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Abstract. Studies on evolutionary dynamics of grammar acquisition on
the computer have been widely reported in recent years, where an agent
learns grammars of other agents through the exchange of sentences be-
tween them. Particularly, Nowak et al. [11] generalized an evolutionary
theory of language with the universal grammar mathematically. In this
paper, we propose a model of language evolution for the emergence of
creole based on their theory, and try to discover the criteria conditions for
creolization. In our experimentation, we utilize the inside-outside (EM)
algorithm to find the grammar of a new generation. As a result, we con-
tend that creolization is strongly affected by the popularity of community
of the original language, rather than the similarity of original grammars.

1 Introduction

Studies on evolutionary dynamics of grammar acquisition on the computer have
been often reported in recent years, where an autonomous and active agent
learns grammars of other agents through the exchange of sentences between
them. However, those experimental results hardly seem to reflect the phenomena
of language evolution in the real world, because the models and the systems in
those reports were too abstract. In this paper, we especially pay attention to the
model of language evolution that retains intrinsic linguistic features, and try to
discover the criteria conditions for the emergence of creole.

For us to realize language dynamics on the computer, a rational agent should
behave as follows:

— an agent composes messages to other agents with her own grammar,

— listens to and recognizes messages from other agents with her own grammar,
evaluates and learns grammars of the messages of other agents, and

leaves offsprings proportional to the payoff, that is the recognition rate of
other agents’ grammars.

Thus far, Hashimoto et al. [6, 7] modeled an evolution of symbolic grammar sys-
tems by agents who use a very simple grammar and a simple learning mechanism.
However, these attractive reports seem to be no more stories of cognitive agents
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than the primitive protocol matching of lower animals is, and were not about
a behaviour of human beings but about just artificial organisms. In order to
simulate human language dynamics, we need to make the language system more
sophisticated. Because we cannot implement the mechanism of human learning
process, nor that of diachronical evolution of languages directly on the computer,
the adequateness of a model is difficult to evaluate.

Some works hypothesize UG (universal grammar) [4], that is an innate gram-
mar available to human babies when they begin to learn a language [8]. It is
believed that UG is the product of some special neural circuitry within the hu-
man brain, which is called ‘language organ’ by Chomsky, and ‘language instinct’
by Pinker [13]. The advantage of UG is to restrict the search space of possible
candidate grammars. Briscoe [3] reported models of human language acquisition
on UG, where each agent had a hierarchical lattice of categories, and a given set
of parameters specified a category grammar. Instantiating UG by agents in their
model, they could express the evolutionary dynamics of natural language which
consisted of eight basic language families in terms of the unmarked, canonical
order of verbs (V), subject(S) and objects(O).

Nowak et al. take a middle position between those two extreme models:
Hashimoto’s simplified model and Briscoe’s sophisticated model[11]. They gen-
eralized an evolutionary theory of language with UG mathematically. It was
assumed that the search space provided by principles in UG was finite and all
the possible grammars could be enumerated. From the assumption, defining the
similarity matrix and the payoff between grammars, they represented the tran-
sition of population of grammars as a differential equation. Consequently, they
succeeded in representing an equilibrium of language evolution.

Based on this Nowak’s framework, we will discuss the conditions that allow
creolization to occur. As for the learning mechanisms of each agent, Nowak et
al. assumed a stochastic framework. Similarly, we adopt a statistical learning
algorithm called the Expectation Maximization (EM) algorithm.

Section 2 describes how creole emergence should be represented mathemati-
cally in the model. Section 3 describes our experiments in which an agent utilizes
the inside-outside(EM) algorithm for a grammar estimation. In Section 4, we dis-
cuss our contribution.

2 The Model of Creole Emergence

In this section, we describe how creolization emerges based on population dy-
namics for which Nowak et al. [11] proposed a framework. Their purpose is to
develop a mathematical theory for the evolutionary and population dynamics of
grammar acquisition [8]. Particularly, they do not pay attention to an ability of
each agent but the whole behaviour of the population, and in this point, this
work is different from other works in which each agent obtains a target grammar
by the mutual interaction [3, 6].

They employed the similarity matrix and the payoff between grammars to
represent the differential equation for the population dynamics as mentioned
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agent using G; will develop G;. Thus, the probability that a child will develop
G, if the parent uses G; is given by g;;. The ¢;; represents the accuracy of gram-
mar acquisition.! Roughly speaking, Nowak’s results were: (1) For low accuracy
of grammar acquisition (low values of g;;), all grammars, G;, occur with roughly
equal abundance. There is no predominating grammar in the population. (2) For
high accuracy of grammar acquisition, the population will converge to a stable
equilibrium with one dominant grammar. In the latter, the dominant gram-
mar indicates an existing grammar, namely z4(0) > 0, where x4 is the relative
abundance of agents who use the dominant grammar G4 at the last. According
to Bickerton, creole, namely a new language, emerges under peculiar environ-
ments [2]. In most cases when multiple language contact, one of them would
eventually dominate the others. Nowak’s work has not considered the emergence
of a new language, and thus there was no concept of creole.

If all languages are enumerated, creole must be also included in them. Let us
consider a creole grammar, G.. At first, any agent does not have the grammar.
That is z.(0) = 0. Creolization means that the grammar emerges and eventually
dominates in the population. We propose a model of creole emergence in terms
of population dynamics. This model can be considered as a natural extension of
Nowak’s work. Creole is defined in the model as a grammar G. such that:

ze(t) = 0, zo(t + 1) > 6, (1)

where 6. is the threshold to admit the grammar to be dominant (See Fig. 1.)
According to Briscoe’s [3], the principles restrict all conceivable grammars to
relevant ones and they are anchored to a natural language grammar by the pa-
rameters for word order. The parameters are three independent binary variables,
hence there can be eight grammars in the search space. All grammar rules in the
principle are represented in Chomsky’s normal form (CNF). Each parameter is
assigned to a specific rule of the grammar to change the order of the non-terminal
symbols in the right hand side of the rule. For example, a rule “S — VP NP” in
the grammar has the parameter 0, then the rule “S — NP V P” would have 1.

! The matrix Q@ = {¢;;} depends on the matrix S = {s;;} because the latter one
defines how close different grammars are to each other [8]. The accuracy of language
acquisition also depends on the learning mechanism that is specified by UG.
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Each of the eight grammars is named by

the value of a set of parameters. Namely, if Table 1. The rules of CNF.
b2] S — NP VP|[bs] SI — VPI NPT
the values of the parameters (bs, by, bg) are S vp S1 — VP1
(1,0,0) for example, then the name of the VP — Vi VP1 — Vi
. . b1 [VP = Vt NP|[by|VP1 - V& NP1
grammar is G (p,5,,),, that is Ga. bo|[VP — VP1 PP||b; NP1 — Det N
In this model, there are 15 (no recur- NP — NP1 NP1 — N
. X bo|NP — NP1 PP||b;| PP — Prp NP1
sive) rules of context free grammar as prin- |, |NP — NP1 S1

ciples and each value of the parameters
(b2, b1,bp) determines the order of the right hand side of the rules. In Table 1,
the parameters in the first column affect the rules of the second column.

Each agent utilizes the inside-outside algorithm [10] to estimate the prob-
ability of each rule. The algorithm is a kind of EM algorithm, which is a way
of estimating the values of the hidden parameters of a model by a stochastic
method, and is used for grammar acquisition from plain corpus in natural lan-
guage processing [9, 12]. Through the communication with other agents at time
t, an agent memorizes all sentences which are heard from other agents as well as
those which the agent herself uttered. Then each agent estimates the application
probability of each rule of the grammar and decides the parameter value (See
Fig. 1.) To learn rules of the other grammars with the algorithm, agents need to
own all the possible rules a priori with low probabilities at the initial stage. After
the estimation, comparing the probabilities of two contradicting rules assigned,
each agent adopts the one with higher probability at ¢ + 1.

3 The Experiments

In this section, we detail our experiments. We calculate S = {s;;} and Q = {¢;;}
first, and observe the criteria conditions for creolization. The procedure in which
agents obtain sentences and learn grammars at ¢ is as follows:

1. An agent generates a sentence from her own grammar, and speaks it in turn
to another agent. The listener agent memorizes the sentence in her memory.
This is executed once for all the agents.

2. Repeat Process 1 until an agent memorizes 1,000 sentences in total.

3. Each agent estimates the probability of each rule for the sentences in her
memory by the inside-outside algorithm, decides the values of parameters
(b2, b1,bo) from the probabilities and then decides the grammar.

3.1 The Calculation of the S Matrix

First, we calculate the similarity matrix S = {s;;}, that was obtained as the
probability that a speaker who uses G; uttered a compatible sentence with G,
which is derived by rules randomly chosen in proportion to the application prob-
ability. Each element of S was calculated from 30,000 sentences, and the result is
as in Table 2. Each diagonal element, s;; in S is slightly smaller than 1, because
agents happen to speak sentences with rules of low probability and recognize the
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Table 2. The S matrix between gram- Table 3. The Q matrix under the simu-
mars in principles lation run.

Go Gi G2 Gs3 Ga Gs Gsg Grp Go Gi1 G2 Gz G4 G5 Gsg Grp
Go|.968 .421 .217 .217 .469 .294 .169 .168 Go|.516 .082 .114 .041 .126 .040 .060 .021
G'1|.396 .969 .186 .207 .224 .468 .160 .165 G1|.131 .368 .068 .115 .084 .113 .054 .068
G2|.209 .198 .968 .387 .175 .179 .484 .285 G2|.136 .074 .413 .148 .063 .037 .084 .044
G3|.216 .204 .412 .968 .183 .181 .227 .483 G3|.033 .095 .081 .479 .024 .076 .055 .158
G4|.485 .223 .181 .179 .968 .411 .207 .216 G4|.157 .055 .074 .023 .480 .082 .096 .032
Gs|.286 .481 .181 .181 .391 .970 .191 .209 G5|.043 .082 .037 .064 .149 .415 .074 .136
Gg|.167 .170 .470 .225 .210 .191 .969 .393 Gg|-069 .054 .114 .085 .115 .068 .364 .133
Gr7|.171 167 .293 .465 .216 .221 .418 .970 G7|.022 .059 .041 .126 .043 .114 .079 .517

sentence only with the innate own grammar. In this principle, we can claim that
F(Gi,G;) # 0 among all grammars because the contradicting rules for word
order always exist. Moreover, each grammar can derive a sentence ‘Vi’ by S —
VP, VP — Vi with the probability of 0.167, so that each element in the matrix
is roughly over this value. Grammars are roughly symmetrical with regard to
the word order.

3.2 Creole Emergence

We distribute eight agents in eight grammars. Possible combinations of popula-
tion in eight grammars are 15!/(8!7!) = 6,435. We calculated the transitions of
agents between grammars in all possible combinations.

For #. = 1.0 in Equation 1, creole emerged in 18 ways, and for 8. = 0.5,
there were 80 ways. We can analyse the relationship between creolization and
the number of grammars that the agents use in ¢. The rate of creolization for the
number of grammars was enumerated in Table 4. When 6. = 1.0, creole emerged
only in case agents were classified into three or four languages. In the other cases,
creole also emerged when 6. = 0.5, especially in case agents were classified into
three or four languages. When agents are distributed in three languages, creole
emerged in 19 out of 1,176 combinations, that is 1.62%; in four languages, 48 out
of 2,450, that is 1.96%. These two cases occupied 84% of all the creolization. In
case five or more languages, the possibility of a new language itself was difficult,
because most languages had been already spoken by at least one agent in ¢.

This result means that creole is easier to emerge when agents are exposed in
a situation of three or more languages. The contact of two languages tends to
converge one of the two. This result coincides with actual creole [14].

3.3 Correlation between S and Q Matrices

From the result of population dynamics in the previous section, we calculated
Q = {qgij} as follows :

_ the population of G; users at ¢ + 1 in those who used G; at t

e 2
i the population of G; users at ¢ 2)
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The result of @ = {g;;} is shown
in Table 3, where Zj ¢ij = 1. The di- Table 4. The number and the rate of cre-

agonal elements, ¢;; in the () matrix olization for the number of grammars.

came to the highest in each column or Creolization

row. It means that agents of the dom- G D . =0.5 f. = 1.0
inant grammar at ¢ tend to reuse the 2 196 || 1(0.51% ) 0 ( 0% )
grammar at ¢t + 1. The rate that a half 3 | 1176 |19 ( 1.62% )| 8 (0.68% )
of, or more, agents use a same (domi- 4 | 2450 ||48 (1.96% )|10 ( 0.41% )
nant) grammar at ¢ is over 40 percent 5 | 1960 |11 (0.56% )| 0 (  0%)
among all the combinations. Besides 6 588 || 1(0.17% )] 0( 0%)
the fact that g¢;;’s have rather higher Total| 6435 ||80 ( 1.24% )|18 ( 0.28%)

values, there seems no notable differ- G : The number of grammars.

ence in g;;’s (i # j). Therefore, this Q D : The number of possible distributions.
matrix does not have any meaning except that agents like to converge to the
dominant grammar at t. We could not find further relationship between S and
() matrices.

3.4 Conditions of Creolization

In each experiment, every agent listens to sentences certain fixed times, and as
a result, each agent memorizes a number of sentences. Each of these sentences
is generated by another agent with her own grammar, so that sentences in a
memory of an agent are divided into groups by the grammars that generated
them. Thus, the number of sentences in each group comes to be proportional to
the population of the grammar user. Note that this proportion is approximately
identical in memories of agents. Because agents learn the grammar of next gener-
ation from this memory, and the grammar ratio of each memory is identical, the
grammar tends to converge to a common one. Even in case the grammar does
not converge, the population of the most dominant grammar at ¢ consequently
increases, or at least remains same at ¢ + 1.

We can observe the emergence of creole under the condition of Equation 1
in Fig. 2. All the agents are classified in three or four languages; for example,
Go, G5 and Gg in (a), each population of which are quite similar. In this case, a
new language that no agent used at ¢, emerges at ¢ + 1.

Here, let us consider what feature the new language owns from the viewpoint
of parameters (ba, b1, bg). As for the parameter by in Fig. 2(a), grammars of two
agents are set to 0, and those of the other six are set to 1. Therefore, the language
of the next generation tends to use those rules with b, = 1. With the same
reason, b; tends to be 0, and by to be 0, where ‘#’ denotes a wildcard. Thus,
we reason that the grammar of the new generation would have the parameters
(b2,b1,b9) = (1,0,0), that is, G4. The sample (b) is the case the grammars of
all agents did not converge to a common grammar, because the parameter by
could not be fixed.

Therefore, creolization is strongly affected by the distribution of the pop-
ulation among different grammars, rather than the similarity between original
grammars. The result can be generalized to include the case creole does not
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Fig. 2. Samples of the result.

appear. If there is a dominant grammar group in population, the grammar sur-
vives or attracts more agents in the next generation; however, those who were
attracted did not necessarily use similar grammars. Thus, we conclude that what
decides the next prevalent language is the majority of each parameter.

4 Discussion

In Nowak et al. [11], the matrix S, that indicates similarities between two gram-
mars, and (), that represents the accuracy of grammar acquisition, played im-
portant roles in population dynamics. To simulate population dynamics on the
computer, the S and @ matrices need to be defined in advance. The S matrix
could be simply calculated from the given grammars. However, the definition
of the @ matrix seemed to be problematic in that they considered @ = {g¢;;}
diachronic constants. As we have mentioned in the previous section, the rate
how many of the population of G; users change their language to G; in the next
generation strongly depends upon the balance between z; and z;, as well as the
population of other grammars. Thus, ¢;; should be a function of abundance of
population: g;;(zo(t), z1(t), ..., zn_1(t)).

Table 5 is a sample of the () matrix which depends on one specific distribution
of the population, that is, z; = 0.375 (3 of 8), 4 = 0.250 (2 of 8), and =z = 0.375
(3 of 8) at a certain time ¢. Each value of the matrix is the result of ten times
calculation in the same way in Section 3, the distribution of the population being
kept same. In this case, if the majority decision of parameters is considered, the
expected dominant grammar in ¢ + 1 should be G(y o,1),, that is G5. Actually,
the experimental result shows that the values of ¢;5 (i = 1,4, 7) are rather higher
in Table 5. Although the expected grammar may not always appear in the next
generation, we can contend that the () matrix should depend on the distribution
of z;’s at t. This observation affects the definition of the differential equation of
population dynamics.

In this paper, we have discussed the conditions for the emergence of creole
based on a mathematical theory of the evolutionary and population dynamics.
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Our contributions are summarized as

follows. Table 5. A sample of the Q matrix

) ) which depends on a distribution of the
— First, we adopted EM algorithm, that = opulation.

is one of the standard methods to find [Go Gi G2 Gs Ga Gs Gs Gr

grammar rules for large corpora, and gi 8 8:8‘;3 8 g g:ggg 8&88 g 8
showed the actual experimental result Gz| 0 0167 0 0 0 0.800 0 0.033
on a large scale computer simulation.

— Secondly, we observed the qualitative conditions for creolization, that a new
language which had not been used by anyone in the previous generation
emerges. Our experimental results coincide with linguistic reports in the fol-
lowing two points; one is that creole tends to appear when there was no dom-
inant language in terms of population, and the other is that it emerges easier
when three or more languages contact rather than two languages do [14].

— Thirdly, we calculated the Q matrix on a specific distribution of popula-
tion over various grammars, and predicted that the values of ¢;; should be
dependent on the abundance of population: xo(t), z1(t), -, Zn_1(t).

Our future research target is to reconstruct the differential equation of popula-
tion change, which incorporates the generation-dependent () matrix.
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