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This paper demonstrates the generation of a linear-time query-answering algorithm

based on the constructive proof of Higman’s lemma by Murthy and Russell (A constructive

proof of Higman’s lemma, 5th IEEE Symposium on Logic in Computer Science, 1990).

The target problem is linear-time evaluation of a fixed disjunctive monadic query on

an indefinite database over linearly ordered domains, first posed by van der Meyden (The

complexity of querying indefinite information about linearly ordered domains, in 11th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1992). Van

der Meyden showed the existence of a linear-time algorithm, but an explicit construction

has, until now, not been reported.
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1. INTRODUCTION

Temporal databases, databases of events in an ordered domain, have attracted
attention since the early 90’s, and the complexity of evaluating various queries
on such databases has been analyzed [1, 10]. One important issue is an efficient
algorithm for a query on an indefinite data over a linearly ordered domain, i.e., effi-
ciently answering a query as to whether all possible models of incomplete (partial)
information satisfy it. Ref. [20] gives the nice overview of the applications.

In general, query answering on an indefinite database is a hard problem by any
measure: combined complexity, expression complexity, and data complexity [21].
Combined complexity is complexity in the usual sense, expression complexity is the
complexity when the database is fixed, and data complexity is the complexity when
the query is fixed. The complexity of query answering using a search engine on the
Web would be measured using expression complexity, and the complexity of finding
the best-fit gene to several characteristic alignments would be measured using data
complexity.

Van der Meyden estimated the precise complexity of query answering on an
indefinite database, as illustrated in Table 1 [20]. The table includes the answer to
an open problem that the combined complexity of evaluating a conjunctive (n-ary)
query containing inequalities is Πp

2-complete [9].
He also investigated tractable subclasses and demonstrated that the restriction

to monadic queries on monadic indefinite databases reduces the complexity dras-
tically, as shown in Table 2. While the class of monadic queries is restrictive, still
contains nontrivial problems, such as a comparison between two gene alignments
(assuming C,G,A, and T to be monadic predicates).
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TABLE 1
Complexity of query answering on an indefinite database

Complexity type
Combined Expression Data

Πp
2-complete NP-complete co-NP-complete

TABLE 2
Complexity of monadic query answering on monadic indefinite databases

Complexity type
Combined Expression Data

co-NP-complete linear linear

He showed explicit constructions of algorithms for combined and expression
complexity; however, for data complexity of a fixed monadic disjunctive query, he
only proved the existence of a linear-time algorithm. His (non-constructive) proof
is based on Higman’s lemma, which states that the embedding relation over finite
words is a well-quasi-ordering (WQO). With a WQO, minimal elements of any set
are guaranteed to be finitely many, and the linear-time algorithm is reduced to a
comparison using these finitely many minimal elements (called minors).

This situation frequently appears in upper bound complexity estimation based
on WQO techniques. For instance, the graph minor theorem states that the em-
bedding relation on finite graphs is a WQO [16], implying the existence of square
time algorithms [14] for a wide range of graph problems [4, 17, 13]. While one could
compute minors by brute force, one could not tell whether all had been found. For-
tunately, we can apply constructive proofs of Higman’s lemma [11, 15, 2] in our
setting; the intuition tells us that the Curry-Howard isomorphism automatically
realizes a linear-time algorithm.

In this paper, the generation of a linear-time query-answering algorithm for a
fixed disjunctive monadic query on an indefinite database over a linearly ordered
domain is described. This problem was first posed by van der Meyden [20], and
its solution has, until now, not been reported. Our method effectively computes
the minors for a given disjunctive monadic query, using the regular expression-like
techniques in Murthy and Russell’s constructive proof of Higman’s lemma [11], thus
leading to a linear-time query-answering algorithm.

This paper is organized as follows: Section 2 briefly outlines the problem. Sec-
tion 3 reviews the results of query answering on an indefinite database [20]. Section
4 gives the constructive proof of Higman’s lemma [11] and its variation. Section
5 describes how to generate a linear-time algorithm for fixed disjunctive monadic
query answering on an indefinite database. Section 6 concludes with a brief sum-
mary and a look at future directions.
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2. OVERVIEW

In this section, so the reader may get a basic understanding of the target prob-
lem, we introduce a simpler version. A complete description is included in Section
3.

Let x and y be lists of symbols P,Q,R, · · ·, and let sublst(x, y) be a predicate
that returns true if x is a sublist of y. It returns false otherwise. More rigorously,
if, and only if, there is an order-preserving one-to-one map from the elements in x
to those in y, sublst(x, y) is true; otherwise it is false. For instance,

sublst([P, P,Q,R], [P,Q, P,Q,Q, P,R]) = true,

but
sublst([P, P,Q,R], [P,Q,R,Q,Q, P,R]) = false.

Given a list x, consider an easy query, which corresponds to a sequential query
described in Section 3.2.

• Input: A finite set of lists ȳ(= {y1, · · · , yt}).

• Output: A decision as to whether sublst(x, z) holds for each list z with
∧t

j=1sublst(yj, z).

This query can be regarded as follows. We have partial information about
events, and this partial information is represented as a set of lists, yj ’s. Can we
then decide whether there is an event sequence that can be represented as x?

This query is answered simply by computing sublst(x, yj) for each yj , and if
some sublst(x, yj) returns true, it holds; otherwise, it does not.

Now consider two extensions: (simplified versions of) a conjunctive query and
a disjunctive query. The conjunctive query is formalized as follows: fix a finite
number of lists, x1, · · · , xs.

• Input: A finite set of lists ȳ(= {y1, · · · , yt}).

• Output: A decision as to whether ∧s
i=1sublst(xi, z) holds for each list z with

∧t
j=1sublst(yj, z).

This is still easy. The query is decomposed into a check on each xi, i.e., whether
for each xi, sublst(xi, yj) for some yj holds [20].

However, the disjunctive query is much harder. It is formalized as follows: fix
a finite number of lists, x1, · · · , xs.

• Input: A finite set of lists ȳ(= {y1, · · · , yt}).

• Output: A decision as to whether ∨s
i=1sublst(xi, z) holds for each list z with

∧t
j=1sublst(yj, z).

Finding an efficient solution (a linear-time algorithm) for this query is not as
easy as it appears.

Example 1. Consider x1 = [P,Q,R], x2 = [Q,R, P ], and x3 = [R,P,Q]. This
holds for y1 = [P,Q, P ] and y2 = [R,P ], even though none of the xi’s and yj ’s hold
for sublst(xi, yj).
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Of course, if one computes every possible combination of z (which is computed
by interleaving the yi’s), a decision is possible, but this requires an exponential
amount of time. For instance, for lists y1, · · · , yt of lengths n1, · · · , nt, the number
of combinations is (n1 + · · · + nt)!/(n1! × · · · × nt!), which grows exponentially.

The aim here is to generate a linear-time algorithm for a given disjunctive
query. In my method, suitable finite set M of finite sets of lists, called minors cor-
responding to the given xi’s, is generated. Namely, for the example x1 = [P,Q,R],
x2 = [Q,R, P ], and x3 = [R,P,Q] above,

M =




{[P,Q,R]}, {[Q,R, P ]}, {[R,P,Q]}, {[P,Q], [Q,R], [R,P ]},
{[P,Q, P ], [Q,R]}, {[Q,R,Q], [R,P ]}, {[R,P,R], [P,Q]},
{[P,R, P ], [Q,R]}, {[Q, P,Q], [R,P ]}, {[R,Q,R], [P,Q]},
{[P,Q, P,Q], [R]}, {[Q,R,Q,R], [P ]}, {[R,P,R, P ], [Q]},
{[Q, P,Q, P ], [R]}, {[R,Q,R,Q], [P ]}, {[P,R, P,R], [Q]}



.

The disjunctive query for input ȳ reduces to whether there is minor m̄ in M such
that for each m ∈ m̄ there is a yj satisfying sublst(m, yj).

By Higman’s lemma (and its variation), minors are guaranteed to be finitely
many. This shows the existence of a linear-time algorithm. However, the generation
of minors is a different matter. When generating minors, the most difficult aspect
is knowing whether all have been found. To know this, we apply the special regular
expressions, called sequential r.e.’s, used in Murthy and Russell’s constructive proof
of Higman’s lemma [11]. Then, as the minors are generated, we explicitly compute
the remaining candidates of minors, which are represented by finite sets of sequential
r.e.’s. We eventually find that there are no remaining candidates, meaning that all
the minors have been found.

3. MONADIC QUERY ON INDEFINITE DATABASE

3.1. Indefinite database over linearly ordered domains

Our target problem is the explicit construction of a linear-time algorithm to an-
swer a fixed disjunctive monadic query on an indefinite database. Van der Meyden
posed the following problem [20] :

In a fixed disjunctive monadic query, there is an algorithm answering the
query, which is linear wrt the size of the indefinite database over a linearly
ordered domain. What is the algorithm?

In this section, we briefly review his results. The details are given elsewhere [20].
Proper atoms are of the form P (t), where P is a predicate symbol, and t is a

tuple of constants or variables. Order atoms are of the form u < v or u ≤ v, where
u and v are constants or variables. The atoms are either proper atoms or order
atoms. We do not assume the unique name assumption, i.e., different constants
may represent the same point in a linearly ordered domain.

Indefinite database D is a set of ground atoms. Model M of D is a linearly
ordered domain (such as time) satisfying D. More rigorously, the set of models of
D is

ModO(D) = {M | M |= D and <M is of type O},
where O is a class of linear order types, typically finite linear orders (Fin), linear
orders isomorphic to integers (Z), and dense linear orders isomorphic to the ratio-
nals (Q). Van der Meyden showed that these order types do not affect the result,
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M |= D (see Corollary 2.9 in Ref. [20]); thus we consider only the order type Fin.
We regard D as a collection of partial facts over a linearly ordered domain and thus
refer to it as indefinite.

A disjunctive query (or, simply a query) is a positive existential first-order clause
constructed from proper and order atoms using only ∃, ∧, and ∨. A conjunctive
query is a first-order clause constructed from proper atoms and order atoms using
only ∃ and ∧. We assume that queries are expressed in disjunctive normal forms,
i.e., disjunctions of conjunctive queries. Each conjunctive query in a disjunctive
normal form is called a conjunctive component. For indefinite database D and
query ϕ, we define D |= ϕ if ϕ is valid in any model of D.

Hereafter, we focus on monadic queries (i.e., the database and queries contain
only monadic predicate symbols, except for < and ≤). A predicate symbol is
monadic if its arity is less than or equal to one. Without loss of generality, we can
assume that a monadic query does not contain constants, i.e., if query ϕ contains
constant u, then u ∈ ϕ is replaced with x, ϕ is replaced with ∃x [Pu(x) ∧ ϕ], and
Pu(u) is added to the database with a new predicate symbol, Pu.

The next example formalizes Example 1 in terms of monadic queries on an
indefinite database.

Example 2. Let D = {P (a), Q(b), P (c), a < b < c,R(d), P (e), d < e}, and let
ϕ = ψ1 ∨ ψ2 ∨ ψ3, where




ψ1 = ∃xyz[P (x) ∧Q(y) ∧R(z) ∧ x < y < z],
ψ2 = ∃xyz[Q(x) ∧R(y) ∧ P (z) ∧ x < y < z], and
ψ3 = ∃xyz[R(x) ∧ P (y) ∧Q(z) ∧ x < y < z].

As a result, D |= ϕ. Note that D �|= ψ1, D �|= ψ2, and D �|= ψ3.

3.2. Conjunctive monadic query on indefinite database

Definition 1. A conjunctive query is sequential if its form is

∃x1x2 · · ·xn [P1,1(x1)∧· · ·∧P1,k1(x1)∧P2,1(x2)∧· · ·∧Pn,kn(xn)∧ x1r1x2r2 · · · rn−1xn],

where r1, · · · , rn−1 ∈ {<,≤}.

For instance, ψ1, ψ2, and ψ3 in Example 2 are sequential. Note that each con-
junctive query ψ can be transformed into conjunction ψ1 ∧ · · · ∧ ψm of sequential
queries ψi’s such that D |= ψ if, and only if, D |= ψ1 ∧ · · · ∧ ψm for each database
D. We denote the set of all finite subsets of set X by F(X), and the set of all
non-empty subsets of set X by P(X).

Definition 2. Let Pred be a set of monadic predicates, and let Σ = P(Pred).
We define set FW (Σ)(= Σ · ({<,≤} ·Σ)∗) of flexi-words over Pred to be the set of
all finite sequences of the form

a1r1a2r2 · · · rn−1an,

where for each i, ai ∈ Σ and ri ∈ {<,≤}.

For sequential query ψ, we denote the set of predicates that hold at point x
by ψ[x]. Similarly, for database D and model M , we denote the set of predicates
that hold at point t by D[t] and M [t], respectively. Then, up to variable renaming,
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sequential monadic query ψ corresponds to flexi-word ψ[x1]r1ψ[x2]r2 · · · rn−1ψ[xn]
in FW (Σ). For instance,

∃x1x2x3 [P (x1) ∧Q(x1) ∧ P (x2) ∧R(x3) ∧ x1 < x2 < x3]

corresponds to {P,Q} < {P} < {R} with Ψ[x1] = {P,Q}, Ψ[x2] = {P}, and
Ψ[x3] = {R}. Similarly, a model corresponds to a flexi-word.

This correspondence is naturally extended to conjunctive queries, i.e., corre-
spondence from a conjunctive query to a finite set of flexi-words in F(FW (Σ)).
For instance,

∃x1x2x3 [P (x1) ∧Q(x1) ∧ P (x2) ∧R(x3) ∧ x1 < x2 < x3]
∧ ∃x1x2x4 [P (x1) ∧Q(x1) ∧ P (x2) ∧ S(x4) ∧ x1 < x2 ≤ x4]

corresponds to { {P,Q} < {P} < {R}, {P,Q} < {P} ≤ {S} }. If ψ is a conjunctive
monadic query, a path in ψ is a maximal (wrt implication) sequential subquery of
ψ. We use the expression Paths(ψ) for the subset of FW (Σ) corresponding to the
paths of ψ. Similarly, database D corresponds to a finite set of flexi-words, and
we use the expression Paths(D).

Lemma 1. Let D be a monadic database and ψ be a conjunctive monadic query.
Then, D |= ψ if, and only if, D |= p for every path p ∈ Paths(ψ).

Let P1, P2, · · · , Pn be either proper or order atoms. By regarding indefinite
database D = {P1, P2, · · · , Pn} as conjunctive monadic formula P1 ∧ P2 ∧ · · · ∧ Pn,
the paths of the database are similarly defined. We denote the set of paths of D as
Paths(D).

We switch at our convenience among presentations of flexi-words such as models
and sequential queries and among those of finite sets of flexi-words such as databases
and conjunctive queries. For instance, we define the order |= on flexi-words and
|=m on finite sets of flexi-words by freely interchanging the presentations.

Definition 3. For flexi-words p and q, if p holds in q by interpreting q as a
model and p as a sequential query, we write q |= p.

For finite sets a and b of flexi-words, if for each flexi-word p ∈ a there is a
flexi-word q ∈ b such that q |= p, we write b |=m a.

Lemma 2. Let ψ be a sequential query and {p} = Paths(ψ). D |= ψ if, and
only if, there is path q ∈ Paths(D) such that q |= p.

From Lemmas 1 and 2, the next corollary is immediate.

Corollary 1. Let ψ be a conjunctive query. Then, D |= ψ if, and only if,
Paths(D) |=m Paths(ψ).

Note that the number of paths in an indefinite database can grow exponentially
wrt the size of the database. For instance, consider the indefinite database

{
P (a1), · · · , P (an), Q(b1), · · · , Q(bn), R(c1), · · · , R(cn),
a1 < b1 < · · · < an < bn, a1 < c1 < · · · < an < cn

}
.

It has 2n paths, as shown in Fig. 1. Nevertheless, a conjunctive monadic query on
an indefinite database can be answered in linear-time.

Lemma 3. For sequential query p, D |= p is decided in time O(|D| · |p| · |Pred|).
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FIG. 1 Example of exponential growth in number of paths

1: begin
2: if p is empty then return true;
3: if D is empty then return false;
4: if p = ap′ and there is minimal constant t

with a �⊆ D[t] then return SEQ(D \ {t}, p);
5: if p = a < p′ then return SEQ(D \ Pref(D), p′);
6: if p = a ≤ p′ then return SEQ(D, p′);
7: end

FIG. 2 Linear-time recursive procedure SEQ(D, p) to decide D |= p

The algorithm is given in Fig. 2. In it, for database D and constant t, D \ {t}
means the database consisting of all atoms in D except for those containing t.
Pref(D) is the set of atoms in D corresponding to all <-free prefixes of flexi-words
in Paths(D).1 Thus, the next theorem holds.

Theorem 1. (Corollary 4.4 in Ref. [20]) For fixed conjunctive monadic query
ϕ, D |= ϕ for monadic database D is decided in linear-time (wrt the size of D).

3.3. Disjunctive monadic query on indefinite database

Let ϕ = ψ1 ∨ψ2 ∨· · · ∨ψt, where each ψi is a conjunctive query. For disjunctive
query ϕ, D �|= ψi for each i does not refer to D �|= ϕ, as shown in Example 2. This
makes it difficult to decide whether D |= ϕ. For the indefinite databases D1 and
D2, we define

D1 � D2 if Paths(D2) |=m Paths(D1).

Lemma 4. For any disjunctive monadic query ϕ, if D1 |= ϕ and D1 � D2,
D2 |= ϕ.

A quasi order (QO) (Σ,≤) is a reflexive and transitive binary relation on Σ.

Definition 4. For a QO (Σ,≤), sequence x1, x2, x3, · · · (either finite or infinite)
is bad if xi �≤ xj for all i, j with i < j. A (Σ,≤) is a WQO if all infinite sequences
x1, x2, x3, · · · in Σ are not bad (i.e., there exist i and j such that i < j and xi ≤ xj).
When Σ is clear from the context, we simply denote the WQO as ≤.

The next lemma is immediate from the definition and is the key to the existence
of a linear-time algorithm.

1Van der Meyden called this a minor [20], but to avoid confusion in terminology in Section 5,
we denote it by Pref(D).
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Lemma 5. Let (Σ,≤) be a WQO. Any non-empty subset X of Σ has a finite
set of (inequivalent) minimal elements, which are called minors of X.

Based on Lemma 4, the set of indefinite databases that satisfy fixed disjunctive
query ϕ is upward closed wrt �. Thus, the problem of judging whether D |= ϕ
is reduced to a comparison of D with minimal (wrt �) indefinite databases {Di}
with Di |= ϕ. Van der Meyden showed that |= over flexi-words is a WQO, so |=m

over finite sets of flexi-words is also a WQO (Lemma 6.3 [20]), assuming that Pred
is finite.2 Elements in the Pred of interest are elements in the monadic queries.
Thus, without loss of generality, we can assume that Pred is finite, and that � is a
WQO. This means that minimal indefinite databases {Di} are finitely many from
Lemma 5.

The next theorem follows by regarding conjunctive query ψi as a query with
Paths(ψi) = Paths(Di). Note that this query is unique up to variable renaming.

Theorem 2. We fix disjunctive monadic query ϕ. There are finitely many
conjunctive queries {ψi} such that D |= ϕ if, and only if, D |= ψi for some i.

From Theorems 1 and 2, the next corollary immediately follows.

Corollary 2. (Theorem 6.5 in Ref. [20]) We fix disjunctive monadic query ϕ.
There is a linear-time algorithm that can decide D |= ϕ for monadic database D.

This corollary means that the data complexity is linear. From Lemma 3, the
expression complexity is also linear (with the explicit construction of a linear-time
algorithm), though the combined complexity remains co-NP.

Note that Corollary 2 only states the existence of a linear-time algorithm.
The construction, which is reduced to the generation of all the minimal indefinite
databases wrt � (or, characteristic queries), will be described in Section 5.

4. CONSTRUCTIVE PROOF OF HIGMAN’S LEMMA

In this section, the constructive proof of Higman’s lemma is explained. Higman’s
lemma states that any bad sequence has a finite length. The constructive proof
of the lemma is presented by constructing an effective well-founded-order (WFO)
among bad sequences.

The basic idea is as follows: for each bad sequence, we first assign a union of
special regular expressions that approximate the possible choice of the next element
to enlarge the bad sequence. Next, we construct a WFO on sets of special regular
expressions such that the regular expression associated with a bad sequence strictly
decreases in size when the bad sequence is enlarged. This means that any extension
of bad sequences eventually terminates. This is explained in detail elsewhere [11].
Section 4.2 and 4.3 show a variation of Higman’s lemma that better fits to our
situation.

4.1. Constructive proof by Murthy and Russell

Let Σ∗ be the set of all finite words consisting of symbols in Σ.

Definition 5. The subword relation 	 on Σ∗ is u 	 v for u = u1 · · ·um and
v = v1 · · · vn if there is an order-preserving one-to-one map, f , from [1..m] to [1..n]
such that ui ≤ vf(i) for each i.

2An alternative constructive proof of this will be given in Section 5.2 as a by-product.
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Lemma 6 (Higman’s lemma). [8] If (Σ,≤) is a WQO, (Σ∗,	) is a WQO.

The standard proof by Nash-Williams [12] is non-constructive, especially the
reasoning called minimal bad sequence, in which (1) the proof proceeds based on
contradictions, (2) the existence of a minimal bad sequence is a result of Zorn’s
lemma, and (3) the arguments on a minimal bad sequence are heavily higher order.
An example is universal quantification over all bad sequences. A minimal bad
sequence is a bad sequence that is minimal wrt the lexicographical order of the size
of each element in a sequence.

Murthy and Russell, Richman and Stolzenberg, and Coquand and Fridlender
independently gave constructive proofs for Higman’s lemma [11, 15, 2]3. For a
constructive proof, we must make the following assumptions.

1. Let A and B be bad sequences of Σ, and let A �seq B if, and only if, A is a
proper extension of B; �seq is well founded and equipped with an induction
scheme.

2. The WQO ≤ on Σ is decidable.

In the classical sense, the first assumption is obvious from the WQO property
of ≤ by direct reduction to absurdity. However, in a constructive sense, this is not
enough. The WQO that satisfies the assumptions above is called a constructive
well-quasi-ordering (CWQO) [18]. In practice, this assumption is not a serious
restriction; a WQO is frequently constructed by embedding relation from a WQO
on a simpler data structure, and the base case is frequently either an order on a
finite set or a well-ordering on a discrete set (such as integers). Such a WQO is
also a CWQO.

We will briefly review the techniques used in Ref. [11]. We refer to an empty
word as ε and an upward closure of words that contains w (i.e., {x ∈ Σ∗ | w 	 x})
as w◦.

For convention, we refer to the symbols in Σ as a, b, c, · · ·, the words in Σ∗

as u, v, w, · · ·, the finite sequences in Σ as A,B, · · ·, the finite sequences in Σ∗ as
V,W, · · ·, the subsets of Σ∗ as L,L′, · · ·, the finite subsets of Σ or Σ∗ as α, β, · · ·, the
subsets of finite subsets of Σ∗ as L,L′, · · ·, the special periodic expressions called
sequential regular expressions as σ, θ, · · ·, the finite sets of sequential regular expres-
sions as Θ,Θ1,Θ2, · · ·, the special power set expressions called base expressions as
s, t, · · ·, and the finite sets of base expressions as S,S1,S2, · · ·.

Definition 6. Let b ∈ Σ, and let A = a1, a2, · · · , ak be a bad sequence in Σ.
The concatenation of A and a ∈ Σ is A|a.

The constant expression (b−A) denotes a subset of Σ defined by

{x ∈ Σ | b ≤ x ∧ ai �≤ x for each i ≤ k},

and the starred expression (Σ −A)∗ denotes a subset of Σ∗ defined by

{w = c1c2 · · · cn ∈ Σ∗ | aj �≤ ci for each i ≤ n, j ≤ k}.

Note that ε ∈ (Σ −A)∗.
Sequential regular expression (sequential r.e.) σ is a (possibly empty) concate-

nation of either constant or starred expressions. Each sequential r.e. is identified
3An idea similar to that in Ref. [15] is found in Ref. [18].
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with a set of finite words that are a concatenation of elements in either the con-
stant or starred expressions. For finite multiset Θ of sequential expressions, we
define L(Θ) = ∪σ∈Θσ.4

Let W = w1, w2, · · · be a bad sequence in Σ∗. We explicitly construct finite
multiset Θk(W ) of sequential r.e.’s for w1, w2, · · · , wk such that Σ∗\(w◦

1∪· · ·∪w◦
k) ⊆

L(Θk(W )). For describing Θk(W ), we define Θ(σ,w), where w ∈ Σ∗. The basic
idea of Θ(σ,w) is that, for a word not to be a superword of w, it can contain only
a proper subword of w. We therefore write down the sequential r.e.’s that accept
classes of words containing different proper subwords of w.

Definition 7. For sequential r.e.’s σ1, · · · , σn, we define their concatenation
σ1 · · ·σn as {w1 · · ·wn | wi ∈ σi for i ≤ n}, and denote + for the union operation.5

Let σ be a sequential r.e., and let w ∈ σ. We define Θ(σ,w) as follows.

1. When σ is a constant expression (b−A)6, we can identify w as a single symbol
in Σ because w ∈ (b−A) ⊆ Σ. Therefore, Θ(σ,w) = (b−A|w) + ε.

2. When σ is starred expression (Σ − A)∗7, if w is empty word ε, Θ(σ, ε) = φ;
otherwise, w = c1c2 · · · cl with cj ∈ Σ for each j. Thus, Θ(σ,w) is

�l
j=1

{
(Σ −A|c1)∗((c1 −A) + ε) · · · (Σ −A|cj−1)∗((cj−1 −A) + ε)
(Σ −A|cj)∗((cj+1 −A) + ε)(Σ −A|cj+1)∗ · · · ((cl −A) + ε)(Σ −A|cl)∗

}
.

3. When σ = σ1σ2 · · ·σn, where σi is either a constant or starred expression, we
fix some decomposition of w into σi’s (i.e., w = w1w2 · · ·wn) with wi ∈ σi for
each i ≤ n.8 Consequently,

Θ(σ,w) = �n
i=1{σ1 · · ·σi−1θσi+1 · · ·σn | θ ∈ Θ(σi, wi)}.

Let Θ be a finite multiset of sequential r.e.’s. The following lemma shows that
if we remove sequential r.e. σ from Θ and replace it with multiset Θ(σ,w) with
w ∈ σ, the resulting (finite) multiset of sequential r.e.’s includes all the finite words
in L(Θ) not containing w.

Lemma 7. For sequential r.e. σ with w ∈ σ, σ \ w◦ ⊆ L(Θ(σ,w)).

Lemma 8. Let L ⊆ Σ∗. Assume there is finite multiset Θ of sequential r.e.’s
such that L ⊆ L(Θ). For any w ∈ L and σ ∈ Θ with w ∈ σ,

L \ w◦ ⊆ L((Θ \ {σ}) � Θ(σ,w)).

Thus, for bad sequence W = w1, w2, · · ·, we can construct Θi(W ) by starting
from Σ∗ and repeatedly applying Lemma 8. That is,{

Θ0(W ) = (Σ − ())∗

Θi+1(W ) = (�wi+1 �∈σ∈Θi(W ){σ}) � (�wi+1∈σ∈Θi(W )Θ(σ,wi+1)).
4In Ref. [11], Θ is defined as a finite set.
5Strictly speaking, + is not allowed in a sequential r.e., but we use it as an abbreviation for

representing multiple sequential r.e.’s.
6In Ref. [11], Θ(σ, w) is defined simply as (b − A|w); for sequential r.e. σ consisting of only

constant expressions (ai − A), this Θ(σ, a1 · · · al) is the empty set.
7In Ref. [11], Θ(σ, w) is defined simply as (Σ − A|c1)∗(c1 + ε) · · · (cl−1 + ε)(Σ − A|cl)

∗.
8The choice of the decomposition is arbitrary with wi ∈ σi.
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When this process terminates, Θi(W ) eventually empties. This means that 	 is
a WQO. For termination, we construct well-founded order �setexp, which strictly
decreases when Lemma 8 is applied. This concludes our constructive proof of
Higman’s lemma.

Definition 8. Let A and B be finite sequences in Σ, (a − A) and (b − B) be
constant expressions, and (Σ−A)∗ and (Σ−B)∗ be starred expressions. We define
orders �seq,�const, and �∗ by

A �seq B if B is a proper prefix of A,
(a−A) �const (b−B) if a = b ∧ A �seq B, and
(Σ −A)∗ �∗ (Σ −B)∗ if A �seq B.

Let �exp = �const ∪ �∗ ∪ {(a−A)}× {(Σ−B)} (i.e., all the constant expressions
are below the starred expressions), and let �setexp be its multiset extension [3].9

For sequential r.e.’s σ = σ1 · · ·σk and θ = θ1 · · · θl, where the σis and θjs are
either constant or starred expressions, we define order �re as

σ �re θ if �k
i=1{σi} �setexp �l

j=1{θj},.

and define the multiset extension of �re as �setre.

Since the construction of Θ always enlarges the bad sequences in (either constant
or starred) expressions, the next lemma holds.

Lemma 9. For sequential r.e. σ with w ∈ σ, Θ(σ,w) �setre {σ}.

Theorem 3. Let W = w1, w2, · · · be a bad sequence in Σ∗. One can effectively
compute finite multiset Θi(W ) of sequential r.e.’s such that

Σ∗ \ (w◦
1 ∪ w◦

2 ∪ · · · ∪ w◦
i ) ⊆ L(Θi(W ))

and Θi+1(W ) �setre Θi(W ) for each i.

Since �setre is well-founded, W must be finite.

Corollary 3. If (Σ,≤) is a CWQO, (Σ∗,	) is a CWQO.

Example 3. Let Σ = {a, b}, and consider bad sequence ab, bbaa, ba, bb, a, b. For
simplicity, we use some optimization rules for sequential r.e.’s:

• reduce constant expressions (Σ − (a, b)), (Σ − (b, a)) to ε,

• reduce σσ to σ for each starred expression σ,

• avoid sequential r.e.’s including self-deleting constant expressions, such as
(a− (a)), (a − (b, a)), and

• avoid sequential r.e. σ if there is σ′ with σ ⊆ σ′ that is inferred by either �∗,
�const, or ε ∈ θ for starred expression θ.

We also use the symbol Σ for a starred expression (Σ − ()) and a for a constant
expression (a− ()).

Consider bad sequence ab, bbaa, ba, bb, a, b wrt 	. The construction of the se-
quential r.e’s is shown in Fig. 3. For instance, (Σ − (a))∗b(Σ− (b))∗ ∈ Θ1 contains
bbaa, and its decomposition is

9For convention, we denote the multiset extension by adding set as the prefix of the index.
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Θ0 = {(Σ − ())∗}
Θ1 = {(Σ − (a))∗b(Σ − (b))∗, (Σ − (a))∗a(Σ − (b))∗, (Σ − (a))∗(Σ − (b))∗}
Θ2 = {b(Σ − (b))∗, (Σ − (a))∗(Σ − (b))∗, (Σ − (a))∗b(a− (b)),

(Σ − (a))∗b, (b− (a))a(Σ − (b))∗, a(Σ − (b))∗, (Σ − (a))∗a}
Θ3 = {(Σ − (b))∗, b, (Σ − (a))∗, (Σ − (a))∗(a− (b)), (Σ − (a))∗b,

a(Σ − (b))∗, (b− (a))(Σ − (b))∗, a}
Θ4 = {(Σ − (b))∗, b, b(a− (b)), (Σ − (a))∗, a(Σ − (b))∗,

(b− (a))(Σ − (b))∗, a}
Θ5 = {b, (Σ − (a))∗, (Σ − (b))∗}
Θ6 = {(Σ − (b))∗}

FIG. 3 Construction of Θi for bad sequence ab, bbaa, ba, bb, a, b.

b ∈ (Σ − (a)), b ∈ b = (b− ()), and aa ∈ (Σ − (b))∗.

Then, corresponding to each part of the decomposition, Θ((Σ−(a))∗b(Σ−(b))∗, bbaa)
is constructed as (Σ − (a, b))∗b(Σ − (b))∗, (Σ − (a))∗((b − (b)) + ε)(Σ − (b))∗, and
(Σ− (a))∗b(Σ− (b, a))∗((a− (b))+ ε)(Σ− (b, a))∗ (see the underlined part in Fig. 3),
and they are optimized to

b(Σ − (b))∗, (Σ − (a))∗(Σ − (b))∗, (Σ − (a))∗b(a− (b)), and (Σ − (a))∗b.

Note that the sequence L(Θ1), L(Θ2), L(Θ3), L(Θ4), L(Θ5), L(Θ6) is equal to

{b∗a∗}, {b∗a∗}, {ba∗, a∗, b∗}, {ba∗, a∗, b∗}, {a∗, b∗}, {a∗},

where the sequence of real complements for bad sequence ab, bbaa, ba, bb, a, b is

{b∗a∗}, {ba∗, b∗a}, {a∗, b∗}, {a∗, b}, {ε, b}, {ε}.

The sequence L(Θ1), L(Θ2), L(Θ3), L(Θ4), L(Θ5), L(Θ6) is an approximation and
has a plateau, but

Θ1 �setre Θ2 �setre Θ3 �setre Θ4 �setre Θ5 �setre Θ6.

4.2. A Variation

For our purposes, we need a variation (not included in Ref. [11]) of Higman’s
lemma.

Definition 9. For α, β ⊆ Σ, α ≤m β if ∀u ∈ α∃v ∈ β such that u 	 v.

Assume that (Σ,≤) satisfies the CWQO assumptions. Let F(Σ) be the set of
all finite sets of Σ. As a variation of Higman’s lemma, (F(Σ),≤m) is a WQO. In
this section, we further show that (F(Σ),≤m) is a CWQO.

A base expression represents the set of all finite sets of elements not greater-
than-or-equal to any element in a bad sequence.

Definition 10. Let A = a1, a2, · · · , ak be a finite bad sequence in Σ. The
corresponding base expression is

(Σ 
A) = F({x ∈ Σ | ai �≤ x for each i ≤ k}).

We define (Σ 
 A) �base (Σ 
 B) if A �seq B, and define �setbase as its multiset
extension. For finite multiset S of the base expressions, we define L(S) = ∪s∈Ss.

12



Let α1, α2, · · · be a bad sequence of elements in F(Σ). We denote the upward
closure of α in F(Σ) (i.e., {γ ∈ F(Σ) | α ≤m γ}) with α◦, and explicitly construct
finite multiset Sk of base expressions for α1, · · · , αk such that

F(Σ) \ (α◦
1 ∪ · · · ∪ α◦

k) ⊆ L(Si).

To describe Sk, we define S(Σ
A,α). The basic idea of S(Σ
A,α) is, for a finite
set not to be a superset of α, it must not contain an element in α. What we do is
write down base expressions that accept finite sets not containing some element of
α.

Definition 11. Let (Σ 
 A) be the base expression for finite bad sequence
A = a1, · · · , ak in Σ, and let α ∈ Σ 
A. We then define

S(Σ 
A,α) = {Σ 
A|a | a ∈ α}.

Lemma 10. For base expression s and α ∈ s,

s \ α◦ ⊆ L(S(s, α)) and S(s, α) �setbase {s}.

Proof. Let A = a1, a2, · · · , ak be a bad sequence in Σ such that s = (Σ
A). By
the definition of S, each base expression t in S(s, α) has the form t = (Σ
A|a) for
some a ∈ α. Since α ∈ (Σ 
 A), ai �≤ a for each i ≤ k, and A|a is a bad sequence.
Thus, t = (Σ 
A|a) �base (Σ 
A) and S(s, α) �setbase {(Σ 
A)}.

For β ∈ s \ α◦, some element in α, say b, satisfies b �≤ x for each x ∈ β. Thus,
β ∈ (Σ 
A|b) ∈ S(s, α).

From Lemma 10, the next lemma and theorem immediately follow.

Lemma 11. Let L ⊆ F(Σ). Assume that there is finite multiset S of base
expressions such that L ⊆ L(S). For any α ∈ L and s ∈ S with α ∈ s,

L \ α◦ ⊆ L((S \ {s}) � S(s, α)) and (S \ {s}) � S(s, α) �setbase S.

Thus, for bad sequence A = α1, α2, · · ·, we can construct Si(A) by starting
from F(Σ) and repeating the applications of Lemma 11. That is,

S0(A) = F(Σ)
Si+1(A) = (�αi+1 �∈s∈Si(A){s}) � (�αi+1∈s∈Si(A)S(s, αi+1)).

If this process terminates, Si(A) is empty. This means that ≤m is a WQO. For
termination, we construct well-founded order �setbase that strictly decreases when
Lemma 11 is applied.

Theorem 4. Let A = α1, α2, · · · be a bad sequence in F(Σ). We can then
effectively compute finite multiset Si(A) of base expressions such that

F(Σ) \ (α◦
1 ∪ α◦

2 ∪ · · · ∪ α◦
i ) ⊆ L(Si(A))

and Si+1(A) �setbase Si(A) for each i.

Since �setbase is well-founded, A must be finite.

Corollary 4. If (Σ,≤) is a CWQO, (F(Σ),≤m) is a CWQO.

Proof. Since 	 is a (C)WQO on Σ, �seq is well-founded and has a well-founded
induction scheme, as do �base and �setbase.
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S0

S1

S2

S3

ε

ab bbaa

ba bb

a b a b

ba bb

baba

FIG. 4 Tree of excluding elements for bad sequence {ab, bbaa}, {ba, bb}, {a, b}

Example 4. Let Σ be the set of finite words constructed from a and b, and let 	
be an embedding on Σ (i.e., 	 is a WQO). Consider bad sequence {ab, bbaa}, {ba, bb}, {a, b}
wrt 	m.

S0 = {(Σ 
 ε)}
S1 = {(Σ 
 (ab)), (Σ 
 (bbaa))}
S2 = {(Σ 
 (ab, ba)), (Σ 
 (ab, bb)), (Σ 
 (bbaa, ab)), (Σ 
 (bbaa, bb))}
S3 = {(Σ 
 (ab, ba, a)), (Σ 
 (ab, ba, b)), (Σ 
 (ab, bb, a)), (Σ 
 (ab, bb, b)),

(Σ 
 (bbaa, ab, a)), (Σ 
 (bbaa, ab, b)),
(Σ 
 (bbaa, bb, a)), (Σ 
 (bbaa, bb, b))}

Each basic expression in Si corresponds to a node at the i-th level in the
tree shown in Fig. 4. They are interpreted as, for instance, L(S0) = F(Σ∗) and
L(S3) = F({a∗}) ∪ F({b∗}).

4.3. Combination

For our purposes, we need constructive proof that 	m over the set of finite
sets of finite words is a WQO. By Theorems 3 and 4, we can identify each basic
expression as a finite multiset of sequential r.e.’s, and we obtain the next lemma.

Lemma 12. Let W = w1, · · · , wk be a bad sequence in Σ∗ (wrt 	). Then,

(Σ∗ 
W ) ⊆ F(L(Θk(W ))).

Lemma 13. Let W = w1, · · · , wk be a bad sequence in Σ∗ (wrt 	), and let
α ∈ Σ∗ 
W . Then,

L(S(Σ∗ 
W,α)) ⊆ ∪v∈αF(L(Θk+1(W |v))).

For bad sequence A = α1, α2, · · · in F(Σ∗), we construct finite multiset Tk(A)
of the finite multisets of the sequential r.e.’s such that F(Σ∗) \ (α◦

1 ∪ · · · ∪ α◦
k) ⊆

∪Θ∈Tk(A)F(L(Θ)). That is,

Ti(A) = {Θi((v1, · · · , vi)) | v1 ∈ α1, · · · , vi ∈ αi, (v1, · · · , vi) is a bad sequence.}.

Theorem 5. Let A = α1, α2, · · · be a bad sequence in F(Σ∗) (wrt 	m). We
can then effectively compute finite multiset Ti(A) of the multisets of the sequential
r.e.’s such that

F(Σ∗) \ (α◦
1 ∪ α◦

2 ∪ · · · ∪ α◦
i ) ⊆ ∪Θ∈Ti(A)F(L(Θ))

and Ti+1(A) �setsetre Ti(A) for each i, where �setsetre is the multiset extension of
�setre.
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Example 5. Let A = {ab, bbaa}, {ba, bb}, {a, b}, as in Example 4. Then,

F(Σ∗) \ {ab, bbaa}◦ ⊆ F(Σ∗ 
 (ab)) ∪ F(Σ∗ 
 (bbaa))

and
F(Σ∗ 
 (ab)) ⊆ F(L(Θ1))
F(Σ∗ 
 (bbaa)) ⊆ F(L(Θ2)),

where Θ1 and Θ2 are as below. Thus, T1(A) = {Θ1,Θ2}.

Θ1 = {(Σ − (a))∗b(Σ − (b))∗, (Σ − (a))∗a(Σ − (b))∗, (Σ − (a))∗(Σ − (b))∗},

Θ2 =




(Σ − (b))∗b(Σ − (b))∗a(Σ − (a))∗a(Σ − (a))∗,
(Σ − (b))∗b(Σ − (a))∗a(Σ − (a))∗a(Σ − (a))∗,
(Σ − (b))∗b(Σ − (b))∗b(Σ − (a))∗a(Σ − (a))∗,
(Σ − (b))∗b(Σ − (b))∗b(Σ − (b))∗a(Σ − (a))∗,
(Σ − (b))∗(Σ − (a))∗a(Σ − (a))∗a(Σ − (a))∗,
(Σ − (b))∗b(Σ − (b))∗(Σ − (a))∗a(Σ − (a))∗,
(Σ − (b))∗b(Σ − (b))∗b(Σ − (b))∗(Σ − (a))∗,
(Σ − (b))∗b(Σ − (b))∗(Σ − (a))∗a(Σ − (a))∗,
(Σ − (b))∗b(Σ − (a))∗a(Σ − (a))∗, (Σ − (b))∗b(Σ − (b))∗a(Σ − (a))∗,
(Σ − (b))∗(Σ − (a))∗a(Σ − (a))∗, (Σ − (b))∗b(Σ − (b))∗(Σ − (a))∗,
(Σ − (b))∗a(Σ − (a))∗, (Σ − (b))∗b(Σ − (a))∗, (Σ − (b))∗(Σ − (a))∗




5. GENERATING LINEAR-TIME ALGORITHM BASED ON WQO

Theorem 2 states that for disjunctive monadic query ϕ, there are finitely many
conjunctive queries {ψi} such that D |= ϕ if, and only if, D |= ψi for some i. The-
orem 1 guarantees that D |= ψi can be decided in linear-time. Thus, the remaining
task is detection of all conjunctive queries ψi’s, the minors. In this section, an
algorithm to detect minors is described. The key is the function ExistsMinor(L),
which decides whether undetected minors remain in L.

For convention, we refer to the disjunctive monadic queries as ϕ, the conjunc-
tive monadic queries as ψ,ψ1, ψ2, · · ·, the sequential queries as p, q, · · ·, the indef-
inite database as D,D′, · · ·, the models as M,M ′, · · ·, the minors as M,M′, · · ·,
the variables as x, y, z, u, v, x1, x2, · · ·, the constants as t1, t2, · · ·, the sets of pred-
icates as a, b, c, a1, a2, · · ·, the finite sets in FW (Σ) as α, β, γ, · · ·, the power sets
in F(FW (Σ)) as L,L′, · · ·, the sequential r.e.’s as θ, θ1, θ2, · · ·, the either con-
stant or starred expressions as σ, σ1, σ2, · · ·, the finite multisets of sequential r.e.’s
as Θ,Θ1,Θ2, · · ·, and the finite multisets of finite multisets of sequential r.e.’s as
T,T′, · · ·.

5.1. Design of algorithm to detect minors

We define minors as the minimal indefinite databases wrt � that are valid for
ϕ, and denote the set of all minors as M. Our aim is to detect M.

Let Pred be the set of monadic predicate symbols appearing in ϕ, and let
Σ = P(Pred). The ideal algorithm for detecting minors is presented in Fig. 5.
Since |=m is a WQO, ExistsMinor(L) will eventually be false, so this algorithm is
guaranteed to terminate. The algorithm has the following predicates and functions.
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1: begin
2: M:={ };
3: L:=F(FW (Σ));
4: n=0;
5: begin
6: while ExistsMinor(L) do
7: begin
8: NotFound:= true;
9: while NotFound do
10: begin
11: α:=Enumerate(n);
12: if QueryTest(α) and In(α,L) then
13: begin
14: add α to M;
15: L:= Exclude(L,α);
16: NotFound:= false;
17: end
18: n:= n+1;
19: end
20: end
21: return M;
22: end
23: end

FIG. 5 Ideal algorithm for detecting minors M for disjunctive query ϕ

• Enumerate(n). Enumerates all elements of F(FW (Σ)) (i.e., a one-to-one
map from N onto F(FW (Σ)) such that Enumerate(j) |=m Enumerate(i)
implies i ≤ j).

• Exclude(L,α). Computes the subset in L(⊆ F(FW (Σ)) consisting of all
finite sets not greater-than-or-equal to α wrt |=m.

• QueryTest(α). For α ∈ F(FW (Σ)), decides whether, for each model M ,
M |= α implies M |= ϕ.

• In(α,L). Decides whether element α is in L.

• ExistsMinor(L). For L ⊆ F(FW (Σ)), decides whether there is α ∈ L
satisfying QueryTest(α).

The implementation of QueryTest(α) is as follows.
QueryTest(α) is decidable because this feature is specified in the monadic sec-

ond order logic S1S [19]. To illustrate, assume ϕ = ψ1 ∨ ψ2 ∨ ψ3, where



ψ1 = ∃xyz[P (x) ∧Q(y) ∧R(z) ∧ x < y < z],
ψ2 = ∃xyz[Q(x) ∧R(y) ∧ P (z) ∧ x < y < z], and
ψ3 = ∃xyz[R(x) ∧ P (y) ∧Q(z) ∧ x < y < z],
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and let α = {{P } < {Q} < {P}, {R} < {P}}, which corresponds to indefinite
database

{P (t1), Q(t2), P (t3), t1 < t2 < t3, R(t4), P (t5), t4 < t5}.

The corresponding conjunctive query ψ is represented in S1S as

∃xyzuv. P (x) ∧Q(y) ∧ P (z) ∧ x < y < z ∧ Q(u) ∧R(v) ∧ u < v.

Thus, QueryTest(α) is represented in S1S as ϕ→ (ψ1 ∨ψ2 ∨ ψ3). In this example,
it is valid, so QueryTest(α) is true.

The test of ExistsMinor(L) ensures termination of the algorithm; note that if
ExistsMinor(L) is true, QueryTest(α) and In(α,L) eventually become true.

The difficult parts are at Exclude(L,α) and ExistsMinor(L). The modified
algorithm to solve these difficulties will be shown in the following.

5.2. Implementation of algorithm to detect minors

Instead of precisely computing Exclude(L,α), we use the approximation given
by the regular expression-like construction, i.e., multiset T of finite multisets of
sequential r.e.’s (Section 4.3, Theorem 5), satisfying

Exclude(L,α) ⊆ ∪Θ∈ApproxExclude(T,α)F(L(Θ))

for α ∈ L ⊆ ∪Θ∈TF(L(Θ)). Corresponding to this setting, we introduce a WQO
	m with �m ⊆ |=m. Roughly speaking, minors M wrt 	m are first detected, and
at the end of the algorithm M is minimized wrt |=m.

Let Pred be the set of all predicate symbols appearing in ϕ, and let Σ = P(Pred)
and Σ+ = Σ ∪ {<} (Σ is a lattice wrt set inclusion ⊆).

Definition 12. We define the order ≤ on Σ+ as the extension of ⊆ on Σ by
adding the symbol < such that < is incomparable to any element in Σ.

Lemma 14. (F(Σ∗
+),	m) is a CWQO.

Proof. Since Σ+ is finite, ≤ is a CWQO. Thus, (Σ∗
+,	) is a CWQO from Corol-

lary 3, and (F(Σ∗
+),	m) is a CWQO from 4.

Definition 13. We define mapping ρ : FW (Σ) → Σ∗
+ by omitting the symbol

≤ in the flexi-word. Furthermore, ρ is naturally extended to ρ : F(FW (Σ)) →
F(Σ∗

+).
We define mapping τ : Σ∗

+ → FW (Σ) as the mapping to the normal form of the
rewriting rules: {

< < → <
a b → a ≤ b if a, b �∈ {<,≤}.

Further, τ is naturally extended to τ : F(Σ∗
+) → F(FW (Σ)).

Example 6.

ρ :
{

{P,Q} < {P} < {R} (∈ FW (Σ)) → {P,Q} < {P} < {R} (∈ Σ∗
+)

{P,Q} < {P} ≤ {S} (∈ FW (Σ)) → {P,Q} < {P} {S} (∈ Σ∗
+)

τ :
{

{P,Q} <<< {P} < {R} (∈ Σ∗
+) → {P,Q} < {P} < {R} (∈ FW (Σ))

{P,Q} < {P} {S} (∈ Σ∗
+) → {P,Q} < {P} ≤ {S} (∈ FW (Σ))
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1: begin
2: M:={ };
3: T:={{(Σ − ())∗}};
4: n=0;
5: begin
6: while ExistsMinorExp(T) do
7: begin
8: NotFound:= true;
9: while NotFound do
10: begin
11: α:=Enumerate(n);
12: if QueryTest(α) and

InExp(α,T) and β �	m α for each β ∈ τ(M) then
13: begin
14: add α to M;
15: T:= ApproxExclude(T,α);
16: NotFound:= false;
17: end
18: n:= n+1;
19: end
20: end
21: M:= Minimize(τ (M));
22: return M;
23: end
24: end

FIG. 6 Revised algorithm for detecting minors M for disjunctive query ϕ

Note that τρ is the identity, and ρτ is an idempotent, i.e., (ρτ)(ρτ) = (ρτ). We
naturally extend 	m to F(FW (Σ)) such that α 	m β for α, β ∈ F(FW (Σ)) if
ρ(α) 	m ρ(β).

Lemma 15. For p, q ∈ FW (Σ), ρ(q) � ρ(p) implies q |= p. For α, β ∈
F(FW (Σ)), ρ(β) �m ρ(α) implies β |=m α.

Since 	 and 	m are WQOs, this lemma gives an alternative proof that � is a
WQO (see Section 3.3).

Lemma 16. For α ∈ L ⊆ F(FW (Σ)), L \ α◦ ⊆ τ(ρ(L) \ ρ(α)◦).

Proof. ρ(α◦) ⊇ ρ(α)◦∩ρ(FW (Σ)) by Lemma 15, and ρ(L\α◦) ⊆ ρ(L)\ρ(α)◦.

Now, the algorithm presented in Fig. 5 is modified as in Fig. 6. The modifica-
tions are at L6, L12, L15, and L21 (in italics). Corresponding to the change of the
representation from F(FW (Σ)) to F(Σ∗

+), ApproxExclude(T, α), InExp(α,T),
and ExistsMinorExp(T) are substituted for Exclude(L,α), In(α,L), and ExistsMinor(L),
respectively.

• ApproxExclude(T, α). For finite multiset T of the finite multisets of the
sequential r.e.’s and α ∈ F(FW (Σ)), construct finite multiset T′ of the
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finite multisets of the sequential r.e.’s such that ∪Θ∈TL(F(Θ)) \ ρ(α)◦ ⊆
∪Θ∈T′L(F(Θ)) and T �setsetre T′.

• InExp(α,T). For finite multiset T of the finite multisets of the sequential
r.e.’s, decide whether ρ(α) ∈ ∪Θ∈TF(L(Θ)).

• ExistsMinorExp(T). For finite multiset T of the finite multisets of the se-
quential r.e.’s, decide whether there is an α ∈ ∪Θ∈Tτ(F(L(Θ))) satisfying
QueryTest(α).

ApproxExclude(T, α) is realized as T|M|(M) by regarding the detected M as
a bad sequence (see Theorem 5 and Lemma 16). InExp(α,T) is computed by
checking whether each element in ρ(α) is contained in one of the sequential r.e.’s
in Θ(∈ T). The decision procedure for ExistsMinorExp(T) will be described in
Section 5.3.

Note that there are two ways for garbages to be added to minors:

1. Since Exclude(L,α) ⊆ ∪
Θ∈ApproxExclude(T,α)F(L(Θ)), there may be

some element β such that β �m γ for some γ ∈ τ(M), so β eventually
satisfies the condition in L12.

2. Since �m ⊆ |=m over finite sets of flexi-words, there may be some α, β ∈
FW (Σ) such that β |=m α but ρ(β) ��m ρ(α).

The former possibility is removed at L12, and the latter is removed at L21 by the
newly introduced function Minimize(M).

• Minimize(M). Minimize M wrt |=m.

Then, assuming the decision procedure for ExistsMinorExp(T) (which will be
explained in Section 5.3), the next theorem holds.

Theorem 6. The algorithm (in Fig. 6) to detect the set of minors M for dis-
junctive query ϕ terminates.

Proof. From Theorem 4, for each iteration of while ExistsMinorExp(T), T
strictly decreases wrt WFO �setsetre.

5.3. Decision procedure for ExistsMinorExp(T)

During execution of the algorithms in Figs. 5 and 6, invariant

L ⊆ ∪Θ∈Tτ(F(L(Θ)))

holds at each stage. Thus, if ExistsMinor(L) is true, ExistsMinorExp(T) is
true. Since the construction of T is well-founded (Theorem 4), ExistsMinorExp(T)
eventually becomes false as does ExistsMinor(L). In this section, we describe the
decision procedure of ExistsMinorExp(T), a substitute for ExistsMinor(L).

Without loss of generality, we can assume that disjunctive query ϕ is ≤-free by
changing x ≤ y to x < y ∨ x = y. For instance,

∃x1x2x3 [P (x1) ∧Q(x1) ∧ P (x2) ∧R(x3) ∧ x1 < x2 ≤ x3]
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has an equivalent ≤-free form:

∃x1x2x3 [P (x1) ∧Q(x1) ∧ P (x2) ∧R(x3) ∧ x1 < x2 < x3]
∨ ∃x1x2 [P (x1) ∧Q(x1) ∧ P (x2) ∧R(x2) ∧ x1 < x2].

By definition, ExistsMinorExp(T) = ∨Θ∈TExistsMinorExp({Θ}). We will con-
struct an upper bound on indefinite database D using Paths(D) ∈ τ(F(L(Θ))) such
that ExistsMinorExp(T) is reduced to the query D |= ϕ.

The basic idea is to construct database DΘ,n such that Paths(Dθ,n) is the
maximal wrt |=m under the upper bound n, which is the number of unfolding each
starred expression in a sequential r.e. θ ∈ Θ. We will show that DΘ,n |= ϕ and
DΘ,n′ |= ϕ are equivalent for sufficiently large n, n′. What we will do is find such
an upper bound n; actually, n is decided only by disjunctive query ϕ.

Definition 14. Let A be bad sequence a1, a2, · · · , ak in Σ+ and b ∈ Σ+. For
constant expression (b− A), we define a set of regular expressions:

∂(b−A) = max(b◦ \ a◦1 ∪ · · · ∪ a◦k).

Let {c1, · · · , cm} = max(Σ+ \ a◦1 ∪ · · · ∪ a◦k) (with suitable numeration of the ci’s).
For starred expression (Σ+ −A)∗, we define the set of regular expressions:

∂(Σ+ −A)∗ =
{

{(c1 · · · cm)∗} if < ∈ A,
{(< c1 < · · · < cm <)∗} if < �∈ A.

Definition 15. For sequential r.e. θ = σ1 · · ·σl, we define the set of regular
expressions on Σ+:

∂θ = {w1 · · ·wl | wi ∈ ∂σi, 1 ≤ i ≤ l}.

For w = w(1) · · ·w(l) ∈ ∂θ with w(i) ∈ ∂σi, where w(i) is the i-th component of
w, let

base(w(i)) =
{
w(i) if σi is a constant expression,
v if σi is a starred expression and w(i) = v∗.

For 
n = (n1, · · · , nl), define w(
n) = base(w(1))n1 · · · base(w(l))nl under the con-
straints that ni = 1 if σi is a constant expression.

Definition 16. For finite multiset Θ of sequential r.e.’s, we define ∂Θ = ∪θ∈Θ∂θ
and DΘ,n as a database with Paths(DΘ,n) = τ({w(
n) | w ∈ ∂θ, θ ∈ Θ}).

Example 7. Let Pred = {P,Q,R}, b = {Q}, A = ({P,Q}, {Q,R}), and A′ =
({P}, <, {Q,R}). Then,

∂(b−A) = {{Q}, <}
∂(Σ+ −A)∗ = {{P,R}, {Q}, <}
∂(Σ+ −A′)∗ = {{Q}, {R}}.

For θ = (Σ+ −A)∗(b−A)(Σ+ −A′)∗,

∂θ =




{P,R}∗{Q}{Q}∗, {P,R}∗{Q}{R}∗, {P,R}∗ < {Q}∗, {P,R}∗ < {R}∗,
{Q}∗{Q}{Q}∗, {Q}∗{Q}{R}∗, {Q}∗ < {Q}∗, {Q}∗ < {R}∗,
<∗ {Q}{Q}∗, <∗ {Q}{R}∗, <∗< {Q}∗, <∗< {R}∗


 .

For w = {P,R}∗ < {Q}∗ ∈ ∂θ, w(2, 1, 3) = {P,R}{P,R} < {Q}{Q}{Q}.
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Definition 17. Let ϕ = ψ1 ∨ ψ2 ∨ · · · ∨ ψt, where ψ1, · · · , ψt are conjunctive
queries. Then, l(ϕ) = max{length(p) | p ∈ Paths(ψi), 1 ≤ i ≤ t} and ∆(ϕ) =
2|Pred| · t · l(ϕ)2.

For modelM , we use the following notations: M≤t is a submodel ofM consisting
of the atoms that contains only constants smaller than or equal to t ∈M , and M>t

is a submodel of M consisting of the atoms that contains only constants greater
than t ∈M .

Lemma 17. Let D be a database with Paths(D) ∈ τ(F(L(Θ))) for finite multi-
set Θ of sequential r.e.’s. There then exists n such that D |= ϕ implies DΘ,n |= ϕ.

Proof. Let n = max({length(p) | p ∈ Paths(D)}). Then, for each p ∈ Paths(D)
there exists q ∈ Paths(DΘ,n). Assume that DΘ,n �|= ϕ, i.e., there is a model M
such that M �|= ϕ. Since M is also a model of D, this contradicts D |= ϕ.

Lemma 18. Fix disjunctive query ϕ = ψ1 ∨ ψ2 ∨ · · · ∨ ψt, where ψ1, · · · , ψt

are conjunctive queries. Let Θ be a finite multiset of sequential r.e.’s. For each
n ≥ ∆(ϕ) + 1, DΘ,n |= ϕ if, and only if, DΘ,∆(ϕ)+1 |= ϕ.

Proof. The if-part is obvious, so we will prove only the only-if part. Assume
that DΘ,∆(ϕ)+1 �|= ϕ and DΘ,n |= ϕ for some n > ∆(ϕ) + 1. Let Θ = {θ1, · · · , θs}.

Let 
n1, · · · , 
n|∂Θ| be the minimum sequence of tuples of integers (wrt the prod-
uct of the product of the order on integers) such that D |= ϕ with Paths(D) =
{τ(wi(
ni)) | wi ∈ ∂Θ}. Since DΘ,∆(ϕ)+1 �|= ϕ, there is some 
nj = (n1, · · · , nl) such
that some nk is larger than ∆(ϕ) + 1 (i.e., nk > ∆(ϕ) + 1).

Let 
n′
j = (n1, · · · , nk−1, nk − 1, nk+1, · · ·nl). Let wj ∈ θ = σ1 · · ·σl ∈ Θ. By

definition, σk must be starred expression (Σ+ − A)∗. From the minimality of D,
D′ �|= ϕ with Paths(D′) = {τ(wi(
ni)) | wi ∈ ∂Θ\{wj}}∪{τ(wj(
n′

j))}. Then there
exists model M of D′ such that M �|= ϕ.

Let u be the number of elements other than < in base(wj). Let

t1,1 ≤ · · · ≤ t1,u ≤ t2,1 ≤ · · · ≤ tnk−1,u

be the constants in M corresponding to each element in wj other than <.
If ti,1 = · · · = ti,u for some i, M is a model of D as well as D′, which contradicts

M �|= ϕ. Thus, for each i with 1 ≤ i ≤ nk−1, there are mi such that ti,mi < ti,mi+1

(or ti−1,u < ti,1). Since nk − 1 > ∆(ϕ) and u ≤ 2|Pred|, from the pigeon-hole
principle, there are m and more than t · l(ϕ)2 ti,m’s with ti,m < ti,m+1.

Let M ′ be a model of base(wj), and let Mti,m(M ′) be a model extended by
inserting M ′ into M just after ti,m. Since Mti,m(M ′) is a model of D, Mti,m(M ′) |=
ϕ. Since ϕ = ψ1 ∨ ψ2 ∨ · · · ∨ ψt, again from the pigeon-hole principle, there are
some ψs such that there are more than l(ϕ)2 ti,m’s satisfying Mti,m(M ′) |= ψs with
ti,m < ti,m+1. We consider only such ti,m’s.

Since M �|= ψs, there is path p ∈ Paths(ψi) such that M �|= p. For such p,
again from the pigeon-hole principle, there are ti,m and tj,m (with i < j), and the
decomposition of p = p1 < q < p2 with τ(base(wj)) |= q, such that

M≤ti,m |= p1,M>ti,m |= p2,M≤tj,m |= p1,M>tj,m |= p2, and M ′ |= q.

Since ti,m < ti,m+1, M>ti,m ∩M≤tj,m |= base(wj); thus, M>ti,m ∪M≤tj,m |= q. This
leads to the contradiction M |= p.

The next theorem is immediate from Lemmas 17 and 18.
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Theorem 7. Let Θ be a finite multiset of sequential r.e.’s. Then,

ExistsMinorExp({Θ}) = QueryTest(DΘ,∆(ϕ)+1).

Corollary 5. Let T be a finite multiset of finite multisets of sequential r.e.’s.
Then,

ExistsMinorExp(T) = ∨Θ∈T QueryTest(DΘ,∆(ϕ)+1).

Thus, we can effectively compute a set of minors M for disjunctive monadic
query ϕ. Let the ψi’s be conjunctive queries such that Paths(ψ) = Paths(D) for
some D ∈ M. We can then obtain a simple algorithm to decide D |= ϕ.

Corollary 6. For fixed disjunctive monadic query ϕ, we can effectively com-
pute finitely many conjunctive queries {ψi} such that D |= ϕ if, and only if, there
is i with D |= ψi for monadic database D.

Since D |= ψ for conjunctive query ψ and monadic database D is decided in
linear-time (see Theorem 1), this Corollary shows that a linear-time algorithm can
be generated for fixed disjunctive query answering on an indefinite database over
linearly ordered domains.

6. CONCLUSION

This paper described the generation of a linear-time query answering algorithm
for a fixed disjunctive monadic query on an indefinite database over a linearly or-
dered domain, using the constructive proof of Higman’s Lemma [11]. This problem
was first posed by van der Meyden [20], and its solution had, until now, not been
reported. Unfortunately, the solution given here remains rather theoretical be-
cause of the potentially huge constant factor. That is, as the example in Section 2
shows, the number of minors may explode, and the constant factor may become
huge. This phenomena frequently appears when WQO techniques are applied to
the upper bound estimation of the complexity.

There are several future directions, including the following two.

• Our method is based on the regular expression techniques in Murthy and
Russell’s constructive proof of Higman’s lemma [11]. Among its known con-
structive proofs [11, 15, 2] (or intuitionistic proofs [6, 5]), that of Coquand
and Fridlender [2] would be one of the most simple and was implemented on
Coq prover. This could lead to a simpler method of algorithm generation, in
combination with well-developed proof-extraction techniques.

• Kruskal’s theorem [12] is an extension of Higman’s Lemma to the tree struc-
ture. Gupta demonstrated the constructive proof of the weaker form [7], and
Veldman presented an intuitionistic proof of Kruskal’s theorem [22]. The next
extension would be to apply these proofs to a more general class of problems.
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