
IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008)

Regular Paper

Alternate Stacking Technique Revisited: Inclusion

Problem of Superdeterministic Pushdown Automata

Nguyen Van Tang†1 and Mizuhito Ogawa†1

This paper refines the alternate stacking technique used in Greibach-
Friedman’s proof of the language inclusion problem L(A) ⊆ L(B), where A is a
pushdown automaton (PDA) and B is a superdeterministic pushdown automa-
ton (SPDA). In particular, we propose a product construction of a simulating
PDA M , whereas the one given by the original proof encoded everything as a
stack symbol. This construction avoids the need for the “liveness” condition in
the alternate stacking technique, and the correctness proof becomes simpler.

1. Introduction

Recent interest in model checking makes us recall inclusion problems. Typi-
cally, the automata theoretic explanation of model checking on finite transition
systems is the decidability of the inclusion problem L(A) ⊆ L(B) among finite
automata, where A and B describe a model and a specification, respectively.
The standard methodology for the inclusion problem is to, (1) take the comple-
ment L(B)c, (2) take the intersection between L(A) and L(B)c, and (3) check
its emptiness. This also works when A is extended to a pushdown automaton
(PDA), but fails when B is extended to a pushdown automaton. To our knowl-
edge, for decidable inclusion with a general pushdown automaton A, the largest
class of B is the superdeterministic pushdown automata (SPDAs), proposed by
Greibach and Friedman 2). An SPDA is a DPDA satisfying:
(1) finite delay (i.e., a bounded number of ε-transitions in a row can be applied

to any configuration), and
(2) for two configurations sharing the same control state, transitions with the

same symbol lead to configurations sharing the same control state such that

†1 School of Information Science, Japan Advanced Institute of Science and Technology

the length change of stacks is the same.
In Ref. 2), the authors used the alternate stacking technique 7) to show that

the inclusion problem L(A) ⊆ L(B), where A is a PDA and B is an SPDA, is
decidable. The key idea of the original proof 2) is to construct a simulating push-
down automaton M such that L(A) ⊆ L(B) iff L(M) = ∅. However, the original
construction encodes everything as stack symbols (in an intricate way), and thus
control states and transition rules of M could not be given in details. Further-
more, to decide the emptiness of M , one has to use an auxiliary procedure to
check whether a configuration of the PDA A is live (i.e., whether a configuration
reaches an accepting configuration) or not. These properties of their simulat-
ing PDA M lead to a complicated proof of soundness and completeness for the
decision procedure 2).

In this paper, we refine the alternate stacking technique 7) used in Greibach-
Friedman’s proof 2). Basically, there are three main steps in the proof of the
decidability of the inclusion problem L(A) ⊆ L(B), where A is a PDA and B is an
SPDA. First, establishing Key lemma (Lemma 3.3 2)) to find a bounded number
k that is used for alternate stacking. Second, constructing a simulating PDA
M by using the alternate stacking technique (Section 3). Third, based on the
construction of M in the second step, proving soundness and completeness of the
construction L(A) ⊆ L(B) iff L(M) = ∅ (Section 4). Our refinement contributes
to the last two steps. In particular, we give a more direct product construction
of the simulating PDA M , which is different from the one given by the original
proof, where everything is encoded as a stack symbol. This construction avoids
the need for the “liveness” condition, and the correctness proof becomes simpler.

This paper is organized as follows. In Section 2, we recall the terminology, nota-
tions, and basic definitions of superdeterministic pushdown automata. Section 3
presents our refinement on the alternate stacking technique used in Ref. 2). We
show the detailed construction of simulating PDA. This section also gives a sim-
ple example to illustrate our construction technique. Section 4 provides simple
proof of soundness and completeness for the decision procedure, i.e., L(A) ⊆ L(B)
iff L(M) = ∅. We discuss some related works on decidable inclusion problems in
Section 5. Section 6 concludes the paper.

36 c© 2008 Information Processing Society of Japan

37 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

2. Superdeterministic Pushdown Automata

2.1 Pushdown Automata
Let Σ = {a, b, c, ...} be a finite set of letters. The set Σ∗ denotes all finite words

over Σ. The empty word is denoted by ε. A subset of Σ∗ is called a language.
Given a nonempty word w ∈ Σ∗ we write w = a1a2 · · · an where ai ∈ Σ denotes
the i-th letter of w for all 1 ≤ i ≤ n. Let denote head(w) the first letter of w,
i.e., head(w) = a1. The length |w| of w is n and |ε| = 0. The notation | · | also
denotes the cardinality of a set, the absolute value of an integer, and the size of
a pushdown automaton (see definition below).
Definition 1. A pushdown automaton (PDA) A over an alphabet Σ is a tuple
A = (Q, Σ, Γ, Z0, Δ, q0, F), where
(1) Q = {p, q, r, ...} is a finite set of control states,
(2) Γ = {X, Y, Z, ...} is a finite set of stack symbols such that Q∩Γ = ∅, Z0 ∈ Γ

is the initial stack symbol,
(3) Δ is a finite set of transition rules of the form (p, X) a−→ (q, α) where

p, q ∈ Q, a ∈ Σ ∪ {ε}, X ∈ Γ, and α ∈ Γ∗, and ε /∈ Σ (empty input word)
is a special symbol,

(4) q0 is the initial control state,
(5) and F ⊆ Q is a set of final control states.

For a rule (p, X) a−→ (q, α) ∈ Δ, we call (p, X) the mode of the rule with input
a; if a = ε, this is an ε-rule. If no rule is defined for (p, X) in Q × Γ, (p, X)
is a blocking mode. If no ε-rule is defined for mode (p, X) and (p, X) is not a
blocking mode, we call it a reading mode. We say that a rule (p, X) a−→ (q, α)
is a push, internal, or pop rule if |α| = 2,1, or 0, respectively. A PDA is called
real-time (RPDA) if (p, X) a−→ (q, α) ∈ Δ implies that a 	= ε. A PDA is called
deterministic (DPDA) if for every p ∈ Q, X ∈ Γ and a ∈ Σ ∪ {ε} we have: (1)
|{(q, α) | (p, X) a−→ (q, α)}| ≤ 1, and (2) if (p, X) ε−→ (q, α) and (p, X) a−→ (q′, α′)
then a = ε.

Let us denote St = Γ∗. The set Q×St is the set of configurations of a PDA. A
pair (p, βX) is a configuration with mode (p, X), written mode((p, βX)) = (p, X).
The configuration (q0, Z0) is called initial. For a configuration c = (p, y), the
control state of c is state(c) = p, and the stack height of c is |c| = |y|.

The transition relation between configurations is defined by: if (p, X) a−→ (q, α),
then (p, βX) a−→ (q, βα) for any β ∈ Γ∗, and we call it one-step computation. A
transition (p, βX) ε−→ (q, βα) is an ε-transition. If c1

u−→ c2 and c2
v−→ c3, we

write c1
uv−→ c3 and call it a computation from c1 to c3 on the input uv. For

any configuration c, we write c
τ−→ c, and we call it a zero-step computation,

where τa = aτ = a for all a ∈ Σ. A sequence c1
a1−→ c2 · · · an−−→ cn+1 of one-step

computations is an n-step computation. If we have an n-step computation c1
a1−→

c2
a2−→ c3 · · · an−−→ cn+1 with |c1| ≤ |ci|, 1 ≤ i ≤ n+1, we write c1 ↑ (a1 · · · an)cn+1.

This is a stacking computation.
A PDA A is of delay d if, whenever there is a sequence of one-step computations:

c1
ε−→ c2

ε−→ c3 · · · ε−→ cn, then n − 1 ≤ d (i.e., at most d ε-rules in a row can be
applied to any configuration). A PDA A is d finite delay if it is of delay d for
some d ≥ 0. It is easy to see that if a PDA is of delay 0, then it is real-time.

Languages. We consider PDAs accepting by a final state and an empty stack. A
language accepted from a configuration c is L(c) = {w ∈ Σ∗ | c

w−→ (q, ε), q ∈ F}.
The language accepted by a PDA A is L(A) = L((q0, Z0)). The PDAs M1 and
M2 are equivalent, denoted as M1 ≡ M2, if they accept the same language, i.e.,
L(M1) = L(M2). Configurations c1 in M1 and c2 in M2 are equivalent, denoted
as c1 ≡ c2, if L(c1) = L(c2). For a configuration c, c is accessible if (q0, Z0)

w−→ c

for some w ∈ Σ∗. c is live if c
w−→ (q, ε) for some q ∈ F and some w ∈ Σ∗.

2.2 Normalized Pushdown Automata
For the purpose of our work, it is convenient to use a normal form of pushdown

automata.
Definition 2. A pushdown automaton A = (Q, Σ, Γ, Z0, Δ, q0, F) is normalized
if
(1) for all p ∈ Q and X ∈ Γ, (p,X) is not a blocking mode;
(2) for all p ∈ Q, all rules in δ of the form (p, X) a−→ (q, α) either satisfy a ∈ Σ

or all of them satisfy a = ε, but not both;
(3) every rule in δ is of the form (p, X) a−→ (q, ε), (p, X) a−→ (q, X), or (p, X) a−→

(q, XY) where a ∈ Σ ∪ {ε}.
The next lemma enables us to convert an arbitrary PDA into an equivalent

normalized PDA.

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

38 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

Lemma 1 (Nowotka-Srba3)). For every PDA (DPDA) there is a normalized
PDA (DPDA) that recognizes the same language.

2.3 Superdeterministic Pushdown Automata
Superdeterministic pushdown automata (SPDAs) were first introduced by

Greibach and Friedman 2). In this section, we briefly recall the standard no-
tion and key properties of SPDAs. Readers are referred to the seminal paper 2)

for more details.
Definition 3. A PDA A = (Q, Σ, Γ, Z0, Δ, q, F) is superdeterministic if it sat-
isfies the following conditions.
(1) A is deterministic and of finite delay,
(2) for all accessible configurations in reading mode c1, c2, c

′
1, c

′
2 and w ∈ Σ∗,

if both of the following are satisfied:
• state(c1) = state(c2),
• c1

w−→ c′1 and c2
w−→ c′2,

then, state(c′1) = state(c′2) and |c1| − |c′1| = |c2| − |c′2|.
Remark 1. In2), Greibach and Friedman considered the blocking condition on
PDAs (middle, pp.677): “Unlike Valiant, we do not allow the pda to operate with
empty stack (no rules (q, ε, a, p, y)). This avoids some complications in notation
but does not affect the classes of languages involved because we allow endmark-
ers”. In particular, the blocking condition is not an essential restriction if we
use two special symbols # (start-maker) and $ (end-marker), where # pushes a
special stack symbol, and $ pops it.

This assumption was used to prove Key lemma (Lemma 2). More precisely,
it was used to show the claim (middle, pp.684 2)) that: “Hidden in many of our
arguments is the following consequence of determinism and acceptance by empty
store. Suppose L(c1) ⊆ L(c̄1) with c̄1 (but not necessarily c1) a configuration in
a deterministic pda, c1

w→ c2, and c̄1
w→ c̄2. Then L(c2) ⊆ L(c̄2)”.

Definition 4. A language L is superdeterministic if there is an SPDA M such
that either L = L(M) or L$ = L(M) for an end-marker $.

Note that the language {anbn | n ≥ 0} is superdeterministic. However, due to
Condition 2 in Definition 3, the language L = {anbm | m ≥ n} is not accepted
by any SPDA (pp.678 2)). Suppose on the contrary that there is an SPDA A

accepting L. While reading a, A pushes a symbol, and while reading b, A pops

the same symbol. Thus, for instance, after reading a5 and a10, A will be in two
configurations, c1 and c2, such that state(c1) = state(c2). Now concatenating
b10, A will lead to configurations c′1 (for a5b10) and c′2 (for a10b10), respectively.
However, |c′1| − |c1| = 0 − 5 	= |c′2| − |c2| = 0 − 10. This violates the definition
of SDPAs. Moreover, as shown in2), the class of superdeterministic languages
(languages accepted by SPDAs) contains the generalized parenthesis languages,
which is a superclass of both parenthesis languages 6) and Dyck sets.
Remark 2. It is undecidable whether a given context-free language is superde-
terministic. However, it is decidable whether a given PDA M is an SPDA
(pp.678 2)): “It is decidable whether a dpda M is finite delay (using the decid-
ability of emptiness and finiteness for context-free grammars and the standard
construction of grammars from machines), and if M is of finite delay, an upper
bound d on the delay can be computed from a description of M . Knowing that
M is of delay d, it can be determined whether or not M is superdeterministic by
examining only computations c

a−→ c′ for a symbol a with c and c′ in reading mode.
Since it is decidable for q in Q, y in Γ∗ whether there is a u in Γ∗ with (q, uy)
accessible, it is decidable whether a dpda is superdeterministic. It is not known if
it is decidable whether a deterministic context-free language is superdeterministic,
just as it is not known whether it is decidable whether a deterministic context-
free language is finite-turn or one-counter 7). Standard arguments show that it is
undecidable whether an arbitrary context-free language is superdeterministic”.

A PDA is called one-increasing if the stack height increases by at most one
per move. As is well known, each PDA can be transformed into an equivalent
one-increasing PDA.
Lemma 2 (Key Lemma 3.3 2)). Let A be a normalized PDA, and B be a one-
increasing SPDA of delay d. Let c1 be a configuration in A and c′1 be an accessible
configuration in B with L(c1) ⊆ L(c′1). Suppose we have in A a computation
c1 ↑ (w)c2, with c2 live, and in B a computation c′1

w−→ c′2. Then,
(1) |c′1| − |c′2| ≤ k,
(2) and if |c1| = |c2| then |c′2| − |c′1| ≤ k.
where,
• k = (d + 1)(k1 + 1)n(m + 1)2k2 + 2d,
• k1 = n + 3, k2 = 1 + 2n2m2(n2 + 4),

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

39 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

• n = |QA| + |QB |, m = |ΓA| + |ΓB |.
Based on this property, in the next section, we show that the inclusion problem

L(A) ⊆ L(B) is decidable for a PDA A and an SPDA B.

3. Alternate Stacking Technique

The alternate stacking technique, proposed by Valiant 7), involves a simulation
of two PDAs A and B using a single stack machine M whose stack contents
u1v1 · · ·utvt encode the stack u1 · · ·ut of A and v1 · · · vt of B; the machine M

uses ui to simulate one step of A and vr for one step of B. In the general case,
the simulating machine M is not a PDA. Alternate stacking “succeeds” when the
stacks can be interwoven in such a way that M can be implemented as a PDA.
Valiant 7) showed that if A and B are nonsingular DPDAs �1 and L(A) = L(B),
then the interweaving can indeed be done so that a uniform bound can be placed
on the length of segments ui and vi so long as the configurations of A and B

are live. Then the PDA M can be built so that if the stack segments exceed
the bound, M accepts, knowing that L(A) 	= L(B). Hence L(A) = L(B) iff
L(M) = ∅.

3.1 Simulating Pushdown Automata
In this subsection, we construct a simulating PDA M such that M will search

for possible members of L(A) \ L(B). In principle, similar to2), the key is to use
the alternate stacking technique to construct M . In our approach, however, the
control states, stack symbols, and transition rules of M are defined in the form
of pairs of states, stack content, and transition rules of two PDAs, respectively.

We assume that A = (QA, Σ, ΓA, ZA, ΔA, q0
A, FA) is a normalized PDA, and

B = (QB , Σ, ΓB, ZB , ΔB, q0
B, FB) is a normalized SPDA of delay d with an as-

sumption that 0 /∈ QB . Let $1 and $2 be fresh symbols to mark the bottom
of the stack of A and B, respectively. Let f : Γ∗

B ∪ $∗2Γ∗
B → Γ∗

B be a function
such that f(y) = f($∗2y) = y for all y ∈ Γ∗

B. Let r > 0 be an integer and let
us take 2r as the segment bound for simulating the stack content of B. Denote
Γ′

B = {[y], [$2y] | y ∈ Γ∗
B, 0 ≤ |y| ≤ 2r}. A simulating PDA M = M(A, B, r)

�1 A DPDA M is nonsingular if and only if there exists m ≥ 0 such that for any two acces-
sible configurations (q, w′w) and (q′, w′) where |w| > m, if L((q, w′w)) = L((q′, w′)) then
L((q′, w′)) = ∅.

can be constructed for any choice of r, and the next theorem, Theorem 5, will
show that if the bound r is appropriately selected (r = k + 1, where k was com-
puted from A and B as in Theorem 2), then we can conclude that L(A) ⊆ L(B)
iff L(M(A, B, k + 1)) = ∅. Formally, the simulating PDA M = M(A, B, r) is
constructed as follows:
Definition 5. A simulating PDA of A and B is a tuple M = M(A, B, r) =
〈QM , Σ, ΓM , ZM , ΔM , p0

M , FM 〉, where:
• QM = {p0

M}∪ (QA ×QB)∪ (QA ×{0})∪ (QA ×QB ×Γ′
B) is the set of finite

states,
• p0

M is the initial state,
• FM = (FA × (QB\FB)) ∪ (FA × {0}),
• ΓM = (ΓA ∪ {$1}) × Γ′

B, ZM = ($1, [$2]),
• The transition relation ΔM ⊆ QM × ΓM × Σ × (QM × Γ∗

M) is defined as
follows:

Case I: Simulating an internal-transition of A with a transition of B:
(1) 〈(p1, p2), (X, [vZ])〉 �2 a−→ 〈(p′1, p′2), (X, [vy])〉 if:⎧⎪⎪⎨

⎪⎪⎩
(p1, X) a−→ (p′1, X) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

vy 	= ε, and |f(vy)| ≤ 2r

(2) 〈(p1, p2), (X, [vZ])〉 a−→ 〈(p′1, 0), (X, [vy])〉 if:⎧⎪⎪⎨
⎪⎪⎩

(p1, X) a−→ (p′1, X) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

vy = ε or |f(vy)| = 2r + 1

(3) 〈(p1, p2), (X, [vZ])〉 a−→ 〈(p′1, 0), (X, [vZ])〉 if:{
(p1, X) a−→ (p′1, X) ∈ ΔA

(p2, Z) has no rules with input a

�2 For readability, we use 〈., .〉 to denote a configuration of the simulating PDA M .

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

40 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

(4) 〈(p1, 0), (X, [v])〉 a−→ 〈(p′1, 0), (X, [v])〉 for all [v] ∈ Γ′
B if:{

(p1, X) a−→ (p′1, X) ∈ ΔA

(5) 〈(p1, p2), (X, [vZ])〉 ε−→ 〈(p′1, p2), (X, [vZ])〉 if:{
(p1, X) ε−→ (p′1, X) ∈ ΔA

(p2, Z) has no ε-rules

(6) 〈(p1, p2), (X, [$2])〉 a−→ 〈(p′1, 0), (X, [$2])〉 if (p1, X) a−→ (p′1, X) ∈ ΔA

Case II: Simulating a push-transition of A with a transition of B.
(1) 〈(p1, p2), (X, [vZ])〉

a−→ 〈(p′1, p′2), (X, [$2])(X ′, [vy])〉 if:⎧⎪⎪⎨
⎪⎪⎩

(p1, X) a−→ (p′1, XX ′) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

head(vy) = $2, |f(vy)| ≤ r

(2) 〈(p1, p2), (X, [vZ])〉
a−→ 〈(p′1, p′2), (X, [ε])(X ′, [vy])〉 if:⎧⎪⎪⎨

⎪⎪⎩
(p1, X) a−→ (p′1, XX ′) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

head(vy) 	= $2, |f(vy)| ≤ r

(3) 〈(p1, p2), (X, [vZ])〉
a−→ 〈(p′1, p′2), (X, [v′])(X ′, [v′′])〉 if:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(p1, X) a−→ (p′1, XX ′) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

r < |f(vy)| ≤ 2r,

vy = v′v′′, |v′′| = r

(4) 〈(p1, p2), (X, [vZ])〉
a−→ 〈(p′1, p′2), (X, [v′])(X ′, [v′′])〉 if:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(p1, X) a−→ (p′1, XX ′) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

|f(vy)| = 2r + 1,

vy = v′v′′, |v′′| = r + 1
(5) 〈(p1, p2), (X, [vZ])〉

a−→ 〈(p′1, 0), (X, [ε])(X ′, [vZ])〉 if:{
(p1, X) a−→ (p′1, XX ′) ∈ ΔA

(p2, Z) has no rules with input a

(6) 〈(p1, 0), (X, [v])〉 a−→ 〈(p′1, 0), (X, [v])(X ′, [v])〉 for all [v] ∈ Γ′
B if:{

(p1, X) a−→ (p′1, XX ′) ∈ ΔA

(7) 〈(p1, p2), (X, [vZ])〉
ε−→ 〈(p′1, p2), (X, [$2])(X ′, [vZ])〉 if:⎧⎪⎨

⎪⎩
(p1, X) ε−→ (p′1, XX ′) ∈ ΔA

head(vZ) = $2, |f(vZ)| ≤ r

(p2, Z) has no ε-rules

(8) 〈(p1, p2), (X, [vZ])〉
ε−→ 〈(p′1, p2), (X, [ε])(X ′, [vZ])〉 if:⎧⎪⎨

⎪⎩
(p1, X) ε−→ (p′1, XX ′) ∈ ΔA

head(vZ) 	= $2, |f(vZ)| ≤ r

(p2, Z) has no ε-rules

(9) 〈(p1, p2), (X, [vZ])〉
ε−→ 〈(p′1, p2), (X, [v′])(X ′, [v”])〉 if:⎧⎪⎨

⎪⎩
(p1, X) ε−→ (p′1, XX ′) ∈ ΔA

r < |f(vZ)| ≤ 2r, vZ = v′v′′, |v′′| = r

(p2, Z) has no ε-rules

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

41 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

(10) 〈(p1, p2), (X, [$2])〉
a−→ 〈(p′1, 0), (X, [$2])(X ′, [$2])〉 if:{

(p1, X) a−→ (p′1, XX ′) ∈ ΔA

Case III: Simulating a pop-transition of A with a transition of B:
(1) 〈(p1, p2), (X, [vZ])〉 a−→ 〈(p′1, p′2, [f(v)y]), ε〉, 〈(p′1, p′2, [f(vy)]), (X ′, [v′])〉 ε−→

〈(p′1, p′2), (X ′, [v′f(vy)])〉 if:⎧⎪⎪⎨
⎪⎪⎩

(p1, X) a−→ (p′1, ε) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

|f(v′f(vy))| ≤ 2r

(2) 〈(p1, p2), (X, [vZ])〉 a−→ 〈(p′1, p′2, [f(vy)]), ε〉, and 〈(p′1, p′2, [f(vy)]),
(X ′, [v′])〉 ε−→ 〈(p′1, 0), (X ′, [ε])〉 if:⎧⎪⎪⎨

⎪⎪⎩
(p1, X) a−→ (p′1, ε) ∈ ΔA

(p2, Z) a−→ (p′2, y) ∈ ΔB

v′vy = ε or |f(v′f(vy))| ≥ 2r + 1

(3) 〈(p1, p2), (X, [vZ])〉 a−→ 〈(p′1, 0), ε〉 if:{
(p1, X) a−→ (p′1, ε) ∈ ΔA

(p2, Z) has no rules with input a

(4) 〈(p1, 0), (X, [v])〉 a−→ 〈(p′1, 0), ε〉 for all [v] ∈ Γ′
B if (p1, X) a−→ (p′1, ε) ∈ ΔA

(5) 〈(p1, p2), (X, [vZ])〉 ε−→ 〈(p′1, p2, [f(vZ)]), ε〉, and 〈(p′1, p2, [f(vZ)]),
(X ′, [v′])〉 ε−→ 〈(p′1, p2), (X ′, [v′f(vZ)])〉 if:⎧⎪⎨

⎪⎩
(p1, X) ε−→ (p′1, ε) ∈ ΔA

vZ = $2

(p2, Z) has no ε-rules

(6) 〈(p1, p2), (X, [$2])〉 a−→ 〈(p′1, 0), ε〉 if:{
(p1, X) a−→ (p′1, ε) ∈ ΔA

Case IV: When stack of A is empty.
(1) 〈(p1, p2), ($1, [vZ])〉 ε−→ 〈(p1, p

′
2), ($1, [vy])〉 if (p2, Z) ε−→ (p′2, y) ∈ ΔB

(2) 〈(p1, p2), ($1, [vZ])〉 ε−→ 〈(p1, 0), ε〉 if:{
(p2, Z) a−→ (p′2, y) ∈ ΔB with a 	= ε,

or (p2, Z) is blocked

Case V: When configurations of A are in the reading modes, while states of B

have ε-transitions.
(1) 〈(p1, p2), (X, [vZ])〉 ε−→ 〈(p1, p

′
2), (X, [vy])〉 if:{

(p1, X) is in the reading mode

(p2, Z) ε−→ (p′2, y) ∈ ΔB, |f(vy)| ≤ 2r

(2) 〈(p1, p2), (X, [vZ])〉 ε−→ 〈(p1, 0), (X, [ε])〉 if:{
(p1, X) is in the reading mode

(p2, Z) ε−→ (p′2, y) ∈ ΔB, |f(vy)| ≥ 2r + 1

Case VI: The starting transition:
〈p0

M , ($1, [$2])〉 ε−→ 〈(q0
A, q0

B), ($1, [$2])(ZA, [$2ZB])〉
Before defining configurations of M , let us briefly explain the intuition behind

its transition rules.
• Rules I (2), III (2), and V (2) are called stacking-fail transitions. Taking a

stacking-fail transition, M changes its control to states in the set QA × {0}.
After entering this set QA×{0} of states, M continues simulating transitions
of A only by using rules I (4), II (6), or III (4).

• Rules I (3), II (5), and III (3) are used when B is blocked where reading an
input. In this cases, M changes its control state to the set QA × {0}. After
entering a state in QA×{0}, M only simulates transitions of A by using I (4),
II (6), or III (4).

• Rules II (1), II (2), II (3), and II (4) are used to simulate a push-transition of
A with a transition of B, which has the same label.

• Rules III (1), III (2) are used to simulate a pop-transition of A.
• Rules IV (1) and IV (2) are used when the stack of A is empty; in this case,

M simulates ε-transitions of B using a zero-step computation of A. Recall
that B is finite delay of d, and thus rules IV (1) and IV (2) can be applied at
most d times in a sequence.

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

42 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

• Rules I (5), II (7)(8)(9), and III (5) are used to simulate an ε-transition of A

with a non-ε transition of B.
• Rules I (6), II (8), and III (6) are used to simulate a non-ε transition of A

when B’s stack is empty (i.e., when B is blocked).
Definition 6 (Configuration). • A configuration of M is of the form c =

〈s, ($1, [$2])(X1, [v1]) · · · (Xt, [vt])〉, where s ∈ QM and (Xi, [vi]) ∈ ΓM for
1 ≤ i ≤ t.

• c is an accepting configuration if c = 〈s, ε〉, s ∈ FM .
For a given configuration c = 〈s, ($1, [$2]) · · · (Xt, [vt])〉, we say that c encodes

c1 = (p1, X1...Xt) of A and c2 = (p2, f(v1)...f(vt)) of B, with t levels. Note that
f(v1)...f(vt) ∈ Γ∗

B, and M can determine whether the stack of B is empty by
examining if vt = $2, i.e., |c2| = 0 iff vt = $2. This is because, based on the
transition rules II (1) and II (7), if vt = $2 then vi = $2 for all 1 ≤ i ≤ t (for these
rules, we need to check if head(vy) = $2).
Remark 3. There are three main steps in the proof of the decidability of the
inclusion problem L(A) ⊆ L(B), where A is a PDA and B is an SPDA. First,
establish the Key lemma to find a bounded number k that is used for alternate
stacking. Second, construct a simulating PDA M by using the alternate stacking
technique. Third, based on the construction of M in the second step, prove the
soundness and completeness of the construction L(A) ⊆ L(B) iff L(M) = ∅.
Our refinement contributes to the last two steps. In particular, in the original
proof 2), the liveness condition is stated in the construction case II (pp. 693 2))
and it is used for searching words that are accepted by the PDA A, but rejected by
the SPDA B. In our encoding, control states, stack symbols, and transition rules
M are defined in the form of pairs of states, stack content, and transition rules
of two PDAs A and B, respectively. Thus, we do not need to use the “liveness”
condition, because such violation of the inclusion is represented by transition
rules in our product construction of M . As we will see in Section 4, a proof of
“liveness” is not needed and the whole correctness proof for the decision procedure
becomes simpler.

3.2 An Example
This subsection provides an example to illustrate our construction of the sim-

ulating pushdown automata. In the following figures, for simplicity, we describe

Fig. 1 Pushdown automaton C.

Fig. 2 Superdeterministic pushdown automaton D.

control states of each PDA as nodes of a graph. We adopt the following conven-
tions to represent edges: for a transition rule (p, X) a−→ (q, y), we label the edge
from p to q as a, X → y.
Example 1. Consider two PDAs C (in Fig. 1) and D (in Fig. 2) over
the input alphabet Σ = {a, b, c},where D is an SPDA. The PDA C =
({s0, s1, s2}, Σ, {Z, ZC}, ZC , ΔC , {s0}, {s2}), where ΔC is defined as:
• (s0, ZC) a−→ (s0, ZCZ)
• (s0, Z) a−→ (s0, ZZ)
• (s0, Z) b−→ (s1, ε)
• (s1, Z) b−→ (s1, ε)
• (s1, ZC) c−→ (s1, ZC)
• (s1, ZC) c−→ (s2, ε)
L(C) = {anbncm | n ≥ 1, m ≥ 1}.
The SPDA D = ({q0, q1, q2, q3}, Σ, {Z ′, ZD}, ZD, ΔD, {q0}, {q3}), where ΔD is

defined as:
• (q0, ZD) a−→ (q0, ZD)
• (q0, ZD) b−→ (q1, ZDZ ′)
• (q1, Z

′) b−→ (q1, Z
′Z ′)

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

43 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

Fig. 3 The simulating PDA M(C,D, 1).

• (q1, Z
′) c−→ (q2, ε)

• (q2, Z
′) c−→ (q2, ε)

• (q2, ZD) ε−→ (q3, ε)
L(D) = {ambncn | m ≥ 0, n ≥ 1}.

The simulating pushdown automaton M = M(C, D, 1) is illustrated in Fig. 3.
In this case, r = 1, it is sufficient to consider stack symbols of the forms (X, [v])
with |v| ≤ 2. The language of M is L(M(C, D, 1)) = {anbncm | n ≥ 1, m ≥ 1}.

4. Soundness and Completeness

In this section, we show that the construction presented in the preceding section
is sound and complete, i.e., L(A) ⊆ L(B) if and only if L(M(A, B, k + 1)) = ∅,
where k was computed from A and B as in Lemma 2.

4.1 Soundness
Lemma 3. L(A) � L(B) implies L(M(A, B, r))
	= ∅ for all r ≥ 1.

Proof. Let w ∈ L(A)\L(B). It is sufficient to show that w ∈ L(M). Denote cin

as the initial configuration of M . Recall that A is normalized (by Lemma 1),

there is a computation of A on every word. By the definition of transitions of
M , there is a computation of M on w. There are three cases:
• Case 1: There are no computations of B on w, or there is a computation

of B on w but after reading w, the stack of B is nonempty. By transitions
of M , we have cin

w−→ 〈(p, 0), ε〉. Since w ∈ L(A), (p, 0) ∈ FA × {0}. Thus,
w ∈ L(M).

• Case 2: There is a computation of B on w leading to a configuration (q, ε),
where q /∈ FB. Because A accepts w, there is a computation of M on w

leading to a configuration 〈(p, q), ε〉, (p, q) ∈ FA × (QB \ FB). Thus, w ∈
L(M).

• Case 3: Where simulating w, the stacking fails. In this case, we have cin
w−→

〈(p, 0), ε〉, p ∈ FA.

4.2 Completeness
Lemma 4. Let k be the number computed in Lemma 2. L(M(A, B, k + 1)) 	= ∅
implies L(A) 	⊆ L(B).

Proof. Let w ∈ L(M(A, B, k + 1)). Thus, there is an accepting computation of
M(A, B, k + 1) on w. We consider two cases of accepting configurations of M .
1) Case 1: cin

w−→ 〈(p, q), ε〉 where (p, q) ∈ FA × (QB \ FB). In this case, there
is a computation of B on w leading to the configuration (q, ε). Because q /∈ FB,
we obtain w /∈ L(B). On the other hand, on reading w, A leads to the accepting
configuration (p, ε), i.e., w ∈ L(A). Thus, w ∈ L(A) \ L(B).
2) Case 2: cin

w−→ 〈(p, 0), ε〉 where p ∈ FA. Consider two subcases. First, if B

is blocked at some point on reading w. In this case, there is not a computation
of B on w, i.e., w /∈ L(B). On the other hand, on reading w, A leads to the
configuration (p, ε), p ∈ FA. Hence w ∈ L(A). Since B is deterministic, we have
w ∈ L(A) \ L(B). The proof is completed. Second, if stacking fails at some
point on simulating w. In this case, to prove L(A) � L(B), we assume on the
contrary that L(A) ⊆ L(B). We will show a contradiction. Since the stacking
fails on reading w, we suppose that w = w1w2 such that, after reading w1 the first
time, stacking fail occurs and M is in the control (p1, 0) with the stack content
($1, [$2])(X1, [v1]) · · · (Xt−1, [vt−1])(Xt, [vt]).

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

44 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

Whereas after reading w1, A is in the configuration c2 = (p1, X1...Xt) (c2 is live)
and B is in the configuration c′2 = (p2, f(v1...vt−1vt)). There are two subcases
which lead to the stacking failure: either [vt] = [ε] or |f(vt)| ≥ 2r + 1.
• If [vt] = [ε]: we have t ≥ 2 and f(v1...vt) 	= ε (because, if t = 1 then [vt] must

be [$2], and if f(v1...vt) = ε then the stack of B is empty and [vt] = [$2]).
Since f(v1...vt) 	= ε there is at least one f(vi) 	= ε. Select the “nearest” vj

such that f(vj) 	= ε and f(vi) = ε for j + 1 ≤ i ≤ t. Consider the time when
the level j + 1 of the stack is opened. Since f(vj) 	= ε, this means that the
rule II (3) or II (4) was used, and the “new” top segment at that time was
v′j+1 with |v′j+1| = r or |v′j+1| = r + 1. Since that time, M has not read
below level j + 1. Thus, we have w1 = w′w′′, and after reading w′, M is in
the configuration 〈(p′1, p′2), ($1, [$2]) · · · (Xj , [vj])(X ′

j+1, [v
′
j+1])〉 encoding the

configurations
c1 = (p′1, X1...XjX

′
j+1) of A, and c′1 = (p′2, f(v1...vjv

′
j+1)) of B such that:

c0
w′−→ c1 and c′0

w′−→ c′1 (c0 and c′0 are the initial configurations of A and B,
respectively). Because L(A) ⊆ L(B) (by assumption) and B is deterministic,
L(c1) ⊆ L(c′1). On the other hand, we have c1 ↑ (w′′)c2 and c′1

w′′−−→ c′2.
Note that these conditions satisfy assumptions of the Key lemma (Lemma 2).
However, we have |c′1| − |c′2| = |v′j+1| ≥ r = k + 1 > k. This contradicts
Lemma 2. Hence, the assumption L(A) ⊆ L(B) is wrong. Thus, L(A) �
L(B).

• If |f(vt)| ≥ 2r + 1: Consider the time when the level t − 1 of the stack is
opened. At that point, one of rules II (1), II (2), II (3), or II (4) was used and
the “new” top segment was v′t−1 with |v′t−1| ≤ r + 1. Since that time, M has
not read below level t − 1. Thus, we have w1 = w′w′′, and after reading w′,
M is in the configuration 〈(p′1, p′2), ($1, [$2]) · · · (X ′

t−1, [v′t−1])〉 encoding the
configurations
c1 = (p′1, X1...Xt−2X

′
t−1) of A, and c′1 = (p′2, f(v1...vt−2v

′
t−1)) of B such that:

c0
w′
−→ c1 and c′0

w′
−→ c′1. Because L(A) ⊆ L(B) (by assumption) and B is

deterministic, L(c1) ⊆ L(c′1). In addition, we have c1 ↑ (w′′)c2 and c′1
w′′−−→ c′2.

Note that these conditions satisfy assumptions of Lemma 2. Now, we can
compute:

{
|c1| − |c2| = |Xt−1| − |X ′

t−1| = 1 − 1 = 0

|c′2| − |c′1| = |vt| − |v′t−1| ≥ k + 1 > k.

This contradicts Lemma 2. Hence L(A) � L(B).
In both cases, we have, if L(M(A, B, k + 1)) 	= ∅, then L(A) � L(B). The

lemma is proved.

From Lemmas 3 and 4, we obtain:
Lemma 5. L(A) ⊆ L(B) if and only if L(M(A, B, k + 1)) = ∅.

4.3 The Inclusion Problem
Let A = (Q, Σ, Γ, Z0, Δ, q0, F) be a PDA. The size |A| of a PDA A is defined as

|Q|+ |Σ|+ |Γ|+{|pXqα| | (p, X) a−→ (q, α) ∈ Δ}. We obtain the same complexity
class as that of the original construction.
Theorem 1. The inclusion problem L(A) ⊆ L(B), where A is a PDA and B is
an SPDA, is decidable. Furthermore, the decision procedure has time complexity
bounded by 22p(h)

, where p(h) is a polynomial time in the size of both automata,
h = |A| + |B|.
Proof. The decidability follows from Lemma 5. We now approximate the size of
M . Recall that the emptiness problem can be decided in O(n3) for any PDA of
size n. The stack of M is bounded by |ΓA| · |ΓB |2k+2, where k is the number given
in Lemma 2. The maximum number of control states of M is |QA|·|QB|·|ΓB|2k+1.
The number of transitions of M is bounded by |QA|2 · |QB |2 · |Σ| · |ΓA|3 · |ΓB|6k+6.
Recall that s = |QA|+ |QB |, g = |ΓA|+ |ΓB |. The size of M is bounded by |M | ≤
s4g6k+6. Lemma 2 expresses that k = (d + 1)(s + 4)g(g + 1)2(1+2s2g2(s2+4)) + 2d,
where d is the delay of B. Define h = s+ g, and we see that k ≤ hc1hc2 , for some
constants c1 and c2. Thus, for some constant c3, the size of M is bounded by
hc3hc1hc2

. Thus, the time complexity of the construction is bounded by 22p(h)
for

a polynomial p(h).

5. Related Work

SPDAs were proposed by S. Greibach and E. Friedman in Refs. 2) and 4). It is
shown that the acceptance condition of SPDAs does strictly affect decision prob-
lems. More precisely, for SPDAs accepting by final control state, the inclusion

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

45 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

problem is undecidable 4). If we consider SPDAs accepting by a final state and
an empty stack, it is shown that the language inclusion problem L(A) ⊆ L(B) is
decidable for A is an arbitrary PDA, and B is an SPDA 2). As far as we know,
the class of SPDAs is the largest class which enjoys decidability for this inclusion
problem. The main results of the inclusion problem L(A) ⊆ L(B), in which A is
an arbitrary PDA and B is an SPDA, can be summarized as follows:
• This inclusion problem is undecidable if B accepting by the final state 4).
• This inclusion problem is decidable if B accepting by the final state and the

empty stack 2).
Some works related to the inclusion problem of context-free languages have

been published recently by Minamide and Tozawa 1),5). In Ref. 1), Minamide
and Tozawa developed two algorithms for deciding the inclusion L(G1) ⊆ L(G2)
where G1 is a context-free grammar and G2 is either an XML-grammar or a
regular hedge grammar. Tozawa and Minamide 5) proved further that these al-
gorithms for XML-grammars and regular hedge grammars are PTIME and 2EX-
PTIME, respectively. These algorithms were incorporated into the PHP string
analyzer and validated several publicly available PHP programs against XHTML
DTD. The languages of XML-grammars or regular hedge grammars are sub-
classes of generalized parenthesis languages. On the other hand, the class of
languages of SPDAs contains the class of generalized parenthesis languages 2).
Thus, SPDAs are more expressive than XML-grammars and regular hedge gram-
mars.

6. Conclusion

This paper refined the alternate stacking technique used in Greibach-
Friedman’s proof of the language inclusion problem L(A) ⊆ L(B), where A is a
PDA and B is an SPDA. The original construction encodes everything as stack
symbols (in an intricate way), whereas our refinement gives a more direct product
construction, and clarifies how alternate stacking works. For our construction, a
proof of “liveness” is not needed, and the whole correctness proof for the deci-
sion procedure became simpler. As mentioned, the key lemma (Lemma 2) plays
a crucial role in the decidable inclusion for SPDAs. However, the original proof
of the key lemma 2) is indeed intricate. It would be interesting to improve the

proof of this lemma.
Acknowledgments We would like to thank the anonymous referees and Dr.

Yoshinao Isobe for careful reading and helpful comments in improving the paper.
We are grateful to Prof. Jean Terrilon for helpful suggestions in refining the final
version of the paper. Thanks also go to Dr. Nao Hirokawa for fruitful discussions
on the first draft. This research is supported by the 21st Century COE program
“Verifiable and Evolvable e-Society” of JAIST, funded by the Japanese Ministry
of Education, Culture, Sports, Science and Technology.

References

1) Minamide, Y. and Tozawa, A.: XML Validation for Context-Free Grammars, Proc.
4th ASIAN Symposium on Programming Languages and Systems (APLAS’06), Lec-
ture Notes in Computer Science, Vol.4279, pp.357–373, Springer-Verlag (2006).

2) Greibach, S. and Friedman, E.P.: Superdeterministic PDAs: A Subcase with a
Decidable Inclusion Problem, J. ACM, vol.27, No.4, pp.675–700 (1980).

3) Nowotka, D. and Srba, J.: Height-Deterministic Pushdown Automata, Proc. Math-
ematical Foundation of Computer Science (MFCS’07), Lecture Notes in Computer
Science, Vol.4708, pp.125–134, Springer-Verlag (2007).

4) Friedman, E.P. and Greibach, S.: Superdeterministic PDAs. The method of ac-
cepting does affect decision problems, Journal of Systems and Computer Science,
vol.19, no.3, pp.79–117 (1979).

5) Tozawa, A. and Minamide, Y.: Complexity Results on Balanced Context-Free
Languages, Proc. 10th International Conference on Foundations of Software Sci-
ence and Computational Structures, Lecture Notes in Computer Science, Vol.4423,
pp.346–360, Springer-Verlag (2007).

6) McNaughton, R.: Parenthesis grammars, J. ACM, Vol.14, No.3, pp.490–500 (1967).
7) Valiant, L.G.: Decision procedures for families of deterministic pushdown au-

tomata, Ph.D. thesis, Univeristy of Warwick, 1973.

(Received December 21, 2007)
(Accepted April 17, 2008)

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

46 Alternate Stacking Technique Revisited: Inclusion Problem of Superdeterministic Pushdown Automata

Nguyen Van Tang received his M.S. in 2005 from Hanoi Uni-
versity of Science, Hanoi, Vietnam. His research interests include
formal languages, real-time systems, and verification methodology,
such as model checking and theorem proving.

Mizuhito Ogawa received his M.S. in 1985 and Ph.D degree in
2002, both from the University of Tokyo. He worked in NTT Ba-
sic Research Laboratories from 1985 until 2001, and in JST from
2002 to 2003. From 2003, he has been working at the Japan Ad-
vanced Institute of Science and Technology. His research interests
include theory in rewriting, formal languages, combinatorics, and
program verification methodology, such as theorem provers and

model checkers.

IPSJ Transactions on Programming Vol. 1 No. 1 36–46 (June 2008) c© 2008 Information Processing Society of Japan

