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Associative Search on Shogi Game Records

Kobkrit Viriyayudhakorn†1 and Mizuhito Ogawa†2

Associative search is information retrieval based on the similarity between
two different items of text information. This paper reports experiments on
associative search on a large number of short documents containing a small
set of words. We also show the extension of the set of words with a semantic
relation, and investigate its effect. As an instance, experiments were performed
on 49,767 professional (non-handicapped) Shogi game records with 1,923 next
move problems for evaluation. The extension of the set of words by pairing
under semantic relations, called semantic coupling, is examined to see the effect
of enlarging the word space from unigrams to bigrams. Although the search
results are not as precise as next move search, we observe improvement by
filtering the unigram search result with the bigram search, especially in the
early phase of Shogi games. This also fits our general feeling that the bigram
search detects castle patterns well.

1. Introduction

Associative search is information retrieval based on the similarity between two
items of text information. Similarity is computed based on associative informa-
tion generated from statistics regarding a large text database.

Associative search engines, which perform associative search, have been imple-
mented in recent decades. For example, the keyword associator 1) was proposed
by Watanabe from Fujitsu laboratory, and another, the Generic Engine for Trans-
posable Association computation (GETA) 2) was proposed by Takano from Hi-
tachi laboratory. GETA is continuously being developed in National Institute of
Informatics (NII).

The former pre-computes keyword association and is applied in the Group Idea
Processing System (GrIPS) 3), which computes the similarity between two ideas.
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The latter, GETA, quickly handles a dynamic associative search on more than
ten million documents. It was first applied as DualNavi 4) over Heibonsha En-
cyclopedia. Now, there are several web sites based on GETA, such as, We-
bcat Plus�1 over bibliographical data of libraries of all Japanese universities,
Imagine�2, Cultural Heritage Online 5)�3, and Pictopic�4. GETA are applied for
database of documents in natural languages, in which each document is mostly
quite lengthy, say 500-10,000 words. The whole set of words appearing in these
databases is huge due to the nature of natural languages. To our limited knowl-
edge, we found no applications of GETA on a document database in an artificial
language with a small set of words.

Shogi (Japanese chess) is a two player game, and is popular in Japan. Its
game state consists of 40 piece positions (including captured pieces) with non-
duplicating locations, and totalling over 2,296 (= (9×9+1)×(8+6)×2) possible
piece positions. We regard a Shogi game state as a 40 word document.

Computer Shogi, which is much more difficult than chess as an example of arti-
ficial intelligence due to the larger search space, has a long history starting from
the late 70’s 6). In the early days, implementations were a combination of Shogi
game record search (for early phases) and min-max like search. They stayed at
the novice to medium amateur player level. In 2005, Bonanza�5 introduced ma-
chine learning techniques, which obtained great success. Nowadays, top-ranked
computer Shogis are approaching to the professional level.

This paper reports experiments of association search, which completely apart
from existing computer Shogi techniques, on a large number of short documents
over a small set of words. We also show the extension of the set of words with
semantic relations, and investigate its effect. Experiments are performed on
49,767 professional (non-handicapped) Shogi games records, and evaluated by
prediction accuracy on 1,923 next move problems.

As preprocessing, we first generate and normalize all Shogi game states

�1 http://webcatplus.nii.ac.jp
�2 http://imagine.bookmap.info
�3 http://bunka.nii.ac.jp
�4 http://photobank.pictopic.info
�5 http://www.geocities.co.jp/bonanza shogi
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(5,613,402 states) appearing in the Shogi game records. Shogi game states can
be regarded as a corpus of an artificial language with
• Small word space (when a word is a piece position),
• Short documents (each game state contains exactly 40

words), and
• A huge number of documents (game states).
Here, normalization means that the mover side is always set to the black side.

Then, the core associative information, WAM (Word Article Matrix), of GETA,
is generated. During the experiments, all illegal moves (violating Shogi rules) are
deleted from the search results. In the implementation, we use GETAssoc, which
is a variant of GETA intended for personal use and easy installation on Linux.

We further extend the set of words by pairing under a semantic relation, to see
the effect of enlarging the word space. We call this pairing semantic coupling. In
Shogi game states, a word is a piece position. We focus on the relation between
the position of two pieces on the board, if one piece can move to another (i.e.,
if they are on different sides, one can capture another; if they are on the same
side, one ties to another piece). Then, the number of semantic couplings becomes
nearly 20,000. We refer to a single piece position as a unigram, and a semantic
coupling as a bigram.

The experiments evaluate the accuracy of associative search regarding the solu-
tions of next move problems. We also compare prediction accuracy under phase
categorization of next move problems (which was manually done by a medium-
level amateur Shogi player).

First, experiments are performed only with unigrams to set appropriate simi-
larity measures and the number of article summaries (characteristic keywords).
Second, experiments with bigrams are compared. We had a general feeling that
associative search with bigrams detects castle patterns well. Last, we tried the
combination of unigrams and bigrams; their union, and filtering by the latter.

As our conclusion, although the search results are not so precise as the next
move search of Shogi, we observe the improvement by filtering the unigram search
result with the bigram search (intersection of the sets of the top-n results), espe-
cially in early phases of Shogi games.

Our experiments are preliminary. In the context of computer Shogi, an associa-

tive search is a naive methodology; for instance, machine learning-based methods
use several thousands parameters, whereas an association search uses only one
similarity measure, which fits a likely search rather than an exact search. From
the computer Shogi viewpoint, the associative search will have better fitness for
categorizing Shogi game records into, say, their game phases and/or their game
opening patterns. They are left for future work.

This paper is organized as follows. Section 2 explains associative search and
GETA. Section 3 explains Shogi fundamentals. Section 4 shows how to generate
Shogi game states from Shogi records. Section 5 describes associative search on
Shogi database. Section 6 gives the testbed system description. Sections 7 and 8
show the experimental results for unigrams and bigrams, respectively. Section 9
concludes the paper.

2. Associative Search and GETAssoc

2.1 Associative Search
In an associative search, an article is regarded as a multiset 7) of tokens (typi-

cally, an article is a document and a token is a word). A query is a (multi)set of
tokens, and the search result is a ranking among tokens with respect to a given
similarity measure.

Let ID1 be a set of articles, and let ID2 be a set of tokens.
Definition 1. An associative system is a quadruplet A = (ID1, ID2, a,SIM)
where a is an associative function and SIM is a similarity function such that{

a : ID1 × ID2 → N
SIM : ID2 × MP (ID1) → R≥0

where N is the set of natural numbers, R≥0 is the set of non-negative real num-
bers, and MP (ID) is the set of non-empty multisets consisting of elements in
ID (which is equivalently the set of functions from ID to N). We say that
At = (ID2, ID1, a

t,SIMt) is the transpose of A, where at(y, x) = a(x, y) and a
given SIMt : ID1 × MP (ID2) → R≥0.

For X ⊆ ID1 (resp. ID2) and n ∈ N, let A(X,n) (resp. At(X,n)) be the
function collecting the top n-elements in ID2 (resp. ID1) with respect to the
similarity SIM(y,X) (resp. SIMt(y,X)) for y ∈ ID2. An associative search is
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At({y | (y, v) ∈ A(X,m)}, n)
for m ∈ N.

In the definition of an associative search, m is not specified. From empirical
study, in GETAssoc (see Section 2.3) m was set to 200 by default, to balance
efficiency and precision. Note that during an associative search, we first compute
A(X,m). This result is regarded as a summary that characterizes X.

Typical examples of associative searches are:
• ID1 is the set of documents, ID2 is the set of words, and a(d,w) is the number

of occurrences of a word w in a document d. In this case, an associative search
is documents-to-documents.

• ID1 is the set of words, ID2 is the set of documents, and at(w, d) = a(d,w).
In this case, an associative search is words-to-words.

Note that an associative search does not require structured documents, and the
associative search ignores the ordering of words; it does not distinguish between,
for example “Weather is not always fine” and “Weather is always not fine”.

From now on, we fix ID1 as the set of documents and ID2 as the set of words.
To search a document d with a query q, d ∈ ID1 and q ∈ MP (ID2). Usually
q �∈ ID2 (i.e., there is no precise matching). In this situation, an associative
search is performed as

Step 1. A summary (characteristic keywords) of q is produced. This is
performed by taking top-m words among w ∈ q by SIMt(w, ID1). ID1 ∈
MP (ID1) is regarded as the multiset consisting all documents appearing
precisely once.
Step 2. For the set q′ ⊆ MP (ID2) of top-m words in q, top-n documents
in ID1 are selected by evaluating SIM(d, q′) for each d ∈ ID1.

GETAssoc permits a similarity function SIM of the form

SIM(d, q) =
∑
t∈q

wq(t, q) · wd(t, d)
norm(d, q)

(1)

with the assumptions that wd(t, d) = 0 if t �∈ d and wq(t, q) = 0 if t �∈ q.
Typically,
• The value of norm(d, q) is dependent only on d. (In such cases, SIMt is

obtained by simply swapping wq and wd.)

• Both wq and wd are defined dependent on the association function a.
For an efficient associative search implementation (e.g., GETA), we assume

SIM(y,X) = 0 if a(x, y) = 0 for each x ∈ X ⊆ ID1 and y ∈ ID2.
2.2 Similarity Functions
GETAssoc accepts user-defined similarity functions of form in Eq. 1 as well as

default similarity functions,
• Smart measure 8),
• Okapi BM25 9),
• Cosine 10),
• Dot Product 10).
These similarity functions are defined as functions of type ID2 ×MP (ID1) →

R≥0 as in Fig. 1, where d ∈ ID1, q ∈ MP (ID1), t, w ∈ ID2, and
• wq,t = log( N

ft+1 )
• wd,t = log(fd,t + 1)
• ft is the number of documents that contain t.
• fd is the number of words in document d.
• fx,t is the number of occurrences of the word t in x.
• N is the number of documents in ID1.

GETA sets θ = 0.2, k = 0.2, and b = 0.75 for the default measure in Fig. 1.
These default similarity functions are directly applied to Step 2 of an associa-

tive search. For Step 1, the dual similarity functions of type ID1×MP (ID2) →
R≥0 are needed, which are obtained by transposing the relation as d ∈ w (a doc-
ument d contains a word w) when w ∈ d (a word w appears in a document d).
In practice, there are small differences, e.g., setting of stop words, but in prin-
ciple, GETAssoc uses the dual functions on both document-to-document and
word-to-word similarity.

2.3 GETAssoc and an Example
The Generic Engine for Transposable Association Computation�1 (GETA) is an

associative search engine developed at National Institute of Informatics (NII) 2).
Its implementation was first released in the late 90’s. In 2009, GETAssoc was
released as a variation of GETA, intended for personal use with easy installation.

�1 http://getassoc.cs.nii.ac.jp
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Smart measure 8) :

1
avg(fd) + θ(fd − avg(fd))

∑
t∈q∧t∈d

log(
N

ft
) · 1 + log(fd,t)

1 + log(avgω∈d(fd,ω))
· 1 + log(fq,t)
1 + log(avgω∈q(fq,ω))

(2)

Okapi BM25 9) : ∑
t∈q∧t∈d

log(
N − ft + 0.5

ft + 0.5
) · fd,t · (k + 1)

fd,t + k · (1 − b + b · fd

avg(fd) )
(3)

Cosine similarity 10) : ∑
t∈q∧t∈d(wq,t · wd,t)√∑
t∈q(w

2
q,t) ·

∑
d∈q(w

2
d,t)

(4)

Dot product 10) : ∑
t∈q∧t∈d

(wq,t · wd,t) (5)

Fig. 1 Four similarity measures and their formulas.

We use GETAssoc version 1.1.
The key data structure of GETA is a WAM (Word Article Matrix), which

represents an association function in Definition 1. WAM is usually a huge sparse
matrix of which rows are indexed by names of documents and columns are indexed
by words. When ID1 is a set of words and ID2 is a set of documents, the
cross point of the row of a word w and the column of a document d is a(w, d),
which is the number of occurrences of a word w in a document d. Then, the
transpose at(w, d) is obtained as a transposed WAM. In GETA implementation,
a huge and sparse WAM is compressed either vertically or horizontally. These
two compressed matrices enable us to compute association functions a and at,
respectively.
Example 1. Consider a query “twitter dollar”, which is regarded as a two-
word document. The WAM is shown in Table 1. The SIMt(w, ID1) has the
dual form of Eq. 1, for a document d ∈ ID2, and we set wq(d, ID1) = 1,
wd(d,w) = a(w, d), and norm(w, ID1) as the number of documents that contain

Table 1 A sample WAM.

twitter tennis dollar facebook
IT news 2 0 1 4

Sports news 0 2 1 0
Economic news 0 0 2 0

w. i.e., norm(twitter, ID1) = 1 and norm(dollar, ID1) = 3. Then, the scores of
“twitter” and “dollar” are 2 and 1.333.... If we take the top-ranked word only
as a summary, the most similar document to the query “twitter dollar” is “IT
news”.

3. Shogi

3.1 Shogi Fundamentals
Shogi (Japanese chess) is a two-player game similar to Chess played on a 9×9-

square board. The differences are that there are no distinctions like black and
white on pieces, and each piece is reusable when captured. The player who has
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Fig. 2 The initial state of Shogi game.

Fig. 3 Legal moves of each piece in Shogi.

the turn of the initial move is referred to as black, and the other is referred to as
white. At each move, the turn of the next move changes to the opponent. The
player who has the turn is the mover, and the other is the watcher (of a game
state).

Initially, each player has 20 pieces, consisting of one King (Oh or Gyoku), one
Rook (Hisha), one Bishop (Kaku), two Gold generals (Kin), two Silver generals
(Gin), two Knights (Keima), two Lances (Kyousha), and nine Pawns (Fu). Each
piece is designed as a pentagon, and (the opposite of) its direction shows which
side (black or white) it belongs to. Shogi starts with the fixed piece positions
(Fig. 2).

Their legal moves are illustrated in Fig. 3. Except for the King and the Gold
general, pieces can be promoted when they enter the opponent’s base (the top
three rows for black, and the bottom three rows for white). Note that promotion

is an option of a player. Except for the Rook and Bishop, the possible moves
after promotion are the same as for a Gold general. The promoted Rook has
possible moves of both Rook and Silver general, the promoted Bishop has those
of both Bishop and Gold general. When a player has no legal moves that allow
his king to avoid capture (or, a player resigns to admit the loss), it is the end
game.

In Shogi, there are handicapped games, in which an expert removes some pieces
from his own initial positions when playing against a novice. We focus on non-
handicapped games only in this article.

3.2 Game State Description
A location on the board is represented by a pair of a number from 1 to 9, which

represents the horizontal position, and a lowercase alphabetical letter from a to
i, which represents the vertical position. For example, 1a is the top right corner.

We use K for King, R for Rook, B for Bishop, G for Gold general, S for
Silver general, N for Knight, L for Lance, and P for Pawn. A promoted piece is
represented by adding + in front of the letter, e.g., +P for a promoted pawn.

A piece position consists of either four letters, five letters, or two letters. The
first two letters in the former two cases represent the location, followed by the
owner of the piece and the kind of piece (with + if promoted). For instance,
1aWL is the white lance at the top right corner as shown in Fig. 4, where B
indicates the black player and W the white player.

The latter case represents the captured piece. The first letter represents the
owner of the piece (the capturing player). The second letter represents the kind
of piece. For instance, BP is a captured Pawn, which is under control of the
black player.

A game state is a collection of 40 piece positions without duplications of lo-
cations, but with possible duplications of captured pieces. Fig. 4 shows an exam-
ple of a Shogi game state and its description.

3.3 Legal Moves
A move is a transition from one game state to another caused by a legal move

of a piece, as shown in Fig. 3.
A move notation is, for instance, P-7f. The first letter represents the kind of

piece, and the second letter represents the kind of action of the piece, either - a
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BP BP WP 1aWL 1cWP 1gBP 1iBL2aWN 2bWK

2cWP ... 8cWP 8gBP 8iBN 9aWL 9cWP 9gBP 9iBL

Fig. 4 A sample Shogi game state.

move, * a drop (a captured piece is reused on the board), or x a capture. The
last two letters represent the destination position.

If a move allows the player to promote a piece, a + is added to the end if the
promotion is taken, or an = if the promotion is not taken. For instance, Nx5c+
represents a Knight capturing on 5c with promotion.

In case where the piece is ambiguous, the starting position is inserted after the
letter for the piece. For example, in Fig. 4, black player has two Gold generals,
which can move to square 6h, which can be distinguish as G6g-6h (from above)
and G6i-6h (from below).

The legal move set of a game state is the collection of move notations of all
possible legal moves of mover side pieces. For example, the legal move set of the
game state in Fig. 4 is

P-1f L-1h P-2e R-2g R-1h R-3h R-4h R-5h R-6h ...
G-7f G-6f G-5f G6g-6h G6i-6h G-5h G-7i G-5i ...
P-9f L-9h P*6c P*6f P*6h P*7b P*7d P*7e P*7f P*7i

4. Shogi Game State Generation

4.1 Shogi Database
The 49,767 professional Shogi game records, which consist of 5,613,402 moves,

are downloaded from Shogi archive�1.
All game records are used as the source for generating game states as in Sec-

tion 5.1, which are indexed by the record number and the number of moves (from
the initial state), and used to generate the WAM.

The 1,923 next move problems are compiled from the web site�2. Each page
consists of an image that represents a question game state, e.g., Fig. 4, and an an-
swer text of the correct next move. Every piece drawn in the image is recognized
by bitmap pattern matching to extract piece positions. A next move answer is
extracted by string pattern matching in the text.

A Shogi game record is a sequence of move notations in chronological order
from the initial Shogi game state (Fig. 2). Thus, Shogi game states are generated
by tracing move notations one by one from the initial Shogi game state.

4.2 Game State Normalization
A piece position is conventionally recorded from the black player’s viewpoint.

However, a next move problem is viewed from the mover side. To avoid confusion,
we normalize each generated game state to show piece positions from the mover
side as below.
• If the mover is black,

( 1 ) Leave it unchanged.
• If the mover is white,

( 1 ) Rotate the Shogi board.
( 2 ) Swap the owner of every piece on the board (including the captured

pieces).
This normalization changes presentation of two players in a game state from

black-white to mover-watcher. After normalization, the black player is always
referred to as the mover, and the white player is always referred to as the watcher.

�1 http://wiki.optus.nu/shogi
�2 http://navy.ap.teacup.com/nobuo90
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5. Associative Search on Shogi Database

5.1 Associative Search for Next Move
Associative search of similar game states to a given game state is adopted by

regarding:
( 1 ) A piece position as a word.
( 2 ) A game state as a document.
Note that each document contains exactly 40 words.

A next move problem is a given game state, and asks the most beneficial move,
e.g., G6i-6h in Fig. 4. The associative search for the next action is,
( 1 ) For a database of game records, all generated game states are used to make

a WAM.
( 2 ) A given game state (of the next move problem) is translated into a docu-

ment.
( 3 ) Perform associative search and find the most similar game state.
( 4 ) Find its next move from its corresponding Shogi game record.

If the next move matches the original answer of the query next move problem,
we say the associative search result is correct. Since different game records may
contain the same game state, there may be multiple answers. In such cases, if
they contain the original answer, we also say correct.

Fig. 5 Experimental system for next move search.

5.2 Extension of the Word Space
To see the effect of enlarging a word space, we propose semantic coupling,

which pairs two words under a semantic relation. More precisely, let W be the
set of words and let � ⊆ W × W be the binary relation over W . Then,

S(W,�) = {(w,w′) ∈ W × W | w � w′}.
In Shogi game states, a word is a piece position. We focus on the relation

between the position of two pieces on the board, if a piece can move to another
(i.e., if they are on different sides, one can capture another; if they are on the
same side, one ties to another), e.g., (4fBB, 1cWP), (4bWB, 6dWS) in Fig. 4.
Then, the number of semantic couplings becomes nearly 20,000. We refer to a
single piece position as a unigram, and a semantic coupling as a bigram.

6. Experimental System Description

The system for associative search of a next move consists of two workflows.
They are implemented on a 64-bit PC with Intel i7 1.6 Ghz and 6 GB memory,
running Linux Ubuntu 10.10. Note that we use a single core only.

6.1 WAM Construction Workflow
The WAM construction workflow is shown in Fig. 5 as the horizontal solid ar-

rows from “Shogi Game Records” to “WAM Construction”. Shogi game states
are generated and normalized by the game state generator. During the genera-
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tion, indexing of each game state is also generated, such that the original record
can be referred.

The 49,767 Shogi game records generate 5,613,402 moves, which are 3.1 GB in
total. The WAM construction workflow takes about three hours.

6.2 Next Move Search Workflow
The next move search workflow is shown in Fig. 5 as the dotted arrows. The

game state of the next move problem is queried to GETAssoc. This query is con-
figured by four different similarity measures, Smart measures 8), Okapi BM25 9),
Cosine 10), and Dot Product 10).

Note that resulting next moves may be illegal. Instead of taking just the top-
ranked next move, we take the top 100 next moves and filter by the set of legal
moves (Filter, in Fig. 5) to find the highest ranked legal next move.

6.3 System Configuration
Recall that documents-to-documents associative search consists of two steps;

similarity from a query document to characteristic keywords, and similarity
from characteristic keywords to associated documents (Section 2.1). By default,
GETAssoc implementation computes the top 200 characteristic keywords. Note
that, by nature of similarity measures, each characteristic keyword is included in
a query document. Since each Shogi game state contains exactly 40 words, we
modify the configuration to perform experiments under choices of the number n

of characteristic keywords (Section 7.2).
After the most similar game state is found, we refer to the original game record

and the number of moves, and the system identifies where that game state appears
in a game record and returns its next move, as the most likely one.

7. Experiments with Unigrams

We first apply experiments with unigrams to find suitable parameters
• The choice of a similarity measure, and
• The number of characteristic keywords.

and observe their behaviours. For each parameter setting, an experiment on the
1,923 Shogi next move problems takes about 3 hours. We will use only default
similarity functions shown in Fig. 1 (Section 2.2).

7.1 Similarity Measure Comparison: Prescreening
We first examine the accuracy of next move answer by the following four similar-

ity measures under the default setting, i.e., the number of characteristic keywords
= 40. As observed below, Dot product is significantly worse than the others, and
we avoid it. Fig. 6 shows examples of searched results.

Measure All
Smart 9.41%

Okapi BM25 9.56%
Cosine 9.93%

Dot product 6.55%

7.2 Keyword Size Comparison
Since each article (game state) contains exactly 40 words, the set of detected

characteristic keywords are the same as an article. Thus, to give focus among
keywords may improve accuracy of results. We compare the behaviours of three
similarity measures, Smart measure, Okapi BM25, and Cosine. Note that, as
shown in Fig. 8, when the characteristic keyword size is too small, game states
with the same highest scores increase. (For readability, we omit the graph when
the number of duplications exceeds three. For instance, when the keyword size
is one, the duplications become 23.17 for Okapi and 16.04 for Cosine). Due to
too many duplications, we omit the prediction accuracy when the number of
characteristic keywords is less than 10.

Fig. 7 shows the changes in accuracy. For more than 10 characteristic keywords,
there are peaks between 10-15. Okapi and Smart have another peak around 25-
30, and Cosine has another peak at 40. Considering the duplications (Fig. 8),
these peaks are quite essential.

Fig. 9 shows the average number of intersections of top ranked game states of
similarity measures. It shows that Smart and Cosine show a similar tendency,
and Okapi is unique.

7.3 Phase Categorization and Its Effect
In Shogi, there are five phases, which are early(E), early-intermediate(EI),

intermediate(I), intermediate-late(IL), and late(L). Early(E) usually corresponds
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(a) Query game state. (b) Smart (UNIGRAM, Size=40). (c) Okapi (UNIGRAM, Size=40).

(d) Cosine (UNIGRAM, Size=40). (e) Okapi (UNIGRAM+BIGRAM,
Size=12).

(f) Okapi (UNIGRAM filtered by
BIGRAM, Size=12).

Fig. 6 Searched most similar game states for the query game state.

to Shogi opening patterns. As the game proceeds, the number of possible game
states increases, and similar game states to a given game state will diverge. We
expect that results would be better in earlier stages. The game phases of 1,923
Shogi next move problems are manually categorized by a medium-level amateur
Shogi player (about 1 dan).

Phases IE I IL L Total
Amount of

105 1167 331 320 1923
next move problems

We compare the three similarity measures, Smart, Okapi BM25, and Cosine,
for each phase with the sizes 10, 20, 30, and 40 of characteristic keywords (Size
in Table 2). Table 2 shows the experimental results, in which we can observe

the visible improvement in EI and I. Note that although Cosine with keyword
size = 10 looks more precise, we need to remember that, with small keyword
size, duplication of the results increases (especially for Cosine), which raises the
accuracy.

From now, we show experimental results with the phase categorization.

8. Experiments with Bigrams

8.1 Bigrams
As described in Section 5.2, we perform experiments with bigrams to see their

effect. The first experiments are with bigrams only (without unigrams). Note
that the number of characteristic keywords (bigrams) is no longer bounded 40;
the average size of documents is 43.74. The experimental results are shown in
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Fig. 7 The accuracy with keywords size from 1 to 40 (UNIGRAM).

Fig. 8 The number of game states with the same highest scores (UNIGRAM).

Table 3, which shows visible decreasing with every measure.
As shown in Fig. 10, there is slightly less duplication in top-ranked game states,

compared with unigrams; mostly below 1.1 as the average.
For bigrams of semantic couplings, the formation of the group of pieces becomes

Fig. 9 The average number of the intersections among similarities (UNIGRAM).

Table 2 The accuracy in each game phase (UNIGRAM).

Size Measure EI I IL L All

10
Smart 29.52% 10.36% 6.04% 7.50% 9.67%
Okapi 34.28% 11.48% 5.74% 7.50% 11.07%
Cosine 38.09% 12.16% 5.13% 7.81% 11.64%

20
Smart 29.52% 10.62% 5.74% 6.50% 10.14%
Okapi 32.38% 10.62% 6.34% 6.50% 10.40%
Cosine 29.52% 10.96% 5.43% 5.31% 10.08%

30
Smart 31.42% 10.11% 5.74% 6.25% 9.88%
Okapi 27.62% 11.39% 6.94% 6.25% 10.66%
Cosine 29.52% 9.68% 5.13% 5.00% 9.20%

40
Smart 30.47% 9.68% 5.14% 5.94% 9.41%
Okapi 27.62% 10.03% 5.74% 5.94% 9.57%
Cosine 34.28% 10.45% 5.13% 5.00% 9.93%

more influential. We have a general feeling that search with bigrams detects castle
patterns well. The key pieces (such as Bishop, Rook, Gold general, Silver general,
and King) have more chances to be a member of a group (due to their higher
possible moves), compared with many other pieces, such as Pawn. A Pawn does
not often appear in bigrams, even though it contains valuable information of a
Shogi game state.

We also observe a similar tendency (but less visible) in unigrams at the inter-
sections of top-ranked game states of similarity measures, as shown in Fig. 11. It
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Table 3 The accuracy at each game phase (BIGRAM).

Size Measure EI I IL L All

10
Smart 21.90% 10.10% 6.64% 5.31% 9.35%
Okapi 20.00% 10.78% 4.83% 5.94% 9.45%
Cosine 21.90% 11.30% 4.83% 5.63% 9.82%

20
Smart 25.71% 10.18% 5.43% 5.63% 9.45%
Okapi 23.80% 10.53% 6.04% 5.94% 9.72%
Cosine 25.71% 10.10% 5.74% 5.63% 9.46%

30
Smart 26.66% 9.41% 7.25% 6.56% 9.51%
Okapi 24.76% 9.85% 5.74% 7.19% 9.51%
Cosine 25.71% 8.90% 6.05% 5.93% 8.84%

40
Smart 30.47% 9.50% 6.04% 5.93% 9.51%
Okapi 27.61% 10.10% 6.34% 6.56% 9.82%
Cosine 27.61% 8.73% 5.44% 4.69% 8.52%

Fig. 10 The number of game states with the same highest scores (BIGRAM).

again shows that Smart measure and Cosine show a similar tendency, and Okapi
is unique, though the differences are smaller.

8.2 Combination of Unigrams and Bigrams
There are two possible choices for combinations of unigrams and bigrams; tak-

ing the union (UNIGRAM+BIGRAM) of the word spaces, and filtering (inter-
section of the set of top-n results) one with another. In either case, we set the
sizes of characteristic keywords (unigrams) to be either 12 or 27 (described as
n in Table 4), as examples of two peaks of the best keyword sizes (Section 7.2).
For bigrams, we simply use GETA default setting (characteristic keyword size
= 200), since Table 3 shows a general tendency to improve when the keyword

Fig. 11 The average number of the intersection among similarities (BIGRAM).

Table 4 The accuracy at each game phase (UNIGRAM+BIGRAM).

n Measure EI I IL L All

12
Smart 28.57% 9.84% 6.64% 5.63% 9.62%
Okapi 28.57% 10.70% 6.64% 6.88% 10.34%
Cosine 27.62% 10.01% 5.74% 5.94% 9.56%

27
Smart 28.57% 9.76% 6.64% 6.25% 9.67%
Okapi 28.57% 10.10% 6.64% 6.56% 9.93%
Cosine 27.62% 9.76% 6.04% 5.62% 9.41%

size increases.
The search result of the former is shown in Table 4. An example search result

is also found in Fig. 6. It does not show visible improvement compared with
bigrams only.

For the latter choice, we choose filtering the search results of unigrams by
bigrams (UNIGRAM filtered by BIGRAM), based on our observation that bi-
grams detect castle patterns well. This is implemented by taking the intersection
of top-n ranked game states by unigrams and bigrams. The experiments are
performed for n = 100 with both Smart and Okapi BM25, and n = 50, 20 with
Okapi BM25, since Okapi BM25 shows visible improvement in the early game
phase with n = 100.

The experimental results in Table 5 show that filtering unigrams by bigrams
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Table 5 The accuracy in each game phase (UNIGRAM filtered by BIGRAM).

n Size Measure EI I IL L All

100
12

Smart 26.67% 9.24% 5.13% 5.00% 8.78%
Okapi 36.19% 10.87% 5.14% 6.57% 10.56%

27
Smart 29.52% 10.18% 5.74% 4.69% 9.56%
Okapi 27.61% 10.53% 6.94% 6.25% 10.14%

50 12 Okapi 33.34% 10.53% 4.83% 5.625% 9.98%

20 12 Okapi 32.38% 9.33% 4.53% 5.00% 9.04%

shows visible improvement with Okapi BM25, and larger n is slightly better.
Considering that there are few duplications of game states with the same highest
score, this improvement is greater than it seems.

9. Conclusion

This paper reported experiments of association search on a large number of
short documents over a small set of words. We also showed the extension of
the set of words with semantic relations, called semantic coupling. As an in-
stance, experiments were performed on 49,767 professional (non-handicapped)
Shogi game records with 1,923 next move problems as an evaluation. To our
limited knowledge, this is the first attempt to use GETA over a corpus of an
artificial language.

There are several observations.
• Under classification of phases of Shogi game records, an earlier phase has

better accuracy. This is quite expected, since the number of possible game
states in earlier phase is fewer.

• With unigrams (piece positions) only, the size of the set of words is 2,296
and the size of each document is exactly 40. In this case, there are two peaks
of accuracy; the first peak at 10-15 characteristic keywords, and the second
peak are at 25-30. There are around 1.2 (or more) duplications on average
around these peaks, except for Okapi which has higher.

• With bigrams (semantic coupling by possible moves of pieces) only, the size
of the set of words is nearly 20,000, and the average size of documents is
43.74. There is visible reduced accuracy with every measure, but bigrams
detect castle patterns well. There are fewer than 1.1 duplications on average.

• As combinations of unigrams and bigrams, filtering search results with uni-
grams by bigrams shows the best improvement in the early game phase with
Okapi BM25.

• Smart and Cosine show a similar tendency of search results, whereas Okapi
BM25 is unique.

The experimental results are quite disappointing for next move search of Shogi.
However, in the context of Computer Shogi, an associative search is a naive
methodology; for instance, machine-learning-based methods use several thou-
sands of parameters, whereas an association search uses only one similarity mea-
sure, which fits a likely search rather than an exact search.

From the Computer Shogi viewpoint, we expect associative search will have
better fitness for categorizing Shogi game records into, say, their game phases
and/or their game opening patterns. These applications are left for future work.
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