
Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Elevator Control System

Koichiro Ochimizu
School of Information Science

Japan Advanced Institute of Science and Technology

JAIST Koichiro Ochimizu

CASE STUDY

• Elevator Control System
• Banking System
• Cruise Control and Monitoring System
• Distributed Factory Automation System
• Electronic Commerce System

Hassan Gomaa, “Designing Concurrent, Distributed,
and Real-Time Applications with UML”, Addison-
Wesley, Object Technology Series, 2000.

JAIST Koichiro Ochimizu

COMET
(Concurrent Object Modeling and

architectural design mEThod)Requirements
Modeling

Analysis
Modeling

Design
Modeling Incremental

Software
Construction

Incremental
Software

Integration
System
Testing

Incremental
Prototyping

Throwaway
Prototyping

User

Customer

JAIST Koichiro Ochimizu

Activities of each Phase(1/2)

• Requirements Modeling functional requirements defined
by actors and use cases

• Analysis Modeling
Static model: structural relationships among problem

domain classes depicted on class diagrams,
Dynamic model: objects and their interactions depicted

on either communication diagrams or sequence diagrams.
The state-dependent aspects of the system are defined

using hierarchical statecharts (finite state machines).
• Design Modeling The software architecture of the system

is designed. The analysis model is mapped to an operational
environment. Subsystem structuring criteria are provided.

JAIST Koichiro Ochimizu

Activities of each Phase(2/2)

• Incremental Software Construction Selecting a subset
of the system to be constructed for each increment. The
subset is determined by choosing the use cases to be
Included in this increment. Incremental software
construction consists of the detailed design, coding, and
unit testing of the classes in the subset.

• Incremental Software Integration the integration testing
of each increment is performed. Integration test cases are
developed for each use case. Interfaces between the objects
that participates in each use case are tested.

• System Testing testing the system against Its functional
requirements.

JAIST Koichiro Ochimizu

Problem Description

• Definition of Functional Requirements by
Use Cases

JAIST Koichiro Ochimizu

Problem Description

1 2 3 4 5
6 7 8 9

elevator control
program

Elevator

Motor Door

Arrival
Sensor

Direction
Lamp

Floor

Floor
Button

Floor
Lamp

Elevator
Button

Elevator
Lamp

1 2 3 4 5 6 7 8 9

1..*1..*

1..*

1

1,2 1,2 1..* 1,2

1

1..* 1..* 1 1

JAIST Koichiro Ochimizu

Use Case Model

Select Destination

Elevator User

Arrival Sensor

Request Elevator

JAIST Koichiro Ochimizu

Use Case Description
• Use Case name: Select Destination
• Summary: The user in the elevator presses an up or down elevator button to select a destination

floor to which move
• Dependency
• Actor: Elevator User (primary), Arrival Sensor
• Precondition: User in the elevator
• Description:

– 1. User presses an up elevator button. The elevator button sensor sends the elevator button
request to the system, identifying the destination floor the user wishes to visit.

– 2. The new request is added to the list of floors to visit. If the elevator is stationary, The
system determines in which direction the system should move in order to service the next
request. The system commands the elevator door to close. When the door has closed, the
system commands the motor to start moving the elevator, either up or down.

– 3. As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

– If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the destination floor selected by the
user.

• Alternatives:
– 1. User presses down elevator button to move down. System response is the same as for the

main sequence.
– 2. If the elevator is at a floor and there is no new floor to move to, the elevator stays at the

current floor, with the door open.
• Postcondition: Elevator has arrived at the destination floor selected by the user.JAIST Koichiro Ochimizu

Use Case Description
• Use Case name: Request Elevator
• Summary: The user at a floor presses an up or down floor button to request an elevator.
• Dependency
• Actor: Elevator User (primary), Arrival Sensor
• Precondition: User is at a floor and wants to an elevator
• Description:

– 1. User presses an up floor button. The floor button sensor sends the user request to the system,
identifying the floor number.

– 2. The system selects an elevator to visit this floor. The new request is added to the list of
floors to visit. If the elevator is stationary, The system determines in which direction the
system should move in order to service the next request. The system commands the elevator
door to close. After the door has closed, the system commands the motor to start moving the
elevator, either up or down.

– 3. As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

– If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the floor in response to the user
request.

• Alternatives:
– 1. User presses floor button to move down. System response is the same as for the main

sequence.
– 2. If the elevator is at a floor and there is no new floor to move to, the elevator stays at the

current floor, with the door open.
• Postcondition: Elevator has arrived at the floor in response to user request.JAIST Koichiro Ochimizu

Use case Model

Select Destination

Stop
Elevator at

Floor

<<include>>

Elevator User

Arrival Sensor

Request Elevator

Dispatch
Elevator

<<include>><<include>><<include>>

JAIST Koichiro Ochimizu

Use Case Description
• Use Case name: Select Destination
• Summary: The user in the elevator presses an up or down elevator button to select a

destination floor to which move
• Dependency
• Actor: Elevator User
• Precondition: User in the elevator
• Description:

– 1. User presses an up elevator button. The elevator button sensor sends the elevator
button request to the system, identifying the destination floor the user wishes to visit.

– 2. The new request is added to the list of floors to visit. If the elevator is stationary,
Include Dispatch Elevator abstract use.

– 3. Include Stop Elevator at Floor abstract use case.
– If there are other outstanding requests, the elevator visits these floors on the way to

the floor requested by the user, following the above sequence of dispatching and
stopping. Eventually, the elevator arrives at the destination floor selected by the user.

• Alternatives:
– 1. User presses down elevator button to move down. System response is the same as

for the main sequence.
– 2. If the elevator is at a floor and there is no new floor to move to, the elevator stays

at the current floor, with the door open.
• Postcondition: Elevator has arrived at the destination floor selected by the user.

JAIST Koichiro Ochimizu

Use Case Description
• Use Case name: Request Elevator
• Summary: The user at a floor presses an up or down floor button to request an

elevator.
• Dependency
• Actor: Elevator User
• Precondition: User is at a floor and wants to an elevator
• Description:

– 1. User presses an up floor button. The floor button sensor sends the user request to
the system, identifying the floor number.

– 2. The system selects an elevator to visit this floor. The new request is added to the
list of floors to visit. If the elevator is stationary, then include Dispatch Elevator
abstract use case.

– 3. Include Stop Elevator at Floor abstract use case.
– If there are other outstanding requests, the elevator visits these floors on the way to

the floor requested by the user following the above sequence of dispatching and
stopping. Eventually, the elevator arrives at the floor in response to the user request.

• Alternatives:
– 1. User presses floor button to move down. System response is the same as for the

main sequence.
– 2. If the elevator is at a floor and there is no new floor to move to, the elevator stays

at the current floor, with the door open.
• Postcondition: Elevator has arrived at the floor in response to user request.JAIST Koichiro Ochimizu

Use Case Description
• Use Case name: Stop Elevator at Floor abstract Use Case
• Summary:
• Dependency
• Actor: Arrival Sensor
• Precondition: Elevator is moving
• Description:

– As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

• Alternatives:
– The elevator is not required to stop at this floor and so continues past the floor.

• Postcondition: Elevator has stopped at floor, with door open.

JAIST Koichiro Ochimizu

Use Case Description
• Use Case name: Dispatch Elevator abstract use case
• Summary:
• Dependency
• Actor:
• Precondition: Elevator is at a floor with the door open.
• Description:

– The system determines in which direction the system should move in order to service the next
request. The system commands the elevator door to close. After the door has closed, the system
commands the motor to start moving the elevator, either up or down.

• Alternatives:
– If the elevator is at a floor and there is no new floor to move to, the elevator stays at the current

floor, with the door open.
• Postcondition: Elevator is moving in the commanded direction.

JAIST Koichiro Ochimizu

Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Context Class Diagram

<<system>>
ElevatorControl

System

<<external input
device>>

ElevatorButton

<<external input
device>>

ArrivalSensor

<<external input
device>>

FloorButton

<<external output
device>>

ElevatorLamp

<<external output
device>>
Motor

<<external output
device>>

Door

<<external output
device>>

DirectionLamp

<<external output
device>>

FloorLamp

1..*

1..*

1..*

1..*

1..*

1..*

1..* 1..*

1

1

111

1

1

JAIST Koichiro Ochimizu

Finding Analysis objects

• For every <<external input/output device>> object, there is
a corresponding software device interface object.

• Each elevator has a state-dependent control object called
Elevator Control, which control the elevator motor and
door.

• Because requests for the elevator can come at any time, a
decision is made to have a separate coordinator object,
called the Elevator Manager, to receive all incoming
requests for the elevator and to update the elevator plan.

• An entity object is needed for each elevator, which we call
Elevator Status & Plan.

JAIST Koichiro Ochimizu

Collaboration Diagram
for Select Destination use case

:Elevator
User

E5: Elevator
Commitment

E2: Elevator
Request

E3:Update

E1: Elevator
Button
Request

E4: Acknowledge

E5a: UP or Down

<<input device
interface>>
：Elevator

Button Interface

<<coordinator>>
：Elevator

Manager

<<entity>>
：Elevator
Status&Plan

<<coordinator>>
：Scheduler

<<state dependent
control>>
：Elevator

Control

JAIST Koichiro Ochimizu

The message sequence description
• E1: The Elevator Button Request arrives at the Elevator Button

Interface object.
• E2: The Elevator Button Interface object sends the Elevator

Request to the Elevator Manager object.
• E3: The Elevator Manager sends the request to Elevator Status

& Plan, which adds the request to the list of floors to be visited.
• E4: The elevator plan is updated. An acknowledgement is

returned to the Elevator Manager object, which identifies
whether the elevator is idle.

• E5: The Elevator Manager sends an Elevator Commitment
message to the Scheduler, to inform it that this elevator is
committed to visit the given floor.

• E5a: If the Elevator is idle, the Elevator Manager sends an Up
(or Down) message to the Elevator Control object, directing it
to move in the desired direction. This case is handled by the
Dispatch Elevator use case.JAIST Koichiro Ochimizu

Collaboration Diagram
for Request Elevator use case

: Elevator
User

F3: Scheduler
Request

F2: Service
Request

F1: Floor
Button
Request

F6a: Up or Down

F4: Update

F5:
AcknowledgeF6: ElevatorCommitment

<<input device
interface>>
：Floor

ButtonInterface

<<coordinator>>

：Scheduler

<<coordinator>>

：Elevator
Manager

<<state dependent
control>>
：Elevator

Control

<<entity>>
：Elevator
Status&Plan

JAIST Koichiro Ochimizu

The message sequence description
• F1: The Floor Button Request arrives at the Floor Button

Interface object.
• F2: The Floor Button Interface object sends a Service Request to

the Scheduler object.
• F3: The Scheduler object selects an elevator and sends a

Scheduler Request to the Elevator Manager object in the selected
Elevator composite object.

• F4: The Elevator Manager object sends an Update message to
the Elevator Status & Plan to add the new request to the elevator
plan of which floor it is to visit.

• F5: An acknowledgement is returned to the Elevator Manager
object, which identifies whether the elevator is idle.

• F6: The Elevator Manager sends an Elevator Commitment
message to the Scheduler.

• F6a: If the elevator is idle, the Elevator Manager sends an Up (or
Down) message to the Elevator Control object, directing it to
move in the desired direction. This case is handled by the
Dispatch Elevator use case.JAIST Koichiro Ochimizu

Collaboration Diagram for Stop Elevator use case

:Arrival Sensor

<<input device
interface>>

: ArrivalSensor
Interface

<<state depend
control>>

: ElevatorControl

<<output device
interface>>

: Door
Interface

<<entity>>
: ElevatorStatus&Plan

<<coordinator>>
: Scheduler

<<external output
device>>

: Door

<<output device
interface>>

: Motor
Interface

<<external output
device>>

: Motor

<<output device
interface>>

: ElevatorLamp
Interface

<<external output
device>>

: ElevatorLamp

<<timer>>
: DoorTimer

<<output device
interface>>

: DirectionLamp
Interface

<<external output
device>>

: DirectionLamp

A1:Arrival
Sensor
Input A2:Approaching

Floor(Floor#)）

A3:Check This
Floor (Floor #)

A4:Approaching Requested
Floor (Floor #, direction)

A5:Stop

A6: Stop Motor
Command

A7:Motor Response

A8:Elevator Stopped
A5a:On
DirectionLamp

A5a.1:DirectionLamp
output

A9:Open Door

A10:Open
Door
Command

A11:Door
Response

A12:Door
Opened

A9a:Off
ElevatorLamp

A9a.1:ElevatorLamp
output

A9b:Arrived(Floor #)

A9c: Arrived(Floor #)

A13:Start
Timer

A14:After
(Timeout)

A15:Check
Next Destination

A16:No Request

JAIST Koichiro Ochimizu

• A1: The Arrival Sensor Interface object receives an input from the arrival sensor
external entity.

• A2: The Arrival Sensor Interface object sends the floor number in the
Approaching Floor message to the Elevator Control object.

• A3: The Elevator Control object sends a Check This Floor message to the
Elevator Status & Plan object, which checks whether the floor at which the
elevator is arriving is one where it should stop.

• A4: As the elevator is arriving at a requested floor, the Elevator Status & Plan
object sends the Approaching Requested Floor message to the Elevator Control
object. The message contains the floor number and the future direction. On
receiving this message, Elevator Control transitions from Elevator Moving state
to Elevator Stopping state.

• A5: As a result of the transition to Elevator Stopping state, the Elevator Control
object commands the Motor Interface object to Stop.

• A5a(parallel sequence): Elevator Control sends an On Direction Lamp (with up
or down as a parameter) to the Direction Lamp Interface object, which switches
on the real-world direction lamp(A5a.1).

• A6: The Motor Interface object sends the Stop Motor Command to the real-
world motor.

• A7: The Motor Interface object receives the Motor Response.
• A8: Motor Interface object sends an Elevator Stopped message to the Elevator

Control object, which then transitions to Elevator Door opening state.

The message sequence description

JAIST Koichiro Ochimizu

• A9: On transitioning to Elevator Door Opening state, the Elevator Control object
sends the Door Interface object a command to Open Door.

• A9a(parallel sequence because there are four actions associated with the state
transition): The Elevator Control object sends an Off Elevator Lamp message to
the Elevator Lamp Interface object, which then sends an Elevator Lamp Output
to the external lamp to switch it off(A9a.1).The Elevator Control object sends the
Arrived message to both the Elevator Status & Plan object(A9b, third parallel
sequence) and the Scheduler object(A9c, Fourth parallel sequence).

• A10: The Door Interface object sends the Open Door Command to the real world
door.

• A11: The Door Interface object receives the Door Response.
• A12: The Door Interface object sends a Door Opened message to the Elevator

Control object, which then transitions to Elevator at Floor
• A13: The Elevator Control object starts a timer.
• A14: A timer event is generated after a period of time equal to timeout, causing

the Elevator Control object to transition to Checking Next Destination state..
• A15: As a result of the transition, Elevator Control sends a Check Next

Destination message to the Elevator Status & Plan object. The objective is to
determine the next destination just prior to departure, in case there has been a
recent update to the plan. If the elevator does not have any outstanding requests,
it transitions to Elevator Idle state (event A16). Otherwise, use the Dispatch
Elevator use

The message sequence description

JAIST Koichiro Ochimizu

Stop Elevator at Floor use case:
statechart for Elevator Control

Elevator Moving

Elevator Stopping

A2:Approaching Floor
/A3:Check This Floor

A4:Approaching Requested Floor / A5：Stop,
A5a1：On Direction Lamp

Elevator Door Opening

A8: Elevator Stopped / A9：Open Door, A9a：
Off Elevator Lamp, A9b,A9c: Arrived

Elevator at Floor

A12:Door Opened / A13: Start Timer

Checking Next
Destination

A14: After(Timeout) /A15: Check Next Destination

Elevator Idle
A16: No RequestJAIST Koichiro Ochimizu

Collaboration diagram for Dispatch Elevator use case

<<state
dependent
control>>
: Elevator
Control

<<output device
interface>>

: Door Interface

<<entity>>
: Elevator Status&Plan

<<coordinator>>
: Scheduler

<<external output
device>>

: Door

<<output device
interface>>

: Motor
Interface

<<external output
device>>

: Motor
<<output device

interface>>
: FloorLamp

Interface

<<external output
device>>

: FloorLamp

<<output device
interface>>

: DirectionLamp
Interface

<<external output
device>>

: Direction Lamp

D10:Departed (Floor #)
D1: Up Request

D6:Up

D7:Start Up Motor Command

D2: Close Door
D3:Close Door
Command

D4:Door Response

D5:Door Closed

D9:Elevator
Started

D8:Motor Response

D2a:Off Up Floor Lamp

D2a.1:Floor
Lamp Output

D6a:Off Up
Direction Lamp

D6a.1:Direction
Lamp Output

D10a: Departed
(Floor #)

JAIST Koichiro Ochimizu

The message sequence description
• Starting preconditions are different for Dispatch Elevator.

– Stop Elevator at Floor is the first case. On entering Checking Next Destination
state, Elevator Control sends a Check Next Destination message to Elevator Status
& Plan . Elevator Status & Plan sends an Up Request (or Down Request)
message to Elevator Control, informing it of the direction in which to move.

– Elevator Control object is in Elevator Idle state is the second case. Elevator
Manager receives a message from either the Scheduler or the Elevator Button
Interface with a request for the elevator to visit the floor. Elevator Manager sends
a message to Elevator Status & Plan to update the plan. If the elevator is busy
servicing a request, Elevator Status & Plan returns an Acknowledgement message
with a null parameter. On the other hand, if the elevator is idle, Elevator Status &
Plan returns an Acknowledgement message with an up (or down) parameter.

• D1: {Source object} sends Elevator Control an Up Request message. Elevator
Control transitions to Door Closing to Move Up state.

• D2: As a result of this state transition, there are two concurrent outputs events.
Elevator Control sends a Close Door command to Door Interface. On the
statechart, the Close door event (as well as one other output event) is shown
as an entry action, because the Up Request event can arrive from either the
Elevator Idle state or the Checking Next Destination state.

• D2a(parallel sequence): Elevator Control sends an Off Up Floor Lamp to the
Floor Lamp Interface object, which switches off the real-world

JAIST Koichiro Ochimizu

The message sequence description
• D3: Door Interface sends a Close Door Command to the real –

world door.
• D4: The real-world door sends a Door Response when the door is

closed.
• D5: The Door Interface sends a Door Closed message to Elevator

Control, which transitions to Elevator Starting Up state.
• D6: Elevator Control sends an Up Command to the Motor

Interface object.
• D6a: Elevator Control sends an Off Up Direction Lamp request to

the Direction Lamp Interface object, which switches off the
direction lamp.

• D7: The Motor Interface object sends the Start Up Motor
Command to the real-world motor.

• D8: The real-world motor sends a Motor Response when the
elevator has started moving upward.

• D9: The Motor Interface object sends an Elevator Started message
to Elevator Control, which transitions to Elevator Moving state.

• D10: Elevator Control sends a Departed message to both the
Elevator Status & Plan and Scheduler object.

JAIST Koichiro Ochimizu

Dispatch Elevator use case:
Statechart for Elevator Control

Elevator Starting Up

Door Closing to Move Up

Entry/ D2:Close Door
, D2a:Off Up Floor Lamp

D5:Door Closed / D6：Up, D6a：Off Up Direction Lamp

D9: Elevator Started

Checking Next
Destination

Elevator Idle

D1: Up Request
D1: Up Request

Elevator Moving

Entry/ D10, D10a:Departed

JAIST Koichiro Ochimizu

StateChart for Elevator Control

Door Closing to Move Up

Entry/ D2:Close Door
, D2a:Off Up Floor Lamp

Door Closing to Move Down

Entry/ Close Door
, Off Down Floor Lamp

Elevator Idle
Entry/ update idle status

Elevator Starting Up Elevator Starting DownElevator Moving

Entry/D10,D10a:Departed

Elevator Stopping

Elevator Door Opening

A8:Elevator Stopped / A9：Door Opened, A9a：
Off Elevator Lamp, A9b,A9c:Arrived

Elevator at Floor

A12:Door Opened /A13:Start Timer

Checking Next destination

A14:After(Timeout) /A15:Check Next Destination

A4:Approaching Requested Floor /
A5：Stop, A5a1：On Direction Lamp

D1:Up
Request

Down
Request

D5:Door Closed / D6：Up,
D6a：Off Up Direction Lamp

Door Closed / Down, Off
Down Direction Lamp

D9: Elevator Started

Elevator Started

A2:Approaching Floor
/A3:Check This Floor

Down RequestD1:Up Request

No Request

JAIST Koichiro Ochimizu

Consolidated Collaboration
Diagram

• Consolidated Collaboration Diagram shows
all the objects that participate In the use
cases and all the interactions between these
objects.

JAIST Koichiro Ochimizu

Consolidated
Collaboration Diagram

<<input device
interface>>

: ArrivalSensor
Interface

<<state
dependent
control>>
: Elevator
Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status&Plan

<<coordinator>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: ElevatorLamp
Interface

<<timer>>
: Door Timer

<<output device
interface>>

: DirectionLamp
Interface

Elevator
Commitment

Approaching
Floor (Floor #)

Check This Floor (Floor #)

Direction
Lamp
Command

Off Elevator
Lamp

ArrivalSensor
Input Arrived(Floor #)）

Arrived (Floor #)

After
(Timeout)

Check Next
Destination

<<output device
interface>>
: FloorLamp

Interface

Up, Down

Floor Lamp
Output

<<input device
interface>>
: FloorButton

Interface

<<coordinator>>
: Elevator
Manager

<<input device
interface>>

: ElevatorButton
Interface

Elevator
Button
Interface

Elevator
Request

Floor
Button
Interface

Service
Request

Update Acknowledge

Scheduler
Request

Departed(Floor
#)）

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Direction
Lamp
Output

Floor
Lamp
Command

Start
Timer

Down

Up

Door
Command

Door
Response

Open Door Close Door

Door
Opened

Door
Closed

Stop
Elevator Started

Elevator Stopped

JAIST Koichiro Ochimizu

Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Subsystem Structuring
• Structuring Criterion: Principles ”high coupling

within a subsystem and low coupling between
subsystems”
– Aggregate/composite object: Geographical location：If

two objects could potentially be physically separated in
different locations, they should be in different
subsystems to reduce communication cost

– Clients and servers must be in separate subsystems
– User interface objects are usually clients
– A control objects and all the entity and interface objects

it directly controls should all be part of one subsystem

JAIST Koichiro Ochimizu

Type of subsystems for concurrent, real-
time, or distributed application domains

• <<Control>>
The subsystem receives its inputs from the external environment and
generates outputs to the external, usually without any human
intervention. It includes at least one state-dependent control object. In
some case, some Inputs data might be gathered by some other
subsystem (s).

• <<Coordinator>>
In cases with more than one control subsystem, it is sometimes
necessary to have a coordinator subsystem that coordinates the control
subsystems.

• <<Data collection>>
A data collection subsystem collects data from the external
environment.

• <<Data analysis>>
A data analysis subsystem analyzes data and provides reports and/or
displays for data collected by another subsystem.

JAIST Koichiro Ochimizu

Type of subsystems for concurrent, real-
time, or distributed application domains

• <<Server>>
A server subsystem provides a service for other subsystems. In the
simplest case, a server object could consist of a single entity object.

• <<User interface>>
A user interface subsystem provides the user interface and acts as a
client. There may be more than one user interface subsystems. A user
interface subsystem is usually a composite object that is composed of
several simpler user interface objects.

• <<I/O subsystem>>
In some systems, grouping al the device interface classes into an I/O
subsystem might be useful, because developing device interface
classes is a specialized skill.

• <<System services>>
Certain services are not problem domain-specific but provide system-
level services, such as file management and network communication
management.

JAIST Koichiro Ochimizu

Subsystem Structuring

<<input device
interface>>

: ArrivalSensor
Interface

<<state
dependent
control>>
: Elevator
Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status&Plan

<<coordinator>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: ElevatorLamp
Interface

<<timer>>
: Door Timer

<<output device
interface>>

: DirectionLamp
Interface

Elevator
Commitment

Approaching
Floor (Floor #)

Check This Floor (Floor #)

Direction
Lamp
Command

Off Elevator
Lamp

ArrivalSensor
Input Arrived(Floor #)）

Arrived (Floor #)

After
(Timeout)

Check Next
Destination

<<output device
interface>>
: FloorLamp

Interface

Up, Down

Floor Lamp
Output

<<input device
interface>>
: FloorButton

Interface

<<coordinator>>
: Elevator
Manager

<<input device
interface>>

: ElevatorButton
Interface

Elevator
Button
Interface

Elevator
Request

Floor
Button
Interface

Service
Request

Update Acknowledge

Scheduler
Request

Departed(Floor
#)）

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Direction
Lamp
Output

Floor
Lamp
Command

Start
Timer

Down

Up

Door
Command

Door
Response

Open Door Close Door

Door
Opened

Door
Closed

Stop
Elevator Started

Elevator Stopped

Elevator Subsystem
Floor Subsystem
Scheduler Subsystem

JAIST Koichiro Ochimizu

Subsystem Structuring

<<input device
interface>>

: ArrivalSensor
Interface

<<state
dependent
control>>
: Elevator
Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status&Plan

<<coordinator>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: ElevatorLamp
Interface

<<timer>>
: Door Timer

<<output device
interface>>

: DirectionLamp
Interface

Elevator
Commitment

Approaching
Floor (Floor #)

Check This Floor (Floor #)

Direction
Lamp
Command

Off Elevator
Lamp

ArrivalSensor
Input Arrived(Floor #)）

Arrived (Floor #)

After
(Timeout)

Check Next
Destination

<<output device
interface>>
: FloorLamp

Interface

Up, Down

Floor Lamp
Output

<<input device
interface>>
: FloorButton

Interface

<<coordinator>>
: Elevator
Manager

<<input device
interface>>

: ElevatorButton
Interface

Elevator
Button
Interface

Elevator
Request

Floor
Button
Interface

Service
Request

Update Acknowledge

Scheduler
Request

Departed(Floor
#)）

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Direction
Lamp
Output

Floor
Lamp
Command

Start
Timer

Down

Up

Door
Command

Door
Response

Open Door Close Door

Door
Opened

Door
Closed

Stop
Elevator Started

Elevator Stopped

Elevator Subsystem
Floor Subsystem
Scheduler Subsystem

• Door Interface object, Motor Interface object,
Elevator Lamp Interface object are the parts of
a Elevator composite object.

•Each elevator needs an Elevator Control object,
an Elevator Manager object, and an Elevator
Status & Plan object.

• The Arrival Sensor Interface object is placed in the
Elevator Subsystem because it is more tightly coupled
with this subsystem(Stop Elevator use case)

JAIST Koichiro Ochimizu

<<input device
interface>>

: Arrival Sensor
Interface

<<state
dependent
control>>
: Elevator

Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status & Plan

<<sub
system>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: Elevator Lamp
Interface

<<timer>>
: Door Timer

Elevator
Commitment

Approaching
Floor(Floor #)）

Check This Floor(Floor #)）

Direction
Lamp
Command

Off elevator
Lamp

Arrival
Sensor
Input

Arrived(Floor #)

Arrived(Floor #）

After
(Timeout)

Check Next Destination

Up, Down

<<coordinator>>
: Elevator manager

<<input device
interface>>

: Elevator Button
Interface

Elevator
Button
Request

Elevator
Request

Update
Acknowledge Scheduler

Request

Departed (Floor #)

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Floor Lamp
Command

Start Timer
Down

Up
Door Command

Door
Response

Open
Door

Close
Door

Door
Opened

Door
Closed

<<control subsystem>>
:Elevator Subsystem

Stop

<<external
output

device>>
：Elevator

Lamp

Floor
Lamp
Output

<<sub
system>>
：Floor

Subsystem

<<external
input

device>>
：Arrival

Sensor

<<external
input

device>>
：Elevator

Button

<<external
output

device>>
：Motor

Motor
Command

Motor
Response

<<external
output

device>>
：Door

Elevator Started

Elevator Stopped

JAIST Koichiro Ochimizu

Subsystem Structuring

<<input device
interface>>

: ArrivalSensor
Interface

<<state
dependent
control>>
: Elevator
Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status&Plan

<<coordinator>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: ElevatorLamp
Interface

<<timer>>
: Door Timer

<<output device
interface>>

: DirectionLamp
Interface

Elevator
Commitment

Approaching
Floor (Floor #)

Check This Floor (Floor #)

Direction
Lamp
Command

Off Elevator
Lamp

ArrivalSensor
Input Arrived(Floor #)）

Arrived (Floor #)

After
(Timeout)

Check Next
Destination

<<output device
interface>>
: FloorLamp

Interface

Up, Down

Floor Lamp
Output

<<input device
interface>>
: FloorButton

Interface

<<coordinator>>
: Elevator
Manager

<<input device
interface>>

: ElevatorButton
Interface

Elevator
Button
Interface

Elevator
Request

Floor
Button
Interface

Service
Request

Update Acknowledge

Scheduler
Request

Departed(Floor
#)）

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Direction
Lamp
Output

Floor
Lamp
Command

Start
Timer

Down

Up

Door
Command

Door
Response

Open Door Close Door

Door
Opened

Door
Closed

Stop
Elevator Started

Elevator Stopped

Elevator Subsystem
Floor Subsystem
Scheduler Subsystem

The Scheduler coordinator
object is allocated to its own
subsystem, because it is
independent of the number of
floors and elevators

•Floor subsystem composite object
consists Floor Lamp Interface object
and Floor Button Interface object.

• Direction Lamp Interface object is
allocated to the Floor subsystem,
because

JAIST Koichiro Ochimizu

<<input device
interface>>
: FloorButton

Interface

<<subsystem>>
: Scheduler

<<output device
interface>>
: Floorlamp

Interface

Service
Request

<<control subsystem>>
: FloorSubsystem

<<external
output

device>>
：Floor
Lamp

Floor
Button
Request<<external

input
device>>
：Arrival

Sensor

<<output device
interface>>

: DirectionLamp
Interface

<<subsystem>>
: Elevator
Control

Direction
Lamp
Command

Floor Lamp
Command

<<external
output

device>>
：Direction

Lamp

Floor
Lamp
Output

Direction
Lamp
Output

JAIST Koichiro Ochimizu

Subsystems

<<external input
device>>

：Elevator Button

<<external output
device>>

：Elevator Lamp

<<external input
device>>

：Arrival Sensor

<<external output
device>>
：Motor

<<external input
device>>
：Floor Button

<<external output
device>>
：Floor Lamp

<<external output
device>>

：Direction Lamp

<<external
output

device>>
：Door

<system>> :
Elevator Control
System

<<data collection
subsystem>>
：Floor Subsystem

<<control
subsystem>>

：Elevator Subsystem

<<coordinator
subsystem>>

：Scheduler

Floor Lamp Command

Direction Lamp
Command

Floor Lamp Output Direction Lamp Output

Motor
Command

Motor
Response

Door
Command

Door
Response

Floor
Button
Request

Service
Request

Scheduler
RequestArrival (Floor#）

Departed (Floor #)

Elevator Commitment

Arrival Sensor InputElevator Button Interface Elevator Lamp
Output

JAIST Koichiro Ochimizu

Refined Static Model (Class Diagram) for Elevator Control System

<<input device
interface>>

Arrival Sensor
Interface

<<state dependent control>>
Elevator Control

<<output device
interface>>

Door
Interface

<<entity>>
Elevator Status&Plan

<<coordinator>>
Elevator Scheduler

<<output device
interface>>

Motor
Interface

<<output device
interface>>

Elevator Lamp
Interface

<<timer>>
Door Timer

<<output device
interface>>

Direction Lamp
Interface

<<output device
interface>>
Floor Lamp

Interface

<<input device
interface>>
Floor Button

Interface

<<coordinator>>
Elevator
Manager

<<input device
interface>>

Elevator Button
Interface

<<server>>
Elevator

Status & Plan
Server

<<entity>>
Overall Elevator

Status & Plan

<<control subsystem>> ElevatorSubsystem

<<data collection subsystem>> FloorSubsystem <<coordinator subsystem>> Scheduler

1

1..*
Controls

Notifies

Requests

1

1

Controls
1

1
Controls

1..* 1

Notifies

1
1

1

1..*

1

1 1

Commands

Updates1
1

Updates,

Checks

1

11..*

1..*

Controls

1..*

1..*

Controls

1..*

1

Notifies

*

*

*

1

* 1

1..*
1

Requests

1 1
Selects

1
1

Updates

Updates

1..*

1

1..*

1

Requests

JAIST Koichiro Ochimizu

Task Structuring
• Design task structure and task interface by applying the

following task structuring criteria to problem domain
objects recognized as an consolidated collaboration
diagram.
– I/O task structuring criteria

Criteria to decide whether each device interface object is an
active object or not, considering the properties: interrupt-driven,
polling, communication, discrete data or analog data

– Internal task structuring criteria
Criteria to decide whether each internal object is an active object
or not, considering the properties: period, asynchronous, control,
UI.

– Task priority criteria
Criteria to decide whether each internal object is an active object
or not, considering the properties: time-critical, computation
(CPU bound).

– Task clustering criteria
Criteria to group active objects selected by the above criteria,
considering properties: time, sequencing, control, mutual
exclusion..

Criteria to
make the
objects (in a
consolidated
collaboration
diagram)
active objects

Criteria to
group the active
objects to
reduce the
number of tasksJAIST Koichiro Ochimizu

Task Structuring Criteria (Outline)
• I/O task structuring criteria

– Asynchronous I/O Device Interface tasks
– Periodic I/O Device Interface tasks
– Passive I/O Device Interface tasks
– Resource Monitor tasks

• Internal task structuring criteria
– Periodic Tasks
– Asynchronous tasks
– Control tasks
– User Interface tasks

• Task priority criteria
– Time-Critical tasks
– Non-Time-Critical Computationally Intensive tasks

• Task clustering criteria
– Temporal Clustering
– Sequential Clustering
– Control Clustering
– Mutually Exclusive Clustering

JAIST Koichiro Ochimizu

I/O Task Structuring Criteria
Necessary to determine the hardware characteristics of the I/O
device that interface to the system, and the nature of the data
being input to the system to these devices.
– Asynchronous (active) I/O devices:

For each asynchronous I/O device, an asynchronous I/O device interface
task is needed not to miss an interrupt.

– Periodic I/O Device Interface Tasks:
If passive input (or output) devices are polled (or addressed) periodically
by a timer, a periodic I/O device interface task is needed.

– Passive I/O Devices Interface Tasks:
For passive I/O devices that do not need to be polled, passive I/O devices
interface tasks are needed when it is considered desirable to overlap
computation with I/O.

– Resource Monitor Task:
An input or output device that receives requests from multiple sources
should have a resource monitor task to coordinate these requests, even if
the device is passive. A resource monitor task has to sequence these
requests so as to maintain data integrity and ensure that no data is
corrupted or lost. JAIST Koichiro Ochimizu

Internal Task Structuring Criteria
• Periodic Tasks

An activity that needs to be executed periodically (i.e. at
regular, equally spaced intervals of time) is structured as a
separate periodic task. The task is activated by a timer
event, performs the periodic activity.

• Asynchronous Tasks
The demand-driven(the arrival of internal messages or
events) activities are typically handled by means of
asynchronous tasks.

• Control Tasks
A task that executes a sequential state-chart is referred to as
a control task.

• User Interface Tasks
A user typically performs a set of sequential operations,
this can be handled by a use Interface task.

JAIST Koichiro Ochimizu

Task Priority Criteria
Task priority criteria take into account priority
considerations in task structuring, in particular, high- and
low-priority tasks are considered.

• Time-Critical Tasks
A time-critical task is a task that needs to meet a hard
deadline. Such a task needs to run at a high priority.

• Non-Time-Critical Computationally Intensive Tasks
A non-time-critical computationally intensive task may run
as a low-priority task consuming spare CPU cycles. A low-
priority computationally intensive task executing as a
background task that is preempted by higher-priority
foreground tasks has its origin in early multiprogramming
systems and is typically supported by most modern
operating systems.

JAIST Koichiro Ochimizu

Task Clustering Criteria(1/3)
Reduce the number of tasks
• Temporal Clustering

Certain candidate tasks may be activated by the same
event, e.g. a timer event. If there is no sequential
dependency between the candidate tasks, they may be
grouped into the same task, based on the temporal
clustering. Some tradeoffs need to be considered.
– If some candidate task is more time critical than the others, the task

should not be combined.
– If two candidate tasks could be executed on separate processors,

they should not be combined.
– Preference should be given in temporal clustering to tasks that are

functionally related and likely to be of equal importance from a
scheduling viewpoint.

– Two tasks with different periods may not be clustered.

JAIST Koichiro Ochimizu

Task Clustering Criteria(2/3)
Reduce the number of tasks

• Sequential Clustering
The first candidate task is triggered by an asynchronous

or periodic event and the other are then executed
sequentially after it. These sequentially dependent
candidate tasks may be grouped. But,
– If the last candidate task in a sequence does not send an

inter-task message, this terminates the group of tasks to
be considered for sequential clustering.

– If the next candidate task in the sequence also receives
inputs from another source and therefore can be
activated by receiving input from that source, this
candidate task should be left as a separate task.

– If the next candidate task in sequence is of a lower
priority, they should be kept as separate task.JAIST Koichiro Ochimizu

Task Clustering Criteria(3/3)
Reduce the number of tasks
• Control Clustering

A control object, which executes a sequential state-chart,
is mapped to a control task.

– The actions activated during state transition are
executed within the thread of control of the
control object.

– The activity should be structured as a separate
task.

• Mutually Exclusive Clustering
Mutually exclusive tasks may be clustered.

JAIST Koichiro Ochimizu

Non-Distributed Solution

• The Elevator Control System is mapped to a single CPU or
tightly coupled multiprocessor configuration

• The Elevator Status & Plan entity object is accessible to all
elevators as well as scheduler, so that one centralized
repository of data can be used

JAIST Koichiro Ochimizu

<<input device
interface>>

: Arrival Sensor
Interface

<<state
dependent
control>>
: Elevator

Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status & Plan

<<sub
system>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: Elevator Lamp
Interface

<<timer>>
: Door Timer

Elevator
Commitment

Approaching
Floor(Floor #)）

Check This Floor(Floor #)）

Direction
Lamp
Command

Off elevator
Lamp

Arrival
Sensor
Input

Arrived(Floor #)

Arrived(Floor #）

After
(Timeout)

Check Next Destination

Up, Down

<<coordinator>>
: Elevator manager

<<input device
interface>>

: Elevator Button
Interface

Elevator
Button
Request

Elevator
Request

Update
Acknowledge Scheduler

Request

Departed (Floor #)

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Floor Lamp
Command

Start Timer
Down

Up
Door Command

Door
Response

Open
Door

Close
Door

Door
Opened

Door
Closed

<<control subsystem>>
:Elevator Subsystem

Stop

<<external
output

device>>
：Elevator

Lamp

Floor
Lamp
Output

<<sub
system>>
：Floor

Subsystem

<<external
input

device>>
：Arrival

Sensor

<<external
input

device>>
：Elevator

Button

<<external
output

device>>
：Motor

Motor
Command

Motor
Response

<<external
output

device>>
：Door

Elevator Started

Elevator Stopped

The objects “Elevator Button Interface”
and “Arrival Sensor Interface” are
structured as a separate task respectively,
based on the asynchronous input device
interface task structuring criterion

JAIST Koichiro Ochimizu

<<input device
interface>>

: Arrival Sensor
Interface

<<state
dependent
control>>
: Elevator

Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status & Plan

<<sub
system>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: Elevator Lamp
Interface

<<timer>>
: Door Timer

Elevator
Commitment

Approaching
Floor(Floor #)）

Check This Floor(Floor #)）

Direction
Lamp
Command

Off elevator
Lamp

Arrival
Sensor
Input

Arrived(Floor #)

Arrived(Floor #）

After
(Timeout)

Check Next Destination

Up, Down

<<coordinator>>
: Elevator manager

<<input device
interface>>

: Elevator Button
Interface

Elevator
Button
Request

Elevator
Request

Update
Acknowledge Scheduler

Request

Departed (Floor #)

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Floor Lamp
Command

Start Timer
Down

Up
Door Command

Door
Response

Open
Door

Close
Door

Door
Opened

Door
Closed

<<control subsystem>>
:Elevator Subsystem

Stop

<<external
output

device>>
：Elevator

Lamp

Floor
Lamp
Output

<<sub
system>>
：Floor

Subsystem

<<external
input

device>>
：Arrival

Sensor

<<external
input

device>>
：Elevator

Button

<<external
output

device>>
：Motor

Motor
Command

Motor
Response

<<external
output

device>>
：Door

Elevator Started

Elevator Stopped

Each ”Elevator Control Object” is
mapped to a separate “Elevator
Controller” task.

JAIST Koichiro Ochimizu

<<input device
interface>>

: Arrival Sensor
Interface

<<state
dependent
control>>
: Elevator

Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status & Plan

<<sub
system>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: Elevator Lamp
Interface

<<timer>>
: Door Timer

Elevator
Commitment

Approaching
Floor(Floor #)）

Check This Floor(Floor #)）

Direction
Lamp
Command

Off elevator
Lamp

Arrival
Sensor
Input

Arrived(Floor #)

Arrived(Floor #）

After
(Timeout)

Check Next Destination

Up, Down

<<coordinator>>
: Elevator manager

<<input device
interface>>

: Elevator Button
Interface

Elevator
Button
Request

Elevator
Request

Update
Acknowledge Scheduler

Request

Departed (Floor #)

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Floor Lamp
Command

Start Timer
Down

Up
Door Command

Door
Response

Open
Door

Close
Door

Door
Opened

Door
Closed

<<control subsystem>>
:Elevator Subsystem

Stop

<<external
output

device>>
：Elevator

Lamp

Floor
Lamp
Output

<<sub
system>>
：Floor

Subsystem

<<external
input

device>>
：Arrival

Sensor

<<external
input

device>>
：Elevator

Button

<<external
output

device>>
：Motor

Motor
Command

Motor
Response

<<external
output

device>>
：Door

Elevator Started

Elevator Stopped

The “Elevator Controller” task is combined with
“Motor Interface” and “Door Interface” objects,
based on the control clustering criterion.

JAIST Koichiro Ochimizu

<<input device
interface>>

: Arrival Sensor
Interface

<<state
dependent
control>>
: Elevator

Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status & Plan

<<sub
system>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: Elevator Lamp
Interface

<<timer>>
: Door Timer

Elevator
Commitment

Approaching
Floor(Floor #)）

Check This Floor(Floor #)）

Direction
Lamp
Command

Off elevator
Lamp

Arrival
Sensor
Input

Arrived(Floor #)

Arrived(Floor #）

After
(Timeout)

Check Next Destination

Up, Down

<<coordinator>>
: Elevator manager

<<input device
interface>>

: Elevator Button
Interface

Elevator
Button
Request

Elevator
Request

Update
Acknowledge Scheduler

Request

Departed (Floor #)

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Floor Lamp
Command

Start Timer
Down

Up
Door Command

Door
Response

Open
Door

Close
Door

Door
Opened

Door
Closed

<<control subsystem>>
:Elevator Subsystem

Stop

<<external
output

device>>
：Elevator

Lamp

Floor
Lamp
Output

<<sub
system>>
：Floor

Subsystem

<<external
input

device>>
：Arrival

Sensor

<<external
input

device>>
：Elevator

Button

<<external
output

device>>
：Motor

Motor
Command

Motor
Response

<<external
output

device>>
：Door

Elevator Started

Elevator Stopped

The “Elevator Manager (one instance in the
non-distributed solution) executes asynchronously
with the “Elevator Controller” task. The “Elevator
Manager is structured as a separate coordinate task.

JAIST Koichiro Ochimizu

<<asynchronous
input device
interface>>

: Arrival Sensor
Interface

<<control
clustering>>

: Elevator
Controller

<<data abstraction>>
: Elevator Status&Plan

<<co
ordinator>>

: SchedulerElevator
Commitment

Approaching
Floor (Floor #)

Check This Floor (Floor #)

Select
Elevator

Arrival Sensor
Input

Arrived (Floor #)

Check Next
Destination

Up, Down

<<coordinator>>
: Elevator
Manager

<<asynchronous
input device
interface>>

: Elevator Button
Interface

Elevator Button
Request

Elevator
Request

Update
Acknowledge

Schedule
Request

Departed (Floor #)

Next
Destination

Approaching
Requested
Floor

Door Command

Door
Response

Elevator Lamp Output

Service Request

Elevator
#

<<control subsystem>>
：Elevator Subsystem

<<asynchronous
input device
interface>>
: Floor Button

Interface

<<resource
monitor>>
: Floor Lamp

Monitor

<<data collection
subsystem>>

:Floor Subsystem

<<resource
monitor>>

: Direction Lamp
Monitor

Floor Lamp
Command

Direction Lamp
Command

Floor
Lamp
Output

Direction
Lamp
Output

Floor
Button
Request

Task Architecture
(Non-distributed Elevator Control System)

JAIST Koichiro Ochimizu

Task Interface
(Non-distributed Elevator Control System)

<<asynchronous
input device
interface>>

: Arrival Sensor
Interface

<<control
clustering>>

: Elevator
Controller

<<data abstraction>>
: Elevator Status & Plan

<<co
ordinator>>

: Scheduler

ApproachingFloor(
elevator#, floor#)

checkThisFloor(in elevator#, in
floor#, out floorStatus, out direction)

selectElevator(in
floor#, in
direction, out
elevator#)

arrival
Sensor
Input

arrived(elevator#, floor#, direction)

checkNextDestination(in
elevator#, out direction)

up(elevator#),

down(elevator#)

<<coordinator>>
: Elevator
Manager

<<asynchronous
input device
interface>>

: Elevator Button
Interface

elevator
Button
Request

elevatorRequ
est(elevator#,
floor#,
direction)

updatePlan(el
evator#,floor#
,direction, out
idleStatus)

schedulerReque
st(elevator#,
floor#,
direction)

doorCommand(out
doorResponse)

serviceRequest(floor#, direction)

<<control subsystem>>
：Elevator Subsystem

<<asynchronous
input device
interface>>
: Floor Button

Interface

<<resource
monitor>>
: Floor Lamp

Monitor

<<data collection
subsystem>>

: Floor Subsystem

<<resource
monitor>>

: Direction Lamp
Monitor

offFloorLamp
(floor#,
direction) floor

Lamp
Output

direction
Lamp
Output

floor
Button
Request

Elevator Lamp Output

departed(elevator#, floor#, direction)

offDirectionLam
p(elevator#,
floor#, direction)

onDirectionLam
p(elevator#,
floor#, direction)

elevatorCommit
ment(elevator#,
floor#, direction)JAIST Koichiro Ochimizu

Data Abstraction Classes

<< data abstraction>>

ElevatorStatus&Plan

+ arrived(elevator#, floor#, direction)

+ departed(elevator#, floor#, direction)

+ checkThisFloor(in elevator#, in floor#, out floorStatus, out direction)

+ checkNextDestination(in elevator#, out direction)

+ updatePlan(elevator#, floor#, direction, out idleStatus)

+selectElevator(in floor#, in direction, out elevator#)

Data abstraction class for centralized solution
JAIST Koichiro Ochimizu

Distributed Elevator Control System
• The physical configuration consists of multiple nodes interconnected by a

local area network.
• Multiple instances of the Elevator Subsystem (one instance per elevator)
• Multiple instances of the Floor Subsystem (one instance per floor)
• One instance of the Scheduler subsystem
• All communication between the subsystems is via loosely coupled message

communication.
• There is no shared memory in a distributed configuration; thus the

“Scheduler” and multiple instances of the “Elevator Subsystem”can
not directly access the “Elevator Status & Plan” data abstraction object.

• Client-Server solution presents the potential danger of creating a bottleneck
at this server. Instead, an alternative solution is to use replicated data. Each
instance of the Elevator Subsystem maintains its own local instance of the
Elevator Status & Plan, called Local Elevator Status & Plan. The scheduler
also maintains a copy of the Elevator Status & Plan, called Overall Elevator
Status & Plan.

JAIST Koichiro Ochimizu

Distributed Elevator Control System
Deployment Diagram

：Floor Subsystem
{1 node per floor}

：Scheduler
{1 node}

：Elevator Subsystem
{1 node per elevator}

<< local area network >>

JAIST Koichiro Ochimizu

Distributed Software Architecture

<<external input
device>>

：Elevator Button

<<external output
device>>

：Elevator Lamp

<<external input
device>>

：Arrival Sensor

<<external output
device>>
：Motor

<<external input
device>>
：FloorButton

<<external output
device>>
：FloorLamp

<<external output
device>>
：方向ランプ

<<external
output

device>>
：Door

<system>> :

ElevatorControl
System

<<data collection
subsystem>>
：FloorSubsystem

<<control
subsystem>>

：ElevatorSubsystem

<<coordinator
subsystem>>

：Scheduler

Floor Lamp
Command

Direction Lamp
Command

Floor Lamp Output Direction Lamp Output

Motor Command

Motor Response

Door
Command

Door
Response

Floor
Button
Request

Service
Request

Scheduler
RequestArrived (Floor #）

Departed(Floor #)

Elevator
Commitment

Arrival Sensor InputElevator Button Request
Elevator
Lamp Output

JAIST Koichiro Ochimizu

<<asynchronous
input device
interface>>

: Arrival Sensors
Interface

<<control
clustering>>

: Elevator
Controller

<<data abstraction>>
: Local Elevator Status & Plan

<<subsystem>>
: Scheduler

Elevator
Commitment

Approaching Floor
(Floor #)）

Check This Floor (Floor #)

Arrival
Sensor
Input

Arrived (Floor #)

Check Next
Destination

Up, Down

<<coordinator>>
: Elevator
Manager

<<asynchronous
input device
interface>>

: Elevator Buttons
Interface

Elevator
Button
Request

Elevator
Request

Update
Acknowledge

Scheduler
Request

Departed (Floor #)

Next
Destination

Approaching
Requested
Floor

Door Command

Door
Response

Elevator Lamp Output

Service Request

<<control subsystem>>
：Elevator Subsystem

<<asynchronous
input device
interface>>

: Floor Button
Interface

<<resource
monitor>>
: Floor Lamp

Monitor

<<data collection
subsystem>>

:Floor Subsystem

<<resource
monitor>>

: Direction Lamp
Monitor

FloorLamp
Command

Direction Lamp
Command

Floor
Lamp
Output

Direction
Lamp
Output

Floor
Button
Request

Task Architecture (Distributed)
Motor Command

Motor Response

Arrived (Floor #)

Departed (Floor #)

JAIST Koichiro Ochimizu

<<coordinator>>
: Elevator Scheduler

<<subsystem>>
: Floor Subsystem

<<data abstraction>>
: Overall

Elevator Status&Plan

Elevator #

Update Plan

Arrived, Departed
<<server>>

: Elevator
Status & Plan Server

Service
Request

<<coordinator subsystem>>
:Scheduler

Task Architecture of Scheduler Subsystem

<<subsystem>>
: Elevator
Subsystem

Scheduler request

Elevator
Commitment

Arrive
d(eleva
tor#,flo
or#,dir
ection)

departe
d(eleva
tor#,flo
or#,dir
ection)

Select Elevator

JAIST Koichiro Ochimizu

Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Performance Analysis of Non- Distributed
Elevator Control System

• A building with 10 floors and three elevators
• The Worst-Case Scenario

– Elevator button interrupts arrive with a maximum frequency of 10
times a second, which represents a minimum inter-arrival time of 100
msec. This worst-case scenario assumes that all 30 buttons are pressed
within 3 seconds.

– Floor button interrupts arrive with a maximum frequency of 5 times a
second, which represents a minimum inter-arrival time of 200 msec.
There are 18 floor buttons (2×8＋1＋1). This worst-case scenario
assumes that all 30 buttons are pressed within 3 seconds.

– All three elevators are in motion and arrive at floors simultaneously.
Three floor-arrival interrupts arrive within 50 msec of each other. This
is the most time-critical aspect of the probem, because when a floor
arrival interrupt is received, the Elevator Controller has to determine
whether the elevator should stop at this floor or not. If it need to stop,
the controller must stop the elevator before the floor has been past.

– Related usecases are “Select Destination”, “Request Elevator”, and
“Stop Elevator at Floor”.

JAIST Koichiro Ochimizu

Event Sequences in Three UseCases
• Stop Elevator at Floor (Period = Ta)

– A1: The Arrival Sensors Interface receives and
process the interrupt

– A2: The Arrival Sensors Interface sends
“approaching Floor” message to the Elevator
Controller.

– A3: The Elevator Controller receives message and
checks the Elevator Status & Plan object to
determine whether the elevator should stop or not.

– A4: The Elevator Controller invokes “stop Motor”
operation if it should stop.

JAIST Koichiro Ochimizu

Event Sequences in Three UseCases
• Select Destination (Period = Tb)

– E1: The Elevator Buttons Interface receives and
processes the interrupt.

– E2: The Elevator Buttons Interface sends “elevator
Request” message to the Elevator Manager.

– E3: The Elevator Manager receives message and
records destination in Elevator Status & Plan object.

JAIST Koichiro Ochimizu

Event Sequences in Three UseCases
• Request Elevator (Period = Tc)

– F1: The Floor Buttons Interface receives and processes the
interrupt.

– F2: The Floor Buttons Interface sends “service Request”
message to the Scheduler.

– F3: The Scheduler receives message and interrogates
Elevator Status & Plan object to determine whether an
elevator is on its way to this floor. Assume not, so that the
Scheduler selects an elevator.

– F4: The Scheduler sends a “scheduler Request” message
identifying the selected elevator to the Elevator Manager.

– F5: The Elevator Manager receives message and records
destination in Elevator Status & Plan object.

JAIST Koichiro Ochimizu

Task Parameters

Task CPU time Ci Period Ti Utilization Ui Assigned
Stop Elevator at Floor Priority

Arrival Sensors Interface 2 50 0.04 1

Elevator Controller 5 50 0.10 4
Total elapsed time = 34 msec Total utilization = 0.68

Select Destination

Elevator Buttons Interface 3 100 0.03 2

Elevator Manager(Case b) 6 100 0.06 5

Total elapsed time = 47 msec Total utilization = 0.47

Request Elevator

Floor Buttons Interface 4 200 0.02 3

Scheduler 20 200 0.10 6

Elevator Manager(Case c) 6 200 0.03
Total elapsed time = 76msec Total utilization = 0.38

Other Tasks

Floor Lamps Monitor 5 500 0.01 7

Direction Lamps Monitor 5 500 0.01 8JAIST Koichiro Ochimizu

Consolidated
Collaboration Diagram

<<input device
interface>>

: ArrivalSensor
Interface

<<state
dependent
control>>
: Elevator
Control

<<output device
interface>>

: Door
Interface

<<entity>>
: Elevator Status&Plan

<<coordinator>>
: Scheduler

<<output device
interface>>

: Motor
Interface

<<output device
interface>>

: ElevatorLamp
Interface

<<timer>>
: Door Timer

<<output device
interface>>

: DirectionLamp
Interface

Elevator
Commitment

Approaching
Floor (Floor #)

Check This Floor (Floor #)

Direction
Lamp
Command

Off Elevator
Lamp

ArrivalSensor
Input Arrived(Floor #)）

Arrived (Floor #)

After
(Timeout)

Check Next
Destination

<<output device
interface>>
: FloorLamp

Interface

Up, Down

Floor Lamp
Output

<<input device
interface>>
: FloorButton

Interface

<<coordinator>>
: Elevator
Manager

<<input device
interface>>

: ElevatorButton
Interface

Elevator
Button
Interface

Elevator
Request

Floor
Button
Interface

Service
Request

Update Acknowledge

Scheduler
Request

Departed(Floor
#)）

Next
Destination

Approaching
Requested
Floor

Departed(Floor #)

Direction
Lamp
Output

Floor
Lamp
Command

Start
Timer

Down

Up

Door
Command

Door
Response

Open Door Close Door

Door
Opened

Door
Closed

Stop
Elevator Started

Elevator Stopped

50msec

100msec 200msec

2 msec

20 msec
4 msec6 msec

3 msec

5 msec

1

5 6

4

3

2

JAIST Koichiro Ochimizu

Time-annotated sequence diagram

：Arrival
Sensor

Interface

：Elevator
Button

Interface

：Floor
Button

Interface

：Elevator
Controller

：Elevator
Manager ：Scheduler

0
2

6

10

14

18
20

40

46

50

2 A2: approaching Floor

3 E2: Elevator Request

4 F2: service Request

5

6

～～～～

F4: scheduler Request

6

20

JAIST Koichiro Ochimizu

Result of Analysis(1/3)
• Stop elevator at Floor (Ta=50msec)

– Execution time: Total execution time Ca＝2msec
(Arrival Sensors Interface)+5msec (Elevator
Controller). Execution utilization Ue=Ca/Ta=7/50=0.14

– Preemption by higher priority tasks: Total preemption
time Pa=3 (Elevator Buttons Interface)+4(Floor Buttons
Interface)=7msec。Preemption utilization Up=Pa/Ta
=7/50=0.14

– Blocking time: Total worst-case blocking time Ba=
20msec (Scheduler). Worst-blocking utilization Ub =
Ba/Ta=20/50=0.40

– Total Utilization= Ue+Up+Ub=0.14+0.14+0.40=0.68

JAIST Koichiro Ochimizu

Result of Analysis(2/3)
• Select Destination (Tb=100msec)

– Execution time: Total execution time Cb＝3msec (Elevator
Buttons Interface)＋6msec(Elevator Manager). Execution
Utilization Ue=Ca/Ta=9/100=0.09

– Preemption by higher priority tasks with shorter periods: Arrival
Sensors Interface and Elevator Controller (preempts Elevator
Manager) can each execute twice during 100 msec period, giving a
preemption time of 14 msec.

– Preemption by higher priority tasks with longer periods: 4 msec
from Floor Buttons Interface to handle floor Button interrupt.

– Total preemption time Cp=14+4=18 。Total preemption
utilization Up= Cp/Tb = 18/100 = 0.18

– Blocking time: Worst-case blocking time Ba= 20msec (Scheduler).
Worst-case blocking utilization Ub = Bb/Tb=20/100=0.20

– Total Utilization= Ue+Up+Ub=0.09+0.18+0.20=0.47
JAIST Koichiro Ochimizu

Results of Analysis(3/3)
• Request Elevator (Tc=200msec)

– Execution time: Total execution time Cc＝4msec (Floor Buttons
Interface)＋20msec(Scheduler)＋6msec(Elevator Manager).
Execution utilization Ue=Cc/Ta=30/200=0.15

– Preemption by higher priority tasks with shorter periods: Arrival
Sensors Interface and Elevator Controller (preempts Elevator
Manager and Scheduler) can each execute four times for a total of
28 msec.

– Total preemption time Cp=28+18=46. Preemption utilization
Up=Cp/Tp=0.23

– Total elapsed time=30+46+0=76
– Total Utilization= Ue+Up=0.15+0.23=0.38

JAIST Koichiro Ochimizu

Performance Analysis of Distributed
Elevator Control System

• one node per elevator, one node per floor, one
scheduler node.

• 40 floors and 12 elevators

JAIST Koichiro Ochimizu

Task Parameters

Task CPUtime Ci Period Ti Utilization Ui Assigned Priority
Elevator Subsystem

Arrival Sensors Interface 2 50 0.04 1

Elevator Controller 5 50 0.10 3

Elevator Buttons Interface 3 100 0.03 2

Elevator Manager 6 100 0.06 4
Floor Subsystem

Floor Buttons Interface 4 200 0.02 1
Floor Lamps Monitor 5 500 0.01 7
Direction Lamps Monitor 5 500 0.01 8

Scheduler Subsystem
Elevator Status and Plan Server 2 10 0.20 1

Elevator Scheduler 20 50 0.40 2

Network transmission delay = 2 msec

Elapsed time for Stop Elevator at Floor = 41 msec < 50 msec

Elapsed time for Select Destination = 48 msec < 100 msec

Elapsed time for Request Elevator = 82 msec < 200 msecJAIST Koichiro Ochimizu

Event Sequences for three Usecases
• Stop Elevator at Floor (Period = Ta)

– A1: The Arrival Sensors Interface receives and process the
interrupt

– A2: The Arrival Sensors Interface sends “approaching Floor”
message to the Elevator Controller.

– A3: The Elevator Controller receives message and checks the
Local Elevator Status & Plan object to determine whether the
elevator should stop or not.

– A4: The Elevator Controller invokes “stop Motor” operation if
it should stop.

– A5: The Elevator controller sends arrived message over the
LAN to the Scheduler subsystem, where it is received by the
Elevator Status & Plan Server.

– A6: The Elevator Status & Plan Server calls the arrived
operation of the Overall Elevator Status & Plan data abstraction
object.

JAIST Koichiro Ochimizu

Event Sequences for three Usecases
• Select Destination (Period = Tb)

– E1: The Elevator Buttons Interface receives and processes the
interrupt.

– E2: The Elevator Buttons Interface sends “elevator Request”
message to the Elevator Manager.

– E3: The Elevator Manager receives message and records
destination in Local Elevator Status & Plan object.

– E4: The Elevator Manager sends an “elevator Commitment”
message over the LAN to the Scheduler subsystem, where it is
received by the Elevator Status & Plan Server.

– E5: The Elevator Status & Plan Server calls the update Plan
operation of the Overall Elevator Status & Plan data abstraction
object.

JAIST Koichiro Ochimizu

Event Sequences for three Usecases
• Request Elevator (Period = Tc)

– F1: The Floor Buttons Interface receives and processes the interrupt.
– F2: The Floor Buttons Interface sends “service Request” message over the

LAN to the Elevator Scheduler task in the Scheduler subsystem.
– F3: The Elevator Scheduler receives message and interrogates Overall

Elevator Status & Plan object to determine whether an elevator is on its way
to this floor. Assume not, so that the Scheduler selects an elevator.

– F4: The Elevator Scheduler sends a “scheduler Request” message
identifying the selected elevator over the LAN to the Elevator Manager task
in the selected elevator’s instance of the Elevator subsystem

– F5: The Elevator Manager receives message and records destination in the
Local Elevator Status & Plan object.

– F6: The Elevator Manager sends an “elevator Commitment” message over
the LAN to the Scheduler subsystem, where it is received by the Elevator
Status & Plan Server

– F7: The Elevator Status & Plan Server calls the update Plan operation of the
Overall Elevator Status & Plan data abstraction object.

JAIST Koichiro Ochimizu

Result of Analysis(1/3)
• Stop elevator at Floor (Ta=50msec)

– Execution time: Total execution time Ca＝2msec (Arrival Sensors
Interface)＋5msec (Elevator Controller) Execution utilization Ue=
Ca/Ta=7/50=0.14

– Preemption by higher priority tasks with longer periods.
Preemption time Pa=3 (Elevator Buttons Interface). Preemption
utilization Up=3/50=0.06

– Blocking time: Total worst-case blocking time Ba= 6msec
(Elevator Manager). Worst-case blocking utilization Ub =
Ba/Ta=6/50=0.12

– Total elapsed time=7＋3＋6 =16msec<50．Total Utilization=
Ue+Up+Ub=0.14+0.06+0.12=0.32

– Total elapsed time for Stop elevator at Floor＝16(Total elapsed
time for Elevator Subsystem)＋2 (Transmission Delay, 25byte,
100Ｍbau, Transmission Delay Dt = 200/100000 = 2msec＋23
Worst-case elapsed time of Scheduler system)＝16＋2＋23＝
41msec

JAIST Koichiro Ochimizu

Result of Analysis(2/3)
• Select Destination (Tb=100msec)

– Execution time: Total execution time Cb＝3msec
(Elevator Buttons Inteface)＋6msec(Elevator Manager).
Execution utilization Ue=Ca/Ta=9/100=0.09

– Preemption time by higher priority tasks with shorter
periods: Arrival Sensors Interface and Elevator
Controller can each execute twice during the 100 msec
period, giving a total preemption time of 14 msec.
Up=0.14.

– Total elapsed time =9+14=23．Total utilization =
Ue+Up =0.09+0.14=0.23

– Total elapsed time for Select Destination Eb =23
(Elevator subsystem elapsed time)＋2(transmission
delay)＋23 (Scheduler subsystem elapsed time)
=48msec.

JAIST Koichiro Ochimizu

Result of Analysis(3/3)
• Request Elevator (Tc=200msec)

– Total elapsed time for floor subsystem Ef=4msec(floor
buttons Interface)＋1msec(transmission delay)=5msec.

– Total elapsed time for scheduler subsystem
Es=1msec(transmission delay)＋20msec(elevator
Scheduler)+ 1 msec (transmission delay)＋2msec
(Blocking time by Elevator Status & Plan subsystem)
＝1+20+1+2= 24msec.

– Execution time of Elevator Manager＝1+6+1=8．
– Total elapsed time of Elevator subsystem＝16+8=24．
– Total elapsed time for Request Elevator ＝

5+2+24+2+24+2+23=82

JAIST Koichiro Ochimizu

