
Contents(1)
• Goal and Scope
• Basic Concepts on OOT

– Basic Concepts to represent the world
– Basic Concepts for Reuse
– Information Hiding Principle and Java Program
– Superiority of OOT

• Modeling Techniques
– Static Model: Class and Association
– Dynamic Model: State Machine
– Dynamic Model: Interaction Diagram
– Concurrency Description: Active Object and Multi-thread

Programming
– Outline of UML2.0

JAIST Koichiro Ochimizu

Specific Features of Real-time Systems

• Timeliness is important. The system performs its
function within specified time limits.

• Reactive. The system is continuously responding to
events from the external environment that “drives” the
execution of the system.

• Concurrently executing threads of control, where
different parts of the software run in parallel.

• Very high requirements on most of the nonfunctional
requirements such as reliability, fault tolerance, and
performance.

• Not deterministic

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Basic Concepts for real-time
system modeling

• time requirement
• asynchronous event handling
• communication
• concurrency

– process, thread

• synchronization

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

Concurrency in Object-Orientation
• Explicit concurrency model

– Explicit concurrency model describes concurrency separately from the objects by
defining processes at an early stage of analysis, and then treating processes and
objects as separate modeling entities. The system is decomposed into a number of
processes, and each process is internally modeled as an object-oriented system to
design the internal structure.

• Implicit concurrency model
– Implicit concurrency model delay the design of concurrency. The system is modeled

as objects, where in an early analysis, all objects are considered to have their own
execution threads; that is, be active objects. Gradually, through architecture and
detailed design, the ideal analysis models are mapped onto an implementation with
the support of services from the underlying real-time operating system.

• UML can support both
– It has better support for the implicit concurrency model. Active classes,

asynchronous communication, and synchronization can be modeled in early phases
and gradually be translated into the services and capabilities of the implementation
environment.

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Active Class and Object

An active class is a one that owns an execution thread and
can initiate control activity

Active Class Active Object

<<Active Class>
Communication

Supervisor

aninstance :
Communication

Supervisor

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.

UML2.0

JAIST Koichiro Ochimizu

Thread of Control

• Thread: Thread of control
– A sequence of control transfer in a program

• Multi Threads
– Multiple threads exist together in a program

and they can run concurrently

S. Oaks, H. Wong, “Java Threads”, O’REILLY, 1997.JAIST Koichiro Ochimizu

• public class OurClass {
• public void run() {
• for(int i = 0; i < 100; i++) {
• System.out.println(“Hello”);
• }
• }
• }
Import java.applet.Applet;
public class OurApplet extends Applet{
public void init() {

ourClass oc = new OurClass();
oc.run();

}
}

The run() method that
writes a string 100
times to standard output
is defined in OurClass

This example simply
shows a method
invocation as shown in
the left figure.Execution of Applet thread

Applet executes init()

Applet executes run()

t

Thread using Thread class

Applet thread works
by executing run()
method in Applet

S. Oaks, H. Wong, “Java Threads”, O’REILLY, 1997.JAIST Koichiro Ochimizu

Execute run() method of OurClass
concurrently with init() or the other

Applet methods
• public class OurClass extends Thread{
• public void run() {
• for(int i = 0; i < 100; i++) {
• System.out.println(“Hello”);
• ｝ ｝｝

Import java.applet.Applet;
public class OurApplet extends Applet{
public void init() {

ourClass oc = new OurClass();
oc.start();

}
}

Implementation of
start() method is in a
Thread class or its
super class

start() method
invokes run() method
directly or indirectly.

start() method creates
the new thread of
control

S. Oaks, H. Wong, “Java Threads”, O’REILLY, 1997.JAIST Koichiro Ochimizu

t

Applet thread executes the
other task

Applet executes init() method

Applet executes internal task
thread

Applet executes the start()
method

Applet executes its run()
method

stop

S. Oaks, H. Wong, “Java Threads”, O’REILLY, 1997.

Execute run() method of OurClass
concurrently with init() or the

other Applet methods

JAIST Koichiro Ochimizu

Run-time environment view of threads

channel

main
memory

CPU

pc

channel

register

run() {

}

thread 1

thread 2

create
restore

Running

Readysave

Waiting or Ready

Ready

restore

Waiting or Ready

Running

restore
Running

Waiting or Ready

context

JAIST Koichiro Ochimizu

Methods of the Thread class

• Thread() ：creates a thread object using default values
for all option

• void run() : the method that is executed by the newly
created thread. It can be considered as a main() of the
newly created thread. This method should be over-ridded
by the code that is executed by the new thread.

• void start() : creates a new thread and executes run()
method that is defined in this thread class

new creation
of an instance

sleep sleep

start enqueue it to
the thread queue

run
public void run() {

if (target != null) {
target.run();

}}
Default run() method of a
Thread object

S. Oaks, H. Wong, “Java Threads”, O’REILLY, 1997.JAIST Koichiro Ochimizu

States of an active object

Ready WaitingRunning
Schedule Making Call

Terminate
Create

Running time > 50 msec

Result of call

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

• public interface Runnable{
• public abstract void run();
• }
• public class OurClass implements Runnable{
• public void run() {
• for(int i = 0; i < 100; i++) {
• System.out.println(“Hellow”);
• } }}

S. Oaks, H. Wong, “Java Threads”, O’REILLY, 1997.

Thread using Runnable Interface

Runnable interface only have
a run() method

Import java.applet.Applet;
public class OurApplet extends Applet{
public void init() {

Runnable ot = new OurClass();
Thread th = new Thread(ot);

th.start();
}}

JAIST Koichiro Ochimizu

Synchronization
• Concurrent processes interact with each other

– to exchange data
– to share resources, referring variables that show the status of the resource

• It cause the occurrence of time-dependent errors
• Synchronization mechanisms are required to avoid errors.

– Mutual exclusion: operation A and operation B should be executed
exclusively

– Message buffer: A producer of data can not send data more than the finite
capacity of a buffer. A consumer of data can not receive data before it is
produced.

– Exchange of timing signals: semaphore invariance
– 0 <= r(v) <= s(v) + c(v) <= r(v)＋ max(integer)
– s(v): number of signals sent, r(v): number of signals received, c(v): initial

value of signals, max: maximum countable number of a counter

JAIST Koichiro Ochimizu

Problems without
synchronization

• The problems that can occur if synchronization
is not properly handled
– incorrect shared access: use mutual exclusion between

the thread
– inefficient resource usage: avoid busy-wait
– dead locks: detection, protection, resolution
– starvation: thread scheduling

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

Message Buffer

The position to be
written next

The position to
be read next

empty

full

synchronization rule

(1) A consumer can not receive the message before the message is sent

0 <= r < s

(2) A producer can not put the new message into the position before the message In the
position is read

0 <= s - r < max

The pointer P can not pass the pointer C and the pointer C can not pass the pointer

P (a producer)
C (a consumer)

JAIST Koichiro Ochimizu

Synchronization Supports in UML

• sequential
– The class/operation is intended only for use in a single thread of

control
• guarded

– The class/operation will work in the presence of multiple threads
of control. The threads normally have to lock the object/operation
before using it, and unlock it afterward.

• synchronized
– The class/operation will work in the presence of multiple threads

of control; the class itself handles this. Operation can be declared
as synchronized.

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Basic Mechanisms for Modeling
Real-time Systems in UML

- house alarm system -
• Time: time specifications and constraints are best defined in

sequence diagrams
• Concurrency: is described as active classes
• Asynchronous event: asynchronous message
• Synchronization: can be described either as properties of

classes or operations(concurrency properties) or as
classes/stereotypes that define mechanism such as a semaphore,
monitor, or critical region.

• Distribution: Thread deployed in a distributed system are
described in a deployment diagram.

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Sensors
<<Active Class>>

Sensor
{abstract}

＋id : Address
SelfTest()
Activate()

DeActivate()

Photo Cell
Sensor

DevicSpecific
Configuration

parameters
SelfTest()
Activate()

Deactivate()

Heat
Sensor

DevicSpecific
Configuration

parameters
SelfTest()
Activate()

Deactivate()

Sound
Sensor

DevicSpecific
Configuration

parameters
SelfTest()
Activate()

Deactivate()

Messages sent
from a sensor
device is ACK
or NAK or an
alarm signal

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

Alarms
<<ＡｃｔｉｖｅＣｌａｓｓ>>

Alarm
＋id : Address

SelfTest()
Ｔｒｉｇｇｅｒ()
TurnOff()

Phone
Alarm

DevicSpecific
Configuration

parameters
SelfTest()
Ｔｒｉｇｇｅｒ()
TurnOff()

Light
Alarm

DevicSpecific
Configuration

parameters
SelfTest()
Ｔｒｉｇｇｅｒ()
TurnOff()

Sound
Alarm

DevicSpecific
Configuration

parameters
SelfTest()
Ｔｒｉｇｇｅｒ()
TurnOff()

Messages sent
from an alarm
device is ACK

or NAK

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

A hierarchy of
signal classes

<<signal>>
Signal

{abstract}
timeSent: Time

sender: ObjectID

<<signal>>
Trigger

<<signal>>
ACK

<<signal>>
NAK

<<signal>>
Alarm

<<signal>>
Turnoff

<<signal>>
General Signals

{abstract}

<<signal>>
Sensor Signals

{abstract}

<<signal>>
Alarm Signals

{abstract}

<<signal>>
Error

<<signal>>
Activate

<<signal>>
Deactivate

<<signal>>
Heartbeat

<<signal>>
SelfTest

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Class diagram

Supervisor

Sound
Alarm

Log

LCD Display
Wrapper

Keyboard
Handler
Wrapper

System Handler

Cell Handler

Sensor

Alarm

1..*

1..*

<<persistent>>
Cell

Configuration
Information

<<persistent>>
System

Configuration
Information

1

1
1

1

1 1

1..*

1..*

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

Collaboration diagram

：Supervisor

：Sound
Alarm

：Log

：System Handler

:Cell
Handler

:Photo Cell
Sensor

1. Alarm

:Phone
Alarm

:Sound
Alarm

2a. Trigger2b. Trigger

2c. Alarm2c.1
Store
(Date,
Time,
Cell,
Sensor)

2c.2 Trigger

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Sequence diagram
:System
Handler

:Cell
Handler :Sensor :Alarm

:Cell
Configuration
Information

Read Configuration

Config info returned

Activate

Activate

SelfTest

SelfTest

ACK

ACK

ACK
ACK

A

B
B - A < 5 sec

Repeat
for each
installed
alarm
and
sensor

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

State diagram
Activation Phase

Performing
Alarm

SelfTest

Performing
Sensor

SelfTest

Activating
sensor
device

Creating
device list

Initiating
Thread loop

System
Activated

Activation
Failure

/ send ACK

/ send
ACK

SelfTest

SelfTest
Activate
Command
/Send ACK

create
List
built

success

NAK NAK

NAK

Alarms

Sensors

Cell Handler

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Control flows are divided into concurrent threads that
run in parallel and later become synchronized again

Activating
Sensors

Activating
Alarms

Initiating
Cell Handler

System
Inactive

System
Activated

Activation
Failure

“Activate System”
command

/ Green light on

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

The run operation defined for the active Cell Handler class

Waiting for
Signal

Documented
in separate

activity
diagrams

Report to System

Alarm(to system handler)

Heartbeat(to system handler)

Trigger
Alarm

Order time-out signal from real-time OS

Alarm Activate Deactivate Time-out

Activate
Message
Handling

Deactivate
Message
Handling

Time-out
Message
Handling

Trigger
Alarm A

Trigger
Alarm B

Trigger
Alarm X

H.E. Eriksson and M. Penker,

“UML Toolkit” John Wiley & Sons, Inc.

JAIST Koichiro Ochimizu

The deployment diagram
for the house alarm system

<<Thread>>
Cell

Handler

<<Thread>>
Alarm

<<Thread>>
Sensor

<<Thread>>
Alarm
System
Handler

User Panel

Alarm

1 1
1

1

1..*

1..*

Sensor

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

UML notation

Node
A physical element that exists
at run time and that represents
a computational resource,
generally having at least some
memory and, often times,
processing capability

ATM
Data

Server

G.Booch, J.Rumbaugh, I. Jacobson , ”The Unified Modeling Language User
Guide”, Addison Wesley, 1999.

JAIST Koichiro Ochimizu

Node

Bill’s Machine:
Dell

Pentium 466
MMX

node type an instance

Dell
Pentium 466

MMX

<<Printer>>
HP LaserJet

5MP

<<CarController>>
SAAB 9-5
Navigator

<<Router>>
Cisco Router

X2000

Device nodes and possible stereotype

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Communication Association between nodes

ClientB:
Compaq Pro PC

ClientA:
Compaq Pro PC

Application
Server:

Silicon Graphics
O2

Database
Server:
VAX

“TCP/IP”

“TCP/IP”

<<DecNet>>

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

Deployment View

Use-Case
View

Concurrency
View

Logical
View

Deployment
View

Component
View

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

UML notations

Package: Subsystem, Framework

Interface

realization (simple form)

realization (expanded form)

G.Booch, J.Rumbaugh, I. Jacobson , ”The Unified Modeling Language User
Guide”, Addison Wesley, 1999. JAIST Koichiro Ochimizu

Interface

Class A Class B

Storable

Runnable

<<interface>>
Runnable
{abstract}

run(){ abstract}

<<interface>>
Storeble

{abstract}

load(){ abstract}
save(){ abstract}

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Java Implementation
interface Storable
{

public void save();
public void load();

};

public class Person implements Storable
{
public void save();

{
/* Implementation of save operation for Person */

} public void save();
{

/* Implementation of load operation for Person */
}

};
H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.

JAIST Koichiro Ochimizu

Package
A pakage is a grouping mechnism, whereby all kinds of model
elements can be linked

Subsystem A

Subsystem B

Subsystem D

Subsystem C

Subsystem E

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

