
Prediction of Creole Emergence in Spatial

Language Dynamics

Makoto Nakamura1, Takashi Hashimoto2, and Satoshi Tojo1

1 School of Information Science,
Japan Advanced Institute of Science and Technology

1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan
2 School of Knowledge Science,

Japan Advanced Institute of Science and Technology
1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

{mnakamur,hash,tojo}@jaist.ac.jp

Abstract. Creole is a new born language emerging in most cases where
language contact takes place. Simulating behaviors that creole commu-
nities are formed in some environments, we could contribute to actual
proof of some linguistic theories concerning language acquisition. Thus
far, a simulation study of the emergence of creoles has been reported
in the mathematical framework. In this paper we introduce a spatial
structure to the framework. We show that local creole communities are
organized, and creolization may occur when language learners learn of-
ten from non-parental language speakers, in contrast to the non-spatial
model. The quantitative analysis of the result tells us that emergence of
local colonies at the early stage tends to induce the full creolization.

1 Introduction

Computer simulation of diachronic change in human languages has widely been
reported in the study of language evolution [1,2], where interactions among indi-
viduals affect language spoken throughout the community, dependent upon the
abilities of individuals or the learning environment. Among those simulations,
the emergence of pidgins and creoles is one of the most interesting phenomena
in language change [3,4,5].

Pidgins are simplified tentative languages spoken in multilingual communi-
ties, which come into being where people need to communicate but do not have
a language in common. On the other hand, creoles are full-fledged new languages
based on the pidgins in later generations. For example, Hawaiian Creole English
emerged among plantation workers coming from Hawaii, China, the Philippines,
Japan, Korea, Portugal, Puerto Rico and so on in the 19th century to the be-
ginning of the 20th century. Since they needed to communicate with farm own-
ers, they first formed Hawaiian pidgin based on English; later their offspring
immersed with the pidgin had developed the language to one with its own gram-
matical structure. In general, grammar of a creole is different from any contact
languages, although its vocabulary is often borrowed from them. Our goal in
this paper is to discover specific conditions under which creoles emerge.
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Thus far, we proposed a mathematical framework for the emergence of creoles
[6] based on the language dynamics equation by Nowak et al. [7], showing that
creoles become dominant under specific conditions of similarity among languages
and linguistic environment of language learners. Our purpose in the present
study is to introduce a spatial structure to our model, in order to observe self-
organization process of creole community. Especially, in this paper we compare
behaviors of the two models. A related work for introducing a spatial structure
into a mathematical model of language change has been done by Castelló et al.
[8], who have analyzed a spatial version of a mathematical framework by Abrams
et al. [9]. Different from Abrams-Strogatz’s model, our model [6] is well-defined
in terms of learning algorithm and a learning environment.

Introducing a spatial structure to a mathematical framework, we expect to
observe a process of creolization and then to obtain more precise conditions from
the model more similar to the environment where actual language phenomena
took place. We recognize this study to fill the gap between the study of multi-
agent models and mathematical models.

In Section 2, we describe the modified language dynamics model and a learning
algorithm, and in Section 3 we define a creole in population dynamics. Section 4
reports our experiments, and we conclude in Section 5.

2 Population Dynamics for the Emergence of Creole

In this section, we briefly explain how to divert a mathematical model proposed
by Nakamura et al. [6] to the one with a spatial structure.

The most remarkable point in the model of Nakamura et al. [6] is to introduce
an exposure ratio α, which determines how often language learners are exposed
to a variety of language speakers other than their parents. They modified the
learning algorithm of Nowak et al. [7], taking the exposure ratio into account to
model the emergence of creole community. Nakamura et al. [6] have shown that
a certain range of α is necessary for a creole to emerge.

2.1 Language Dynamics Equation for the Emergence of Creole

In response to the language dynamics equation by Nowak et al. [7], Nakamura
et al. [10] assumed that any language could be classified into one of a certain num-
ber (n) of grammars. Thus, the population of language speakers is distributed
to {G1 . . . Gn}. Let xi be the proportion of speakers of Gi within the total pop-
ulation. Then, the language dynamics is modeled by an equation governing the
transition of language population.

Because Nowak et al. [7] assumed that language speakers bore offspring in
proportion to their successful communication, they embedded a fitness term in
their model which determined the birth rate of each language group. The model
for creolization has excluded the biological fitness, on the assumption that in
the real world creoles did not emerge because creole speakers had more offspring
than speakers of other pre-existing languages, that is:
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dxj(t)
dt

=
n∑

i=1

qij(t)xi(t) − xj(t) . (1)

In the language dynamics equations, the similarity matrix S and the transition
matrix Q(t) play important roles: the similarity matrix S = {sij} is defined as
a probability that a sentence of Gi is accepted also by Gj . Children learn a
language in accordance with a learning algorithm, in which the accuracy varies
depending on the similarity among languages. The transition matrix Q(t) =
{qij(t)} is defined as a probability that a child of Gi speaker acquires Gj , and is
calculated based on the learning algorithm. Being different from the definition
by Nowak et al. [7], the definition of Q(t) depends on the generation parameter
t, as well as the S matrix and a learning algorithm.

2.2 Introducing Spatial Structure

In the spatial model, we use the language distribution in neighbors surrounding
each agent to calculate the local transition probability Q, by which each agent
acquires a language, while a child is exposed to the whole population in a non-
spatial model.

Hereafter, replacing xi for x
(l)
i as a population rate of Gi speakers surrounding

an agent at location l, equations are applicable to the spatial structure, too. We
calculate Q

(l)
(t) for each agent every generation.

2.3 Learning Algorithm

In some communities, a child learns language not only from his/her parents but
also from other adults, whose language may be different from the parental one.
In such a situation, the child is assumed to be exposed to other languages, and
thus may acquire the grammar most efficient in accepting multiple language
input. In order to assess how often the child is exposed to other languages, we
divide the language input into two categories: one is from his/her parents, and
the other is from other language speakers. We name the ratio of the latter to
the total amount of language input an exposure ratio α. This α is subdivided
into smaller ratios corresponding to those other languages, where each ratio is in
proportion to the population of the language speakers. An example distribution
of languages is shown in Figure 1(a). Suppose a child has parents who speak
Gp, s/he receives input sentences from Gp on the percentage of the shaded part,
αxp+(1−α), and from non-parental languages Gi(i �= p) on the percentage, αxi.

We have adopted a batch learning algorithm, which resolves Niyogi [11]’s prob-
lem regarding an unrealistic Markov structure which implies that some children
cannot learn certain kinds of language. From the viewpoint of universal gram-
mar, that all conceivable grammars of human beings are restricted to a finite
set [12], language learning is considered as a choice of a plausible grammar from
them. The following algorithm realizes such learning as: 1) In a child’s memory,
there is supposed to be a score table of grammars. 2) The child receives a sen-
tence uttered by an adult. 3) The acceptability of the sentence is tested using
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Fig. 1. The learning algorithm including the exposure ratio α

each grammar. The grammar which accepts the sentence scores one point. 4)
Steps 2) and 3) are repeated until the child receives a fixed number (w) of sen-
tences, which is regarded as sufficient for the decision of the grammar selection.
5) The child adopts the grammar with the highest score.

The child is exposed to utterances of adult speakers of each language, the
percentage of which is determined by the distribution of population and the
exposure ratio α, while the S matrix determines the acceptability of a sentence.
In Figure 1(b), we show an example where a child of G2 speaker obtains G2

after exposure to a variety of languages. The child receives sentences, which
are boxes numbered from 1 to 10. The input sentences are divided into two
sets according to the exposure ratio α. One of the sets consists of sentences
of all grammars. The number of the sentences of each language is proportional
to the population share of the language speakers. For example, the child hears
sentences 1, 4 and 5 uttered by G1 speakers. The other consists of sentences
of his/her parents. Therefore, these sentences are acceptable by a particular
grammar. Because his/her parental grammar is G2, for example, the sentences 7
to 10 are randomly chosen from the language of G2. The child counts acceptable
sentences for each grammar. The sentence 1 can be accepted by G3 as well
as G1, while it is uttered by a G1 speaker. The Venn diagram in Figure 1(b)
represents that each language shares sentences with others. In this case, because
the sentence 1 is acceptable both by G1 and by G3, the child adds 1 to both of
the counters in his/her mind.

2.4 Revised Transition Probability

Suppose that children hear sentences from adult speakers depending on the ex-
posure ratio and on the distribution of population. A probability that a child
whose parents speak Gi accepts a sentence by Gj is expressed by:
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Uij = α

n∑

k=1

skjxk + (1 − α)sij . (2)

After receiving a sufficient number of sentences for language acquisition, the
child will adopt the most plausible grammar, as estimated by counting the num-
ber of sentences accepted by each grammar. This learning algorithm is simply
represented in the following equation. Exposed to a variety of languages in pro-
portion to the population share of adult speakers, children whose parents speak
Gi will adopt Gj∗ by:

j∗ = argmax
j

{Uij} . (3)

When the children hear w sentences, a probability that a child of Gi speaker
accepts r sentences with Gj is given by a binomial distribution,

gij(r) =
(

w

r

)
(Uij)r(1 − Uij)w−r . (4)

On the other hand, a probability that the child accepts less than r sentences
with Gj is

hij(r) =
r−1∑

k=0

(
w

k

)
(Uij)k(1 − Uij)w−k . (5)

From these two probability distributions, the probability that a child of Gi

speaker accepts k sentences with Gj , while less than k − 1 sentences with the
other grammars, comes to gij(k)

∏n
l=1,l �=j hil(k). For a child of Gi speaker to

acquire Gj after hearing w sentences, Gj must be the most efficient grammar
among n grammars; viz., Gj must accept at least �w

n � sentences. Thus, the prob-
ability qij becomes the sum of the probabilities that Gj accepts w, w−1, · · · , �w

n �
sentences. Because each of the sentences is uttered by a speaker and is accepted
by at least one grammar, there must be a grammar which accepts �w

n � or more
out of w sentences. Thus, if Gj accepts less than �w

n � sentences, the child does
not acquire Gj . Therefore, qij becomes:

qij(t) =

w∑

k=�w
n �

{
gij(k)

n∏

l=1
l �=j

hil(k) + R(k, n)
}

n∑

m=1

[
w∑

k=�w
n �

{
gim(k)

n∏

l=1
l �=m

hil(k) + R(k, n)
}] , (6)

where R(k, n) is the sum total of the probabilities that the child would choose Gj

when one or more other grammars accept the same number of sentences as Gj .
When there are m candidate grammars including Gj , the probability becomes
one divided by m. The following expression is an example when n = 3.

Rij(k, 3) = 1
3{gij(k)gij2(k)gij3 (k)}

+ 1
2{gij(k)gij2(k)hij3 (k) + gij(k)hij2 (k)gij3(k)}

(j2, j3 ∈ {1, 2, 3}, j �= j2, j3, j2 �= j3)
(7)
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Fig. 2. Example of creolization ((a, b, c) = (0, 0.3, 0.4), w = 10, α = 0.7)

3 Creole in Population Dynamics

Creoles are considered as new languages. From the viewpoint of population dy-
namics, we define a creole as a transition of population of language speakers.
A creole is a language which no one spoke in the initial state, but most people
have come to speak at a stable generation. Therefore, creole is represented by
Gc such that: xc(0) = 0, xc(t) > θc, where xc(t) denotes the population share
of Gc at a convergent time t, and θc is a certain threshold to be regarded as a
dominant language. We set θc = 0.9 through the experiments.

For convenience, we have mainly observed the behavior of the model using
three grammars. The similarity matrix can be expressed as a symmetric matrix
such that:

S =

⎛

⎝
1 a b
a 1 c
b c 1

⎞

⎠ . (8)

Here, we regard G3 as a creole grammar, giving the initial condition as
(x1(0), x2(0), x3(0)) = (0.5, 0.5, 0). Therefore, the element a denotes the similar-
ity between two pre-existing languages, and b and c are the similarities between
G1 and the creole, and between G2 and the creole, respectively.

We show an example of creolization in Figure 2. The parameters were set to
(a, b, c) = (0, 0.3, 0.4), w = 10, and α = 0.7. Note that the conditions in the
parameter space for dominant creoles are limited [13].

4 Experiments and Results

The spatial structure is a toroidal 50-by-50 square grid. Each agent has 8 neigh-
bors. Each agent chooses one of three languages every generation, two of which,
G1 and G2, are pre-existing and randomly distributed with the same total num-
ber at the initial state. The remaining language, G3, is a creole, having a certain
similarity between two languages. The similarity means the probability that a
sentence uttered by a Gi speaker is accepted by Gj . In this paper, We take the
following values: (a, b, c) = (0, 0.3, 0.4), and w = 10 for the number of input
sentences.
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(a) Generation 0 (b) Generation 10 (c) Generation 50

(d) Generation 100 (e) Generation 500 (f) Generation 1552

Fig. 3. Example of the spatial dynamics (white:G1, black:G2, gray:G3; α = 0.7)

4.1 Behaviors of Spatial Dynamics

We show an example of the spatial dynamics in Figure 3; (a) Only G1 and
G2 are distributed at the initial stage. (b,c) Some local communities (hereafter
colonies) of creole are organized at the early stage. (d,e) Both G1, G2 and creole
coexist at a quasi-stable stage. (f) In this trial, the creole eventually becomes
dominant at Generation 1552. Agents surrounded by both G1 and G2 neighbors
are likely to acquire the creole. In fact, creole speakers often appear on the border
between communities. This is because the large value of α makes the agents to
be exposed to both languages, and the creole is the most efficient for accepting
input utterances from both languages.

In general, learners tend to form a colony, regardless of the languages, affected
from its neighbors during learning acquisition. However, the smaller the value of
α, the slower the forming colonies. This is because the learners are hardly affected
by neighbors, hearing their mother tongue from their parents. Note that even if
α = 0, it is possible for a learner to acquire a language other than his/her mother
tongue due to the similarity among languages. The number of input sentences is
also relevant to forming a colony. Learners hearing a lot of language input become
conservative in terms of changing his/her language. That is, once a small colony
has been formed at a generation, inhabitants in the colony come to choose the
same language as the previous generation. On the contrary, if learners choose a
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Fig. 4. Probability of dominant language in the spatial model

language with less language input, they tend to be undetermined in choosing a
language. As a result, it is difficult to form a colony.

4.2 Comparing the Two Models with and without a Spatial
Structure

We examine the probability of dominance for each language (Figure 4). Note that
the spatial model is based on a stochastic dynamics. This graph is the result of
100 runs for 1,000,000 generations at each α value. The corresponding result in
the non-spatial model is the population distribution at the stable generation,
shown in Figure 51, since the non-spatial model is based on the deterministic
dynamics. This parameter set makes creole dominant at the range 0.1 � α �
0.8. In the spatial model, the probability that the creole is dominant gradually
decreases from α > 0.3, and it becomes 0.3 around α > 0.8.

In general, the larger the value of α, the more prominent the transition of
population becomes, and in some cases, the transition leads to creolization. In
Figure 5, however, the dominant language changes between the creole and G2 at
α � 0.8, and it is not always true that creoles are more likely to become dominant
at the larger value of α (See [6]). Since children of a G1 speaker become more
exposed to G2 in the larger value of α, it is possible for them to acquire G2

directly instead of the creole, and vice versa. Therefore, the population of the
creole remains small and the children of creole speakers are likely to acquire G2

rather than G1. Thus, the dominant language changes to G2 at α � 0.82.
These differences between the results shown in Figure 4 and Figure 5 can be

understood by considering local interaction and stochastic dynamics. The pre-
existing language may be able to form a colony due to stochasticity. Once a
colony with certain size is formed, agents in the colony are surrounded by the
1 In other words, the result of the population distribution at the stable generation in

Figure 2 is plotted at α = 0.7 in Figure 5.
2 In the experiments, we have chosen this parameter set with which creoles tend to

appear in the wide range of α.
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Fig. 5. Stable population distribution in the non-spatial model

same language and the exposure ratio effectively comes to α = 0. This situation
is hard for the creole speakers to organize a colony. Thus, the probability to be
dominant is restrained by the pre-existing language at the middle-high range of
α. At the higher range of α, the creole can organize a colony at the early stage
with certain ratio through random migration. The colony can grow to the whole
space.

4.3 Quantitative Analysis in Forming Creole Communities

Observing behaviors of the spatial dynamics, we realized that forming creole
colonies at early stages plays a key role for creolization. Large creole colonies are
difficult to vanish and are able to encroach upon a territory of other languages.
In other words, if creole speakers fail to form a certain size of colony before the
quasi-stable stage, it is difficult for creole to become dominant. Therefore, in
this section we try to predict whether creolization takes place or not at the early
stage, observing creole colonies quantitatively.

For a quantitative description of the emergence and dynamics of linguistic
spatial domains we use the ensemble average interface density 〈ρ〉 as an order
parameter, following a precedent work [8]. This is defined as the density of links
joining nodes in the network which are in different states [14]. For associating
with the population distribution, we use the inverse value as 〈ρ〉 = 〈1 − ρ〉.
The ensemble average, indicated as 〈·〉, denotes average over realizations of the
stochastic dynamics starting from different random distributions of initial condi-
tions. As the time proceeds, the increase of ρ from its initial value describes the
ordering dynamics, where linguistic spatial domains, in which agents are in the
same state, grow in time. The maximum value ρ = 1 corresponds to a stationary
configuration in which all the agents belong to the same linguistic community.
In addition, we defined ρi as the density of Gi speakers’ neighbors which are in
the same states.

We analyzed difference of the behaviors at the early stage among 100 trials
every α, shown in Figure 4, classifying the trials into three, each of which denotes
the corresponding language eventually becomes dominant. We recognize an early
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Fig. 6. Difference of xi and 〈ρi〉 at the early stage (x3 � 0.2) between results in which
G1, G2, and G3 eventually become dominant respectively

stage as the earliest generation at which x3(t) exceeds 0.2 in each trial. Figure 6
shows the difference of the average 〈ρ〉, 〈ρi〉, and xi every α at the early stage
between G1, G2 and G3 becoming dominant at the stable generation. At some
values of α in Figure 6(a) and (b), the values of x3 are partially plotted less
than 0.2, because in some trials x3 never exceeded 0.2. In this case, we took
the values at the stable generation for the average calculation. At some values
of α where no data are plotted, there was no trial in which the corresponding
language became dominant. Therefore, Figure 6 corresponds to the frequency
distribution of dominance, shown in Figure 4.

In Figure 6, we can see that 〈ρ3〉 is lower than other densities at any value of
α. Note that the average density of Gi denoted by 〈ρi〉 is affected not only by
a degree of forming colonies but also by its population3. Therefore, it is natural
that only 20 percent of the population obtains the density smaller than others.

As was mentioned in Section 4.2, creolization takes place even at the large
value of α (0.8 � α), while G2 dominates the community in the non-spatial
model (Figure 5). We can see that the values of 〈ρ3〉 in Figure 6(c) are higher
than that of (a) and (b). This tendency can be seen with other parameters of w

3 Suppose there is only a colony of Gi forming a square in the space. If the size of the
colony is 5-by-5, 〈ρi〉 = 0.72, while it is 0.855 for a 10-by-10 colony.
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and S. Therefore, we consider that forming creole colonies at the early stage is
important for full creolization.

On the contrary, at small values of α, the values of 〈ρ3〉 are also small. Because
the exposure ratio α determines a probability that a language learner commu-
nicates with its neighbors, forming a colony with neighbors is hardly effective in
creolization at the small value of α. Rather, the creole becomes dominant due
to an advantageous parameter set of w, S, and α. It is clear as evidenced by the
result of the non-spatial model.

5 Conclusion

In this paper, we introduced a spatial structure to a mathematical framework
of creolization. Observing this process, we discovered that forming colonies was
an important factor. We showed that in the spatial language dynamics, creole
could be dominant even in the high exposure ratio, different from the non-spatial
model.

The quantitative analysis implies that there is a condition of creolization
in terms of a combination between the ensemble average density 〈ρ3〉 and the
exposure ration α. Through the experiments, we can conclude as follows:

– Creole is easy to dominate the community in a parameter set where creoliza-
tion takes place in the non-spatial model, regardless of the value of α.

– The value of 〈ρ3〉 is probably useful for the prediction of creolization at the
early stage at the large values of α.

We need to analyze the behavior through further experiments. Although we
used a toroidal 50-by-50 square grid for a spatial structure, it can be expanded
to more complicated social networks. There is yet room for improvement in some
settings including the initial population distribution.
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