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Abstract

In ” On regularity of context-free languages, Theoretical Computer Science Vol.27,
pp.311-332, 1983”, Ehrenfeucht et al. showed that a set L of finite words is regular
if and only if L is <-closed under some monotone well-quasi-order (WQO) < over
finite words. We extend this result to regular w-languages. That is,

(1) an w-language L is regular if and only if L is <-closed under a periodic extension
=< of some monotone WQO over finite words, and

(2) an w-language L is regular if and only if L is <-closed under a WQO = over
w-words that is a continuous extension of some monotone WQO over finite
words.
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1 Preliminaries

Throughout the paper, we will use A for a finite alphabet, A* for a set of all
(possibly empty) finite words on A, and A“ for a set of all w-words on A. A
concatenation of two words u, v is denoted by u, v, an element-wise concatena-

tion of two sets U,V of words by U.V, V.V.--- V by V¢ and V.V.V.--. by V¥.
—_—

The length of a finite word w is denoted by |u|. As a convention, we will use e

for the empty word, u, v, w, - - - for finite words, «, (3, - - - for w-words, a, as, - - -
for elements in A, i, 7, k, [, - - - for indices, and U, V, - - - (capital letters) for sets.
We sometimes use x,y, - - - for elements of a set.

A regular w-language is a set of w-words that are accepted by a (nondetermin-
istic) Biichi automaton A = {Q, qo, A, F'}, where @ is a finite set of states,
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¢o an initial state, A C @ x A x ) a transition relation, and F' a set of fi-

nal states. a = ajaqas--- € A is accepted by A if its corresponding run
qo — q1 — @2 — --- runs through some state of F' infinitely often. A set of
a1 a2 as

w-words accepted by A is denoted by L(.A). For states ¢,¢' and w € A*, we
write ¢ — ¢ if there is a run of A on w, and we write ¢ % ¢ if there is a run

of A on w from ¢ to ¢’ such that the run runs through some state of F.

A congruence ~ is an equivalent relation over A* preserved by concatenations.
A congruence ~ is finite if there are only finitely many ~-classes. Details are
given elsewhere [3].

Definition 1.1  Let L C A% and let ~ be a congruence over A*. We say
that ~ saturates L if for each ~-class U, V, UV¥ N L # ¢ implies U.V¥ C L.

Lemma 1.2  For a Biichi automaton A and u,v € A*, we define u ~ 4 v if
(q7q’<:>q7q’) A (q%q’@q%q’) for each ¢,¢' € Q. Then ~4 is a
finite congruence that saturates L(.A).

Theorem 1.3 L C AY is regular if and only if some finite congruence
saturates L.

Lemma 1.4 Let ~ be a finite congruence over A*.

(1) Let @ = wqug--- € A and let u(i,j) = wuiyr - -u;—1 where u; € A*.
There exist a ~-class V and i; < i3 < --- such that u(i;, i) € V for each
J, k with j < k.

(2) Let U,V be ~-classes. There exist ~-classes U’, V' such that U.V¥ C
v gV Cu' and V.V C VY

Proof

(1) Since ~ has only finitely many ~-classes, this is a direct consequence of
(infinite) Ramsey Theorem.

(2) Note that for each ~-class Uy, -+, Uy, W, Uy.---.U, N W # () implies
Uy.---.U, CW. Since ~ has only finitely many ~-classes, from (infinite)
Ramsey Theorem there exist a ~-class V' and iy < iy < --- such that
V=i C V' for each j, k with j < k and V'.V' C V'. Let U’ be a ~-class
that includes U.V%. Then U.V¥ C U'.V™*, U'V' C U’, and V'.V' C V.
|

We denote a quasi-order (QO, i.e., reflexive transitive binary relation) over a
set S by (5, <). If S is clear from the context, we simply denote by <. As a
convention, a QO over finite words is denoted it by <, and a QO over w-words
is denoted by <.



Definition 1.5 For a QO (5, <) and L C S, L is <-closed if for each x € L
x <y implies y € L.

Definition 1.6 A QO (S, <) is a well-quasi-order (WQO) if for any infinite
sequence 1, Ta, - - - in S, there exist ¢, j such that i < j and z; < x;.

A QO (A*, <) is monotone if u < v implies wyuws < wivws for each u, v, wq, we

A*.

2 First theorem

Definition 2.1 A QO (A“, =) is a periodic extension of (A*, <) if the fol-
lowing conditions are satisfied:

e For each u;,v; € A*, u; < v; for any ¢ implies ujugusz - - - < v1v9v3 - - -
e For each a € A, there exist u,v € A* such that « < w.v¥ and o > u.v*.

Theorem 2.2 Let L C A“. L is regular if and only if L is <-closed under
a periodic extension (A%, <) of a monotone WQO (A*, <).

For instance, the embedding over w-words is the periodic extension of the
embedding over finite words. Note that a periodic extension of a monotone

WQO over A* is a WQO over A¥. We will prove Theorem 2.2 below.

Lemma 2.3 Let ~ be a finite congruence on A* and let U,V be ~-classes.
For u,v € A*, if uv® € UV¥, UV C U, and V.V C V, there exist w; € U and
we € V such that wyw§ = uv®.

Proof Let uv¥ = u'viv)- - satisfying ' € U and v} € V, and let w(i, j) =
v; - vi_y for i < j. Let k; = [w(1,7)| (mod |v]). Then there exist kj, and kj,
such that k;, < kj;, and kﬁ = kj, (mod |v|). Since there are infinitely many
such pairs, we can assume that |u| < [v'w(1,5; — 1)]. Let w; = «’.w(1,j; — 1)
and wy = w(j1,jo — 1). Since UV C U and V.V C V, w; € U, wy € V and

uvY = wiws. [

Lemma 2.4  For a Biichi automaton A and o € A%, let [a] = {U.V¥ |a €
U.V«} where U,V are ~ 4-classes. We define av <’ 3 if [a] N [G] # 0. Then,

(1) L(A) is ='-closed.

(2) u; ~4 v; for each i imply wjug - -+ <" vivg - - -

Proof From Lemma 1.2, ~ 4 saturates L and U.V* C L for each U.V¥ € [a].
Thus L is <'-closed.



From Lemma 1.4 (i), there exist a ~-class V' and i; < iy < --- such that
u(ij, i) € V for each j < k. Let U be a ~ 4-class such that u(1,4;) € U.
(We borrow the notation from Lemma 1.4 (i).) Since ~4 is a congruence,
v(1,71) € U and v(i;,i;) € V for each j < k. Thus ujuy--- € U.V* implies
g+ € UVY, and a < . [ |

Definition 2.5 [1] For u,v € A*, we define u ~p v if w(wjuws)® € L <
w(wivwy)® € L and wuwsw® € L < wivwow® € L for each w, wy, wy € A*.

Proof of Theorem 2.2

Only-if part: Assume L is regular. Let A be a Biichi automaton such that
L = L(A). Since ~ 4 is a finite congruence, (A* ~4) is a monotone WQO.
Define < as the transitive closure of <’ (defined in Lemma 2.4), then (A“, <)
is a periodic extension of (A* ~4) and L(A) is <-closed.

If part: Assume that L is =-closed where < is a periodic extension of a mono-
tone WQO <. First, we show that &~ is a finite congruence. Assume that {u;}
is an infinite set in A* such that u; %, u; for i # j. Since (A%, <) is a WQO,
there exists an infinite ascending subsequence {uy, }.

Let F(u) = {(v, v1, v2, w1, wa, w) € A* X A* x A* x A* x A* x A* | v(vyuvq)® €
L N wyuwyw® € L}. Since < is a periodic extension of < and L is =-closed,
each F(u) is < x < x < x < x < x <-closed and hence F'(uy,) C F(uy,)
for 7 < j. Since uy, Zp uy, for i # j, Fuy,) # F(u,), thus F(ug,) C F(uy,).
Then there exists an infinite sequence in which each pair of different elements
is incomparable. Since < x < x < x < x < x <isa WQO over A* x A* x
A* x A* x A* x A*, this is a contradiction.

Second, we show that =~ saturates L. Assume that some =;-classes U,V
satisfy UVY N L # ¢ and U.V¥ < L. From Lemma 1.4 (ii), we can assume
that U.V C U and V.V C V.

Let « € UV¥ N L and § € UV¥\ L. Since (A¥, =) is a periodic extension,
from Lemma 2.3 there exist u,u’ € U and v,v" € V such that o = uv* and
B = uv"". By definition of ~p, uv* € L and u/v"” ¢ L are contradictory. N

3 Second theorem

Definition 3.1  For a monotone QO (A%, <), a QO (A%, <) is a continuous
extension if the following conditions are satisfied.

(1) For each u,v € A* and o, f € A, u < v and o <X § imply ua < vf3.



(2) Let u;,v; € A* for each j and let a; = vy ---v;_qu;--- for each i and
Qoo = V109 - - -. For g € A% if u; < v; and «a; < [ for each i, then a,, = 3,
and if u; > v; and «a; = (8 for each i, then o, = 3.

Theorem 3.2 Let L C A“. L is regular if and only if L is <-closed under
a WQO (A¥, <) that is a continuous extension of a monotone WQO (A*, <).

For the embedding < over finite words, let (A*, <°) be defined as u <° v if and
only if u < v and elt(u) = elt(v), where elt(u) = {a; | v = ajas---a;}. Since
the embedding < over finite words is a WQO from Higman’s lemma, <° is also
a WQO. Then the embedding over A¥ is a continuous extension of <°. Note
that the embedding over A“ is a continuous extension of the embedding <
over finite words. Actually, any continuous extension of the embedding < over
finite words is a trivial WQO (i.e., AY x A“). For instance, given a, § € A“.
Let (1, 7) be the prefix of v of the length i and a; = «(1,4).3 for each i. Since
a(l,i) > €, a; = [ for each i. Thus, by definition of continuity, a,, = o = f.
Hence, for any «, 0 € A¥, we conclude a = f3.

Definition 3.3  Let u,v € A* and let L C A“. We write

o u~! vif and only if Vw € A*,Va € A*. wua € L & wva € L,
e u ~2 v if and only if Vw € A* . wu® € L < wv* € L, and
e u~ v if and only if u ~} v and u ~% v.

Proof of Theorem 3.2

Only-if part: Assume L is regular. Let A be a Biichi automaton such that
L = L(A). Since ~ 4 is a finite congruence, (A*, ~4) is a monotone WQO.
Define < as the transitive closure of <" (defined in Lemma 2.4), then L(.A) is
=-closed. Since <’ is symmetric, (A, <) is a continuous extension of (A*, ~ 4)
from Lemma 2.4 (ii). For the index n of ~ 4, the number of <-classes is bound
by 27’ Thus < is a WQO.

If part: First, we show that ~ is a finite congruence. Assume that {u;} is an
infinite set in A* such that w; %, u; for ¢ # j. Since (A%, <) is a WQO, there
exists an infinite ascending subsequence {uy, }.

Let F(u) € A* x AY x A* be a set such that (w,a,v) € F(u) < wua €
LAvu® € L. Then, each F(u) is < x = x <-closed and hence F'(uy,) C F(ux,)
for i < j. Since uy, 1 ux, for i # j, F(ug,) # F(ug,), thus F(ug,) C F(uy,).
Then there exists an infinite sequence in which each pair of different elements
is incomparable. Since < x < x < is a WQO over A* x A x A*, this is a
contradiction.

Second, we show that ~ saturates L. Assume that some ~j-classes U,V



satisfy UVY N L # ¢ and U.VY ¢ L. From Lemma 1.4 (2), we can assume
that V.V C V.

Let @ = wwyvy - -+ be a minimal element (wrt <) in U.V¥Y N L, and let § =
woivh - € UVY\ L such that u,u’ € U and v;,v] € V. Let {0;} be sets of
minimal elements of V' wrt <. Since (V, <) is a WQO, {7,} are finite.

Let o(j,j+k) = v; - - - vj45. Since 7 are finitely many, from (infinite) Ramsey
Theorem there exist [ and an ascending sequence 0 < j; < jo < --- such that
O/(jmajm-‘rl - 1) > U for any m > 0.

Let oy = u /(1,5 — 1) 9" & (G Jms1r — 1) -+ - Obviously, a,,, < a and
a, € UVYN L. Since « is minimal in U.V* N L, «,, = «. By definition of the
continuous extension, a., = u (1, j; — 1) 0 = «. Thus since L is =-closed,
s €UVYNL.

Let 3'(j,j +k) = v - - v} Since ; are finitely many, from (infinite) Ramsey
Theorem there exist I’ and an ascending sequence 0 < j; < j, < --- such
that 3'(j,,jrnq — 1) = vy for any m > 0. Let 3 = ' (1,5, — 1) v7. By
definition of the continuous extension, B, =< (. Since L is =<-closed, 8 & L
implies By & L. Thus 8 € U.V*\ L.

Since u ~} ' and v; ~3 v for each j, repeated applications of ~} and an
application of ~2 imply that a,, € L < B, € L. This contradicts ay € L
and [y & L. [ |

Example 3.4  Either the periodic or continuous assumption cannot be dropped.
Let # = abaabaaabaaaab--- and let L((3) be the set of w-words that have a
common suffix with 8. For a € A“, let pg(a) = 1if o € L(f) and let pg(a) =0
ifa & L(3). Define o <= o < pg(a) < pg(a’). Then < is a WQO over w-words
and L(() is =-closed, but L([) is not regular.
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