
Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

What is “Concerns”?
• Concerns

– A concern is anything that is of interest to a stakeholder, whether an end user, project
sponsor, or developer

– A concern can be a functional requirement, a nonfunctional requirement(NFR), or a
design constraint on the system.

• Separation of Concerns
– Breaking down a problem into smaller parts is called “separation of concerns” in

computer science.
– Ideally, we want to be able to cleanly separate the different concerns into modules of

some kind and explore and develop each in isolation, one at a time.
• Crosscutting Concerns

– Although some concerns can be realized by distinct and separate components(class
package, service), in general you can find many concerns for which components are
not adequate. These are known as crosscutting concerns – concerns that impact
multiple components.

– Different kinds of crosscutting concerns
• Concerns to meet FRs: use case
• Infrastructure concerns to meet NFRs: logging, distribution, transaction

management JAIST Koichiro Ochimizu

Two types of crosscutting concerns
discussed in the textbook !

• Inability to Keep Peers Separate
– “Tangling” and “Scattering”

• Inability to Keep Extension Separate

Reserve Room

Check In
Customer

Check Out
Customer

Customer
Screen

Reserve Room
Reservation

Check In

Check Out

Staff Screen Room

Concerns Components

glue code

Base Extension

Reserve Room

Waiting List

<<extend>>

Reserve Room

Handle Waiting List

JAIST Koichiro Ochimizu

Attacking the Problem with Aspects
• Aspect Orientation

– Aspect orientation is a set of technologies aimed at
providing better separation of crosscutting concerns.

• 1997
– Research in aspect orientation has been going on for a

relatively long time, but it started gaining a lot of recognition
from mainstream observers in 1997 when Gregor Kiczales
from Xerox Parc presented his keynote presentation on
aspect-oriented programming(AOP) at OOPSLA’97

• 2001
– AspectJ : intertype declaration, advices, pointcuts,

joinpoints JAIST Koichiro Ochimizu

There are three basic concepts of
AOP

They are basic concepts of AOSD
too

• Intertype declaration
• Advices
• Pointcuts

JAIST Koichiro Ochimizu

Intertype declarations
allow us to compose new features (attributes, operations and relationships) into existing classes

1. public aspect Logging{
2. public void Room.extractData(){
3. // code
4. }

5. }

Room

<<aspect>>
Logging

extractData()

operations

class extension

This operation tells
aspect composition
to add extraData()
into Room class.

JAIST Koichiro Ochimizu

Advices
provide the means to extend existing operations at extension points designed by pointcuts in AOP

• an operations extension logData to the ReserveRoomHandler class
makeReservation() operation before the execution point when a call is made to
Room.retrieve(),

Public aspect Logging {
1. before () :
2. withincode(void ReservationRoomHandler.makeReservation())
3. && call(void Room.retrieve()) {
4. // code
5. ｝

6. ｝

ReserveRoomHandler

<<aspect>>
Logging

makeReservation(){ before(call(Room.retrieve())) logData}
operations

class extension

Change the behavior of Room. retrieve or makeReservation
(actually change joinpoint)

JAIST Koichiro Ochimizu

Pointcuts
• an operation extension logData
• to an existing operation within the ReserveRoomHandler class(This is parameterized

as <roomAccessOP>, and it establishes the structual context of the operation extension.
• before a call to a Room operation(This is parameterized as <roomCall> and it

establishes the behavioral context of the operation extension

ReserveRoomHandler

<<aspect>>
Logging

<roomAccessOp>(){ before (<roomCall>) logData}
operations

class extension

pointcuts
roomAccessOp = *(..) name given to structural context
roomCall = call(Room.*(..)) name given to behavioral context

JAIST Koichiro Ochimizu

Check Out Customer removeCustomer() payBill()

Check In Customer assignCustomer() consume() createBill()

Reserve Room checkAvailability() create()

Keeping Peers Separate with Aspects

Room Reservation Payment

1. public aspect CheckInCustomer {
2. …
3. public void Room.assignCustomer() { //code to check in costomer}
4. public void Reservation.consume() { //code to consume reservation}
5. public void Payment.createBill() { //code to generate an initial outstanding bill}
6. }

To check in a customer, you assign him to a room and consume his reservation. At the
same time, you create an initial bill for the customer.
These functionalities cut across classes in the system

JAIST Koichiro Ochimizu

Keeping Extensions Separate with Aspects
1. Identify the extension points in the existing operation in which the behavior needs

to be executed.
2. Define the additional behavior that will be used to extend the behavior at these

extension points.

makeReservation

Create
Reservation

No Rooms
[N]

[Y]

Rooms
Available ?

① ②

makeReservation

Create
Reservation

Put customer on
Waiting List

[N]

[Y]

[N]

[Y]

Access
Granted ? Authorization Error

①

②

makeReservation modified with
authorization and waiting list.

makeReservation operation

Rooms
Available ?

JAIST Koichiro Ochimizu

Examples of Source Code for the second case

• Simplified Source Code for ReservationRoomHandle
1. Class ReserveRoomHandler{
2. …
3. public void makeReservation() throws NoRoomException {
4. if(theRoom.getQuantityAvailable() <=0) { throw new NoRoomException(); }
5. createReservation();
6. }
7. …
8. }

• Simplified Source Code to Handle Waiting List
1. aspect HandleWaitingList {
2. …
3. pointcut makingReservation();
4. execution (void ReserveRoomHandler.makeReservation());
5. …
6. after throwing (NoRoomException e) ; makingReservation() {
7. //code to add customer to waiting list
8. }
9. }

JAIST Koichiro Ochimizu

Use Case Slice
• Use-case slice:

Each use-case slice keeps the specifics of a use-case realization in one
model (e.g. analysis model, design model etc.). An use-case slice contains the
specifics of a model in a single package. A use-case slice of the analysis or
design model contains classes and aspects of classes specific to a use case. It
also contains the collaboration that describes the realization of the use case un
terms of interaction, communication, class diagrams, and so on
• Non-use-case –specific slice:

A use-case slice that adds only classes into the element structure of the
system. A non-use-case-specific slice does not contain any aspects.
• Use-case Module:

The localization of everything about a use case within a single package. It
contains many use-case slices.

JAIST Koichiro Ochimizu

Use-Case Modules Cut Across Models

use-case
specification

slice

Use-Case Module

Use-case Analysis Design Model Implementation Model
Model Model

analysis
slice design slice Implementation

slice

test design
slice

Test
Implementation

slice

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>><<trace>>

<<trace>>

JAIST Koichiro Ochimizu

Composing peer use-case realization with use-case slices

Reserve Room

Check In Customer

Check Out Customer

“ReserveRoom” use-case slice

“CheckInCustomer” use-case slice

Use case Extension of class behavior specific to use-case realization

Reserve Room + Check
In Customer + Check
Out Customer

Customer
Screen

Staff
Screen

Reserve
Room

Check In Check Out Reservation Room

“CheckOutCustomer” use-case slice

JAIST Koichiro Ochimizu

Composing extension and base use-case realizations

Handle
Waiting List

Use Cases Extension of class behaviors realizing use cases

Reserve Room +
Handle Waiting
List

Reserve
Room

Reservation Room Waiting
List

Operation extensions added to locations
defined by pointcuts

Reserve Room

“ReserveRoom” use-case slice

“HandleWaitingList” use-case slice

Customer
Screen JAIST Koichiro Ochimizu

Aspect Definition cooperating with
use-case driven software development

Combining Aspect-orientation with Use-case driven approach
• Modeling and Capturing Concerns with Use Cases

– Capturing Application Use Cases
– Capturing Infrastructure Use Cases

• Keeping Concerns Separate with Use-Case Modules
– Keeping Peer Use-Case Realizations Separate with Aspects
– Keeping Extensions Separate with Pointcuts
– Building Systems with Use-Case Modules

• Establishing an Architecture Based on Use Case and Aspect
– Road to a Resilient Architecture
– Separating Functional Requirements with Application Peer Use Cases
– Separating Nonfunctional Requirements with Infrastructure Use Cases
– Separating Platform Specifics with Platform-Specific Use-Case Slice
– Separating Tests with Use-Case Test Slices

JAIST Koichiro Ochimizu

Capturing Concerns with Use Cases
• Understanding Stakeholder Concerns

– Understanding the Problem Domain(Domain Model)
– Eliciting System Features

• Capturing Application Use Cases
– Identifying Use-Case Variability
– Handling Use-Case Variability
– Dealing with Extension Use Cases

• Capturing Infrastructure Use Cases
– The “Perform Transaction” Use Case

JAIST Koichiro Ochimizu

Domain classes for
the Hotel Management System

Customer

Promotion

Reservation

Bill

Room

JAIST Koichiro Ochimizu

Key Features of Hotel Management System
1. A customer can make a reservation for a hotel room.
2. Counter staffs can check in and check out customers.
3. Hotel management can define standard room rates and promotional offers

when room rates are reduced for limited periods.
4. Members can accumulate loyalty points and use them for any payment.
5. There will be a waiting list in case the rooms are fully reserved.
6. Different types of customer(individual, corporate, members) must be

handled.
7. The room reservation can be over different channels, such as through

agents, internet, or via phone.
8. The system has to be Web-enabled.
9. The system will store all records in a relational databases.
10. For audit purposes, all transactions in the system have to be logged.
11. Only authorized personnel can perform their functions.
12. To promote ease of use, the system will track the users’ preferences and

use them as default.
13. All retrieval of record should take no longer than 2 seconds.

JAIST Koichiro Ochimizu

Application use cases for Hotel Management System

Reserve Room

Handle Waiting List

Earn and Redeem
Credits

Establish
Room Rates

<<extend>>

Hotel
Counter

Staff

Customer

Members

Hotel Management

Register Members

Check In Customer

Check Out Customer

<<extend>>

Establish Promotional Rates

<<extend>>

JAIST Koichiro Ochimizu

Identifying and Handling
Use-Case Variability

(this is important for test cases design)
reservation periods

customer types

reservation channel

single period

multiple periods

recurring periods

individual corporate

Internet
agent

phone

JAIST Koichiro Ochimizu

Dealing with Extension Use Cases

Earn and Redeem Credits

Flows
{basic} View Credit Balance
{basic} Redeem Credits
{alt} Make Payment with Credits{around MakingPayment}
{alt} Earn Credits{after MakingPayment}

Extension Pointscuts
MakingPayment = Check Out Customer. Collect Payment

JAIST Koichiro Ochimizu

Capturing and Structuring
Infrastructure Use Cases

< Actor>

Perform
Transaction

Handle
Authorization

Audit Transactions

Track Preferences

<<extend>>

<<extend>>

<<extend>>

JAIST Koichiro Ochimizu

Keeping Concerns
Separate with Use-Case Modules

• Keeping Peer Use-Case Realizations Separate with Aspects
– Realizing Peer Use Cases by Collaborations
– Overlap between Peer Use-Case
– Keeping Use-Case Specifics Separate
– Composing Use-Case-Specific Classes
– Dealing with Overlap

• Keeping Extensions Separate with Pointcuts
– Realizing Extension Use Cases
– Keeping Modularity of Extension Use-Case

• Building Systems with Use-Case Modules
– Design and Implementation Model
– Use-Case Modules Cut Across Models
– A Use-Case Module Contains Use-Case Slices JAIST Koichiro Ochimizu

Peer Use Cases

Reserve Room

Hotel
Counter

Staff

Customer

Check In Customer

JAIST Koichiro Ochimizu

Use Case Realization by a Collaboration

Reserve Room Reserve Room

Realization Relationship

External Perspectives of System Internal Perspective of System

Collaboration

Reserve Room

Room

operations
updateAvailability()
retrieve()

resource

role

room class playing
role of resource

class extension needed
to fulfill the role

Reserve Room

Room
operations
updateAvailability()
retrieve()

ReserveRoomHandler

operations
makeReservation()

resourcecontroller

JAIST Koichiro Ochimizu

Overlap between Peer Use-Case

Reserve Room

Room
operaions
updateAvailability()
retrieve()

ReserveRoomHandler

operations
makeReservation()

resourcecontroller

Check In
Customer

Room
operations
assignLodger()
retrieve()

CheckInHandler

operations
checkIn()

resourcecontroller

JAIST Koichiro Ochimizu

Keeping Use-Case Specifics Separate
Preserving use-case modularity with use-case slices and aspects

<<use case slice>>

Reserve Room

Reserve Room

ReserveRoomHandler

operations
makeReservation()

Room

operations
updateAvailability()

Class Extensions

<<aspect>>
ReserveRoom

JAIST Koichiro Ochimizu

Composing Use-Case-Specifics Classes
overlaying classes within use-case slice onto design element structure

application
layer

domain layer

Class Extensions

<<use case slice>>

compose

compose

Need to identify the class uniquely in the design element structure. This is achieved by giving a fully
qualified name in the design element structure. A compiler would compose the content in the use-case slice.

design element structure use-case slice

JAIST Koichiro Ochimizu

Overlaying classes within use-case slice
onto design element structure

class

<<use case slice>>

ReserveRoomHandler class(originally
empty) in design element structure

collaboration

aspect

ReserveRoomHandler class
in use-case slice

design element structure use-case slice

application
layer

domain layer

compose

JAIST Koichiro Ochimizu

Overlaying classes within use-case slice
onto design element structure

class

<<use case slice>>

Existing Room class
in design element structure

collaboration

aspect

Room class extension to be overlaid
onto design element structure

design element structure use-case slice

application
layer

domain layer compose

JAIST Koichiro Ochimizu

Dealing with Overlap

Reserve Room Check Room Details
<<include>>

<<use case slice>>
Reserve Room

Reserve Room

ReserveRoom
Handler

makeReserva
tion()

Room
updateAvail
ability()

<<aspect>>
ReserveRoom

<<use case slice>>
Check Room Details

Check
Room Details

checkRoom
Handler

retrieve
Room()

Room

retrieve()

<<aspect>>
CheckRoomDetail

<<include>>

The retrieve() operation in the Room class is used in both “Reserve Room”
and “Check In Customer” use-case slices.

JAIST Koichiro Ochimizu

Keeping Extensions Separate with Pointcuts
Logging use case and Roles in Logging extension

Logging

LogStreamReserveRoomHandler

loggertarget

Reserve Room

Check In Customer

<<extend>>

Customer Logging

Hotel
Counter

Staff

<<extend>>

JAIST Koichiro Ochimizu

Logging use-case slice with pointcut compartment

<<use case slice>>

Logging

Logging

LogStream
log()

ReserveRoomHandler
operations
makeReservation(){after call
(Room.retrieve()) logData}

Class Extensions

<<aspect>>
Loging

<<use case slice>>

Logging

Logging

LogStream
log() ReserveRoomHandler

operations
makeReservation(){after
(<roomCall>) logData}

Class Extensions

<<aspect>>
Logging

pointcuts
roomCall = call(Room.retrieve())

JAIST Koichiro Ochimizu

Design and Implementation Models

• To describe platform specifics, the design model must contain
more constructs and, hence, more structures than the analysis
model. It contains the following structures.

• Deployment structure
– nodes and links

• Process structure
– processes and threads

• Design element structure
– Design classes organized into layers, subsystem, packages

• Use-case design structure
– The use-case structure runs orthogonally across the design element

structure. It comprises use-case slices, aspects, class extensions and so on.
JAIST Koichiro Ochimizu

Preserving the structure of analysis model
in the design model

Platform-
Independent

Structure

Minimal
Design

Part

Analysis Model Design Model

Platform-
Specific

Part

<<trace>>

Stereotyped design classes
JAIST Koichiro Ochimizu

Use-Case Modules Cut Across Models

use-case
specification

slice

Use-Case Module

Use-case Analysis Design Model Implementation Model
Model Model

analysis
slice design slice Implementation

slice

test design
slice

Test
Implementation

slice

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>>

<<trace>><<trace>>

<<trace>>

JAIST Koichiro Ochimizu

Deriving use-case-module relationships from use cases

<<use case module>>
Reserve Facility

<<use case module>>
Handle Waiting List

<<use case module>>
Reserve Room

<<use case module>>
Check Room Details

<<extend>>
<<generalize>>

<<include>>

Composing use-case module

<<use case module>>
Reserve Room <<use case module>>

Handle Waiting List

<<use case module>>
build1

<<use case module>>
Check In Customer

<<merge>><<merge>>

<<merge>>

Reserve
Room

Reserve Facility

Handle
Waiting List

Check Room
Details

<<include>>

<<extend>>

JAIST Koichiro Ochimizu

What is a Good Architecture?
• Separating Functional Requirements

– Functional requirements address different end-user concerns and will
evolve separately

• Separating Nonfunctional from Functional
Requirements
– Nonfunctional requirements usually specify the desired quality attributes

of the system. These are provided by some infrastructure mechanisms.

• Separating Platform Specifics
– Even for a single infrastructure mechanism such as authorization, you still

have many technologies(e.g. through HTTP cookies, session identifiers,
etc.) to choose from. These technologies are often platform- and vendor-
specific. Thus we need to keep platform specifics separate.

• Separating Tests from the Units Being Tested
– As part of implementing a test, you must perform some control and

instrumentation(e.g. debugging, tracing, logging, etc.) . Such control and
instrumentation behavior have to be removed after the test is conducted.

JAIST Koichiro Ochimizu

Platform-Independent Structure
• Element Structure: identifies where elements of the system are

located in the element namespace
– Layer: used to group software elements that are on the same

level of abstraction
• Application Layer: contains elements that realize workflows

in the use cases supporting the primary actors of the system
• Domain Layer: contains elements representing significant

domain concepts

Customer
Application

Reservation
Management Room Management

Counter Staff
Application

Management
Application

Application layer

Domain layer

Reusability is greater Initial layers and packages in the element structure
JAIST Koichiro Ochimizu

Use-case structure

<<use case slice>>
Check Out Customer

<<non-uc specific slice>>

Hotel Reservation
<<use case slice>>

Check In Cusomer

<<extend>>

<<extend>>

<<extend>>

<<non-uc specific slice>>

Customer Application

<<non-uc specific slice>>

Counter Application

<<use case slice>>
Reserve Room

Non-Use-Case-Specific Slices

Use-Cases Slices
JAIST Koichiro Ochimizu

Deployment structure
for Hotel Management System design model

: Customer

: Hotel
Counter
Staff

: Hotel
Management

: Phone
Access

Submit Request

: Customer
PC

: Staff PC

: Staff PC

: Application
Server

Handle Request

: Database

Access Data

HTML HTTP

RMI

JDBC

SQLRMI

RMI

Java Swing,
AspectJ

Java Swing,
AspectJ

J2EE,
AspectJ

Submit Request

Submit Request

Submit Request

Handle Request

Handle Request

Handle Request

JAIST Koichiro Ochimizu

Process structure
for Hotel Management System design model

:
Customer

: Hotel

Counter

Staff

<<node>>
CustomerPC

<<process>>
Browser

<<node>>
StaffPC

<<process>>
Thick Client

<<node>>
Application Server

<<process>>
Web Container

<<process>>
EJBContainner

HTTP

RMI

RMI <<node>>
Database Server

<<process>>
Relational
Database

JDBC

JAIST Koichiro Ochimizu

<<use case slice>>

Minimal
Use-Case Design

Use-case design slice
with platform specifics kept separate

<<use case slice>>
Use-Case Design Slice

<<use case slice>>

Use-Case Presentation

<<use case slice>>

Use-Case Persistence

<<use case slice>>

Use-Case
Distribution

<<extend>>

<<extend>>

<<extend>>

JAIST Koichiro Ochimizu

