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Abstract

In ”On regularity of context-free languages, Theoretical Computer Science Vol.27,
pp.311-332, 1983”, Ehrenfeucht et al. showed that a set L of finite words is regular
if and only if L is ≤-closed under some monotone well-quasi-order (WQO) ≤ over
finite words. We extend this result to regular ω-languages. That is,

(1) an ω-language L is regular if and only if L is �-closed under a periodic extension
� of some monotone WQO over finite words, and

(2) an ω-language L is regular if and only if L is �-closed under a WQO � over
ω-words that is a continuous extension of some monotone WQO over finite
words.
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1 Preliminaries

Throughout the paper, we will use A for a finite alphabet, A∗ for a set of all
(possibly empty) finite words on A, and Aω for a set of all ω-words on A. A
concatenation of two words u, v is denoted by u, v, an element-wise concatena-
tion of two sets U, V of words by U.V , V.V. · · · .V

︸ ︷︷ ︸

i

by V i, and V.V.V. · · · by V ω.

The length of a finite word u is denoted by |u|. As a convention, we will use ε
for the empty word, u, v, w, · · · for finite words, α, β, · · · for ω-words, a1, a2, · · ·
for elements in A, i, j, k, l, · · · for indices, and U, V, · · · (capital letters) for sets.
We sometimes use x, y, · · · for elements of a set.

A regular ω-language is a set of ω-words that are accepted by a (nondetermin-
istic) Büchi automaton A = {Q, q0, ∆, F}, where Q is a finite set of states,

Preprint submitted to Elsevier Preprint 1 March 2004



q0 an initial state, ∆ ⊆ Q × A × Q a transition relation, and F a set of fi-
nal states. α = a1a2a3 · · · ∈ Aω is accepted by A if its corresponding run
q0 →

a1
q1 →

a2
q2 →

a3
· · · runs through some state of F infinitely often. A set of

ω-words accepted by A is denoted by L(A). For states q, q′ and w ∈ A∗, we

write q →
w

q′ if there is a run of A on w, and we write q
F→
w

q′ if there is a run

of A on w from q to q′ such that the run runs through some state of F .

A congruence ∼ is an equivalent relation over A∗ preserved by concatenations.
A congruence ∼ is finite if there are only finitely many ∼-classes. Details are
given elsewhere [3].

Definition 1.1 Let L ⊆ Aω and let ∼ be a congruence over A∗. We say
that ∼ saturates L if for each ∼-class U, V , U.V ω ∩ L �= φ implies U.V ω ⊆ L.

Lemma 1.2 For a Büchi automaton A and u, v ∈ A∗, we define u ∼A v if

(q →
u

q′ ⇔ q →
v

q′) ∧ (q
F→
u

q′ ⇔ q
F→
v

q′) for each q, q′ ∈ Q. Then ∼A is a

finite congruence that saturates L(A).

Theorem 1.3 L ⊆ Aω is regular if and only if some finite congruence
saturates L.

Lemma 1.4 Let ∼ be a finite congruence over A∗.

(1) Let α = u1u2 · · · ∈ Aω and let u(i, j) = uiui+1 · · ·uj−1 where ui ∈ A∗.
There exist a ∼-class V and i1 < i2 < · · · such that u(ij , ik) ∈ V for each
j, k with j < k.

(2) Let U, V be ∼-classes. There exist ∼-classes U ′, V ′ such that U.V ω ⊆
U ′.V ′ω, U ′.V ′ ⊆ U ′, and V ′.V ′ ⊆ V ′.

Proof

(1) Since ∼ has only finitely many ∼-classes, this is a direct consequence of
(infinite) Ramsey Theorem.

(2) Note that for each ∼-class U1, · · · , Um, W , U1. · · · .Un ∩ W �= ∅ implies
U1. · · · .Un ⊆ W . Since ∼ has only finitely many ∼-classes, from (infinite)
Ramsey Theorem there exist a ∼-class V ′ and i1 < i2 < · · · such that
V ik−ij ⊆ V ′ for each j, k with j < k and V ′.V ′ ⊆ V ′. Let U ′ be a ∼-class
that includes U.V i1. Then U.V ω ⊆ U ′.V ′ω, U ′.V ′ ⊆ U ′, and V ′.V ′ ⊆ V ′.

We denote a quasi-order (QO, i.e., reflexive transitive binary relation) over a
set S by (S,≤). If S is clear from the context, we simply denote by ≤. As a
convention, a QO over finite words is denoted it by ≤, and a QO over ω-words
is denoted by �.
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Definition 1.5 For a QO (S,≤) and L ⊆ S, L is ≤-closed if for each x ∈ L
x ≤ y implies y ∈ L.

Definition 1.6 A QO (S,≤) is a well-quasi-order (WQO) if for any infinite
sequence x1, x2, · · · in S, there exist i, j such that i < j and xi ≤ xj .

A QO (A∗,≤) is monotone if u ≤ v implies w1uw2 ≤ w1vw2 for each u, v, w1, w2 ∈
A∗.

2 First theorem

Definition 2.1 A QO (Aω,�) is a periodic extension of (A∗,≤) if the fol-
lowing conditions are satisfied:

• For each ui, vi ∈ A∗, ui ≤ vi for any i implies u1u2u3 · · · � v1v2v3 · · ·.
• For each α ∈ Aω, there exist u, v ∈ A∗ such that α � u.vω and α � u.vω.

Theorem 2.2 Let L ⊆ Aω. L is regular if and only if L is �-closed under
a periodic extension (Aω,�) of a monotone WQO (A∗,≤).

For instance, the embedding over ω-words is the periodic extension of the
embedding over finite words. Note that a periodic extension of a monotone
WQO over A∗ is a WQO over Aω. We will prove Theorem 2.2 below.

Lemma 2.3 Let ∼ be a finite congruence on A∗ and let U, V be ∼-classes.
For u, v ∈ A∗, if uvω ∈ U.V ω, U.V ⊆ U , and V.V ⊆ V , there exist w1 ∈ U and
w2 ∈ V such that w1w

ω
2 = uvω.

Proof Let uvω = u′v′
1v

′
2 · · · satisfying u′ ∈ U and v′

i ∈ V , and let w(i, j) =
v′

i · · · v′
j−1 for i < j. Let kj ≡ |w(1, j)| (mod |v|). Then there exist kj1 and kj2

such that kj1 < kj2 and kj1 ≡ kj2 (mod |v|). Since there are infinitely many
such pairs, we can assume that |u| ≤ |u′w(1, j1 − 1)|. Let w1 = u′.w(1, j1 − 1)
and w2 = w(j1, j2 − 1). Since U.V ⊆ U and V.V ⊆ V , w1 ∈ U , w2 ∈ V and
uvω = w1w

ω
2 .

Lemma 2.4 For a Büchi automaton A and α ∈ Aω, let [[α]] = {U.V ω | α ∈
U.V ω} where U, V are ∼A-classes. We define α �′ β if [[α]] ∩ [[β]] �= ∅. Then,

(1) L(A) is �′-closed.
(2) ui ∼A vi for each i imply u1u2 · · · �′ v1v2 · · ·.

Proof From Lemma 1.2, ∼A saturates L and U.V ω ⊆ L for each U.V ω ∈ [[α]].
Thus L is �′-closed.
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From Lemma 1.4 (i), there exist a ∼A-class V and i1 < i2 < · · · such that
u(ij, ik) ∈ V for each j < k. Let U be a ∼A-class such that u(1, i1) ∈ U .
(We borrow the notation from Lemma 1.4 (i).) Since ∼A is a congruence,
v(1, i1) ∈ U and v(ij , ik) ∈ V for each j < k. Thus u1u2 · · · ∈ U.V ω implies
v1v2 · · · ∈ U.V ω, and α � β.

Definition 2.5 [1] For u, v ∈ A∗, we define u ≈L v if w(w1uw2)
ω ∈ L ⇔

w(w1vw2)
ω ∈ L and w1uw2w

ω ∈ L ⇔ w1vw2w
ω ∈ L for each w, w1, w2 ∈ A∗.

Proof of Theorem 2.2

Only-if part: Assume L is regular. Let A be a Büchi automaton such that
L = L(A). Since ∼A is a finite congruence, (A∗,∼A) is a monotone WQO.
Define � as the transitive closure of �′ (defined in Lemma 2.4), then (Aω,�)
is a periodic extension of (A∗,∼A) and L(A) is �-closed.

If part: Assume that L is �-closed where � is a periodic extension of a mono-
tone WQO ≤. First, we show that ≈L is a finite congruence. Assume that {ui}
is an infinite set in A∗ such that ui �≈L uj for i �= j. Since (A∗,≤) is a WQO,
there exists an infinite ascending subsequence {uki

}.

Let F (u) = {(v, v1, v2, w1, w2, w) ∈ A∗×A∗×A∗×A∗×A∗×A∗ | v(v1uv2)
ω ∈

L ∧ w1uw2w
ω ∈ L}. Since � is a periodic extension of ≤ and L is �-closed,

each F (u) is ≤ × ≤ × ≤ × ≤ × ≤ × ≤-closed and hence F (uki
) ⊆ F (ukj

)
for i < j. Since uki

�≈L ukj
for i �= j, F (uki

) �= F (ukj
), thus F (uki

) ⊂ F (ukj
).

Then there exists an infinite sequence in which each pair of different elements
is incomparable. Since ≤ × ≤ × ≤ × ≤ × ≤ × ≤ is a WQO over A∗ × A∗ ×
A∗ × A∗ × A∗ × A∗, this is a contradiction.

Second, we show that ≈L saturates L. Assume that some ≈L-classes U, V
satisfy U.V ω ∩ L �= φ and U.V ω �⊆ L. From Lemma 1.4 (ii), we can assume
that U.V ⊆ U and V.V ⊆ V .

Let α ∈ U.V ω ∩ L and β ∈ U.V ω \ L. Since (Aω,�) is a periodic extension,
from Lemma 2.3 there exist u, u′ ∈ U and v, v′ ∈ V such that α = uvω and
β = u′v′ω. By definition of ≈L, uvω ∈ L and u′v′ω �∈ L are contradictory.

3 Second theorem

Definition 3.1 For a monotone QO (A∗,≤), a QO (Aω,�) is a continuous
extension if the following conditions are satisfied.

(1) For each u, v ∈ A∗ and α, β ∈ Aω, u ≤ v and α � β imply uα � vβ.
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(2) Let uj, vj ∈ A∗ for each j and let αi = v1 · · · vi−1ui · · · for each i and
α∞ = v1v2 · · ·. For β ∈ Aω, if ui ≤ vi and αi � β for each i, then α∞ � β,
and if ui ≥ vi and αi � β for each i, then α∞ � β.

Theorem 3.2 Let L ⊆ Aω. L is regular if and only if L is �-closed under
a WQO (Aω,�) that is a continuous extension of a monotone WQO (A∗,≤).

For the embedding ≤ over finite words, let (A∗,≤◦) be defined as u ≤◦ v if and
only if u ≤ v and elt(u) = elt(v), where elt(u) = {ai | u = a1a2 · · ·aj}. Since
the embedding ≤ over finite words is a WQO from Higman’s lemma, ≤◦ is also
a WQO. Then the embedding over Aω is a continuous extension of ≤◦. Note
that the embedding over Aω is a continuous extension of the embedding ≤
over finite words. Actually, any continuous extension of the embedding ≤ over
finite words is a trivial WQO (i.e., Aω × Aω). For instance, given α, β ∈ Aω.
Let α(1, i) be the prefix of α of the length i and αi = α(1, i).β for each i. Since
α(1, i) ≥ ε, αi � β for each i. Thus, by definition of continuity, α∞ = α � β.
Hence, for any α, β ∈ Aω, we conclude α � β.

Definition 3.3 Let u, v ∈ A∗ and let L ⊆ Aω. We write

• u �1
L v if and only if ∀w ∈ A∗, ∀α ∈ Aω. wuα ∈ L ⇔ wvα ∈ L,

• u �2
L v if and only if ∀w ∈ A∗ . wuω ∈ L ⇔ wvω ∈ L, and

• u �L v if and only if u �1
L v and u �2

L v.

Proof of Theorem 3.2

Only-if part: Assume L is regular. Let A be a Büchi automaton such that
L = L(A). Since ∼A is a finite congruence, (A∗,∼A) is a monotone WQO.
Define � as the transitive closure of �′ (defined in Lemma 2.4), then L(A) is
�-closed. Since �′ is symmetric, (Aω,�) is a continuous extension of (A∗,∼A)
from Lemma 2.4 (ii). For the index n of ∼A, the number of �-classes is bound
by 2n2

. Thus � is a WQO.

If part: First, we show that �L is a finite congruence. Assume that {ui} is an
infinite set in A∗ such that ui ��L uj for i �= j. Since (A∗,≤) is a WQO, there
exists an infinite ascending subsequence {uki

}.

Let F (u) ⊆ A∗ × Aω × A∗ be a set such that (w, α, v) ∈ F (u) ⇔ wuα ∈
L∧vuω ∈ L. Then, each F (u) is ≤ × � × ≤-closed and hence F (uki

) ⊆ F (ukj
)

for i < j. Since uki
��L ukj

for i �= j, F (uki
) �= F (ukj

), thus F (uki
) ⊂ F (ukj

).
Then there exists an infinite sequence in which each pair of different elements
is incomparable. Since ≤ × � × ≤ is a WQO over A∗ × Aω × A∗, this is a
contradiction.

Second, we show that �L saturates L. Assume that some �L-classes U, V
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satisfy U.V ω ∩ L �= φ and U.V ω �⊆ L. From Lemma 1.4 (2), we can assume
that V.V ⊆ V .

Let α = uv1v2 · · · be a minimal element (wrt �) in U.V ω ∩ L, and let β =
u′v′

1v
′
2 · · · ∈ U.V ω \ L such that u, u′ ∈ U and vi, v

′
i ∈ V . Let {v̄l} be sets of

minimal elements of V wrt ≤. Since (V,≤) is a WQO, {v̄l} are finite.

Let α′(j, j +k) = vj · · · vj+k. Since v̄l are finitely many, from (infinite) Ramsey
Theorem there exist l and an ascending sequence 0 < j1 < j2 < · · · such that
α′(jm, jm+1 − 1) ≥ v̄l for any m > 0.

Let αm = u α′(1, j1 − 1) v̄m−1
l α′(jm, jm+1 − 1) · · ·. Obviously, αm � α and

αm ∈ U.V ω ∩L. Since α is minimal in U.V ω ∩L, αm � α. By definition of the
continuous extension, α∞ = u α′(1, j1 − 1) v̄ω

l � α. Thus since L is �-closed,
α∞ ∈ U.V ω ∩ L.

Let β ′(j, j +k) = v′
j · · · v′

j+k. Since v̄l are finitely many, from (infinite) Ramsey
Theorem there exist l′ and an ascending sequence 0 < j′1 < j′2 < · · · such
that β ′(j′m, j′m+1 − 1) ≥ v̄l′ for any m > 0. Let β∞ = u′ β ′(1, j1 − 1) v̄ω

l′ . By
definition of the continuous extension, β∞ � β. Since L is �-closed, β �∈ L
implies β∞ �∈ L. Thus β̄ ∈ U.V ω \ L.

Since u �1
L u′ and v̄j �2

L v̄j′ for each j, repeated applications of �1
L and an

application of �2
L imply that α∞ ∈ L ⇔ β∞ ∈ L. This contradicts α∞ ∈ L

and β∞ �∈ L.

Example 3.4 Either the periodic or continuous assumption cannot be dropped.
Let β = abaabaaabaaaab · · · and let L(β) be the set of ω-words that have a
common suffix with β. For α ∈ Aω, let pβ(α) = 1 if α ∈ L(β) and let pβ(α) = 0
if α �∈ L(β). Define α � α′ ⇔ pβ(α) ≤ pβ(α′). Then � is a WQO over ω-words
and L(β) is �-closed, but L(β) is not regular.
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