Well-quasi-orders and Regular ω-languages

Mizuhito Ogawa ${ }^{\text {a }}$
${ }^{\text {a }}$ Japan Advanced Institute of Science and Technology
1-1 Asahidai Tatsunokuchi Nomi Ishikawa 923-1292 Japan
mizuhito@jaist.ac.jp

Abstract

In "On regularity of context-free languages, Theoretical Computer Science Vol.27, pp.311-332, 1983", Ehrenfeucht et al. showed that a set L of finite words is regular if and only if L is \leq-closed under some monotone well-quasi-order (WQO) \leq over finite words. We extend this result to regular ω-languages. That is, (1) an ω-language L is regular if and only if L is \preceq-closed under a periodic extension \preceq of some monotone WQO over finite words, and (2) an ω-language L is regular if and only if L is \preceq-closed under a WQO \preceq over ω-words that is a continuous extension of some monotone WQO over finite words.

Key words: ω-language, well-quasi-order, regularity.

1 Preliminaries

Throughout the paper, we will use A for a finite alphabet, A^{*} for a set of all (possibly empty) finite words on A, and A^{ω} for a set of all ω-words on A. A concatenation of two words u, v is denoted by u, v, an element-wise concatenation of two sets U, V of words by $U . V, \underbrace{V . V . \cdots . V}_{i}$ by V^{i}, and $V . V . V . \cdots$ by V^{ω}. The length of a finite word u is denoted by $|u|$. As a convention, we will use ϵ for the empty word, u, v, w, \cdots for finite words, α, β, \cdots for ω-words, a_{1}, a_{2}, \cdots for elements in A, i, j, k, l, \cdots for indices, and U, V, \cdots (capital letters) for sets. We sometimes use x, y, \cdots for elements of a set.

A regular ω-language is a set of ω-words that are accepted by a (nondeterministic) Büchi automaton $\mathcal{A}=\left\{Q, q_{0}, \Delta, F\right\}$, where Q is a finite set of states,
q_{0} an initial state, $\Delta \subseteq Q \times A \times Q$ a transition relation, and F a set of final states. $\alpha=a_{1} a_{2} a_{3} \cdots \in A^{\omega}$ is accepted by \mathcal{A} if its corresponding run $q_{0} \underset{a_{1}}{\overrightarrow{1}} q_{1} \overrightarrow{a_{2}} q_{2} \underset{a_{3}}{\longrightarrow} \cdots$ runs through some state of F infinitely often. A set of ω-words accepted by \mathcal{A} is denoted by $L(\mathcal{A})$. For states q, q^{\prime} and $w \in A^{*}$, we write $q \underset{w}{\vec{w}} q^{\prime}$ if there is a run of \mathcal{A} on w, and we write $q \underset{w}{F} q^{\prime}$ if there is a run of \mathcal{A} on w from q to q^{\prime} such that the run runs through some state of F.

A congruence \sim is an equivalent relation over A^{*} preserved by concatenations. A congruence \sim is finite if there are only finitely many \sim-classes. Details are given elsewhere [3].

Definition 1.1 Let $L \subseteq A^{\omega}$ and let \sim be a congruence over A^{*}. We say that \sim saturates L if for each \sim-class $U, V, U . V^{\omega} \cap L \neq \phi$ implies $U . V^{\omega} \subseteq L$.

Lemma 1.2 For a Büchi automaton \mathcal{A} and $u, v \in A^{*}$, we define $u \sim_{\mathcal{A}} v$ if $\left(q \underset{u}{\vec{u}} q^{\prime} \Leftrightarrow q \underset{v}{\vec{\prime}} q^{\prime}\right) \wedge\left(q \underset{u}{F} q^{\prime} \Leftrightarrow q \underset{v}{F} q^{\prime}\right)$ for each $q, q^{\prime} \in Q$. Then $\sim_{\mathcal{A}}$ is a finite congruence that saturates $L(\mathcal{A})$.

Theorem 1.3 $L \subseteq A^{\omega}$ is regular if and only if some finite congruence saturates L.

Lemma 1.4 Let \sim be a finite congruence over A^{*}.
(1) Let $\alpha=u_{1} u_{2} \cdots \in A^{\omega}$ and let $u(i, j)=u_{i} u_{i+1} \cdots u_{j-1}$ where $u_{i} \in A^{*}$. There exist a \sim-class V and $i_{1}<i_{2}<\cdots$ such that $u\left(i_{j}, i_{k}\right) \in V$ for each j, k with $j<k$.
(2) Let U, V be \sim-classes. There exist \sim-classes U^{\prime}, V^{\prime} such that $U . V^{\omega} \subseteq$ $U^{\prime} . V^{\prime \omega}, U^{\prime} . V^{\prime} \subseteq U^{\prime}$, and $V^{\prime} . V^{\prime} \subseteq V^{\prime}$.

Proof

(1) Since \sim has only finitely many \sim-classes, this is a direct consequence of (infinite) Ramsey Theorem.
(2) Note that for each \sim-class $U_{1}, \cdots, U_{m}, W, U_{1} \cdots, U_{n} \cap W \neq \emptyset$ implies $U_{1} \cdots . U_{n} \subseteq W$. Since \sim has only finitely many \sim-classes, from (infinite) Ramsey Theorem there exist a \sim-class V^{\prime} and $i_{1}<i_{2}<\cdots$ such that $V^{i_{k}-i_{j}} \subseteq V^{\prime}$ for each j, k with $j<k$ and $V^{\prime} . V^{\prime} \subseteq V^{\prime}$. Let U^{\prime} be a \sim-class that includes $U . V^{i_{1}}$. Then $U . V^{\omega} \subseteq U^{\prime} . V^{\prime \omega}, U^{\prime} . V^{\prime} \subseteq U^{\prime}$, and $V^{\prime} . V^{\prime} \subseteq V^{\prime}$.

We denote a quasi-order (QO, i.e., reflexive transitive binary relation) over a set S by (S, \leq). If S is clear from the context, we simply denote by \leq. As a convention, a QO over finite words is denoted it by \leq, and a QO over ω-words is denoted by \preceq.

Definition 1.5 For a QO (S, \leq) and $L \subseteq S, L$ is \leq-closed if for each $x \in L$ $x \leq y$ implies $y \in L$.

Definition 1.6 A QO (S, \leq) is a well-quasi-order (WQO) if for any infinite sequence x_{1}, x_{2}, \cdots in S, there exist i, j such that $i<j$ and $x_{i} \leq x_{j}$.

A QO $\left(A^{*}, \leq\right)$ is monotone if $u \leq v$ implies $w_{1} u w_{2} \leq w_{1} v w_{2}$ for each $u, v, w_{1}, w_{2} \in$ A^{*}.

2 First theorem

Definition 2.1 A QO $\left(A^{\omega}, \preceq\right)$ is a periodic extension of $\left(A^{*}, \leq\right)$ if the following conditions are satisfied:

- For each $u_{i}, v_{i} \in A^{*}, u_{i} \leq v_{i}$ for any i implies $u_{1} u_{2} u_{3} \cdots \preceq v_{1} v_{2} v_{3} \cdots$.
- For each $\alpha \in A^{\omega}$, there exist $u, v \in A^{*}$ such that $\alpha \preceq u \cdot v^{\omega}$ and $\alpha \succeq u . v^{\omega}$.

Theorem 2.2 Let $L \subseteq A^{\omega}$. L is regular if and only if L is \preceq-closed under a periodic extension $\left(A^{\omega}, \preceq\right)$ of a monotone WQO $\left(A^{*}, \leq\right)$.

For instance, the embedding over ω-words is the periodic extension of the embedding over finite words. Note that a periodic extension of a monotone WQO over A^{*} is a WQO over A^{ω}. We will prove Theorem 2.2 below.

Lemma 2.3 Let \sim be a finite congruence on A^{*} and let U, V be \sim-classes. For $u, v \in A^{*}$, if $u v^{\omega} \in U . V^{\omega}, U . V \subseteq U$, and $V . V \subseteq V$, there exist $w_{1} \in U$ and $w_{2} \in V$ such that $w_{1} w_{2}^{\omega}=u v^{\omega}$.

Proof Let $u v^{\omega}=u^{\prime} v_{1}^{\prime} v_{2}^{\prime} \cdots$ satisfying $u^{\prime} \in U$ and $v_{i}^{\prime} \in V$, and let $w(i, j)=$ $v_{i}^{\prime} \cdots v_{j-1}^{\prime}$ for $i<j$. Let $k_{j} \equiv|w(1, j)|(\bmod |v|)$. Then there exist $k_{j_{1}}$ and $k_{j_{2}}$ such that $k_{j_{1}}<k_{j_{2}}$ and $k_{j_{1}} \equiv k_{j_{2}}(\bmod |v|)$. Since there are infinitely many such pairs, we can assume that $|u| \leq\left|u^{\prime} w\left(1, j_{1}-1\right)\right|$. Let $w_{1}=u^{\prime} . w\left(1, j_{1}-1\right)$ and $w_{2}=w\left(j_{1}, j_{2}-1\right)$. Since $U . V \subseteq U$ and $V . V \subseteq V, w_{1} \in U, w_{2} \in V$ and $u v^{\omega}=w_{1} w_{2}^{\omega}$.

Lemma 2.4 For a Büchi automaton \mathcal{A} and $\alpha \in A^{\omega}$, let $\llbracket \alpha \rrbracket=\left\{U . V^{\omega} \mid \alpha \in\right.$ $\left.U . V^{\omega}\right\}$ where U, V are $\sim_{\mathcal{A}}$-classes. We define $\alpha \preceq^{\prime} \beta$ if $\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket \neq \emptyset$. Then,
(1) $L(\mathcal{A})$ is \preceq^{\prime}-closed.
(2) $u_{i} \sim_{\mathcal{A}} v_{i}$ for each i imply $u_{1} u_{2} \cdots \preceq^{\prime} v_{1} v_{2} \cdots$.

Proof From Lemma 1.2, $\sim_{\mathcal{A}}$ saturates L and $U . V^{\omega} \subseteq L$ for each $U . V^{\omega} \in \llbracket \alpha \rrbracket$. Thus L is \preceq^{\prime}-closed.

From Lemma 1.4 (i), there exist a $\sim_{\mathcal{A}}$-class V and $i_{1}<i_{2}<\cdots$ such that $u\left(i_{j}, i_{k}\right) \in V$ for each $j<k$. Let U be a $\sim_{\mathcal{A}}$-class such that $u\left(1, i_{1}\right) \in U$. (We borrow the notation from Lemma 1.4 (i).) Since $\sim_{\mathcal{A}}$ is a congruence, $v\left(1, i_{1}\right) \in U$ and $v\left(i_{j}, i_{k}\right) \in V$ for each $j<k$. Thus $u_{1} u_{2} \cdots \in U . V^{\omega}$ implies $v_{1} v_{2} \cdots \in U . V^{\omega}$, and $\alpha \preceq \beta$.

Definition 2.5 [1] For $u, v \in A^{*}$, we define $u \approx_{L} v$ if $w\left(w_{1} u w_{2}\right)^{\omega} \in L \Leftrightarrow$ $w\left(w_{1} v w_{2}\right)^{\omega} \in L$ and $w_{1} u w_{2} w^{\omega} \in L \Leftrightarrow w_{1} v w_{2} w^{\omega} \in L$ for each $w, w_{1}, w_{2} \in A^{*}$.

Proof of Theorem 2.2

Only-if part: Assume L is regular. Let \mathcal{A} be a Büchi automaton such that $L=L(\mathcal{A})$. Since $\sim_{\mathcal{A}}$ is a finite congruence, $\left(A^{*}, \sim_{\mathcal{A}}\right)$ is a monotone WQO. Define \preceq as the transitive closure of \preceq^{\prime} (defined in Lemma 2.4), then (A^{ω}, \preceq) is a periodic extension of $\left(A^{*}, \sim_{\mathcal{A}}\right)$ and $L(\mathcal{A})$ is \preceq-closed.

If part: Assume that L is \preceq-closed where \preceq is a periodic extension of a monotone $\mathrm{WQO} \leq$. First, we show that \approx_{L} is a finite congruence. Assume that $\left\{u_{i}\right\}$ is an infinite set in A^{*} such that $u_{i} \not \chi_{L} u_{j}$ for $i \neq j$. Since $\left(A^{*}, \leq\right)$ is a WQO, there exists an infinite ascending subsequence $\left\{u_{k_{i}}\right\}$.

Let $F(u)=\left\{\left(v, v_{1}, v_{2}, w_{1}, w_{2}, w\right) \in A^{*} \times A^{*} \times A^{*} \times A^{*} \times A^{*} \times A^{*} \mid v\left(v_{1} u v_{2}\right)^{\omega} \in\right.$ $\left.L \wedge w_{1} u w_{2} w^{\omega} \in L\right\}$. Since \preceq is a periodic extension of \leq and L is \preceq-closed, each $F(u)$ is $\leq \times \leq \times \leq \times \leq \times \leq \times \leq$-closed and hence $F\left(u_{k_{i}}\right) \subseteq F\left(u_{k_{j}}\right)$ for $i<j$. Since $u_{k_{i}} \not \overbrace{L} u_{k_{j}}$ for $i \neq j, F\left(u_{k_{i}}\right) \neq F\left(u_{k_{j}}\right)$, thus $F\left(u_{k_{i}}\right) \subset F\left(u_{k_{j}}\right)$. Then there exists an infinite sequence in which each pair of different elements is incomparable. Since $\leq \times \leq \times \leq \times \leq \times \leq \times \leq$ is a WQO over $A^{*} \times A^{*} \times$ $A^{*} \times A^{*} \times A^{*} \times A^{*}$, this is a contradiction.

Second, we show that \approx_{L} saturates L. Assume that some \approx_{L}-classes U, V satisfy $U . V^{\omega} \cap L \neq \phi$ and $U . V^{\omega} \nsubseteq L$. From Lemma 1.4 (ii), we can assume that $U . V \subseteq U$ and $V . V \subseteq V$.

Let $\alpha \in U . V^{\omega} \cap L$ and $\beta \in U . V^{\omega} \backslash L$. Since $\left(A^{\omega}, \preceq\right)$ is a periodic extension, from Lemma 2.3 there exist $u, u^{\prime} \in U$ and $v, v^{\prime} \in V$ such that $\alpha=u v^{\omega}$ and $\beta=u^{\prime} v^{\prime \omega}$. By definition of $\approx_{L}, u v^{\omega} \in L$ and $u^{\prime} v^{\prime \omega} \notin L$ are contradictory.

3 Second theorem

Definition 3.1 For a monotone QO $\left(A^{*}, \leq\right)$, a QO $\left(A^{\omega}, \preceq\right)$ is a continuous extension if the following conditions are satisfied.
(1) For each $u, v \in A^{*}$ and $\alpha, \beta \in A^{\omega}, u \leq v$ and $\alpha \preceq \beta$ imply $u \alpha \preceq v \beta$.
(2) Let $u_{j}, v_{j} \in A^{*}$ for each j and let $\alpha_{i}=v_{1} \cdots v_{i-1} u_{i} \cdots$ for each i and $\alpha_{\infty}=v_{1} v_{2} \cdots$. For $\beta \in A^{\omega}$, if $u_{i} \leq v_{i}$ and $\alpha_{i} \preceq \beta$ for each i, then $\alpha_{\infty} \preceq \beta$, and if $u_{i} \geq v_{i}$ and $\alpha_{i} \succeq \beta$ for each i, then $\alpha_{\infty} \succeq \beta$.

Theorem 3.2 Let $L \subseteq A^{\omega}$. L is regular if and only if L is \preceq-closed under a WQO $\left(A^{\omega}, \preceq\right)$ that is a continuous extension of a monotone WQO $\left(A^{*}, \leq\right)$.

For the embedding \leq over finite words, let $\left(A^{*}, \leq^{\circ}\right)$ be defined as $u \leq^{\circ} v$ if and only if $u \leq v$ and $\operatorname{elt}(u)=\operatorname{elt}(v)$, where $\operatorname{elt}(u)=\left\{a_{i} \mid u=a_{1} a_{2} \cdots a_{j}\right\}$. Since the embedding \leq over finite words is a WQO from Higman's lemma, \leq° is also a WQO. Then the embedding over A^{ω} is a continuous extension of \leq°. Note that the embedding over A^{ω} is a continuous extension of the embedding \leq over finite words. Actually, any continuous extension of the embedding \leq over finite words is a trivial WQO (i.e., $A^{\omega} \times A^{\omega}$). For instance, given $\alpha, \beta \in A^{\omega}$. Let $\alpha(1, i)$ be the prefix of α of the length i and $\alpha_{i}=\alpha(1, i) . \beta$ for each i. Since $\alpha(1, i) \geq \epsilon, \alpha_{i} \succeq \beta$ for each i. Thus, by definition of continuity, $\alpha_{\infty}=\alpha \succeq \beta$. Hence, for any $\alpha, \beta \in A^{\omega}$, we conclude $\alpha \succeq \beta$.

Definition 3.3 Let $u, v \in A^{*}$ and let $L \subseteq A^{\omega}$. We write

- $u \simeq_{L}^{1} v$ if and only if $\forall w \in A^{*}, \forall \alpha \in A^{\omega} . w u \alpha \in L \Leftrightarrow w v \alpha \in L$,
- $u \simeq_{L}^{2} v$ if and only if $\forall w \in A^{*} . w u^{\omega} \in L \Leftrightarrow w v^{\omega} \in L$, and
- $u \simeq_{L} v$ if and only if $u \simeq_{L}^{1} v$ and $u \simeq_{L}^{2} v$.

Proof of Theorem 3.2

Only-if part: Assume L is regular. Let \mathcal{A} be a Büchi automaton such that $L=L(\mathcal{A})$. Since $\sim_{\mathcal{A}}$ is a finite congruence, $\left(A^{*}, \sim_{\mathcal{A}}\right)$ is a monotone WQO. Define \preceq as the transitive closure of \preceq^{\prime} (defined in Lemma 2.4), then $L(\mathcal{A})$ is \preceq-closed. Since \preceq^{\prime} is symmetric, $\left(A^{\omega}, \preceq\right)$ is a continuous extension of $\left(A^{*}, \sim_{\mathcal{A}}\right)$ from Lemma 2.4 (ii). For the index n of $\sim_{\mathcal{A}}$, the number of \preceq-classes is bound by $2^{n^{2}}$. Thus \preceq is a WQO.

If part: First, we show that \simeq_{L} is a finite congruence. Assume that $\left\{u_{i}\right\}$ is an infinite set in A^{*} such that $u_{i} \not \chi_{L} u_{j}$ for $i \neq j$. Since $\left(A^{*}, \leq\right)$ is a WQO, there exists an infinite ascending subsequence $\left\{u_{k_{i}}\right\}$.

Let $F(u) \subseteq A^{*} \times A^{\omega} \times A^{*}$ be a set such that $(w, \alpha, v) \in F(u) \Leftrightarrow w u \alpha \in$ $L \wedge v u^{\omega} \in L$. Then, each $F(u)$ is $\leq \times \preceq \times \leq$-closed and hence $F\left(u_{k_{i}}\right) \subseteq F\left(u_{k_{j}}\right)$ for $i<j$. Since $u_{k_{i}} \not \chi_{L} u_{k_{j}}$ for $i \neq j, F\left(u_{k_{i}}\right) \neq F\left(u_{k_{j}}\right)$, thus $F\left(u_{k_{i}}\right) \subset F\left(u_{k_{j}}\right)$. Then there exists an infinite sequence in which each pair of different elements is incomparable. Since $\leq \times \preceq \times \leq$ is a WQO over $A^{*} \times A^{\omega} \times A^{*}$, this is a contradiction.

Second, we show that \simeq_{L} saturates L. Assume that some \simeq_{L}-classes U, V
satisfy $U . V^{\omega} \cap L \neq \phi$ and $U . V^{\omega} \nsubseteq L$. From Lemma 1.4 (2), we can assume that $V . V \subseteq V$.

Let $\alpha=u v_{1} v_{2} \cdots$ be a minimal element (wrt \preceq) in $U . V^{\omega} \cap L$, and let $\beta=$ $u^{\prime} v_{1}^{\prime} v_{2}^{\prime} \cdots \in U . V^{\omega} \backslash L$ such that $u, u^{\prime} \in U$ and $v_{i}, v_{i}^{\prime} \in V$. Let $\left\{\bar{v}_{l}\right\}$ be sets of minimal elements of V wrt \leq. Since (V, \leq) is a WQO, $\left\{\bar{v}_{l}\right\}$ are finite.

Let $\alpha^{\prime}(j, j+k)=v_{j} \cdots v_{j+k}$. Since \bar{v}_{l} are finitely many, from (infinite) Ramsey Theorem there exist l and an ascending sequence $0<j_{1}<j_{2}<\cdots$ such that $\alpha^{\prime}\left(j_{m}, j_{m+1}-1\right) \geq \bar{v}_{l}$ for any $m>0$.

Let $\alpha_{m}=u \alpha^{\prime}\left(1, j_{1}-1\right) \bar{v}_{l}^{m-1} \alpha^{\prime}\left(j_{m}, j_{m+1}-1\right) \cdots$. Obviously, $\alpha_{m} \preceq \alpha$ and $\alpha_{m} \in U . V^{\omega} \cap L$. Since α is minimal in $U . V^{\omega} \cap L, \alpha_{m} \succeq \alpha$. By definition of the continuous extension, $\alpha_{\infty}=u \alpha^{\prime}\left(1, j_{1}-1\right) \bar{v}_{l}^{\omega} \succeq \alpha$. Thus since L is \preceq-closed, $\alpha_{\infty} \in U . V^{\omega} \cap L$.

Let $\beta^{\prime}(j, j+k)=v_{j}^{\prime} \cdots v_{j+k}^{\prime}$. Since \bar{v}_{l} are finitely many, from (infinite) Ramsey Theorem there exist l^{\prime} and an ascending sequence $0<j_{1}^{\prime}<j_{2}^{\prime}<\cdots$ such that $\beta^{\prime}\left(j_{m}^{\prime}, j_{m+1}^{\prime}-1\right) \geq \bar{v}_{l^{\prime}}$ for any $m>0$. Let $\beta_{\infty}=u^{\prime} \beta^{\prime}\left(1, j_{1}-1\right) \bar{v}_{l^{\prime}}^{\omega}$. By definition of the continuous extension, $\beta_{\infty} \preceq \beta$. Since L is \preceq-closed, $\beta \notin L$ implies $\beta_{\infty} \notin L$. Thus $\bar{\beta} \in U . V^{\omega} \backslash L$.

Since $u \simeq_{L}^{1} u^{\prime}$ and $\bar{v}_{j} \simeq_{L}^{2} \bar{v}_{j^{\prime}}$ for each j, repeated applications of \simeq_{L}^{1} and an application of \simeq_{L}^{2} imply that $\alpha_{\infty} \in L \Leftrightarrow \beta_{\infty} \in L$. This contradicts $\alpha_{\infty} \in L$ and $\beta_{\infty} \notin L$.

Example 3.4 Either the periodic or continuous assumption cannot be dropped. Let $\beta=$ abaabaaabaaaab \cdots and let $L(\beta)$ be the set of ω-words that have a common suffix with β. For $\alpha \in A^{\omega}$, let $p_{\beta}(\alpha)=1$ if $\alpha \in L(\beta)$ and let $p_{\beta}(\alpha)=0$ if $\alpha \notin L(\beta)$. Define $\alpha \preceq \alpha^{\prime} \Leftrightarrow p_{\beta}(\alpha) \leq p_{\beta}\left(\alpha^{\prime}\right)$. Then \preceq is a WQO over ω-words and $L(\beta)$ is \preceq-closed, but $L(\beta)$ is not regular.

Acknowledgements

The author thanks Jean-Eric PIN for valuable comments at the previous presentation. This work is partially supported by PRESTO, Japan Science and Technology Corporation.

References

[1] A. Arnold. A syntactic congruence for rational ω-languages. Theoretical Computer Science, 39:333-335, 1985.
[2] A. Ehrenfeucht, D. Hausser, and G. Rozenberg. On regularity of context-free languages. Theoretical Computer Science, 27:311-332, 1983.
[3] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 4, pages 133-192. Elsevier Science Publishers, 1990.

