Weakly-non-overlapping non-collapsing shallow term rewriting systems are confluent

Masahiko Sakai^a, Mizuhito Ogawa^b

 ^a Graduate School of Information Science, Nagoya University, Furo-cho Chikusa-ku Nagoya, 464-8603 Japan
 ^b Japan Advanced Institute of Science and Technology, 1-1 Asahidai Nomi Ishikawa, 923-1292 Japan

Abstract

This paper shows that weakly-non-overlapping, non-collapsing and shallow term rewriting systems are confluent, which is a new sufficient condition on confluence for non-left-linear systems.

Key words: Term rewriting systems, confluence, formal languages

1. Introduction

Confluence, which guarantees the uniqueness of a computation, is an important property for term rewriting systems (TRSs). This property is undecidable not only for general TRSs, but also for flat TRSs [Mitsu06] and length-two string rewrite systems [Sakai08]. It becomes decidable if TRSs are either right-linear and shallow [Godoy05], or terminating [KB70].

For left-linear TRSs, many sufficient conditions have been studied: nonoverlapping [Rosen73], parallel-closed [Huet80], and their extensions [Toyama87, Oostrom95, Gramlich96, Oyama97, Okui98, Oyama03].

However, the analysis of non-left-linear TRSs is difficult and only few sufficient conditions are known: simple-right-linear TRSs (i.e., right-linear and non-left-linear variables do not appear in the rhs) such that either non-Eoverlapping [Ohta95] or its conditional linearizations are weight-decreasing joinable [Toyama95]. Without right-linearity, Gomi, Oyamaguchi, and Ohta showed sufficient conditions: strongly depth-preserving and non-E-overlapping [Gomi96], and strongly depth-preserving and root-E-closed [Gomi98].

This paper shows that weakly-non-overlapping, non-collapsing and shallow TRSs are confluent, which is a new sufficient condition for non-left-linear and non-right-linear systems.

2. Basic notion

We assume that readers are familiar with basic notions of term rewriting systems. The precise definitions are found in [Baader98].

Preprint submitted to Information Processing Letters

July 8, 2010

2.1. Abstract reduction system

For a binary relation \rightarrow , we use \leftrightarrow , \rightarrow ⁺ and \rightarrow ^{*} for the symmetric closure, the transitive closure, and the reflexive and transitive closure of \rightarrow , respectively. We use \circ for the composition operation of two relations.

An abstract reduction system (ARS) G is a pair $\langle V, \rightarrow \rangle$ of a set V and a binary relation \rightarrow on V. If $\langle u, v \rangle \in \rightarrow$ we say that u is reduced to v, denoted by $u \rightarrow v$. An element u of V is (G-)normal if there exists no $v \in V$ such that $u \rightarrow v$. We sometimes call a normal element a normal form.

Let $G = \langle V, \rightarrow \rangle$ be an ARS. We say G is *finite* if V is finite, *confluent* if $\leftarrow^* \circ \rightarrow^* \subseteq \rightarrow^* \circ \leftarrow^*$, and *Church-Rosser* (CR) if $\leftrightarrow^* \subseteq \rightarrow^* \circ \leftarrow^*$. It is well known that confluence and CR are equivalent.

We say G is *terminating* if it does not admit an infinite reduction sequence. We say G is *convergent* if it is confluent and terminating. A *cycle* of G is a reduction sequence $t \to^+ t$. An edge $v \to u$ is called an *out-edge* of v and an *in-edge* of u. Note that a node v having no out-edge is normal. We say G is *connected* if $u \leftrightarrow^* v$ for every $u, v \in G$. We say $G' (\subseteq G)$ is a *connected component* of G if G' is connected and $u \nleftrightarrow^* v$ for any $u \in G'$ and $v \in G \setminus G'$.

2.2. Term rewriting system

Let F be a finite set of function symbols with fixed arity, and X be an enumerable set of variables where $F \cap X = \emptyset$. By T(F, X), we denote the set of terms constructed from F and X. Terms in $T(F, \emptyset)$ are said to be *ground*.

The set of *positions* of a term t is the set $\operatorname{Pos}(t)$ of strings of positive integers, which is defined by $\operatorname{Pos}(t) = \{\varepsilon\}$ if t is a variable, and $\operatorname{Pos}(t) = \{\varepsilon\} \cup \{ip \mid p \in \operatorname{Pos}(t_i), 1 \leq i \leq n\}$ if $t = f(t_1, \ldots, t_n)$ $(0 \leq n)$. We call ε the *root* position. For $p \in \operatorname{Pos}(t)$, the subterm of t at position p, denoted by $t|_p$, is defined as $t|_{\varepsilon} = t$ and $f(t_1, \ldots, t_n)|_{iq} = t_i|_q$. The term obtained from t by replacing its subterm at position p with s, denoted by $t[s]_p$, is defined as $t[s]_{\varepsilon} = s$ and $f(t_1, \ldots, t_n)[s]_{iq} = f(t_1, \ldots, t_{i-1}, t_i[s]_q, t_{i+1}, \ldots, t_n)$. The size |t| of a term t is $|\operatorname{Pos}(t)|$. We use $\operatorname{Args}(t)$ for the set of *direct subterms* (or *arguments*) of a term t defined as $\operatorname{Args}(t) = \emptyset$ if t is a variable and $\operatorname{Args}(t) = \{t_1, \ldots, t_n\}$ if $t = f(t_1, \ldots, t_n)$ $(0 \leq n)$. For a set T of terms, $\operatorname{Args}(T) = \bigcup_{t \in T} \operatorname{Args}(t)$.

A mapping $\theta: X \to T(F, X)$ is called a *substitution* if its domain $Dom(\theta) = \{x \mid \theta(x) \neq x\}$ is finite. A substitution θ is naturally extended to the mapping on terms by defining $\theta(f(t_1, \ldots, t_n)) = f(\theta(t_1), \ldots, \theta(t_n))$. The application $\theta(t)$ of a substitution θ to a term t is denoted by $t\theta$.

A rewrite rule is a pair $\langle l, r \rangle$ of terms such that $l \notin X$ and every variable in r occurs in l. We write $l \to r$ for the pair. A term rewriting system (TRS) is a set R of rewriting rules. The reduction relation \to on T(F, X) induced by R is defined as follows; $s \to R$ if and only if $s = s[l\sigma]_p$ and $t = s[r\sigma]_p$ for a rewriting rule $l \to r \in R$, a substitution σ , and $p \in Pos(s)$. We sometimes write $s \to R$ t

$$g(b) \leftarrow_{1} f(b,b) \leftarrow_{1} f(a,b) \xrightarrow{}_{1} f(a,a) \xrightarrow{}_{1} g(a)$$

$$A. \ G_{1} = \langle V_{1}, \rightarrow_{1} \rangle$$

$$g(b) \leftarrow_{2} f(b,b) \leftarrow_{2} f(a,b) \leftarrow_{2} f(a,a)$$

$$g(b) \leftarrow_{2} f(b,a) \leftarrow_{2} f(b,a)$$

$$B. \ G_{2} = \langle V_{2}, \rightarrow_{2} \rangle$$

Figure 1: R_1 -Reduction graphs

to indicate the *rewrite step* at the position p. Let $s \stackrel{p}{\underset{R}{\to}} t$. It is a *top reduction* if $p = \varepsilon$. Otherwise it is an *inner reduction*, written as $s \stackrel{\varepsilon \leq}{\underset{R}{\to}} t$.

A term is *shallow* if |p| is 0 or 1 for every position p of variables in the term. A rewrite rule $l \rightarrow r$ is *shallow* if l and r are shallow, and *collapsing* if r is a variable. A TRS is *shallow* if its rules are all shallow. A TRS is *non-collapsing* if it contains no collapsing rules.

Let $l_1 \to r_1$ and $l_2 \to r_2$ be rewrite rules whose variables have been renamed so that variables in the former rule and those in the latter rule are disjoint. Let p be a position in l_1 such that $l_1|_p$ is not a variable, and let θ be a most general unifier of $l_1|_p$ and l_2 . $\langle r_1\theta, (l_1\theta)[r_2\theta]_p \rangle$ is a *critical pair* except that $p = \varepsilon$ and the two rules are identical (up to renaming variables). A TRS is *weakly non-overlapping* if every critical pair consists of the identical terms.

3. Reduction graph

In this section, we introduce the notion of reduction graphs: finite graphs that represent reductions on terms. We will show confluence by a transformation (in Section 4) from a given reduction graph into a connected and confluent reduction graph that contains nodes of the former reduction graph.

Definition 1. Let R be a TRS over T(F, X). An ARS $G = \langle V, \rightarrow \rangle$ is an *R*-reduction graph if V is a finite subset of T(F, X) and $\rightarrow \subseteq \underset{R}{\rightarrow}$.

Example 2. Consider a weakly-non-overlapping non-collapsing shallow TRS $R_1 = \{ f(x, x) \rightarrow g(x), a \rightarrow b, b \rightarrow a \}$. The R_1 -reduction graph $G_1 = \langle V_1, \rightarrow_1 \rangle$ shown in Figure 1 A. is terminating but is not confluent. The R_1 -reduction graph $G_2 = \langle V_2, \rightarrow_2 \rangle$ shown in Figure 1 B. is convergent.

We say a mapping $\delta : V \to V$ is a *choice* mapping of $G = \langle V, \to \rangle$ if $v \to {}^* \delta(v)$ and $v \leftrightarrow {}^* v' \Rightarrow \delta(v) = \delta(v')$ for all $v, v' \in V$.

Proposition 3. Let $G = \langle V, \rightarrow \rangle$ be an *R*-reduction graph. Then,

(1) G is confluent if and only if it has a choice mapping.

- (2) G is terminating if and only if it has no cycles.
- (3) If G is convergent then it has a unique choice mapping whose range is the set of G-normal forms.

Proof. (1) Since " \Leftarrow -direction" trivially holds from the definition of choice mappings, we show " \Rightarrow -direction". First we show the following claim:

Let $G = \langle V, \rightarrow \rangle$ be a non-empty, connected and confluent reduction graph. Then there exists a node v with $\forall v' \in V.v' \rightarrow * v$.

Let $||v|| = |\{w \mid w \in V, w \not\rightarrow^* v\}|$, i.e., the number of nodes that cannot reach v. Assume that the claim does not hold. Let v be a minimal node with respect to ||v||, then ||v|| > 0 and there exists a node w such that $w \not\rightarrow^* v$. There exists a node u such that $w \rightarrow^* u \leftarrow^* v$ from confluence. Since every node having a path to v has a path to u, and w has no path to v but a path to u, we obtain ||u|| < ||v||, which is a contradiction to the minimality of v.

Second we construct a mapping $\delta : V \to V$. By the preceding claim, for every connected component G_i of G there exists a node u_i reachable from all nodes in G_i . Thus it is enough to define δ as $\delta(v) = u_i$ for nodes v of G_i . (2) The statement follows from the finiteness of V.

(3) Assume that δ_1 and δ_2 are different choice mappings. Then there exists a node u such that $\delta_1(u) \neq \delta_2(u)$. From termination property these terms $\delta_1(u)$ and $\delta_2(u)$ are both normal forms, which contradicts confluence.

From the previous proposition, if a reduction graph $G = \langle V, \to \rangle$ is convergent, then the choice mapping is equal to the function that returns the *G*-normal form of a given term. We denote the choice mapping by \downarrow ; sometimes we also denote $v\downarrow$ instead of $\downarrow(v)$. We use this notation also for substitutions σ : $\sigma\downarrow$ is defined by $x(\sigma\downarrow) = (x\sigma)\downarrow$ for $x \in \text{Dom}(\sigma)$ and $x\sigma \in V$.

Proposition 4. Let $\langle V, \rightarrow_1 \rangle$ be a convergent reduction graph. If $v, v' \in V$ satisfies that v is \rightarrow_1 -normal and $v' \not\rightarrow_1^* v$, then $\rightarrow_1 \cup \{(v, v')\}$ is convergent.

Proof. Let $\rightarrow_{1'} = \{(v, v')\}$ and $\rightarrow_2 = \rightarrow_1 \cup \rightarrow_{1'}$. First we show the termination. Assume that $\rightarrow_1 \cup \rightarrow_{1'}$ is not terminating. Since V is finite and \rightarrow_1 is terminating, any cycle contains the edge (v, v') and hence $v' \rightarrow_1^* v$, which is a contradiction to (2).

Second we show the confluence. Let $s \to {}_{2}^{*} t_{i}$ (i = 1, 2). Each sequence $s \to {}_{2}^{*} t_{i}$ contains the edge $\to_{1'}$ at most once (from (2)). We can assume that only one sequence contains (v, v') from confluence of \to_{1} ; $t_{1} \leftarrow_{1}^{*} s \to_{1}^{*} v \to_{2} v' \to_{1}^{*} t_{2}$. Then $t_{1} \to_{1}^{*} v$ from the confluence of \to_{1} and (1). Therefore $t_{1} \to_{2}^{*} t_{2}$.

(del):

$$\frac{\rightarrow_1; \rightarrow_2}{\rightarrow_1 \setminus \{(l\sigma, r\sigma)\}; \rightarrow_2} \quad \text{if } l \rightarrow r \in R, \ (l\sigma, r\sigma) \in \rightarrow_1, \ l(\sigma\downarrow) \leftrightarrow_2^* r(\sigma\downarrow)$$

(mov):

$$\frac{\rightarrow_1; \rightarrow_2}{\rightarrow_1 \setminus \{(l\sigma, r\sigma)\}; \rightarrow_2 \cup \{(l(\sigma\downarrow), r(\sigma\downarrow))\}} \quad \text{if} \quad \begin{array}{l} l \rightarrow r \in R, \ (l\sigma, r\sigma) \in \rightarrow_1, \\ l(\sigma\downarrow), r(\sigma\downarrow) \in V_2, \ l(\sigma\downarrow) \not\leftrightarrow_2^* r(\sigma\downarrow) \end{array}$$

Figure 2: Basic-transformation rules

$$b \underbrace{\sim}_{1'}^{1'} a \qquad b \underbrace{\sim}_{2'}^{2'} a$$

A. $G_{1'} = \langle V_{1'}, \rightarrow_{1'} \rangle \qquad B. \ G_{2'} = \langle V_{2'}, \rightarrow_{2'} \rangle$

Figure 3: R_1 -Reduction graphs in the transformation

4. Confluence of weakly-non-overlapping shallow systems

Theorem 5. Weakly-non-overlapping, non-collapsing and shallow TRSs are confluent.

This is the main theorem, which directly follows from the next key lemma proven in Section 5 based on a transformation Conv. The transformation gives convergence to a given reduction graph, but neither removes nodes nor divides connected components. (See Example 12)

Lemma 6. Let R be a weakly-non-overlapping non-collapsing shallow TRS. For any R-reduction graph $G_1 = \langle V_1, \rightarrow_1 \rangle$, there exists a convergent R-reduction graph $G_2 = \langle V_2, \rightarrow_2 \rangle$ such that $V_2 \supseteq V_1$ and $\leftrightarrow_2^* \supseteq \leftrightarrow_1^*$.

4.1. Basic transformation

Let $\langle V_1, \rightarrow_1 \rangle$ and $\langle V_2, \rightarrow_2 \rangle$ be *R*-reduction graphs, and let \downarrow be a partial function on terms. A *basic transformation* step $[\rightarrow_1; \rightarrow_2] \vdash [\rightarrow_{1'}; \rightarrow_{2'}]$ is an application of a rule shown in Figure 2. We sometimes display the name of a rule at the suffix of \vdash .

Example 7. Consider \rightarrow_2 of G_2 in Figure 1 B. Let \downarrow be the choice mapping of $G_{2'}$ in Figure 3 B. Then

$$\begin{split} & [\{(f(a,a),g(a)),(f(b,b),g(b))\},\rightarrow_2 \setminus \{(f(b,b),g(b))\}] \\ & \vdash_{(\mathrm{mov})} [\{(f(b,b),g(b))\},\rightarrow_2] \vdash_{(\mathrm{del})} [\emptyset,\rightarrow_2]. \end{split}$$

Lemma 8. Let $\langle V_1, \rightarrow_1 \rangle$ and $\langle V_2, \rightarrow_2 \rangle$ be *R*-reduction graphs of a TRS *R*. For a basic transformation $[\rightarrow_1; \rightarrow_2] \vdash [\rightarrow_{1'}; \rightarrow_{2'}]$, the following statements hold.

(1) The convergence of \rightarrow_2 is preserved if the rule (del) is applied or $l(\sigma \downarrow)$ is \rightarrow_2 -normal.

(2) If
$$l\sigma (\leftrightarrow_{1'} \cup \leftrightarrow_2)^* l(\sigma \downarrow)$$
 and $r\sigma (\leftrightarrow_{1'} \cup \leftrightarrow_2)^* r(\sigma \downarrow)$, then $(\leftrightarrow_1 \cup \leftrightarrow_2)^* = (\leftrightarrow_{1'} \cup \leftrightarrow_{2'})^*$.

Proof. To prove (1), it is enough to consider an application of the rule (mov). Since $l(\sigma \downarrow)$ is \rightarrow_2 -normal and $l(\sigma \downarrow) \not\leftrightarrow_2^* r(\sigma \downarrow)$, Proposition 4 implies this claim.

For (2), note that the basic-transformation holds: A. $\rightarrow_1 = \rightarrow_{1'} \cup \{(l\sigma, r\sigma)\},$ B. $\rightarrow_2 \cup \{(l(\sigma\downarrow), r(\sigma\downarrow))\} \supseteq \rightarrow_{2'},$ B'. $\rightarrow_2 \subseteq \rightarrow_{2'},$ and C. $l(\sigma\downarrow) \leftrightarrow_{2'}^* r(\sigma\downarrow).$ (\supseteq): We have $\rightarrow_{1'} \cup \rightarrow_{2'} \subseteq \rightarrow_1 \cup \rightarrow_2 \cup \{(l(\sigma\downarrow), r(\sigma\downarrow))\}$ from A. and B. Since $l(\sigma\downarrow) \ (\leftrightarrow_{1'} \cup \leftrightarrow_2)^* \ l\sigma \rightarrow_1 \ r\sigma \ (\leftrightarrow_{1'} \cup \leftrightarrow_2)^* \ r(\sigma\downarrow)$ from A., we have $l(\sigma\downarrow) \ (\leftrightarrow_1 \cup \leftrightarrow_2)^* \ r(\sigma\downarrow)$ from A. Therefore $(\leftrightarrow_1 \cup \leftrightarrow_2)^* \supseteq (\leftrightarrow_{1'} \cup \leftrightarrow_{2'})^*.$ (\subseteq): We have $\rightarrow_1 \cup \rightarrow_2 \subseteq \rightarrow_{1'} \cup \{(l\sigma, r\sigma)\} \cup \rightarrow_{2'}$ from A. and B'. Since

 $(\subseteq)^{*} \text{ we have } \gamma_{1} \cup \gamma_{2} \subseteq \gamma_{1'} \cup ((i\sigma, i\sigma)) \cup \gamma_{2'} \text{ from } N. \text{ and } D. \text{ Since } l\sigma (\leftrightarrow_{1'} \cup \leftrightarrow_{2})^{*} l(\sigma\downarrow) \leftrightarrow_{2'} r(\sigma\downarrow) (\leftrightarrow_{1'} \cup \leftrightarrow_{2})^{*} r\sigma \text{ from } C., \text{ we have } (l\sigma, r\sigma) \in (\leftrightarrow_{1'} \cup \leftrightarrow_{2'})^{*} \text{ from } B'. \text{ Therefore } (\leftrightarrow_{1} \cup \leftrightarrow_{2})^{*} \subseteq (\leftrightarrow_{1'} \cup \leftrightarrow_{2'})^{*}.$

4.2. Procedures

For an *R*-reduction graph $G = \langle V, \to \rangle$, let $\stackrel{\varepsilon}{\to} = \to \cap \stackrel{\varepsilon}{\underset{R}{\to}}$ and $\stackrel{\varepsilon <}{\to} = \to \cap \stackrel{\varepsilon <}{\underset{R}{\to}}$. Remark that an edge $(s,t) \in \to$ may belong to both $\stackrel{\varepsilon}{\to}$ and $\stackrel{\varepsilon <}{\to}$. For example, consider rules $a \to b$ and $f(x, x) \to f(b, a)$, and an edge (f(a, a), f(b, a)).

The monotonic extension of a reduction graph $G_1 = \langle V_1, \rightarrow_1 \rangle$ is a reduction graph $G_2 = \langle V_2, \rightarrow_2 \rangle$ where

$$V_2 = \{ f(s_1, \dots, s_n) \mid f \in F, \ s_i \in V_1 \}, \\ \to_2 = \{ (f(\dots s \dots), f(\dots t \dots)) \mid s, t \in V_1, \ s \to_1 t \}$$

Example 9. The monotonic extension of $G_{2'}$ in Figure 3 B. is a subgraph $G_3 = \langle V_2, \rightarrow_2 \setminus \{(f(b, b), g(b))\} \rangle$ of G_2 in Figure 1 (b).

We can easily show the following proposition on a monotonic extension.

Proposition 10. Let $G_2 = \langle V_2, \rightarrow_2 \rangle$ be the monotonic extension of a reduction graph $G_1 = \langle V_1, \rightarrow_1 \rangle$. Then,

- (1) $f(\cdots s \cdots) \in V_2$ and $s \to {}_1^* t$ together imply $f(\cdots t \cdots) \in V_2$,
- (2) $V_1 \supseteq \operatorname{Args}(V)$ implies $V_2 \supseteq V$ for any $V \subseteq \operatorname{T}(F, X)$, and
- (3) both termination and confluence are preserved by this extension.

Procedure Merge is shown in Figure 4. If a TRS R is weakly non-overlapping, the output $G_2 = \langle V_2, \rightarrow_2 \rangle$ is convergent, $V_2 \supseteq V_1$, and $(\leftrightarrow_1 \cup \leftrightarrow_3)^* = \leftrightarrow_2^*$ (Lemma 14).

Example 11. For a subgraph $G_{1''} = \langle V_1, \stackrel{\varepsilon}{\rightarrow}_1 \rangle$ of G_1 in Figure 1 A. and the graph $G_{2'}$ in Figure 3 B., $\text{Merge}_{R_1}(G_{1''}, G_{2'})$ produces G_2 in Figure 1 B. The steps M1 and M2 are demonstrated in Examples 9 and 7, respectively.

Procedure: Merge_R $(G_1, G_{1'})$

Input: A non-collapsing shallow TRS R, an R-reduction graph $G_1 = \langle V_1, \rightarrow_1 \rangle$ and a convergent R-reduction graph $G_{1'} = \langle V_{1'}, \rightarrow_{1'} \rangle$ such that $\rightarrow_1 = \stackrel{\varepsilon}{\rightarrow}_1$ and $V_{1'} \supseteq \operatorname{Args}(V_1)$. Let \downarrow be the choice mapping of $G_{1'}$.

Output: An *R*-reduction graph G_2 .

- **M1** Compute the monotonic extension $G_3 = \langle V_3, \rightarrow_3 \rangle$ of $G_{1'}$ and set $V_2 := V_3$.
- M2 Do basic transformations from $[\rightarrow_1; \rightarrow_3]$ until the first item is empty. Let $[\emptyset; \rightarrow_2]$ be the result.

M3 Output $G_2 = \langle V_2, \rightarrow_2 \rangle$.

Figure 4: Procedure Merge

Procedure: $Conv_R(G_1)$

Input: A non-collapsing shallow TRS R and an R-reduction graph $G_1 = \langle V_1, \rightarrow_1 \rangle$. **Output:** An R-reduction graph G_2 .

- **C1** If $\stackrel{\varepsilon <}{\to}_1 = \emptyset$, output the reduction graph $G_2 = \langle V_2, \to_2 \rangle$ obtained from $\operatorname{Merge}_R(G_1, \langle \operatorname{Args}(V_1), \emptyset \rangle)$ and stop.
- **C2** If $\stackrel{\varepsilon <}{\to}_1 \neq \emptyset$, construct an *R*-reduction graph $G_{1'} = \langle V_{1'}, \to_{1'} \rangle$:

$$V_{1'} = \operatorname{Args}(V_1)$$

$$\rightarrow_{1'} = \{(s_i, t_i) \in V_{1'} \times V_{1'} \mid f(s_1, \dots, s_n) \xrightarrow{\varepsilon <} f(t_1, \dots, t_n), \ s_i \neq t_i\}.$$

C3 Invoke $\operatorname{Conv}_R(G_{1'})$ recursively. Let $G_{2'}$ be the resulting reduction graph.

C4 Output $G_2 = \langle V_2, \rightarrow_2 \rangle$ obtained from $\text{Merge}_R(\langle V_1, \stackrel{\varepsilon}{\rightarrow}_1 \rangle, G_{2'})$ and stop. Figure 5: Procedure Conv

Procedure Conv is shown in Figure 5. If a TRS R is weakly non-overlapping, the output $G_2 = \langle V_2, \rightarrow_2 \rangle$ is convergent, $V_2 \supseteq V_1$, and $\leftrightarrow_2^* \supseteq \leftrightarrow_1^*$ (Lemma 6).

Example 12. For G_1 in Figure 1 A., the steps $Conv_{R_1}(G_1)$ are as follows.

- 1. The step C2 constructs the reduction graph $G_{1'}$ in Figure 3 A..
- 2. The step C3 produces a convergent *R*-reduction graph $G_{2'}$ (in Figure 3 B.) from $G_{1'}$ by applying $Conv_{R_1}$ recursively.
- 3. The step C4 obtains G_2 by $Merge_{R_1}(G_{1''}, G_{2'})$ as shown in Example 11.

5. Proof of Lemma 6

Proposition 13. Let R be a weakly-non-overlapping shallow TRS, and let $G_3 = \langle V_3, \rightarrow_3 \rangle$ be the monotonic extension of a convergent R-reduction graph $G_{1'} = \langle V_{1'}, \rightarrow_{1'} \rangle$ having the choice mapping \downarrow . A node $v \in V_3$ is a G_3 -normal form if $v = l(\sigma \downarrow)$ for some $l \rightarrow r \in R$ and a substitution σ such that $l(\sigma \downarrow) \not\rightarrow_3 r(\sigma \downarrow)$.

Proof. Assume that $l(\sigma\downarrow)$ is not a G_3 -normal form. Since l is shallow and G_3 is a monotonic extension, $t_i \rightarrow_{1'} s$ for some ground direct subterm t_i of $l = f(t_1, \ldots, t_n)$ and $s \in V_{1'}$. Since weakly-non-overlapping, we have $l(\sigma\downarrow) = f(\cdots t_i \cdots)(\sigma\downarrow) \stackrel{\varepsilon \leq}{\rightarrow} f(\cdots s \cdots)(\sigma\downarrow) = r(\sigma\downarrow)$, contradicting the premise.

Lemma 14. Let R be a weakly-non-overlapping non-collapsing shallow TRS. If G_1 and $G_{1'}$ satisfy the input conditions of Merge, the reduction graph $G_2 = \langle V_2, \rightarrow_2 \rangle$ obtained by $\text{Merge}_R(G_1, G_{1'})$ is convergent and satisfies $V_2 \supseteq V_1$ and $(\leftrightarrow_1 \cup \leftrightarrow_3)^* = \leftrightarrow_2^*$, where $G_3 = \langle V_3, \rightarrow_3 \rangle$ is the monotonic extension of $G_{1'}$.

Proof. First we have $V_2 \supseteq V_1$, since $V_2 = V_3$ and $V_3 \supseteq V_1$ by Proposition 10 (2). Second we show that the transformation in Step M2 of Merge continues until

the first item empty. Since G_1 is an *R*-reduction graph with $\rightarrow_1 = \stackrel{\varepsilon}{\rightarrow}_1$, every pair in \rightarrow_1 is represented as $(l\sigma, r\sigma)$ for some $l \rightarrow r \in R$ and a substitution σ . Thus, it is enough to see that $l(\sigma\downarrow)$ and $r(\sigma\downarrow)$ are in V_3 (= $V_2 \supseteq V_1$). This follows from shallowness of l and $r, x\sigma \rightarrow_{1'}^* x(\sigma\downarrow)$, and Proposition 10 (1).

Now we can represent the sequence as $[\rightarrow_1; \rightarrow_3] = [\rightarrow_{1_0}; \rightarrow_{2_0}] \vdash [\rightarrow_{1_1}; \rightarrow_{2_1}] \vdash \cdots \vdash [\rightarrow_{1_k}; \rightarrow_{2_k}] = [\emptyset; \rightarrow_2]$. Note that $V_{1'} \supseteq \operatorname{Args}(V_1)$ and $\rightarrow_3 \subseteq \rightarrow_{2_i}$.

Third we show the convergence of G_2 and $(\leftrightarrow_1 \cup \leftrightarrow_3)^* = \leftrightarrow_2^*$. By induction on *i*, we will prove the following claims for each $0 \le i \le k$:

- (1) \rightarrow_{2_i} is convergent,
- (2) $(\leftrightarrow_1 \cup \leftrightarrow_3)^* = (\leftrightarrow_{1_i} \cup \leftrightarrow_{2_i})^*$, and
- $(3) \to_{2_i} \setminus \stackrel{\varepsilon}{\to}_{2_i} \subseteq \to_3 \subseteq \to_{2_i}.$

(Case i = 0): $G_3 = \langle V_3, \rightarrow_3 \rangle$ is convergent by Proposition 10 (3). Thus, the claims (1), (2), and (3) follow from $\rightarrow_3 = \rightarrow_{2_0}$ and $\rightarrow_1 = \rightarrow_{1_0}$.

(Case i > 0): Let $[\rightarrow_{1_{i-1}}; \rightarrow_{2_{i-1}}] \vdash [\rightarrow_{1_i}; \rightarrow_{2_i}]$. Then $\rightarrow_{2_{i-1}}$ is convergent by induction hypothesis. To prove the claim (1), from Lemma 8 (1) it is enough to consider when (mov) is applied, and show that $l(\sigma\downarrow)$ is $\rightarrow_{2_{i-1}}$ -normal. From the side condition of (mov), we have $l(\sigma\downarrow) \not\rightarrow_{2_{i-1}} r(\sigma\downarrow)$ and hence

- $l(\sigma \downarrow)$ has no out-edges in $\xrightarrow{\varepsilon}_{2i-1}$, since R is weakly non-overlapping,
- Since $\rightarrow_3 \subseteq \rightarrow_{2_{i-1}}$, we have $l(\sigma \downarrow) \not\rightarrow_3 r(\sigma \downarrow)$. From Proposition 13, $l(\sigma \downarrow)$ is G_3 -normal. By the induction hypothesis $\rightarrow_{2_{i-1}} \setminus \stackrel{\varepsilon}{\rightarrow}_{2_{i-1}} \subseteq \rightarrow_3$, $l(\sigma \downarrow)$ has no out-edges in $\rightarrow_{2_{i-1}} \setminus \stackrel{\varepsilon}{\rightarrow}_{2_{i-1}}$.

The claim (2) follows from Lemma 8 (2), if $l\sigma \leftrightarrow_{2_{i-1}}^* l(\sigma\downarrow)$ and $r\sigma \leftrightarrow_{2_{i-1}}^* r(\sigma\downarrow)$. Since $x\sigma \rightarrow_{1'}^* x(\sigma\downarrow)$, \rightarrow_3 is the monotonic extension of $\rightarrow_{1'}$, and l and r are shallow, we have $l\sigma \rightarrow_3^* l(\sigma\downarrow)$ and $r\sigma \rightarrow_3^* r(\sigma\downarrow)$. Then, $l\sigma \rightarrow_{2_{i-1}}^* l(\sigma\downarrow)$ and $r\sigma \rightarrow_{2_{i-1}}^* r(\sigma\downarrow)$ follow from the induction hypothesis $\rightarrow_3 \subseteq \rightarrow_{2_{i-1}}$.

The claim (3) holds if $\rightarrow_{2_i} \setminus \stackrel{\varepsilon}{\rightarrow}_{2_i} \subseteq \rightarrow_{2_{i-1}} \setminus \stackrel{\varepsilon}{\rightarrow}_{2_{i-1}}$ and $\rightarrow_{2_{i-1}} \subseteq \rightarrow_{2_i}$. The former holds, since only top reductions can be added. The latter also holds, since no edges are removed from $\rightarrow_{2_{i-1}}$.

Proof. (of Lemma 6) It is enough to show that the reduction graph G_2 obtained by invoking $\operatorname{Conv}_{R_1}(G_1)$ satisfies $V_2 \supseteq V_1$ and $\leftrightarrow_2^* \supseteq \leftrightarrow_1^*$. This is proved by induction on the total size of terms in V_1 .

Case 1. Assume that edges of G_1 are all due to top reductions of R. Then, C1 of Conv occurs and we obtain $G_2 = \langle V_2, \rightarrow_2 \rangle$ by invoking $\text{Merge}_R(G_1, \langle \text{Args}(V_1), \emptyset \rangle)$. From Lemma 14, G_2 is convergent and $V_2 \supseteq V_1$. Since the monotonic extension of $\langle \text{Args}(V_1), \emptyset \rangle$ has no edges, we have $\leftrightarrow_2^* = \leftrightarrow_1^*$ from Lemma 14.

Case 2. Assume that some edges are due to inner reductions of R. Then, C2-C4 of **Conv** occur. By induction hypothesis $G_{2'} = \langle V_{2'}, \rightarrow_{2'} \rangle$ is convergent and satisfies the conditions that A. $V_{2'} \supseteq V_{1'}$ and B. $\leftrightarrow_{2'}^* \supseteq \leftrightarrow_{1'}^*$. Note that $V_{2'} \supseteq V_{1'} = \operatorname{Args}(V_1)$ from A. From Lemma 14, G_2 is convergent, $V_2 \supseteq V_1$, and $(\stackrel{\varepsilon}{\leftrightarrow}_1 \cup \leftrightarrow_3)^* = \leftrightarrow_2^*$, where $G_3 = \langle V_3, \rightarrow_3 \rangle$ is the monotonic extension of $G_{2'}$.

Now we show that $\leftrightarrow_3^* \supseteq \stackrel{\varepsilon \leq}{\leftrightarrow}_1$. Let $s = f(\cdots, s', \cdots) \stackrel{\varepsilon \leq}{\to}_1 f(\cdots, t', \cdots) = t$. From $s' \to_{1'} t'$ and B., we have $s' \leftrightarrow_{2'}^* t'$. Thus, we obtain $s \leftrightarrow_3^* t$.

$$\text{Therefore} \leftrightarrow_1^* = (\stackrel{\varepsilon}{\leftrightarrow}_1 \cup \stackrel{\varepsilon <}{\leftrightarrow}_1)^* \subseteq (\stackrel{\varepsilon}{\leftrightarrow}_1 \cup \leftrightarrow_3^*)^* = (\stackrel{\varepsilon}{\leftrightarrow}_1 \cup \leftrightarrow_3)^* = \leftrightarrow_2^*. \qquad \Box$$

References

- [Baader98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
- [Godoy05] G. Godoy and A. Tiwari. Confluence of shallow right-linear rewrite systems. CSL 2005, LNCS 3634, pp.541–556, 2005.
- [Gomi96] H. Gomi, M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of non-E-overlapping and strongly depth-preserving term rewriting systems. IPSJ, 37(12), pp.2147–2160, 1996.
- [Gomi98] H. Gomi, M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of root-E-overlapping and strongly depth-preserving term rewriting systems. IPSJ, 39(4), pp.992–1005, 1998.
- [Gramlich96] B. Gramlich. Confluence without termination via parallel critical pairs. CAAP'96, em LNCS 1059, pp.211–225, 1996.
- [Huet80] G. Huet. Confluent reductions: abstract properties and applications to term rewriting systems. J. ACM, 27, pp.797–821, 1980.
- [KB70] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. Computational Problems in Abstract Algebra (Ed. J. Leech), pp.263– 297, 1970.

- [Mitsu06] I. Mitsuhashi, M. Oyamaguchi and F. Jacquemard. The Confluence Problem for Flat TRSs. AISC 2006, LNCS 4120, pp.68–81, 2006.
- [Ohta95] Y. Ohta, M. Oyamaguchi and Y. Toyama. On the Church-Rosser Property of Simple-right-linear TRS's. IEICE, J78-D-I(3), pp.263-268, 1995 (in Japanese).
- [Okui98] S. Okui. Simultaneous Critical Pairs and Church-Rosser Property. RTA'98, LNCS 1379, pp.2–16, 1998.
- [Oostrom95] V. van Oostrom. Development closed critical pairs. HOA'95, LNCS 1074, pp.185–200, 1995.
- [Oyama97] M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-Rosser of left-linear term rewriting systems. RTA'97, LNCS 1232, pp.187–201, 1997.
- [Oyama03] M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of left-linear term rewriting systems. IEICE, E86-D, pp.131–135, 2003.
- [Rosen73] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. J. ACM, 20, pp.160–187, 1973.
- [Sakai08] M. Sakai and Y. Wang. Undecidable Properties on Length-Two String Rewriting Systems. ENTCS, 204, pp.53–69, 2008.
- [Toyama87] Y. Toyama. Commutativity of term rewriting systems. Programming of future generation computer II, pp.393–407, 1988.
- [Toyama95] Y. Toyama and M. Oyamaguchi. Church-Rosser property and unique normal form property of non-duplicating term rewriting systems. Kokyuroku, Kyoto University, 918, pp.139–149, 1995.