satisfies ϕ, γ is popped from the stack, the location q changes to
q′ (if γ =⊥, it is read but not popped).

– (q, a, ϕ, q′) ∈ ∆i is an internal-transition, where the location, on reading
a when the clock valuation satisfies ϕ, changes from q to q′ without stack
operations.

A stack is a nonempty finite sequence from the set St = {w⊥ | w ∈ (Γ \
{⊥})∗} starting with the top symbol on the left, and ending with the symbol ⊥
on the right. The empty stack is the one that only contains the symbol ⊥.

Definition 5. A configuration of an ECVPA M is a pair (q, σ) where q ∈ Q,
and σ ∈ St. For a timed word w̄ = (a0, t0) · · · (an, tn), a run of M on w̄ is a
sequence of configurations ρ = (q0, σ0) · · · (qn+1, σn+1), where qi ∈ Q, σi ∈ St,
q0 ∈ Q0, σ0 =⊥, and for every 0 ≤ i ≤ n one of the following condition holds:

– Push: If ai is a call symbol, then for some γ ∈ Γ , (qi, ai, ϕi, qi+1, γ) ∈ ∆c,
νw̄

i |= ϕi, and σi+1 = γ.σi.
– Pop: If ai is a return symbol, then for some γ ∈ Γ , (qi, ai, ϕi, γ, qi+1) ∈ ∆r,

νw̄
i |= ϕi, and either γ ∈ Γ and σi = γ.σi+1, or γ = σi = σi+1 =⊥.

– Internal: If ai is an internal symbol, then (qi, ai, ϕi, qi+1) ∈ ∆i, νw̄
i |= ϕi,

and σi+1 = σi.

A run ρ is an accepting run if it ends in a final location. A timed word w̄ is
an accepting word if there is an accepting run of M on w̄. The language of an
ECVPA M , denoted by L(M), is the set of all accepting timed words w̄ of M .



Remark 2. An (untimed) visibly pushdown automaton [4] can be seen as an
event-clock visibly pushdown automaton that has no clock constraints on tran-
sitions. In the rest of this paper, we mention a VPA as an ECVPA without
Φ(CΣ) component in the transitions. Note also that a VPA is deterministic if
|Q0| = 1 and, for each configuration (q, σ) and a ∈ Σ, there are at most one
transition from (q, σ) by a. VPAs are determinizable and closed under Boolean
operations [4]. In particular, for a nondeterministic VPA with n states, one can
construct an equivalent deterministic VPA with O(2n2

) states and O(2n2
.|Σc|)

stack symbols. The inclusion problem for VPAs is EXPTIME-complete [4].

We next present some examples of event-clock visibly pushdown automata.

Example 1. It is easy to see that an ECA [3] is an ECVPA that has only internal
symbols, i.e, Σc = Σr = ∅. Thus, the class ECAs is a subclass of ECVPAs.

Example 2. Duration automata (DAs) were studied in [14] for modeling simple
component-based real-time systems. A DA is a finite automaton in which each
transition must occur in an associated time interval. A duration automaton can
be viewed as an one-clock timed automata, where the clock is reset at each
transition. The clock valuations of a DA are also explicitly determined by the
input timed word. Therefore, the class of DAs can be seen as a special subclass
of ECAs, and thus DA is a subclass of ECVPAs.

q0 q1 q2 q3

a, Z , yc < 50

a, Z, xa < 2

b, Z , x
a
 < 2

b, Z , x
b
 < 2

 c ,       , xb < 2⊥

Fig. 2. Event-clock visibly pushdown automaton M

Example 3. Let a be a push. Let b, c be pops, and Z be a stack symbol. The
ECVPA M of Figure 1 uses two event-recording clocks xa and xb, and an event-
predicting clock yc. The transitions of M are given as follows:

– Push: (q0, a, yc < 50, q1, Z), (q1, a, xa < 2, q1, Z).
– Pop: (q1, b, xa < 2, Z, q2), (q2, b, xb < 2, Z, q2), (q2, c, xb < 2,⊥, q3).

We describe locations of M as nodes of a graph. We adopt the following conven-
tions to represent edges: for instance, a push-transition (qi, a, φ, qj , Z) is labeled
as a,→ Z, φ; a pop-transition (qi, b, φ, Z, qj) is labeled as b, Z →, φ.

The clock constraint yc < 50 that is associated with the edge from q0 to q1

ensures that c occurs within 50 time units of the first a. The constraint xa < 2



that is associated with the edge from q1 to q2 makes sure that the first b occurs
within 2 time units of the last a.

The automaton M accepts the set of input timed words: L(M) = {(ᾱ, t̄) | ᾱ =
anbnc, n ∈ N+, ti+1 < ti+2.∀(1 ≤ i ≤ 2n); t2n+1−t1 < 50}. This timed language,
however, cannot be accepted by any timed automaton [2].

q
0

q
1

x := 0
q

2

aa a

aa

x = 1

Fig. 3. One clock timed automaton A

The next example shows that ECVPA and timed automata are incomparable.

Example 4. Consider the timed language:
L = {(an, t̄) | n ≥ 2, tj − ti = 1, for some 0 ≤ i < j < n}

The language L can be accepted by a nondeterministic one-clock timed automa-
ton (1-TA) A in Figure 3. This language, however, cannot be accepted by any
ECVPA.

Definition 6. An ECVPA M = 〈Q,Σ,Q0, Γ, δ, F 〉, is deterministic if |Q0| ≤ 1
and for every q ∈ Q, and for every clock valuation ν:

– if (q, a, ϕ1, q1) ∈ ∆i and (q, a, ϕ2, q2) ∈ ∆i, then ν 2 ϕ1 ∧ ϕ2.
– if (q, b, ϕ1, q1, γ1) ∈ ∆c and (q, b, ϕ2, q2, γ2) ∈ ∆c, then ν 2 ϕ1 ∧ ϕ2.
– if (q, c, ϕ1, γ, q1) ∈ ∆r and (q, c, ϕ2, γ, q2) ∈ ∆r, then ν 2 ϕ1 ∧ ϕ2.

The determinism condition ensures that at each step during a run, the
choice of the next transition is uniquely determined by the current location
of the ECVPA, the input word, the current stack content, and the current clock-
valuation of the ECVPA along the input word. It is easy to check that every
deterministic ECVPA has at most one run over any given timed input word.

3 Properties of Event-Clock Visibly Pushdown Automata

3.1 Untimed/Timed Translation between ECVPA and VPA

Similar to the case for event clock automata [12], we show in this section that an
arbitrary ECVPA can be translated into an untimed VPA that interprets timing
constraints symbolically and exhibits the same behaviors, and vice-versa.

In particular, for a given ECVPA M , let B = {r0, r1, ..., rn} be a finite set
of constants appearing in the clock constraints of M . Without loss of generality,
let us assume that 0 = r0 < r1 < · · · < rn. We define Intv = {[⊥,⊥]} ∪
{[ri, ri], (ri, ri+1) | 0 ≤ i < n} ∪ {[rn, rn], (rn,∞)}.



Definition 7. An interval alphabet based on Σ is the set Π = Σ × Intv|CΣ |.
We have |Π| = |Σ| × |Intv||CΣ | = |Σ| × (2rn + 1)|CΣ |.

Elements of an interval alphabet are of the form (a, g) with a ∈ Σ and
g : CΣ → Intv. The component g is called guard, and it is used to represent the
timing constraint:

∧
x∈CΣ

x ∈ g(x).

Definition 8. Define a function tw : Π∗ → 2TΣ∗ where for each α = (a0, g0) · · ·
(an, gn) ∈ Π∗, we have:
tw(α) = {w̄ | w̄ = (a0, t0) · · · (an, tn), ∀x ∈ CΣ , ∀i(1 ≤ i ≤ n) : νw̄

i (x) ∈ gi(x)}.
The untimed translation technique is formalized in the next definition:

Definition 9 (Untimed Transformation). Let M = 〈Q, Σ, Q0, Γ, ∆, F 〉 be
an ECVPA. We define a VPA ut(M) = 〈Q,Π, Q0, Γ,∆′, F 〉 in which for each
transition e of M with the input symbol a and the clock constraint ϕ, there exists
a natural number k such that e is translated to transitions of ut(M) as follows:

– the interval input symbols are (a, gi) ∈ Π, i = 1 · · · k, and
– ϕ is equivalent to

∨
i=1..k(

∧
x∈CΣ

x ∈ gi(x)).

Example 5. Consider a transition e = (q, a, xa < 10, q′) of M . Suppose that M
mentions constants 5 and 10. We have Intv = {[0, 0], (0, 5), [5, 5], (5, 10), [10, 10],
(10,∞), [⊥,⊥]}. The transition e will be translated to parallel transitions in
ut(M) as below:

(q, (a, [0, 0]), q′), (q, (a, (0, 5)), q′), (q, (a, [5, 5]), q′), (q, (a, (5, 10)), q′).

Note that this translation preserves determinism. Similar to the case for event-
clock automata [12], the next lemma holds:

Lemma 1. tw(L(ut(M))) = L(M) for all ECVPAs M . Moreover, if M is a
deterministic ECVPA, then ut(M) is a deterministic VPA.

The reverse of the translation is described in the next definition.

Definition 10 (Timed Transformation). Let N = 〈Q,Π, Q0, Γ,∆′, F 〉 be a
VPA. We define an ECVPA ec(N) = 〈Q, Σ, Q0, Γ, ∆, F 〉 such that each tran-
sition of N with the interval input symbol (a, g) is translated to a transition of
ec(N) whose input symbol is a and the clock constraint is ϕ =

∧
x∈CΣ

x ∈ g(x).

Example 6 (Continued from Example 5). Now, suppose that we want to translate
the VPA ut(M) in Example 5 to an ECVPA. The transitions of ut(M) are
translated back to the following transitions:

(q, a, xa = 0, q′), (q, a, 0 < xa < 5, q′), (q, a, xa = 5, q′), (q, a, 5 < xa < 10, q′).

Observe that this translation also preserves determinism.



For the timed translation, we get the following lemma:

Lemma 2. L(ec(N)) = tw(L(N)) for all VPA N . Moreover, if N is determin-
istic VPA, then ec(N) is a deterministic ECVPA.

Proof. – For α = (a0, g0) · · · (an, gn) ∈ L(N), let ρ = (q0, σ0) · · · (qn+1, σn+1)
be a run of N on α. If w̄ = (a0, t0) · · · (an, tn) ∈ tw(α), then ρ is also a run
of ec(N) on w̄. Thus, tw(L(N)) ⊆ L(ec(N)).

– Conversely, let w̄ = (a0, t0) · · · (an, tn) ∈ L(ec(N)). There is an accepting
run ρ = (q0, σ0) · · · (qn+1, σn+1) of ec(N) on w̄, qn ∈ F . Based on the timed
translation, there is an untimed word α = (a0, g0) · · · (an, gn) ∈ Π∗ such that
w̄ ∈ tw(α), and ρ is also a run of N on α. Thus, L(ec(N)) ⊆ tw(L(N)).

ut
The next theorem immediately follows from Lemmas 1 and 2.

Theorem 1. L(ec(ut(M))) = L(M) for all ECVPAs M .

3.2 Closure Properties and Inclusion Problem

From Theorem 1 and the decidability results of VPAs [4], the following theorems
hold:

Lemma 3 (Determinization). For any nondeterministic ECVPA M , there is
a deterministic ECVPA Det(M) such that L(Det(M)) = L(M). Moreover, if
M has n locations, we can construct Det(M) with O(2n2

) locations and O(2n2 ·
|Σc| · (2r)2|Σ|) stack symbols, where r is the largest constant appearing in the
clock constraints of M . The set of clocks of Det(M) coincides with that of M .

Theorem 2 (Closure properties). The class of ECVPAs is closed under
union, intersection, and complementation.

Theorem 3 (Language Inclusion). The inclusion problem for ECVPAs is
EXPTIME-complete.

Proof. Consider two ECVPAs A and B such that each automaton has at most
n locations, let m be the size of the input alphabet. Let c be the largest integer
constant that appears in the clock constraints. To check whether L(A) ⊆ L(B),
we first untimed translate B to a VPA B1, determinize B1 to B2, and then timed
translate B2 to an ECVPA B′. The automaton B′ has 2n2+n locations. Let M
be the product of A and B′. The ECVPA M has n.2n2+n locations, and the
integer constants that appear in the clock constraints of M are also bounded
by c. Now, we can construct a VPA ut(M), and check for its emptiness. Since
checking emptiness of VPA is cubic time proportional to its size, it follows that
emptiness of ut(M) can be checked in EXPTIME. The proof of hardness is the
same as the proof for VPA [4].

ut
Remark 3. Büchi VPAs are closed under union, intersection, and complementa-
tion [4]. By using a similar technique, we also can translate Büchi ECVPA to
Büchi VPA, and vice-versa. Therefore, the result of Theorem 3 can be extended
to the case of Büchi ECVPA.



4 Related Classes of Timed Pushdown Automata

4.1 Timed Visibly Pushdown Automata

Let X = {x1, ..., xn} be a finite set of clocks. Define the set Φ(X) of clock
constraints over X by the grammar:

ϕ ::= > | x ./ c | ¬ϕ | ϕ1 ∧ ϕ2,
where c ∈ Q+, x ∈ X, ./ ∈ {<,≤,≥, >}.
For the set of clocks X, a clock valuation is a function ν : X → R+ which

describes the values of each clock x ∈ X at an instant. For the clock valuation ν
and a clock constraint ϕ, we write ν |= ϕ to denote that ν satisfies the constraint
ϕ. Given a set of clocks λ ⊆ X and a clock valuation ν, let ν ↓ λ be a clock
valuation defined as follows:

(ν ↓ λ)(x) =

{
0 when x ∈ λ

ν(x) otherwise
(1)

Given a clock valuation ν and a time t ∈ R+, define (ν + t)(x) = ν(x) + t.

Definition 11 (Timed Visibly Pushdown Automaton [8]). A timed visi-
bly pushdown automaton (TVPA) over pushdown alphabet Σ is a tuple M =
(Q,Σ, Q0, Γ, X, δ, F ), where Q is a finite set of locations, Q0 ⊆ Q is a finite set
of initial locations, Γ is a finite stack alphabet that contains ⊥, F ⊆ Q is a set
of final locations, X is a finite set of clocks, and δ = δc ∪ δi ∪ δr is the transition
relation:

– δc ⊆ Q×Σc × Φ(X)×Q× (Γ \ {⊥})× 2X is the push-transition relation
– δr ⊆ Q×Σr × Γ × Φ(X)×Q× 2X is the pop-transition relation
– δi ⊆ Q×Σi × Φ(X)×Q× 2X is the internal-transition relation.

Let ν be a clock valuation. We briefly explain the intuition behind the tran-
sitions of a TVPA as follows:

– A push-transition (q, a, φ, q′, γ, λ) is a move on the (call) input symbol a from
q to q′ where ν satisfies φ, the clock valuation is updated from ν to ν ↓ λ,
and γ is pushed on the stack.

– A pop-transition (q, a, γ, φ, q′, λ) is a move on the (return) input symbol a
and stack symbol γ, from q to q′ where φ is satisfied and ν is updated to
ν ↓ λ, and γ is popped from the stack (if the top of stack is ⊥, then it is
read but not popped).

– An internal-transition (q, a, φ, q′, λ) ∈ δ at clock valuation ν is a move on
the (internal) input symbol a from the location q to q′ such that ν |= φ and
the resulting clock valuation ν′ = ν ↓ λ.

Remark 4. There are clock reset conditions λ in the transitions of TVPAs. Thus,
unlike the case of ECVPAs, the clock valuations of TVPAs not only depend on
input timed words but also on transitions of TVPAs.



Definition 12. A configuration of a TVPA M is a triple (q, ν, σ), where q ∈ Q,
σ ∈ St, and ν is a clock valuation. Given a timed word w̄ = (a0, t0) · · · (an, tn), a

run of M on w̄ is a sequence of configurations ρ = (q0, ν0, σ0)
(a0, t0)−−−−→ (q1, ν1, σ1)

· · · (an, tn)−−−−−→ (qn+1, νn+1, σn+1), where q0 ∈ Q0, σ0 = ⊥, and for every 1 ≤ i ≤ n,
one of the following conditions holds:

– Push: (qi, ai, φi, qi+1, γ, λ) ∈ δ, νi |= φi, νi+1 = (νi ↓ λ) + (ti+1 − ti), and
σi+1 = γσi

– Pop: (qi, ai, γ, φi, qi+1, λ) ∈ δ, νi |= φi, νi+1 = (νi ↓ λ) + (ti+1 − ti), and
γσi+1 = σi or γ = σi+1 = σi = ⊥,

– Internal: (qi, ai, φi, qi+1, λ) ∈ δ, νi |= φi, νi+1 = (νi ↓ λ) + (ti+1 − ti), and
σi+1 = σi

A run ρ is an accepting run if it ends in a final state. A timed word w̄ is
accepting if there is an accepting run of M on w̄. The language L(M) is the set
of timed words accepted by M . It is easy to see that TVPAs is a subclass of
timed pushdown automata (TPDA) [5], and a superclass of timed automata [2].
Indeed, a TVPA is a timed automaton if Σc = Σr = ∅. Unlike ECVPA, TVPA
are not determinizable and not closed under complementation. Moreover, the
next theorem was proved by Emmi and Majumdar [8].

Theorem 4 (Language inclusion [8]). The inclusion problem L(A) ⊆ L(B),
where A is a TVPA and B is a TVPA with at least one clock, is undecidable.

4.2 Translation from ECVPA to TVPA

As shown in [3], every ECA can be translated into a timed automaton that
accepts the same timed language. There the basic idea of the translation can be
described as follows:

Definition 13 (Translating event-clocks to original clocks [3]). An event-
recording clock xa can be seen as an original clock that is reset on a transition e
if the input symbol of e is a. For event-predicting clocks, consider a given ECA
A and the set of all atomic event-predicting clock constraints (denoted by ΦA) of
the form ya = ⊥ or ya ∼ c, where ∼∈ {≤, <, >,≥}. Define a nondeterministic
timed automaton B as follows:

– The states of the target timed automaton B are the pairs (q, Ψ) with q ∈ QA

and Ψ ⊆ ΦA.
– The state (q, Ψ) is an initial state of B iff q is the initial state of A and Ψ

does not contain a constraint of the form ya ∼ c.
– The state (q, Ψ) is a final state of B iff q ∈ FA and Ψ = {ya = ⊥}.
– For each ψ ∈ ΦA, B has a clock zψ. A prediction ya ∼ c, along a transition

in A, on the time difference to the next occurrence of a is replaced in B by a
constraint on the clock z(ya∼c): the clock z(ya∼c) is reset when the prediction
is performed, and its value is checked by the constraint z(ya∼c) ∼ c when the
next a occurs.



Similarly, by using the above translation of the event clocks to the original
clocks, the next lemma holds:

Lemma 4. Every ECVPA can be translated into a TVPA that accepts the same
timed language.

We now arrive at the main theorem of this paper:

Theorem 5 (Language Inclusion). The inclusion problem L(A) ⊆ L(B),
where A is a TVPA and B is an ECVPA, is decidable.

Proof. L(A) ⊆ L(B) ⇐⇒ L(A) ∩ L(B)c = ∅. We first determinize B and then
compute its complement Bc. Second, translate the ECVPA Bc into a TVPA
B′. Note that L(B′) = L(B)c. Third, take the intersection of A and B′, and
check for emptiness of L(A ∩ B′). Similar to Theorem 3, the complexity of this
inclusion checking is EXPTIME-complete.

ut

5 Related Works

Ouaknine and Worrell [11] proved that when B has at most one clock, the in-
clusion problem L(A) ⊆ L(B) can be encoded as the reachability problem for
well-structured transition systems [9]. Thus, the inclusion problem for timed au-
tomata becomes decidable when B has at most one clock. However, over infinite
timed words, one clock is enough to make the inclusion problem undecidable [1],
since this problem can be reduced from the space-bounded recurrent-state prob-
lem for alternating channel machines.

The closest related works is the paper of Emmi and Majumdar [8]. There
they extended the proof technique of [11], and showed that the inclusion problem
L(A) ⊆ L(B) is decidable if A is a TPDA, and B is a TA with at most one clock.
However, for TVPAs A and B, the inclusion problem is undecidable even B has
exactly one clock [8]. In this paper, we have shown that when A is a TVPA and
B is an ECVPA, the inclusion problem L(A) ⊆ L(B) become decidable.

A decidable subclass of real-time logic so-called EventClockTL, which corre-
sponds to event-clock automata, was presented in [10]. Furthermore, DSouza [12]
showed that the class of event-clock automata admit a logical characterization
via a monadic second order logic interpreted over timed words. The proof tech-
nique is based on the untimed translation, as in Definition 9, that transform an
event-clock automaton to a finite automaton.

6 Conclusion

In this paper, we have introduced the class of ECVPAs by combining the ideas of
ECAs [3] and VPAs [4]. We showed that the class of ECVPAs enjoys good closure
properties and decidability results. We also showed that the inclusion problem



L(A) ⊆ L(B), where A is a TVPA and B is an ECVPA, is decidable. This
provide an algorithm for checking if a TVPA meets a specification that is given
as an ECVPA. We hope that the class of ECVPA will be useful for verification of
recursive real-time programs. For future work, it would be interesting to study
a logical charaterization of the class ECVPAs.
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