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Abstract

Modern applications often run across multiple environments. A high-level
language can invoke native extensions, typically written in C/C++ code, re-
sulting in more efficient applications and increased productivity since legacy
code can be reused. However, the use of native code introduces safety con-
cerns that can lead to security breaches, potentially violating security proto-
cols. In this work, we introduce a novel tool, HybridSE, to analyze Android
applications with native code.

HybridSE distinguishes itself by integrating the strengths of established
Dynamic Symbolic Execution (DSE) tools—SPF (Symbolic Pathfinder) and
CORANA/API, which are originally designed for Java and ARM architec-
tures, respectively. Enhanced with a specialized taint analysis module, Hy-
bridSE effectively addresses data leaks in real-world applications and mal-
ware, demonstrating a notably low false positive rate in our evaluations.

The graphs generated by HybridSE are subsequently utilized for graph
similarity in two tasks: malware family classification and Android packer
classification. In both tasks, the graphs generated by HybridSE demon-
strate high accuracy, achieving an F1 score of 92.67% for the malware clas-
sification task and 97.10% for the Android packer classification task.

Keywords: Android mobile security, Symbolic Execution, Taint
analysis, Packer identification, Malware classification
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Chapter 1

Introduction

1.1 Problem statement

Android is now extensively used not only on smartphones but also on tablets
and various other smart devices. These devices function as portable com-
puting platforms, granting access to sensitive system resources such as IMEI
numbers and personal data, including emails and contact lists. As a result,
data compromise is a significant concern in Android security [1]. A sub-
stantial amount of research has focused on detecting Android data leaks and
malicious behavior using both dynamic [2] and static [3, 4] analysis tech-
niques.

While Java, a high-level language, can leverage native code, typically
written in C/C++, to improve application efficiency, this practice has also
raised considerable security concerns in the context of Android security [5].
Native code can introduce safety and security issues that may be missed by
higher-level language analyses [6]. We examine the unique characteristics of
the Android environment and explain why native code poses a significant
security challenge.

1.1.1 Cross-environment nature of Android/APK files

Google supplies Android Native Development Kit (Android NDK) from 2009,
which allows developers to write C/C++ code for Android and cross-compile
it to multiple architectures, e.g., ARM, x86, and MIPS. Malware developers
began to obfuscate bytecodes compiling into native code to bypass bytecode
level analyses.

Although Android APKs are developed in Java, there are several differ-
ences. An Android application (Android APK) starts with a Java variant
called Dalvik bytecode (classes.dex) and may include native code, such
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as Android library functions and user-defined functions in .so shared li-
braries. This feature is convenient for reusing legacy code, boosting perfor-
mance, and accessing devices directly.

Note that an Android application allows multiple entry points activated
by facilities such as Activities and Services due to user actions, mes-
sages, or system events.

While Dalvik bytecode can be easily decompiled into Java bytecode, na-
tive library code requires reverse engineering of binary code (for each archi-
tecture: ARM, x86, etc.). Another difficulty lies in the calling conventions
between bytecode and native code. It is important to account for the differ-
ences between Java conventions and ARM/C/C++ conventions.

1.1.2 Security risks posed by native code

Figure 1.1: Simplified Towelroot callgraph with blue node in bytecode and
red node in native code.

Towelroot is a textbook illustration of how to ”root” an Android device.
This example will enable us to explain how a cross-environment applica-
tion works and to see how information can escape. The majority of static
analysis tools for Android tend to neglect native code. Many spyware have
taken advantage of the lack of native code analysis to bypass data protec-
tion. Callgraph (Fig. 1.1) of Towelroot shows no suspicious calls in the Java
component, but numerous external calls to the Linux kernel from the native
code (red node).

Towelroot gains root access by exploiting a vulnerability in an old Linux
kernel. The exploit leverages a vulnerability in the Fast Userspace Mutex
(Futex), accessed through the pthread library.

That said, users trying to take control of their smartphones with Towel-
root run the risk of confidential data being leaked. Let’s take a closer look
at Towelroot ’s code. Listing 1.1 shows a key snippet.
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1 %%% JAVA CODE in towelroot.apk
2 pub l i c c l a s s MainActivity extends Act i v i ty {
3 s t a t i c { System . loadLibrary ( ” l i b e x p l o i t . so ” ) ;}
4 pub l i c nat ive St r ing rootThePhone();

5 pub l i c void buttonCl icked (View view ) {
6 TextView tv=(TextView ) findViewById (R. id . t ex t ove rwr i t e ) ;
7 i f ( queryServer ( f a l s e ) ) {
8 tv.setText(rootThePhone()); // CALL to nat ive

9 queryServer ( t rue ) ;
10 t h i s . didrun = true ;}
11 }}
12

13 %%% NATIVE ARM CODE of rootThePhone()
14 j s t r i n g Java libexploit rootThePhone() {
15 0x10d44 add r5 , r0 , r7
16 0x10d48 bl getpid //SOURCE: getpId ( )Taint r0
17 0x10d4c cpy r3 ,r0 Taint r3
18 0x10d50 mov r0 ,#0x4 = 4 Clear r0
19 0x10d54 cpy r1 , r4 = ” towe l root ”
20 0x10d58 cpy r2 , r5 = ” nat ive running with”
21 0x10d5c bl android log print params: r0, r1, r2, r3
22 //SINK : a nd r o i d l o g p r i n t
23 0x119b8 l d r r0 , [ sp ,#114c ]
24 0x119c0 bl pthread create
25 0x119c4 l d r r1 , [ sp ,#114c ]
26 0x119ec bl pthread mutex lock
27 }

Listing 1.1: The cross-environment application towelroot.apk with an ARM
native code

Towelroot (Line 8) calls rootThePhone() with id (Line 6) as an ar-
gument. The native function rootThePhone() is declared using the
native keyword (Listing 1.1, Line 4, and is registered statically by Sys-
tem.loadLibrary()). The native method in the bytecode and the native
code are tied by the naming convention of JNI (Java Native Interface). The
JNI establishes a one-to-one mapping between the name of a native method
declared in Java and the name of its counterpart residing in a native library.
In this case, rootThePhone() is mapped to Java libexploit root-
ThePhone.

rootThePhone() accesses to the physical components and gains root
access. But, we can also observe a potential data leak of the process id,
which is possibly not harmful. The native function android log print
is used to send the information obtained from the getId() call in the native
part.
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Figure 1.2: Control flow graph for Towelroot in Listing1.1

1.1.3 Why DSE is needed?

We emphasized the necessity of cross-environment Dynamic Symbolic Exe-
cution for Android applications.

The need to analyze native code has led to a surge in the develop-
ment of taint analysis tools for Android Native code, encompassing both
dynamic and approaches, such as Argus-SAF [7], JuCify [8], TaintArt [9]
and OATs’inside [10]. Dynamic taint analysis tools such as TaintArt [9] and
ViaLin [11] can detect some malicious behaviors. However, they are unable
to analyze behavior that is not activated at runtime, such as trigger-based
behaviors and VM-aware actions, potentially causing them to miss hidden
triggers within the code.

On the other hand, static analysis tools such as Argus-SAF [12] and
JuCify [8] adopt an over-approximation to cover all execution paths. A
significant advantage of static analysis lies in its ability to be automated and
scaled quite well. However, it is prone to produce false positives, struggles
against code obfuscation, and runtime-related components like Java reflection
and dynamic class loading [13, 14].

To balance both techniques, we proposed a cross-environment Dynamic
Symbolic Execution framework (DSE) for Android Native code. On Win-
dows, symbolic execution on binary code has attracted attention for de-
obfuscation to obtain precise control/data flow. Additionally, it has proven
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effective in identifying vulnerabilities, such as integer overflow. However,
within the Android domain, existing DSE tools [15, 16, 12] focus solely on
Dalvik bytecode. They either ignore or treat native code as a black box, lead-
ing to a shortfall in assessing the behaviors embedded within native code.

Constructing a DSE tool for Android presents a challenging task due
to the Android framework’s heterogeneous nature. An Android APK file
includes various components, such as Dalvik bytecode (.dex), native code
(.so), and the AndroidManifest.xml, which specifies data access permissions.
Hence, the execution of an Android application frequently traverses diverse
environments, moving back and forth.

Symbolic execution tools for Android APK files are mostly Java-based
and handle native code as black boxes, i.e., they simply get results of native
code by concrete execution, instead of symbolic execution.

Some tools, such as angr [17], perform symbolic execution across both
.dex (bytecode) and .so (native code) files. However for this, angr translates
both file types into a single entity using the Jimple intermediate language.
Consequently, its effectiveness is constrained by the translation from native
code (such as ARM) to Jimple. This transition is challenging to extend,
as Jimple maintains a class hierarchy similar to Java, which can complicate
direct device access.

Our primary goal is to develop a DSE tool capable of analyzing cross-
language Android applications while being resilient against obfuscation tech-
niques. To this end, we introduce HybridSE, which integrates two estab-
lished DSE tools, SPF [16] and corana/api [18]. Furthermore, we have
enhanced its functionality by adding a taint analysis module.

1.2 Contribution

This thesis contributions are:

• This thesis presents a novel symbolic execution framework tailored for
cross-environment platforms, encapsulated within a DSE tool named
HybridSE.

• HybridSE1 is a pioneering tool for DSE, designed for analyzing cross-
language Android applications. Notably, HybridSE leverages its abil-
ity to perform DSE across both Java code and native code. This
functionality enables HybridSE to generate cross-environment control

1figshare.com/s/45b91d138c44e2e55ddd
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flow graphs (CFGs) for applications, which is critical for comprehensive
analysis.

A primary challenge is managing the calling conventions and ensuring
accurate detection of datatype information during pointer value trans-
fers. For visible components, such as native code included within the
APK file, we classify these as white-box callees, with path conditions
linked by conjunctions. Conversely, for black box callees, we distinguish
between eager and lazy concretization of symbolic values, preferring the
latter approach to maintain path conditions as thoroughly as possible.

• We assess HybridSE by constructing cross-environment control flow
graphs of more than 10,000 applications that contain native code in-
vocations. We also extensively discuss the limitations of HybridSE,
stemming from the analysis of the datasets considered.

• We assess the performance of HybridSE in two key aspects: control
flow and data flow analysis.

– Regarding control flow, we evaluate the efficacy of the generated
CFG by comparing it with the call graph produced by the static
analysis tool Flowdroid.

– Subsequently, we utilize the generated graphs and apply graph
similarity to two tasks: malware family classification and An-
droid packer classification. In both tasks, the graphs generated
by HybridSE demonstrate high accuracy, achieving an F1 score
of 92.67% for the malware classification task and 97.10% for the
Android packer classification task.

– In terms of data tracking and detecting data leakage, we show-
case that HybridSE exhibits greater precision compared to other
tools, thereby minimizing false positive alarms resulting from over-
approximation. Unlike static taint analysis tools, HybridSE does
not suffer from weaknesses related to array handling and Java
reflection. Consequently, HybridSE yields accurate results on
tasks involving these aspects.

– By generating precise cross-environment control flow graphs for
both Java bytecode (.dex) and native code (.so), our taint analysis
method identifies data leaks through experiments conducted on
real-world Android malware.

– HybridSE successfully detected 139 malware data leaks. From
our analysis with HybridSE, we have drawn several observations
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about how data leakages occur. In particular, we carefully exam-
ined the Lotoor family, which was active until 2022.

1.3 Outline

This thesis is structured as follows.
Chapter 1 explains the motivation behind our work on Dynamic Sym-

bolic Execution (DSE) for cross-environment Android applications. After
presenting the features of the Android framework, we show the challenges
that Android analyses are facing and our motivation for building a precise
and complete analysis of native Android applications.

Chapter 2 outlines the structure of an Android/APK file and obfuscation
techniques that frequently occur in Android. While native code provides
developers an incredibly effective tools, it also introduces serious security
issues to the Android framework.

Chapter 3 explains dynamic symbolic execution (DSE) across heteroge-
neous environments, targeting a combination of SPF and corana/api.

In this chapter, we first discuss symbolic execution and the choices when
handling heterogeneous platforms. Then, we present the components of a
multi-language environment DSE, named HybridSE, for an Android applica-
tion running on an ARM-based device.

We divide platforms into two types, the black box, and the white box, de-
pending on their visibility. A black-box platform prohibits tracking the data
and control flows. In contrast, distinct components written in multiple pro-
gramming languages are white-box platforms. Different from existing DSE
tools, we combine platform-specific DSE tools for each white-box component
(native code) to keep execution across different platforms. For the black
box component (system call), we concretize symbolic values in the required
arguments and execute the call in the operating system kernel.

The specific handling of each type of call in an Android application is
described in this chapter.

Chapter 4 presents the design of our DSE tool, HybridSE, specifically
tailored for APK files.

HybridSE combines SPF and corana/api to perform DSE for Android
applications that contain native code and further external calls in the operat-
ing system. The underlying mechanism is implementing connection interfaces
that obey calling conventions between different platforms for maintaining the
environment and path constraint update.

The chapter also elaborates on taint analyses, including the implementa-
tion of our taint analysis module within HybridSE.
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Figure 1.3: Thesis construction

Chapter 5 discusses the performance of HybridSE in tracing Android
applications through control flow graph construction. Subsequently, we eval-
uate the control flow graph generated by HybridSE in two classification
tasks utilizing graph similarity.

Chapter 6 presents the results and effectiveness of taint detection on
Android apps and malware. The result shows that HybridSE can identify
the correct data leaks in a well-defined benchmark and real-world spyware.

Chapter 7 discusses related works, whileChapter 8 provides concluding
remarks for the thesis.
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Chapter 2

Android framework and
Android obfuscation

This section provides an overview of the cross-environment framework in
Android, highlighting the need for a cross-environment Dynamic Symbolic
Execution (DSE) tool. Android applications often operate across diverse
environments, this requires an analysis tool that can handle multiple in-
teractions between different components and a high resilience level against
obfuscation techniques. These challenges underscore the rationale behind the
development of a cross-environment DSE tool tailored for Android.

2.1 Android framework

The Android architecture consists of multiple layers, such as the Linux ker-
nel, native libraries, runtime, application framework, and applications, which
together enable the functioning and interaction of Android devices and ap-
plications.

An APK (Android Package) file encapsulates various components. The
AndroidManifest.xml file contains essential information such as the package
name, version, required permissions, and possible entry points through com-
ponents like activities and services. The classes.dex file holds the compiled
Java bytecode, which contains the payload of the application. The Resources
and assets directories store app resources, while the META-INF directory
contains metadata and package signature files. Optional native libraries (.so
files) are stored in the /lib directory.

Among these components, the application code resides in the classes.dex
file and the .so files in the /lib directory (and occasionally in the /assets
directory). The link between bytecode in classes.dex and native code in .so
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Figure 2.1: Structure of an APK file

files are facilitated by the Java Native Interface (JNI).
Native methods can be registered by JNI either statically or dynamically.

Static registration explicitly declares native methods within Java classes us-
ing the ‘native‘ keyword. At runtime, the native method in the .so file and
Java classes is mapped by the JNI naming convention. In dynamic registra-
tion, developers utilize JNI’s RegisterNatives() function to link Java methods
with their corresponding native implementations. In both static and dynamic
registration, the JNI OnLoad() function is invoked at the start of native code
execution.

Figure 2.2: Java Native Interface
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2.2 Obfuscation techniques

Obfuscation is the act of complicating code or data to deliberately make code
or data more difficult to understand or reverse-engineer. Android packers em-
ploy various obfuscation techniques to hinder the analysis and monitoring of
Android application behavior. Measures like anti-debugging, VM-awareness
checks, or behavior-triggering mechanisms are often utilized to detect track-
ing on emulators and respond by either altering behavior or crashing the
application. While these methods primarily target dynamic analysis, static
analysis is also deterred through the application of multiple obfuscation tech-
niques.

Common obfuscation techniques used by Android apps include identifier
renaming, string encryption, multi-dex, and reflection. Some of these tech-
niques, such as control flow obfuscation using opaque predicates, identifier
renaming, and string encryption, are employed across various platforms (for
both bytecode and binary code). However, certain methods are specific to
the Android and Java frameworks, such as multi-dex and Java reflection.

This section explores common obfuscation techniques detected on An-
droid, aiming to justify the adoption of DSE as the most resilient approach
to combatting obfuscation.

Identifier Renaming. For readability, developers typically use mean-
ingful names for code identifiers, following different naming conventions.
However, these meaningful names help reverse engineers understand the code
logic and quickly locate target functions. To minimize information leakage,
identifiers can be replaced with meaningless strings.

1 public String m3a163f7d(TelephonyManager telephonyManager) {
2 return telephonyManager.getDeviceId();
3 }
4 public C0010p4a8a08f0[] m363b122c() {
5 if ((11 + 19) % 19 > 0) {
6 }
7 return ( C0010p4a8a08f0[]) mc09695e2(f110M, new

C0010p4a8a08f0[0]);
8 }

Listing 2.1: Identifier renaming in an Android malware

String Encryption. Strings are widely used data structures in software
development. In an obfuscated app, strings can be encrypted to prevent
information leakage. Using cryptographic functions, original plaintexts are
replaced by random strings and then restored at runtime. This method effec-
tively hinders static analysis that relies on hard-coded values. To effectively
retrieve the original strings, a correct decryption function must be applied
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during reverse engineering. This process often relies on the experience of
the security specialist. Alternatively, the strings can be retrieved at runtime
after the decryption function has been executed.

Java Reflection. Reflection is an advanced Java feature that allows de-
velopers to interact with programs dynamically, such as creating new object
instances and invoking methods at runtime.

As an obfuscation technique, reflection is effective for hiding program
behaviors because it can transfer control to specific functions implicitly, a
challenge for state-of-the-art static analysis tools. Consequently, malware
developers often use reflection extensively to conceal malicious actions.

MultiDex. Before the Android platform version 5.0 (API level 21), apps
were restricted to a single classes.dex bytecode file per APK. In later ver-
sions, Multidex allows Android application authors to split an application’s
bytecode across multiple DEX (Dalvik Executable) files. This is typically
necessary for applications that exceed the 65,536 method limit and also adds
an additional layer of protection. Static Android analysis tools such as apk-
tool and dex2jar can face difficulties when dealing with multidex.

Packing. To thwart static analysis, Android packers employ various
measures to shield both Dex files and so files (Figure 2.3).

Figure 2.3: DEX encryption mechanism on APKProtect
1 - Packing, 2 - Executing at runtime, 3 - Decrypting, 4 - Unpacking

Dex files are typically safeguarded through encryption, dynamic loading
(i.e., dynamically releasing protected data into memory for execution at run-
time), dynamic modification (i.e., altering Dex files in memory while the
app is operational), obfuscation, and reimplementing with native code. Ad-
ditionally, some packers utilize virtual machine-based protection methods,
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translating Dalvik bytecode into a customized bytecode format and integrat-
ing a tailored virtual machine to interpret them during app execution on
a device. For .so files, Android packers utilize techniques such as ELF file
packing or obfuscation tools like Obfuscator-LLVM.
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Chapter 3

DSE over heterogeneous
environments

A conventional DSE framework targets the sequential execution of a pro-
gram on a single platform. However, real-world programs are often neither
self-contained nor in uniform environments. They mostly operate in het-
erogeneous platforms that differ in the environment structure, the language
descriptions, and the privilege hierarchy.

We focus on Android APK files. An Android apk file consists of Dalvik
bytecode (.dex), native code (.so), and manifest.xml, which includes the per-
mission of data access. Hence, its concrete execution goes across the envi-
ronments of Dalvik bytecode, native code, and Android library functions.

This chapter discusses the dynamic execution of a cross-environment and
the calling conventions necessary for transferring between environments. We
categorize system calls as either black box or white box, discussing the dif-
ferent approaches for handling each type. Finally, we validate our chosen
methods.

3.1 Symbolic Execution for instruction sets

Symbolic execution (SE) [19] associates formulas to each execution step,
obeying the Hoare triple inference rules

{Pre-condition}Command{Post-condition}.

In the original form of Hoare logic, at each step of the execution, a fresh
variable name is introduced. In an actual implementation of dynamic sym-
bolic execution (DSE) tools, instead of the variable name conversion, the
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environment model and the path condition are separated such that the path
condition contains only symbolic values as variables.

To build a DSE tool for binary code, the formal semantics of each in-
struction is required. Our motivation is malware analysis, which is mostly a
user-level process and contains only serializable [20] multi-threads, e.g., fork
the independent scanning processes. We limit the target of DSE for instruc-
tion sets on the sequential execution only (forgetting the multi-stage cache
and the out-of-order execution), and the operational semantics is simplified
as a transition system over symbolic states. A symbolic state at a location i
with an instruction inst is the tuple ⟨αi, (CFlow,Env)⟩ where

• Sym is the set of symbolic values,

• αi is a path condition (the pre-condition of inst) at i with V ar(αi) ⊆
Sym,

• Env = {V arEnv} is a symbolic environment,
where a variable is V arEnv : Name → V al with V al = {0, 1}k ∪
Expr(Sym)

• CFlow ∈ (Inst× Loc)∗ is a path to the predecessor of inst.

k is typically either 32 or 64. The Hoare logic inference rule for an instruc-
tion inst (from the pre-condition to the post-condition) is directly deduced
from its operational semantics. Let i be the program counter value stored in
the special register pc ∈ R.

Env
Env′

[inst] if ψ ⇒
⟨αi, (CFlow,Env)⟩

⟨αi ∧ ψ, (CFlow.(inst, i), Env′⟩
[inst] if ψ

Operational semantics Hoare logic inference

Note that the choice of logic for the base of Hoare logic decides the rea-
soning ability. For instance, a bit sequence stored at a memory address can
be interpreted as a value or an address point to another location. For precise
description, Hoare logic must be able to describe the points-to relation, which
is not easy. In practice, a common backend reasoning engine of SE tools is
an SMT solver, in which no suitable backend theory seems to be prepared.
We consider an environment model as described in Fig. 3.1. Although model
components may differ, platforms mostly share similar environment models,
which often include

• the stack (e.g., JVM Stack in Java and Stack in x86, ARM) to store
local variables and temporary data.
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Figure 3.1: Environment model

• a memory (e.g., Heap in Java, Data Area in x86, and Memory in ARM)
contains the program data and uses it for dynamic allocation.

• a method area that stores the code segment and in some cases, the
instruction code.

• environment variables such as registers, flags, and the program counter
(PC) (though there are no flags in Java).

For instance, the environment model of ARM includes a set of registers, a
set of flags, the memory, and the stack. In the environment model, a variable
can be either a concrete value or an expression of symbolic values. At the
program entry, the value of each variable is initialized with a symbolic value.

3.2 DSE implementations in binary code

There are lots of tools for high-level programming languages, such as C/C++
and Java are developed (e.g., KLEE[21], CUTE[22], and SPF [16]). For bi-
nary code, McVeto[23] is an early static symbolic execution example, and
from around 2015, several dynamic symbolic execution tools have become
available, such as MAYHEM[24], KLEE-MC[25], CoDisasm[26], S2E[27],
angr[17], BINSEC[28] and BE-PUM[29].

Different from high-level programming languages, binary code has no
syntax, i.e., no grammar constraints on the order of instructions, no dis-
tinction on data and code. Further, the control flow graph is implicit,
whereas a high-level programming language obtains it for free during the
parsing.1 The control flow graph construction, equivalently the disassembly,
becomes a challenge when malware adopts the obfuscation techniques. The
syntactic disassembler, e.g., CAPSTONE2 and IDApro3, are easily cheated
by the obfuscation techniques, especially combined with indirect jumps and

1For object-oriented languages, an inter-procedural control flow like a call graph re-
quires a points-to analysis [30, 31].

2http://capstone-engine.org
3https://hex-rays.com/products/ida
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self-modification to confuse the next control point. Dynamic analyses are
also cheated by VM awareness, anti-debugging, and/or trigger-based behav-
ior [32]. Dynamic symbolic execution (DSE) on binary code is considered
the most powerful (though heavy) [33, 34].

When targeting malware, there are PC malware and IoT malware. PC
malware mostly focuses on x86 with typical OSs, e.g., Windows, Linux, and
macOS. It often uses heavy obfuscations to bypass anti-virus software, which
is typically introduced by a packer. On the other hand, IoT malware is often
naive because of the absence of anti-virus protection in IoT devices. However,
the target platforms of IoT malware vary a lot whereas the target OS is often
Linux-based. For developing DSE tools for binary code, the instruction level
covers a single context, and the definition of the formal semantics is the
target task. A popular approach is to translate into an intermediate language
(IL), e.g., VEX, LLVM, and BAP (used in angr, KLEE-MC, and MAYHEM,
respectively), by using a common disassembler like CAPSTONE. This makes
different platforms share the same DSE implementation, but the drawback
is the difficulty to handle obfuscations, which will cheat disassemblers.

An alternative approach is a platform-wise DSE implementation. The
drawback is the heavy implementation effort for various platforms, which will
be assisted by automatic extraction of the formal semantics from (possibly
not formal) specifications. We have successfully tried this approach in the
past, e.g., BE-PUM[35] for x86, CORANA[36] for ARM, and SyMIPS[37] for
MIPS.

As in Chapter 2, an Android APK file consists of Davilk bytecode, na-
tive code, and Android library (OS) function calls. There are several for-
mal method tools for Android APK files, such as JPF-Android [38], jpf-
mobile [39], SynthesisSE [12], and angr [17]. The former three are based on
JPF and mostly work as model checkers. They treat native code as a black
box component, i.e., either out of support or handling by concrete execution
(testing) in the Android environment.

The last angr is the only working symbolic execution tool that supports
Android with user-defined native code as a white box callee. It converts
ARM native code into Python description, and further into the intermediate
representation (IR) SootIR. Dalvik bytecode is also converted into SootIR
via Java. Then both of them are uniformly analyzed on SE on SootIR.

All existing tools depend on Java-based tools, and often dex2jar is used
to adapt Dalvik bytecode. dex2jar statically translates .dex to .class files.
The translation is lightweight and practical since both Dalvik and Java byte-
codes are originally compiled from Java. Our aim is to connect SPF and
corana/api seamlessly as white boxes to each other for Android apk files.
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3.3 DSE for cross-environments

3.3.1 Calling convention between different environments

The memory allocation convention and the datatype convention specify how
a platform stores its data types in the memory of each platform. They may
share a set of equivalent data types with different terminology. For example,
the boolean types in Java and C are Boolean and bool, respectively. String
is a specific type in Java, while C defines a string by an array of chars,
terminated by ”\0”. When a call between different platforms occurs, the
interface is required for passing the arguments and the return values across
environment models. They are specified as the calling convention, e.g.,
how to pass the arguments, and how to convert the datatypes and the memory
allocations of values. For instance, while the x86 calling convention uses the
stack to pass arguments, the ARM calling convention uses the registers for
the first three arguments and pushes the remaining onto the stack.

The memory allocation convention and the datatype convention specify
how a platform stores its data types in the memory of each platform. They
may share a set of equivalent data types with different terminology. For
example, the boolean type in Java and C are Boolean and bool, respectively.
String is a specific type in Java, while C defines a string by an array of chars,
terminated by ”\0”.

Fig. 3.2 shows the calling convention in ARM for the library function
int gettimeofday(struct timeval *tv, struct timezone *tz);

Figure 3.2: Example of an external call in ARM environment

When the caller passes the environment to the callee, there are two
choices, copy or share the environment. A typical choice is the former, espe-
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cially when platforms have different memory allocation and datatype conven-
tions. When copying primitive type arguments, they are directly converted
to the corresponding types in the other. For pointer types (e.g., string, list,
and array), the whole data structure that is pointed-to needs to be copied,
which is traced from the pointer value. Since the datatype specifies how to
trace the data structure in the memory, either the caller or the callee needs
to know the arguments’ data types and the return values. For instance, when
Java calls ARM native code in an APK file via JNI (Java Native Interface),
the caller side knows. When ARM native calls a system function, the user
mode process is interrupted and OS handles the interface. Thus, the callee
side also knows.

3.3.2 Handling black box callees

We cannot observe the data and control flow of a blackbox callee, e.g., tasks
running on the operating system, closed-source components, or no SE tools
are available. Thus, a black box callee during DSE is approximated in some
ways. One possibility is their manual modelling, which may be too expensive
or even impossible. Instead, we have two reasonable choices: (1) return
new symbolic values (over-approximation), or (2) execute with a satisfiable
concrete instance (under-approximation). We call the latter ”concretization”.

The former is useful to detect VM awareness and trigger-based behav-
ior [40], such as April fool attack (which occurs only at specific time) and
STUXNET (which works only at specific IP addresses). However, its un-
bounded usage will quickly make DSE intractable. The latter reduces the
symbolic execution to the concrete execution with a satisfiable instance of the
path condition. This is reasonable when the result of the external call will
not affect later conditional branches, e.g., scan the ports and try to connect
with them. Only the possibility is an error, e.g., not found, which is detected
as an inconsistent datatype of the return value. Minesweeper [40] is an early
example of manually switching such options depending on callees.

There are several methods for concretization in the existing implementa-
tion.

1. Copy the whole execution
The symbolic execution engine parallelly maintains both the symbol-
ical represented environment model and the corresponding concrete
environment. For instance, SPF runs on JPF and uses jpf-nhandler
plugin [15] to transfer the whole execution from the JPF to the host
JVM when a native call occurs. At the return from the native call,
SPF continues with the identical path condition, but with instantiated
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Figure 3.3: Call to a black-box platform

variables that have a dependency on the native call.

2. Copy the environment and concretize symbolic values

(a) Eager concretization on all symbolic values
The call to the black box callee is executed in the actual system
and the return result updates the environment of SE. This reduces
the current branch in SE to a single concrete execution. Thus, at
the return, the path condition becomes true.

(b) Lazy concretization on required symbolic values
The arguments of the call are instantiated to execute in the actual
system. Same to (a), the return results update the environment.
However, only the arguments required at the call are concretized,
and other symbolic values and expressions out of the context are
left unchanged. The path condition is set identical, i.e., the same
pre- and post- conditions, except for instantiating with the lazy
concretization.

Our approach for black-box callee [18] follows (2).(b) to keep values sym-
bolic as much as possible.

Either case obeys the same calling convention 3.3.1, in which the extrac-
tion of type information is crucial for tracing the points-to relation of values.
Data type information of each platform is needed and often it can be au-
tomatically retrieved from the developers’ documentation. We have some
examples.

• For x86-32 on windows, BE-PUM handles Windows-API calls [41], in
which the data type information is extracted from Microsoft Developer
Network (MSDN).

• For ARM-32 on Android, corana/api [18] (which is an extension of
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corana) handles Android system function calls, in which the data
type information is extracted from Linux Manual Page.

First, they are based on the argument name convention of the pseudo code
descriptions in manuals. Second, sentence similarity analysis can often fur-
ther classify the data types [41].

After the argument types are detected, the type conversion relation and
the theory correspondence needs to be prepared. Table 3.1 describes the
difference between the Java, ARM, and C/C++ platforms. From ARM to
C, system calls are wrapped by C standard library functions in the GNU C
Library (GlibC)4. Hence, the argument types of Linux API can be automati-
cally retrieved from GlibC documentation by applying name conventions [18].
From Java to ARM, argument types are directly shown in the JNI declaration
in the Java class.

Java ARM C
Calling

convention
Stack-based5 AAPCS6 C calling

convention3

Data types Java types 32 Bit-Vector C types

Table 3.1: Java and ARM data type comparison

3.3.3 Handling whitebox callees

Modern applications (e.g., Java, Android, and .NET programs) combine the
main block with the native code, in which its data and control flow are visible
in the user-level process. They are whitebox callees. We have two choices.

• Convert the program into a single context
The code in the different platforms is translated into a single platform,
e.g., native code into bytecode and C/C++ code into Java [42]. How-
ever, this semantics conversion proves to be difficult.

angr [17] translates both Java/DEX bytecode and native code, e.g.,
C/C++, ARM, x86, MIPS, into an intermediate representation of
SootIR. This approach limits the deobfuscation ability, i.e., it may be
cheated by the combination of self-modification and indirect jumps.

• Combine DSE tools of individual platforms
Interfaces between different DSE tools follow the calling conventions to
keep track of the execution.
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Figure 3.4: Call to a white-box platform

Our choice is the latter, e.g., in an APK file, the Java bytecode is analyzed
by SPF, and ARM native code is by corana/api [18].

The symbolic execution in the white box callee starts with the clean
environment, i.e.,

• If the arguments contain symbolic values, their values are set to fresh
symbolic values (with the constraints between existing symbolic val-
ues).

• The initial path condition is set to true.

After the SE in the white-box callee is over, the conjunction of path condi-
tions of the caller and the callee is taken.

Note that, as Table 3.1 shows, the data type conversion occurs when
crossing the environments. Such conversion also leads to the backend theory
conversion. For instance, the symbolic execution on high-level programming
languages often uses LIA (Linear Integer Arithmetic), whereas on binary
codes use BitVector.

3.4 Discussion

In this section, we introduce a framework for implementing a DSE tool for
cross-environment platforms. Most existing DSE tools for Android, such as
jpf-mobile, JPF-Android, and SynthesisSE, treat native library code as a
black box and execute it concretely. A black-box approach restricts track-
ing data and control flows. However, Android APK files are typically de-
ployed with native code libraries, which are white boxes. To achieve the

4www.gnu.org/software/libc/
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most comprehensive program flow, we propose a DSE framework that ac-
commodates environments with components of varying visibility levels. The
transition between DSE between black-box and white-box components needs
to be handled carefully by interfaces that abide by the calling conventions.
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Chapter 4

Description of HybridSE

We present the components for cross-environment DSE, named HybridSE,
for an Android application running on an ARM-based device. Different from
existing DSE tools, we use platform-specific DSE tools for each white-box
component and keep track of the environment and the path condition update
throughout the execution across different platforms. For Android APK, we
combine two DSE tools Symbolic Pathfinder SPF and corana/api, which
are for Java and ARM code, respectively, to analyze white-box native code.

After discussing the components, we provide an overview of the system
and architecture of HybridSE. This includes the strategy for generating the
control flow graph and, atop the DSE engine, an added taint analysis module.

4.1 HybridSE’s components

4.1.1 DSE for Java Bytecode: Symbolic PathFinder

Java bytecode is the instruction set of Java Virtual Machine (JVM) and can
run regardless of the underlying processor architecture. JVM uses Stack to
hold its local variables and temporary data, and also to manage method
invocations and their returns. Besides JVM Stack, Native Method Stack is
prepared for native methods.

JPF [43] is an extensible Java analysis tool and its core is a customized
JVM that supports multiple analysis strategies. Symbolic PathFinder (SPF) [16]
is a symbolic execution extension built on top of Java PathFinder (JPF).
Instead of the standard JVM, SPF defines the operational semantic descrip-
tions of Java bytecode instructions by adding new symbolic classes to deal
with symbolic operands (Fig 4.1). SPF keeps both symbolic and concrete
executions in parallel. At library function calls, SPF passes only the con-
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crete execution from the JPF custom VM to the host JVM. The result of the
symbolic expression is suspended and later used to generate path conditions.

Figure 4.1: Symbolic PathFinder

4.1.2 DSE for ARM instruction: corana

Nowadays, the use of native code for mobile applications steadily increases
and 95% of the mobile devices run on ARM CPUs. ARM is a RISC in-
struction set with 4 Cortex series A (Android), M (Micro Controller), R
(Real-time), and recently X (high-level CPU). Although each variation of a
Cortex has around 200 instructions only, each cortex has 10-20 variations,
which are either 32-bit or 64-bit instructions. An Android APK file specifies
the native code in either ARM 32 bits, ARM 64 bits, or x86, ignoring the
differences among Cortexs of ARM.

corana (Cortex Analyser) [36] is a preliminarily DSE tool focusing on 32
bits instruction set of ARM Cortex-M, which is implemented based on the
semi-automatically extracted formal semantics from ARM Cortex-M man-
ual1. The semantics of each ARM instruction is represented as a Java method
built on top of a customized BitVec class, which is a pair ⟨bs, s⟩ of a BitSet
32-bit vector bs and a string s. Corresponding to the BitVector theory of
SMT solvers, 35 basic methods are prepared for the binary symbolic execu-
tion engine.

Note that corana adopts the Bit-Vector theory of SMT solvers as the
base of Hoare logic. Thus, the points-to relation cannot be described by
formulae. Therefore, the points-to relation on concrete addresses can be
traced, but the points-to relation on a symbolic value simply requires a fresh
symbolic value.

1https://developer.arm.com/documentation
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4.1.3 ARM-Linux Kernel call: corana/api

For black-box calls from ARM native code to the operating system kernel,
we follow the API stub of corana/api, i.e., concretize symbolic values in
the required arguments and execute in the kernel.

An external call to a different environment requires (1) passing the ar-
guments and the environment when the call occurs, and (2) receiving the
output and the environment update when the call is over, which follows the
calling convention.

Note that the arguments, the output, and the environments may contain
pointer values, for which tracing pointers are required. Thus, the detection
of types of each value is needed [18]. The environment transfer is partial in
the sense that the transfer is only in their reachable and visible areas.

A Linux system call (or Linux external library call) in corana is a black-
box component since the system process is invisible from the user process.
There are 3 choices (a) model the black-box component, (b) introduce a new
symbolic value as the output, or (c) concretize symbolic values for concrete
execution in the OS. (a) is often expensive, and (b) fits the trigger-based
behavior. Our current choice is (c) to cover typical scanning loops, e.g., the
port scan. Note that we keep the concretization as minimal as possible,
i.e., only for needed values. After the execution in the OS, it updates the
environment of corana.

The path condition is kept unchanged since the constraints of conditional
branches in the black box are inaccessible and cannot be observed from the
user process.

4.1.4 Java-ARM communication: HybridSE

For combining DSEs, the arguments, the output, and the environments may
include symbolic values, and it also requires (3) the path condition update.
Fig. 4.2-right describes the white-box call from SPF to corana. The sym-
bolic execution in SPF is presented by Java environment variables α, β and
the path constraints Φjava on these symbolic values. At the point of the
native method F invocation, the arguments α, β for the native method are
passed to corana. It starts with the initial environment α, β and the initial
path condition Φnative = true. At the end of the native code, the return
value ret of corana, which can either be a symbolic or concrete value, and
the path condition Φ′

native are passed to the environment of SPF. Then, the
postcondition of the white box call is updated as Φ′

java = Φjava ∧ Φ′
native.
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Figure 4.2: Call handling for Android on ARM compared to Windows x86

4.2 HybridSE architecture

We implement a cross-environment analysis tool HybridSE2 for APK files
(Fig. 4.3). Its preliminary goal is to generate control flow graphs (CFGs)
and trace data across Java bytecode and native library calls.

Figure 4.3: HybridSE architecture

HybridSE adopts two DSE tools, SPF for Java bytecode and corana/api
[18] for ARM natives, which is an extension of corana [36] with API stubs
to handle system function calls.

2figshare.com/s/45b91d138c44e2e55ddd
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When the concrete execution crosses platforms, Java Native Interface
(JNI) bridges the gap between Java bytecode and the native code (often
compiled from C/C++). It adds a communication layer between the JVM
and the native code such that (1) JNI maps Java types to equivalent types in
C, e.g., int/jint, long/jlong, Java String/jstring)3, and (2) JNI automatically
maps native functions in the library.

Similarly, the interfaces between SPF and corana/api must facilitate
these operations. Our Java-Native Communicator (Fig. 4.3) is implemented
following the calling convention, data conversion, and memory handling rules.
Fig. 4.4 illustrates an example of such translation.

Figure 4.4: Example of a inter-environment translation between SPF and
corana/api, back and forth

4.2.1 Preprocessing

SPF requires Java bytecode and a configuration file (.jpf) as prerequisites,
instead of Dalvik bytecode, and corana/api requires an ARM binary (.so)
file. As preprocessing, we use apktool to decompile the APK file, extracting
resources including the AndroidManifest.xml file, Dalvik bytecode, and other
assets. Then, dex2jar converts Dalvik bytecode (.dex) to Java bytecode (.jar)
(Fig. 4.5).

• From AndroidManifest.xml: Identify potential entry points such as Ac-
tivities, Services, AsyncTask, and Application, we generate a dummy

3docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/
types.html
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Figure 4.5: Preprocessing in HybridSE

Main Java class to initiate the entry points. Subsequently, SPF config-
uration files are created based on them, specifying analysis parameters.

• From Dalvik bytecode: The Dalvik bytecode (classes.dex) is converted
into Java bytecode (classes.jar) using dex2jar.

• From Native code: After extracting the APK file, we search for .so files
in the /lib and /asset directories. Ghidra4 is employed to extract the
symbol table, which helps us to locate registered native functions and
their respective positions in the binary. Each function in the native
code act as an entry point when called from Java.

• Mapping a native function registered in Bytecode to its corresponding
region in Native code. Native functions can be resolved either statically
through JNI naming conventions or dynamically via the JNI OnLoad()
function.5

4.2.2 Construction of Cross-environment Control Flow
Graph

Unlike most static analysis tools [8, 12, 5] that construct CFGs by pre-
constructing native CFGs and then mapping the calls of bytecode CFGs
with native CFGs, HybridSE adopts a different strategy. It constructs a

4github.comNationalSecurityAgency/ghidra/releases/tag/Ghidra 10.3.1
5docs.oracle.com/en/java/javase/17/docs/specs/jni/design.html
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cross-environment CFG in an on-the-fly depth-first-search manner. It con-
verts between two DSE engines, SPF and corana/api, depending on the
current instruction being executed.

Algorithm 1 Constructing cross-environment CFG
Input: entry point jentry, Java classes J , and native code C
Output: A cross-environment CFG G for jentry
G← ∅
for insn in SPF.runDFS(jentry) do

G← G ∪ {insn}
if isJNICall(insn) then

N ← ∅ ▷ Native CFG N
jni args← Java2Native.call(SPF.getStack())
N ← CORANA.runDFS(C, jni args)
n result←CORANA.getReturn()
Native2Java.return(n result)
G← G ∪N

else
SPF.execute(insn)

end if
end for
return G

For each Java entry point, a CFG is individually constructed with Algo-
rithm 1. Each Java bytecode instruction is executed and added to the CFG.
When encountering a JNI call to native code, the execution is transferred
to HybridSE through an interface communication between Java and native
code.

Similarly, the native code in .so files is incrementally traced by Hy-
bridSE’s engine. External function calls are handled by Syscall stubs, which
directly execute in the OS. In cases of indirect jumps, an SMT solver resolves
the path condition and testing determines the next location. After native
code execution, the control returns to Java, integrating the new CFG of the
native code into the CFG of the bytecode.

4.2.3 Cross-environment communicator

As discussed in Chapter 3, connecting different DSE tools requires interfaces
for communication between environments.

It passes the environment and initializes the path condition as ωBV =
true at the call. At the return to SPF, the difference ω′

BV computed by
corana/api is converted to ω′

LIA = fBV 2LIA(ω
′
BV ) from Bit-Vector to LIA.
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Figure 4.6: An overview of HybridSE system

Then, the postcondition α′
LIA is the conjunction of the precondition αLIA

and ω′
LIA.

The LIA from/to Bit-Vector conversion is based on Java.util.BitSet
library. For the conversion of linear expressions, common operations (e.g.,
bvsub, bvadd, bvslt, and bvuge) are supported. In SPF, listeners allow access
and retrieve the information about the VM and the current thread at the
occurrence of an event (e.g., executeInstruction - before the execution of
an instruction, and instructionExecuted - after an instruction is executed).
Our custom listener interrupts and retrieves the current information of SPF
in the event of a native call invocation. SPF listeners provide a way to
communicate and configure the execution of the runtime without changing
the VM. Then, when a native call is performed, it is caught and processed by
corana/api. When corana/api analysis is finished, results are returned
to the listener and the analysis of SPF goes on.

4.3 Taint analysis module

Taint analysis is a program analysis method that examines the flow of infor-
mation between specific source and destination points within a program. In
security, especially in the mobile software domain, taint analysis is an effec-
tive tool to uncover potential malicious behaviors within mobile applications.
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It helps determine whether these apps inadvertently expose user-sensitive in-
formation to unauthorized parties.

We’ve integrated a taint module atop the DSE engine to capitalize on the
cross-environment analysis capabilities offered by HybridSE.

4.3.1 How HybridSE detects data leakage?

Example 4.3.1. The native leak array.apk sample below is modified from
the NativeDroidBench benchmark to illustrate a data leak originating from
Android code, and its destination located within ARM native code.

1 p u b l i c s t a t i c n a t i v e vo i d send( S t r i n g ime i ) ;
2 p r i v a t e vo i d leakImei() {
3 S t r i n g [ ] s t r A r r = new S t r i n g [ 1 0 ] ;
4 TelephonyManager t e l = ge tSy s t emSe r v i c e ( ”phone” ) ;
5 s t r A r r [ 1 ] = t e l . getDeviceId() ; //strArr[1] is tainted
6 //SOURCE: TelephonyManager . g e tDe v i c e I d ( )
7 send(strArr);
8 }

Listing 4.1: Source in Android code

1 vo i d Java native leak MainActivity send
2 (JNIEnv ∗ j n iEnv , jobject t h i s , jobjectArray s t r A r r ) {
3

4 j o b j e c t da t a c l e an , d a t a ime i ;
5 d a t a c l e a n = jniEnv.GetObjectArrayElement( jn iEnv , s t rA r r , 0 ) ;
6 // d a t a c l e a n = s t r A r r [ 0 ]
7 da t a ime i = jniEnv.GetObjectArrayElement( jn iEnv , s t rA r r , 1 ) ;
8 // da t a ime i = s t r A r r [ 1 ]
9 android log print(4 ,&10648 ,&10650 , d a t a ime i ) ;

10 //SINK: android log print()
11 r e t u r n ; }

Listing 4.2: Sink in native code

After the Activity starts, it eventually invokes the leak imei()method,
which retrieves the IMEI device number through the API call getDevi-
ceId() and stores it in an array of Strings. The taint source is recognized
as getDeviceId:()Ljava/lang/String;. The array that contains the
IMEI string is then passed through the native function send(), which in
this case, is mapped to Java native leak MainActivity send() in
native leak.so.

Therefore, it is desirable for a taint analysis tool capable of traversing
both bytecode and native code. Presently, existing taint analysis tools for
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Figure 4.7: How environment is transfer in Example 4.3.1

Android that address both bytecode and native code such as JN-SAF[7] and
JuCify[8] employ static methods, utilizing Class Hierarchy Analysis (CHA)
for Java bytecode and Symbolic execution for native code. Despite the speed
and efficiency of static approaches, they are susceptible to over-tainting and
lack resilience against obfuscation techniques that may be present in either
bytecode or native code. In example 4.3.1, if instead of data imei, data -
clean is published through the sink function at Line 9, static taint tools
will suffer from over-tainting and report false positive data leak.

To produce precise and complete control and data flow of Android native
code, we propose a DSE framework called HybridSE that combines existing
DSE tools of bytecode and native code. In a concrete execution, Java Native
Interface (JNI) bridges the gap between Java byte code and the native code
(often compiled from C/C++). Following the JNI mechanism, HybridSE
implements the interface to establish connections between SPF for Dalvik/-
Java bytecode and corana/api for ARM 32-bit binary code with external
call handling.

We demonstrate how HybridSE will apply taint analysis on Example
4.3.1 where the strArr is passed from bytecode to native code.

At the point of JNI call invocation, the initial default parameter is the
JNIEnv structure containing all the JNI function pointers, with the second
parameter being the this pointer indicating the current method. The func-
tion arguments are sequentially placed into the later slots in JVMNativeS-
tackFrame. For send() method invocation (Listing 4.2), the parameters
are put into JVMNativeStackFrame as Figure 4.7, then the execution
code is transited from Java bytecode to 32-bit ARM code.

Figure 4.3.1-right shows the data leak detected by HybridSE. For each
instruction, the ARM taint rule is applied step-by-step. We discuss the
details of the propagation and sanitizing rule in Section 4.3.3. We identify the
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API call android log print as a sink in the native code. At 0x10652,
the 4th parameter is tainted, thus, concluding there is a data leak from source
to sink. In this case, the source is located in Android code and the sink is in
native library code.

4.3.2 Taint analysis scenarios

A scenario of a taint analysis is a pair of a source method and a sink method,
where the former retrieves data considered private (e.g., getDeviceId())
and the latter transmits data out of the application. A taint analysis detects
possible dataflow paths of data leakage, i.e., from a source to a sink.

Table 4.1 shows an example list of scenarios, which is inspired by the
list in Argus-SAF and expanded for native code. For instance, the API
call fopen("/proc/version", "rb") is often used to read Linux ker-
nel version) as a source method, which was missing in Argus-SAF. On the
contrary, Handler.obtainMessage isn’t included in the list of sources
because it generates a new empty message instance, rather than retrieving a
message from the Android handler’s message queue [44]. Sources and sinks
in Java are API invocation statements, e.g., invokevirtual getDe-
viceID(), invokevirtual httpPost.getEntity(). Sources and
sinks in native code have two possibilities:

• Library function of OS system (e.g., open ’proc’, getpid(), an-
droid log print())

• JNI callback, which enables invoking Java methods from native code.
Listing 4.3) and Fig. 4.8 illustrates a potential data leak scenario in-
volving JNI callback.

1 0 x106cc adr r2 , [s getDeviceId 00010754]
2 0 x106ce adr r3 , [s ()Ljava/lang/String 00010760]
3 0x6d0 l d r r6 , [ env ,#0x84 ]
4 0x6d4 mov r0 , r4
5 0x6d6 b l x r6 <JNIEnv getMethodID ( )>
6 0x6d8 mov r2 , r0
7 0x6da mov r0 , r4

8 0 x6e6 b.w 0x115b0 JNIEnv callObjectMethod()

9 ;SOURCE: C a l l g e tDe v i c e I d ( ) j a v a / l ang / S t r i n g

Listing 4.3: Java method is invoked from native code in native source.apk of
Dataset 1 - Chapter 6
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Figure 4.8: Data leakage scenario of Listing 4.3

In either case, we observe an Android malware dataset (Dataset 2 in Chap-
ter 6), that the most frequently utilized source APIs detect device informa-
tion, e.g., BUILD.model, getDeviceId(), getLine1Number(). The
predominant sinks are httpPost-related APIs or print statements.

Sources Details

BUILD. Model and version
getDeviceId() IMEI
getLine1Number() Phone number
getLocation() Location, country
getOutputStream() HTTP connection
open ’/proc’ Kernel version

Sinks

Log output to console
HttpPost.setEntity() send to server
write() write to file
SharedPreferences save to object
Messenger send text message
android log printf, sprintf printing syscall

Table 4.1: Captured sources and sinks from detected data leaks

4.3.3 Cross-environment taint propagation

A taint analysis module in HybridSE has three steps.

1. Identify a source and give a taint tag on it. (inject())

2. Propagate taint. (propagate())

3. Recognize a sink and check it for data leaks. (sink())
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The propagation for Java assignments, method calls, and returns are
DEF-USE chain manners of classical dataflow analyses. The propagation
propagate() assigns a new taint tag for a variable when one of the param-
eters is tainted, and the taint tag is propagated until the value is redefined.

The concern is on the data type structures and the object structures.
Each primitive type variable, string object, and class object are consid-
ered as a single taintable object. The compound data, e.g., field assign-
ments and arrays, keep the taint tag of each element individually.

In 32-bit ARM native code, memory is structured in sets of 32-length
words. For native code, instead of monitoring a taint tag for each bit, Hy-
bridSE assesses the taint tag for every 32-bit vector, referred to as a word.

When across environments, taint tags are seamlessly propagated during
environment transitions. That is, if a value is copied between two envi-
ronments, its associated taint tag is also copied according to the data type
conversion.

Bytecode call to native code: a white box transfer

We explore Java calls to native code located in the .so library. HybridSE
adheres to the calling convention from stack-based Java to register-based
ARM. At the native code invocation, the JVMNativeStackFrame objects
are transferred to ARM registers as 32-bit vectors. In the case of arrays,
following the concrete execution, both the Java and native sides are aware
of the array size. Therefore, the taint tag can be mapped and accessed using
an index. On the other hand, a nested data structure, e.g., field, is difficult
to determine the size, and the entire object is regarded as tainted.

Native code call to bytecode: a black box transfer

JNI provides a standard interface to Java functions (≈ 230 interfaces)6. JNI
allows ”callback” operations that enable Java method invocation from the
native code by the method name and the signature (Listing 4.4). HybridSE
treats a JNI call to Java as a black-box call such that if any of the arguments
of the call is tainted, the return is treated as tainted. In the Listing 4.4, the
methodID at Line 1 are gotten from the source API getDeviceID, and
methodID is tainted. Hence, the return value of CallObjectMethod is
tainted.

1 jstring Java getImei(JNIEnv* env,jobject this,jobject* context) {
2 . . .

6docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html
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3 methodID1=env.GetMethodID( env , p Var1 , ” g e tSy s t emSe r v i c e ” , ” ( L j ava
/ l ang / S t r i n g ; ) L j ava / l ang /Object ; ” ) ;

4

5 cls=env.FindClass(env,” and ro i d / t e l e phony /TelephonyManager ” ) ;
6 methodID=env.GetMethodID( env , c l s , ” g e tDe v i c e I d ” , ” ( ) L j ava / l ang /

S t r i n g ; ” ) ;
7

8 return JNIEnv::CallObjectMethod(env, serviceObj, methodID);

Listing 4.4: JNI callback code in C

Not all JNI callbacks are over-approximated. For JNI callbacks that
manipulate Java objects, strings, and arrays, we manually prepare stubs
instead of using over-approximation. For instance, consider the following
call:

1 jobject GetObjectArrayElement(JNIEnv *env, jobject array,int
index); // Retu rns a r r a y [ i nd ex ]

This call returns the element of the array at index.

4.4 Discussion

Currently, we set several assumptions to combine SPF and corana/api.
First, we capture the effect of the native function call via its return values
without tracking the side effect. This is quite reasonable since different plat-
forms are not easy to pass the side effects. Second, we handle a subset of
types (e.g., primitive types and the string, arrays) and operations (e.g., bv-
sub, bvadd, bvslt, and bvuge) for Bit-Vector operations for the target
of the LIA to Bit-Vector conversion).

37



Chapter 5

Evaluation on CFG generation
of HybridSE

In this section, we evaluate HybridSE’s ability to generate unified CFGs
for both Java and native code parts. This allows us to demonstrate trends
in native code utilization and obfuscation within Android malware over the
years. We compared HybridSE with FlowDroid but encountered difficulties
running JuCify properly. Additionally, these tools generate call graphs rather
than control flow graphs, limiting the scope of comparison.

To evaluate the quality of the graphs generated by HybridSE and com-
pare them with those from FlowDroid, we conducted graph similarity analysis
for two malware analysis tasks: classifying malware families and identifying
Android packers. Our findings indicate that the HybridSE’s CFGs pro-
vide more structure, enabling a more accurate representation of application
behavior.

The experiment in Chapter 5 and Chapter 6 are performed in the same
testbed. The testbed consists of an AMD EPYC 87, 2.6 GHz, 512 GB of
RAM, running on a Linux Ubuntu SMP 5.4.0-66-generic computer. Our
preprocessing tools are apktool 2.4 and dex2jar 0.9.5. HybridSE utilizes a
customized version of SPF running on JPF for Java 8.

5.1 Experiment datasets

We conduct experiments on two sets below.
Dataset 1. Android malware datasets: DREBIN1, AMD2, and An-

1sec.tu-bs.de/ danarp/drebin/download.html
2unb.ca/cic/datasets/maldroid-2020.html
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droZoo3. DREBIN and AMD are malware datasets released in 2014 and
2017, respectively. The former consists of 5,560 malware samples (collected
between August 2010 and October 2012) in 179 malware families. The lat-
ter consists of 24,553 malware samples (collected from 2010 to 2016) in 71
malware families.

AndroZoo, launched in 2016, is a repository of Android applications with
continuously updated samples. Initially hosting over 3 million apps, it has
expanded to over 15 million by mid-2021. AndroZoo draws its content from
Google Play, third-party platforms, and VirusShare. For analyzing native
code usage in Android malware, 15,000 malicious apps were selected based
on the criteria of being flagged by at least ten antivirus tools.

Dataset 2. Sample packed by Android packers (has ground
truth). In 2018, PackerGrind [45] assembled open-source apps sourced from
F-Droid and subsequently submitted them to six online commercial packing
services (namely, Qihoo, Ali, Bangcle, Tencent, Baidu, and Ijiami). As a
result, the dataset contains the ground truth regarding the utilized packer.
We retrieve 298 samples from this dataset.

5.2 Cross-environment CFG evaluation

5.2.1 Native code and obfuscation usage in Android/APK

We investigate how widely is the native code utilized in Android malware and
examine the generation of CFGs by HybridSE on Dataset 2. Native code
usage is checked by two steps: (1) At least one .so file in /lib or /assets folder
and (2) Java native methods are declared. The number of samples meeting
both criteria is reported in Table 5.1 under the category ”#w/Native”. In
the remainder of this study, we concentrate on the samples #w/Native to
generate CFGs using HybridSE.

Table 5.1: Native code usage over the years
Year # down-loaded # w/Native*

DREBIN 2010-2012 5560 960 (17.26%)

AMD 2010-2016 24553 850 (3.61%)
AndroZoo 2017 5000 2856 (57.12%)

2018 5000 3651 (73%)
2019 5000 4259 (85.18%)
2020-2022 5000 3774 (75.48%)

3androzoo.uni.lu
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As shown in Table 5.1, the usage of native libraries is notably high across
the malware datasets, with a noticeable increase observed from the period
spanning 2019 to 2022. .

Figure 5.1: Distribution on Android native code usages

We also observe a significant amount of failures and incomplete CFG
generation. summerized in Fig. 5.2 and Table 5.2.

We list the main reasons that limit HybridSE (Table 5.2) :

• Preprocessing failure (apktool, dex2jar or AndroidManifest.xml
parsing emits error).

In preprocessing, apktool decodes apk files into AnddroidManifest.xml,
classes.dex, and others. dex2jar (v0.9.5) converts classes.dex
into JVM bytecode. We observed a high level of translation failure that
was collected before 2018.

• Multi-dex. Multi-dex (multiple dex files) is supported for applica-
tions with more than 64,000 methods. This leads to missing application
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Figure 5.2: Distribution of failures and obfuscation

content in subsequence classes2.dex, classes3.dex,... class-
esN.dex by dex2jar. Consequently, missing certain parts of entries
leads to incomplete CFG construction by HybridSE.

• Packing (Stub application). Certain numbers of Android APK files
are missing the original payload at the entry points specified in the An-
droidManifest.xml in their classes.dex. This absence suggests that the
original payload has been concealed, which is typically done by pack-
ers [46]. We observe a notable increase in the presence of Android
malware exhibiting packing techniques, particularly starting in 2018,
and rising exponentially to more than 60% in the 2019 to 2022 pe-
riod. When executed, these packed malware instances often initiate
the process at a wrapper Stub application, and from Java, the ap-
plication proceeds by calling AttachBaseContext() before loading
into native code. The native library is concealed within the /assets
directory rather than the default /lib. Native files may either be fully
encrypted or encrypted partially. To generate full CFG of the payload
for a packed application (i.e., unpacking packed Android application),
dynamic loading is required, which is currently not supported by Hy-
bridSE.

Limitation. Our current approach utilizes the same preprocessing tools
as several other static analysis tools, including apktool and dex2jar. This
makes our analysis inherit the weaknesses associated with these tools. In the
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Table 5.2: Result on CFG types generated by HybridSE
# APK
w/Native

# dex2jar
failure

# generated
CFG

Among generated CFG

Un-
protected

Stub
Application

Multi
-dex

DREBIN 960 285 (29.68%) 675 (70.32%) 675 0 0
AMD 850 179 (21.05%) 671 (78.96%) 661 0 10
2017 2856 1450 (50.77%) 1406 (49.23%) 644 326 436
2018 3651 1478 (40.48%) 2137 (59.52%) 852 745 540
2019 4259 1120 (26.29%) 3193 (73.71%) 230 2643 321
2020
-2022

3774 633 (16.77%) 3141 (83.23%) 204 2668 269

presence of obfuscation techniques like multi-dex and packed apps, additional
capabilities are required to generate the full payload of Android applications.
This includes parsing multiple dex files and enabling dynamic loading.

Conclusion : Native code is widely utilized both for application func-
tionalities and for packing Android applications. HybridSE showcases
the ability to generate CFGs (Control Flow Graphs) from these two uses
of Android native code, provided that there is successful and complete
translation by dex2jar.

5.2.2 HybridSE performance when analyzing cross-environment
Android applications

The runtime performance of HybridSE with respect to the CFG sizes on
Dataset 2 are summarized in Table 5.3 and 5.4. The average running time is
602.27 seconds; the minimum is 81.64 seconds, whereas the maximum is 96
minutes.

Table 5.3: Relation between graph size and generation time
CFG size Bytecode Native Time (s)

# Nodes # Edges # Nodes # Edges

Average 3065 4428 268 283 602.27

Median
(±SD)

783
(±6504)

1148
(±9258)

172
(±276)

173
(±294)

244.89
(±816.65)

Largest 37166 48997 978 1054 5794.73

Smallest 618 913 124 132 81.64

We observe the average number of nodes and edges for CFGs in two sce-
narios: the whole CFG of an unprotected apk file, and the stub applications
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in which HybridSE generates CFGs of only the unpacking stub of a packed
APK file.

Table 5.4: Average node and edge counts from HybridSE analyzing AndroZoo
malware with native code

Median Bytecode Native Time (s)
(± SD) # Nodes # Edges # Nodes # Edges

Un-
protected

4654
(±9777)

6588
(±13873)

26
(±238)

25
(±250)

1040.12
(±1171.58)

Stub
application

783
(±34)

1148
(±51)

292
(±267)

324
(±286)

214.90
(±253.24)

Figure 5.3: Average CFG size for yearly subsets in the AndroZoo dataset
CFG size = Bytecode nodes + Native nodes

Our observation regarding the CFGs of packed and unpacked applications
is confirmed by Figure 5.3, which illustrates a decrease in the graph size of
samples starting from 2018, coinciding with the increase in the number of
packed samples.

Conclusion : HybridSE could be a good candidate for cross-environment
application analyses, even DSE is still time-costly.
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5.2.3 What can be shown by HybridSE’s CFG?

We manually observed how the unified CFG can reveal malware behavior
intentionally concealed within the native code part. The CFG generated from

Figure 5.4: Deadcode detected in the native function of towelroot.apk

the Towelroot4 shows sequences of pthread library calls manipulating
the mutex queue. This detected sequence is matched with the CVE-2014-
315311 vulnerability5 reported in old Linux kernels to root Android devices,
which confuses the waiter structure to give the privilege of control to the
user. We also can confirm that Towelroot uses an obfuscator such as O-
LLVM in the native binary code to add opaque predicates to insert dead
code as additional conditional branches. The CFG shows native function
java ∗ ∗ ∗ KernelVersion() introduces multiple opaque predicates at 0x240c,
0x2440, and 0x2464. HybridSE successfully solves the opaque predicates and
identifies 12.27% of instructions in the native functions are dead code.

The Android malware Lotoor (RootKing) hides the IP address of the ex-
ternal server in the native code. The malware encapsulates its URL within
native code, and upon execution, it reads the URL data by invoking the na-
tive function RootUtil.uu(). HybridSE can retrieve the server address

4gist.github.com/vananhnt/9c9fe78d7a74612d3b5e5363cb76c536
5https://nvd.nist.gov/vuln/detail/CVE-2014-3153
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loaded from the data at position #x000018d0 and passed to the function
iks base64 decode().

Conclusion : HybridSE can efficiently generate CFGs that represent
program behavior, even in the presence of control flow obfuscation. In
the realm of Android applications, HybridSE’s CFG can offer valu-
able insights into the inter-language data flow and behavior exhibited
by Android malware within native code, aiding in the identification of
potential security threats.

5.3 Graph similarity among CFGs

To evaluate the quality of the graphs generated by HybridSE and compare
them with FlowDroid, we performed graph similarity analysis for two mal-
ware analysis tasks: malware family classification and Android packer clas-
sification. We employ the SVM classification provided by scikit-learn with
default settings. For graph embedding, we utilize the Weisfeiler-Lehman
graph kernel implementation available in Graph2Vec6. Using identical set-
tings, we assess the classification performance by comparing the ability to
classify based on graph similarity derived from HybridSE’s CFGs and Flow-
Droid’s call graphs.

5.3.1 Preliminary classification of Android malware fam-
ily

Amalware family refers to a group of malware samples or instances that share
common characteristics, such as code structure, behavior, or functionality.
Malware families are often classified based on similarities in their source code,
propagation methods, or the objectives they aim to achieve. We anticipate
that CFGs can reveal the distinctive traits of Android malware.

We employ HybridSE and FlowDroid on the DEBIN and AMD mal-
ware datasets, both of which include labeled information regarding malware
families. Note that HybridSE generates CFGs across both bytecode and
native code, whereas FlowDroid’s call graphs contain only bytecode.

From the graphs generated in Table 5.5, we applied graph kernels to ob-
tain feature vector embeddings of the graphs. Subsequently, we classified
them into malware families using SVM. The result is reported in Table 5.6.
The classification by HybridSE’s CFG is carried out in three types. The

6https://karateclub.readthedocs.io/en/latest/
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Table 5.5: Graph produced by HybridSE and FlowDroid for various malware
families in DREBIN and AMD
Family # APK file HybridSE CFG FlowDroid Call Graph

BN NN T(s) BN NN T(s)

DroidKungFu 787 942 387 76.28 3948 0 23.63

Airpush 175 1055 9248 121.43 2689 0 13.637

BaseBridge 123 1133 60 365.71 1939 0 20.86

Dowgin 124 1113 1580 162.71 2558 0 13.18

Lotoor 94 667 645 157.78 262 0 17.58

Youmi 69 1456 4773 220.77 2974 0 22.94

Plankton 55 1727 2013 2777.84 637 0 21.3

Geimini 4 495 358 310.57 1293 0 0.926

Adrd 5 292 904 263.8 937 0 20.13
BN: Bytecode node, NN: Native node, T: Time

combined CFG involves a cross-environment Control Flow Graph that tra-
verses both bytecode and native code. The Native CFG stage focuses solely
on generating a CFG that includes only native code. Finally, the Bytecode
CFG is a CFG that encompasses only bytecode. On the other hand, Flow-
Droid provides a callgraph of Java bytecode instead of CFG.

Table 5.6: Android family classification on DREBIN dataset
HybridSE+W-L+SVM FlowDroid+W-L+SVM

Combined CFG
(Bytecode+Native)

Native
CFG

Bytecode
CFG

Bytecode
CLG

Accuracy 76.0 % 93.91 % 72.0 % 51.63 %
Precision 70.0 % 94.84 % 66.0 % 26.66 %
Recall 76.0 % 93.91 % 72.0 % 51.63 %

F1-score 72.80 % 92.67 % 68.80 % 35.17 %
W-L: Weisfeiler-Lehman graph kernel, CFG: Control Flow Graph, CLG: Call Graph

We recorded an accuracy of 93.91% when classifying the DREBIN mal-
ware family using native CFG embedding, compared to 51.65% when using
Flowdroid graph embedding.

5.3.2 Preliminary trial on Android packer identifica-
tion

Due to the prevalent issue of plagiarism and repackaging within the Android
ecosystem, developers widely embraced Android app packing techniques as
an effective safeguard for their applications. Generally, Android packers serve
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Table 5.7: Graph generated from PackerGrind dataset

#Sample
# Partial CFG
by HybridSE

# Callgraph
by FlowDroid

Baidu 63 63 67

ijiami 71 31 71

Bangcle 47 0 47

qihoo (Jiagu) 39 39 39

alibaba 40 40 40

tencent 34 0 34

Total 298 173 298

to enhance resilience against static analysis, and dynamic analysis, and deter
reverse engineering.

Identifying the used packer is crucial for understanding obfuscation tech-
niques and gaining insights into malware behavior and unpacking methods.
Most importantly, knowing the correct packer enables reverse engineers to
apply the appropriate unpacking methods to retrieve the original code for
analysis.

A popular tool for packer identification is APKID7, which utilizes static
analysis methods and signature-based methods to identify packers, obfusca-
tors, and anti-analysis measures present within Android application package
(APK) files, to retrieve the packer names.

1 [+] APKiD 2 . 1 . 5 : : from RedNaga : : rednaga . i o
2 [ ∗ ] 0E996D263 ∗ . apk
3 [ ∗ ] 0E996D263 ∗ . apk ! a s s e t s / g d t p l u g i n / gdtadv2 . j a r ! c l a s s e s . dex
4 |−> ant i vm : Bu i l d . FINGERPRINT check , Bu i l d .MANUFACTURER

check , Bu i l d .MODEL check , Bu i l d .PRODUCT check , p o s s i b l e
Bu i l d . SERIAL check , s u b s c r i b e r ID check

5 |−> ob f u s c a t o r : Obfuscator−LLVM v e r s i o n 9 . x , Obfuscator−LLVM
v e r s i o n unknown ( s t r i n g e n c r y p t i o n )

6 [ ∗ ] 0E996D263 ∗ . apk ! a s s e t s / l i b j i a g u . so
7 — packer : Jiagu

Listing 5.1: Example output of APKID

Table 5.7 presents the number of samples for each packer successfully an-
alyzed by HybridSE and FlowDroid. Among them, HybridSE encounters
difficulties in generating the CFG for Bangcle and Tencent due to the lack
of support for multidex and limited entry point realization.

While the number of analyzed samples by HybridSE is lower compared
to FlowDroid, the packer identification results using HybridSE’s CFGs are

7https://mas.owasp.org/MASTG/tools/android/MASTG-TOOL-0009/
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significantly higher (Table 5.8). Current tools like APKID, which utilize
database-stored signature matching or rule-based detection, often achieve
complete accuracy. However, APKID only offers detection for known packers
with predefined rules, necessitating constant updates to its database and
detection rules. While APKID can correctly identify Android packers with
100 % accuracy on Dataset 2, currently, the rules for APKID are manually
updated with each tool update, making the expansion of rule-based packer
detection tools a labor-intensive task.

Table 5.8: Android packer classification on PackerGrind
HybridSE
+W-L+SVM

FlowDroid
+W-L+SVM

Combined CFG
(Bytecode+Native)

Native
CFG

Bytecode
CFG

Bytecode
CLG

Accuracy 80.00 % 68.57 % 97.14 % 48.89 %

Precision 87.56 % 55.01 % 97.36 % 45.34 %
Recall 80.0 % 68.57 % 97.14 % 48.89 %

F1-score 74.62 % 59.92 % 97.10 % 42.21 %
W-L: Weisfeiler-Lehman graph kernel, CFG: Control Flow Graph, CLG: Call Graph

Figure 5.5: Graph similarity by each packer

By leveraging HybridSE and graph kernel similarity, we automate the
process for detecting packers. Graph similarity on the bytecode graph of
HybridSE’s CFG yields the highest accuracy score at 97.14 % F1-score at
97.10 %, compared to only 48.89% and 42.21 % achieved by the call graph
on FlowDroid.
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We observe that bytecode CFG is better suited for identifying packers
than either combined CFG with native code or native code CFG alone. This
is reasonable considering the techniques employed by current packers, which
typically begin the application with stub application bytecode. Referring
back to Figure 2.3 in Chapter 2, the stub application DEX contains the
packer program, which is characteristic for each packer. This observation is
supported by Figure 5.5. On the other hand, the native .so library contains
both the decrypted stub and the encrypted dex, whose content can vary more
across different applications.

Conclusion : Utilizing CFGs generated by HybridSE and applying
graph kernels results in high accuracy on classification tasks, achieving
an F1 score of 92.67% for malware family classification and 97.10% for
packer classification. Our conclusion is that the CFGs generated by Hy-
bridSE are well-suited for the characterization of Android applications.

49



Chapter 6

Evaluation on Taint analysis of
HybridSE

To take advantage of the capabilities of cross-environment analysis offered
by HybridSE, we’ve integrated a taint module atop the DSE engine. This
section evaluates the advantages of employing DSE for taint analysis over
static tools. We subsequently applied our taint module to detect data leakage
observed in Android malware, focusing on information leakage that occurs
through both bytecode and native code.

6.1 Experiment datasets

Dataset1: DroidBench1. DroidBench is a popular Android taint analysis
benchmark, and NativeFlowBench is its subset that contains native code.
We currently focus on part (A) inter-language dataflow in NativeFlowBench
and Array and Lists, Reflection in DroidBench. For this benchmark, we use
the list of sources and sinks given by Argus-SAF.
Dataset2: Android malware dataset from Chapter 5. From datasets
like DREBIN, AMD, and AndroZoo, we successfully generated unprotected
CFGs (without multidex and packing) for a total of 3,266 samples. We
anticipate that these CFGs accurately represent the payload of the Android
malware, and we employ HybridSE to identify potential information leakage
vulnerabilities.

1github.com/arguslab/NativeFlowBench
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6.2 Comparision with static analysis tools

6.2.1 Detecting cross-environment data leak

Table 6.1 demonstrates that HybridSE accurately detects the correct re-
sult for 16 out of 18 benchmark items. Most results align with those of
Argus-SAF, except for the cases of native noleak array and native multi-
ple interactions. Both HybridSE and Argus-SAF produce false positives
for native complexdata stringop.

native noleak array. HybridSE produced a correct result for this test
case, which was specifically designed to address the issue of false positive
in taint analysis tools. HybridSE manages taint tags for array elements
individually, instead of over-tainting like Argus-SAF or FlowDroid, which
improves precision when handling array elements individually.

native multiple interactions. HybridSE fails to provide accurate re-
sults for this test, since currently corana checks each process sequentially.
As a result, we do not consider cases where processes are concurrently run-
ning and interacting with each other.

native complexdata stringop. In this scenario, HybridSE experi-
enced a false positive, similar to Argus-SAF. Unlike arrays, whichHybridSE
can manage element-wise, deciding on how complex data is transferred from
one environment to another poses challenges due to the varied nature of com-
plex data structures. In such cases, we track the whole complex data as a
taint object, rather than on an element-wise basis as with arrays.

6.2.2 Detecting data leaks involving arrays and Java
reflection

In tasks involving array manipulation and Java reflection, the DSE engine
facilitates the handling of data that requires runtime resolution, such as
dynamically invoked classes via Java reflection, with ease. Both FlowDroid
and Argus-SAF face challenges due to their static nature.

An example of Java reflection used to hide source API is shown in List-
ing 6.1. In this example, the IMEI is saved in the foo() method of the
ConcreteClass on line 9. When the onCreate() function of Main-
Activity starts on line 3, it registers the ConcreteClass using reflec-
tion instead of directly invoking ConcreteClass.foo(). Later, on line
6, bc.foo() is called, which, during real execution, invokes Concrete-
Class.foo() and returns the IMEI. This, in turn, leads to the IMEI being
leaked through sendTextMessage.
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Table 6.1: NativeDroidBench benchmark result
NativeFlowBench - Inter-language dataflow

APK file
Ground
truth

Hybrid
-SE

Flow
-Droid

Argus
-SAF

1 n source O O X O
2 n nosource X X X X
3 n source clean X X O X
4 n leak O O X O
5 n leak dynamic reg O O X O
6 n dynamic reg multiple O O X O
7 n noleak X X X X
8 n noleak array X X X O
9 n leak array O O X O
10 n method overloading X X X X
11 n multiple interactions O X X O
12 n multiple libraries O O X O
13 n complexdata O O X O
14 n complexdata stringop X O X O
15 n leak heap modify O O X O
16 n set field fm native OO OO XX OO
17 n set field fm arg OO OO XX OO
18 n set field fm arg field OO OO XX OO

Arrays and Lists

19 ArrayAccess1 X X O O
20 ArrayAccess2 X X O O
21 ArrayCopy1 O O O X
22 ArrayToString1 O O X X
23 HashMapAccess1 X X O O
24 ListAccess1 X X O O
25 MultidimensionalArray1 O O X X

Java reflection

26 Reflection1 O O X X
27 Reflection2 O O X X
28 Reflection3 O O X X
29 Reflection4 O O X X

Accuracy 93.10 % 20.68 % 55.17 %
On = Contain n data leaks, Xn = No n data leak, prefix native in APK file

name is shortened as n due to space limitation
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Static analysis tools face difficulties in resolving bc.foo() to Con-
creteClass.foo() since the reflection information is only available at
runtime. This causes static taint analysis tools like FlowDroid and Argus-
SAF to miss the data leak at line 6.

1 pub l i c c l a s s MainActivity extends Act i v i ty {
2 protec ted void onCreate ( ) {
3 BaseClass bc = (BaseClass)

Class.forName(”de.ecspride.ConcreteClass”).newInstance();
4 // Reg i s t e r i ng ’ ConcreteClass ’ us ing Java r e f l e c t i o n
5 SmsManager sms = SmsManager . ge tDe fau l t ( ) ;
6 sms . sendTextMessage ( ”+49 1234” , nu l l , bc.foo()) ;
7 }
8 pub l i c c l a s s ConcreteClass extends BaseClass {
9 pub l i c S t r ing foo ( ) {

10 TelephonyManager tM = getSystemServ ice ( ”phone” ) ;
11 imei = tM. getDev ice Id ( ) ;
12 re turn imei ;
13 }}

Listing 6.1: Reflection is used to hide source API in JavaRelection1.apk in
Dataset 1

Java reflection is handled naturally in SPF [16], and arrays are managed
element-wise. This allows HybridSE to accurately resolve reflected calls
and track taint tags within array elements, resulting in more precise leak
detection.

6.3 Data leakage observed from malware dataset

From 3,266 CFGs from Dataset 2, HybridSE identified 139 apps containing
leaks. Specifically, these comprised 24 from DREBIN, 47 from AMD, and 68
from AndroZoo.

To verify the validity of HybridSE, we manually checked the results
obtained. Below, we summarize the typical observations we made.

First, we noticed that the most frequently utilized sources include APIs
that gather device information, such as BUILD.model, getDeviceId(),
and getLine1Number(). Meanwhile, the predominant sinks observed are
HttpPost-related APIs or print statements used to publish sensitive informa-
tion (see TABLE 4.1)

On the DREBIN and AMD datasets, HybridSE detects several common
data leak scenarios within multiple malware families, e.g., DroidKungFu,
Lotoor, Dowgin, and Towelroot.
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Figure 6.1 illustrates the four main data leakage scenarios identified using
HybridSE.

Figure 6.1: Data leakage methods
(I) in DroidKungFu and SimpleLocker, Dowgin, (II) in Lotoor, (III) in a

DroidKungFu variant and (IV) in Towelroot

1. Dataleaks contain only in Java layer (Fig. 6.1-I).

(a) Data is published via HTTP connections.
The DroidKungFu and SimpleLocker families record device infor-
mation via getDeviceID(), getLine1Number(), or BUILD.-
VERSION in the Java layer. Then the information is added to a
HTTPPost.setEntity() to send the information via HttpPost.-
openConnection().

(b) Leakage of device information through logging and writing.
Dowgin collects IMEI, network operator, and Build.MODEL, and
displays in the log. Other data-flow recorded from a different
Dowgin variation passes the IMEI to a JSONObject, which is
later written to a file using fileOutputStream.write().

2. Dataleak that traverses through native code (Fig. 6.1-II).
HybridSE found in Lotoor family the data leakage runs through the
native code. Lotoor retrieves multiple pieces of information from the
Java layer and then concatenates all this information into a single
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string. It is passed to the native function cs(), which includes MD5
hash operations, and later published using HttpPost like Simple-
Locker.

Furthermore, we noticed that Lotoor integrates its C&C server URL
within native code. When executed, it fetches the URL data using a
native function named uu().

3. Information is transferred from Java to native and published via kernel
syscall, i.e. across Java and native code layers (Fig. 6.1-III).
A variant of DroidKungFu obtains the package name and device’s IMEI
in the Java layer and passes them to the native method DataInit. IMEI
is translated to Characters via the JNI function getCharFromUTF-
String(), and is shown to the console using the sprintf() syscall.

4. Only in native layer (See Fig. 6.1-IV).
Towelroot retrieves the process ID using the getpid() function and
accesses the kernel version by calling fopen("/proc/version",
"rb"). After obtaining the information, the kernel number is exposed
by android log print().

6.4 Discussion

HybridSE performs well compared to other static analysis tools on samples
specifically designed for taint analysis. In particular, HybridSE is more
precise, and as a result, it avoids false alarms, as exemplified in the ’native -
noleak array’ case mentioned above.

As mentioned in Section 4.3.3, for the native to Java bytecode direction,
HybridSE currently employs an over-approximation method to taint the
outcomes of JNI callbacks. In the future, we hope to support more features
of Android such as inter-component communication and native activity by
additional implementation, particularly in mapping specific Java functions
invoked within native code.
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Chapter 7

Related works

7.1 Symbolic execution for binary code and

bytecode

Symbolic execution (SE) [19] is a classical method in software engineering,
aiming for the test data generation for the control flow coverage. There
are lots of tools for high-level programming languages, such as C/C++ and
Java are developed (e.g., KLEE [21] and SPF [16]). Recently, the tools
for the symbolic execution of binary code have gradually increased, such as
MAYHEM [24], KLEE-MC [25], S2E [27], angr [17], BINSEC [28] and
BE-PUM [29].

SE tools for binary code

Most SE tools for binary use existing disassemblers or binary lifters to trans-
late binary code to an intermediate assembly language (IAL), such as LLVM
in KLEE-MC, VEX in angr, and BAP in MAYHEM. This approach ensures
the symbolic execution tools can analyze binaries of multiple architectures
(e.g., x86-64, x86, ARM, MIPS) without preparing execution engines for in-
dividual architectures. However, this method does not perform well in the
presence of obfuscated code, such as indirect jumps, self-modifying code, and
overlapping instructions.

To overcome this limitation, some works have directly interpreted binary
as a step-wise disassembler. This method requires a huge effort to implement
the binary emulator, which requires defining the formal semantics of each
instruction set. Therefore, a method to automatically extract the formal
semantics of binary instructions is desired. We have tried for x86 as an
extension of BE-PUM[35], ARM as CORANA[36], and MIPS as SyMIPS[37],

56



respectively.
Binary code, including malware, often uses API functions (and/or system

functions prepared in OS). Based on the instruction-level DSE tools (which
work only in the uniform context), we need to extend DSE to handle external
function calls, which are executed in different contexts. There are three
approaches.

• KLEE-MC abstracts the environment as a model [21]. However, this
is quite a rough approximation and rarely achieves enough accuracy.

• MAYHEM [24] and angr [17] fuse the concrete and the symbolic exe-
cutions by interleaving the GDB debugger and their symbolic engine.

• BE-PUM [29] prepare the API Stub to execute a system call in real
Windows OS to obtain an exact snapshot of the environment update.

We use the last approach for corana/api [18].

SE for Android/Java bytecode

For Java and Android applications, there are several extensions of Java
PathFinder (JPF) [43] that target Android apps. For instance, jpf-mobile [39]
uses jpf-nhandler [15] to concretize and run the native code in Host JVM.

SPF [16] and SynthesisSE [12] are SE tools built on JPF and JDART,
respectively, which reduce all calls (including the native code) as concrete
execution. SPF requires manual modeling of native components, the latter
resolves all callees by the concrete execution.

Currently, the only DSE tool that supports analysis of native code in
Android applications is an experiment version of angr1. They leverage both
Java/DEX bytecode and native code to SootIR. However, the intermediate
code translation shares the weakness for the obfuscation.

7.2 Android taint tools and cross-language

analysis

Static analysis has been used widely to assess Android application’s security
such as detecting sensitive data leaks or checking malicious behavior. There
is a large body of work on Android taint analysis, both dynamic and static
[3, 47, 48, 9, 49, 4, 50, 11]. Static taint analysis techniques [3, 48, 49, 4]
consider all possible paths that data can flow through without running the

1https://docs.angr.io/advanced-topics/java\_support
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apps. FlowDroid [3] employs CHA (class hierarchy analysis) and a flow and
context-sensitive IFDS algorithm to perform taint detection. It avoids the
handling of native method invocation and implements a thorough model for
native method calls. IccTA[49] extend Flowdroid to handle inter-connection
components. Amandroid [4] is another flow and context-sensitive dataflow
analysis framework. It creates an environment model for every Android com-
ponent and employs a component-based analysis algorithm. Like FlowDroid,
Amandroid also does not take into account native code. The only exception
is JN-SAF, which is extended based on Amandroid and includes extensive
methods for managing native method calls and inter-language data flows. All
mentioned tools encounter the challenges of the statical approach including
Java reflection and dynamic class loading in the Java environment.

Dynamic taint analysis is a practical approach that allows access to run-
time information. TaintDroid [47] is arguably the pioneering dynamic taint
analysis that traces information flows on the Dalvik Virtual Machine. Taint-
ART[9] adapts dynamic taint analysis for new ART(Ahead of time) runtime.
Vialin[11] also proposed an optimized dynamic approach for runtime perfor-
mance and efficiency to track taint flows on Dalvik bytecode. These tools
suffer from the drawbacks of dynamic tools, including the inability to reason
about behaviors not activated at runtime (by anti-debugging or VM aware-
ness) and execution runtime overhead.

To evade the disadvantages of current static and dynamic approaches, dy-
namic taint analysis based on forward symbolic execution has been proposed
[51]. The two analyses are used in conjunction to guarantee that tainted data
is in actual feasible paths.

Cross-language analysis for Android APK file. Most Android static
analysis tools (FlowDroid, Amadroid, DroidSafe, IccTA) avoid handling na-
tive methods and focus only on bytecode. Native methods are often modeled
or treated as black boxes when performing taint analysis, i.e., call arguments
and return values become tainted if a parameter is tainted. However, there
has been more and more attention on native code analysis due to the intro-
duction of new vulnerabilities and security issues previously overlooked by
Android-only analysis tools. NDroid[52], NativeGuard[53], and TaintArt[9]
use dynamic analysis to track information flowing on the bytecode and native
sides. NDroid uses TaintDroit to track information at the point of transfer-
ring to a native call, without actually tracking data within native code. Na-
tiveGuard uses a sandbox to isolate native libraries from other components
in Android applications. TaintArt compiles the whole Android application
to ART and then performs taint analysis on binary code.

JN-SAF[4] and JuCify [8] enhance the capabilities of static Android anal-
ysis tools (Amandroid and FlowDroid, respectively) by integrating them with
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a binary symbolic execution tool (angr) to conduct cross-language analysis.
Both tools translate native code into Jimple and apply taint analysis on the
Jimple representation of both bytecode and native code. JN-SAF conducts
separate analyses on bytecode and native code, later merging the outputs.
In contrast, JuCity merges the call graph of bytecode and native code into a
unified model before performing taint analysis.

Both tools follow static analysis and inherit path explosion issues from
angr.
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Chapter 8

Conclusions

Malware and spyware on Android devices are major concerns. For instance,
despite Android 13’s security policies, some malware has circumvented these
protections to exfiltrate user interactions, capture audio with the device’s
microphone, and track the device’s location.

As system architectures become more complex, it is essential to develop
tools for reverse engineering applications and analyze them in this ongoing
arms race against threat actors.

This thesis presents HybridSE, a cross-environment dynamic symbolic
execution tool equipped with a taint analysis module, for analyzing An-
droid/apk files on ARM. HybridSE seamlessly combines symbolic execu-
tion combining SPF on Java bytecode and corana/api on ARM 32bits
instruction set and generates CFGs consisting of feasible paths only.

However, HybridSE encounters difficulties with highly obfuscated appli-
cations, like multi-dex and packed samples. Currently, HybridSE is unable
to handle several features, including inter-component communication. Ad-
dressing these issues will be crucial for improving HybridSE in the future.

Nevertheless, we successfully appliedHybridSE to approximately 10,000
applications and demonstrated its ability to detect data leakages with fewer
false positive alarms than other tools. A final note on false alarms: Given
the vast number of samples analyzed, false alarms significantly slow down
the work of security experts. Thus, addressing the false alarm rate, which
impacts system correction, is a crucial research question.

60



Bibliography
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