Content(2)

* Object-oriented Software Development Methodology
— Qutline of Unified Process and Use-case Driven Approach
— Elevator Control System:
Problem Description and Use-case Model
— Elevator Control System:
Finding of Problem Domain Objects
— Elevator Control System:
Sub-System Design and Task Design
— Elevator Control System:
Performance Evaluation

 Product Line Technology
— Feature modeling

* Aspect Oriented Software Design

e Contribution of OOT in Software Engineering

— History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Koichiro Ochimizu

School of Information Science
Japan Advanced Institute of Science and Technology

JAIST Koichiro Ochimizu

Elevator Control System

Banking System

Cruise Control and Monitoring System
Distributed Factory Automation System
Electronic Commerce System

Hassan Gomaa, “Designing Concurrent, Distributed,
and Real-Time Applications with UML”, Addison-
Wesley, Object Technology Series, 2000.

JAIST Koichiro Ochimizu

User

Requirements
Modeling |-
> Analysis
| Modeling
Design
Modeling Incremental
Throwaway < Softwar.e
Prototyping Construction I :
ncrementa
Software Customer
Integration %
Incremental System |
Prototyping Testing

JAIST Koichiro Ochimizu

 Requirements Modeling functional requirements defined
by actors and use cases

* Analysis Modeling

Static model: structural relationships among problem
domain classes depicted on class diagrams,

Dynamic model: objects and their interactions depicted
on either communication diagrams or sequence diagrams.

The state-dependent aspects of the system are defined
using hierarchical statecharts (finite state machines).

* Design Modeling The software architecture of the system
1s designed. The analysis model 1s mapped to an operational
environment. Subsystem structuring criteria are provided.

JAIST Koichiro Ochimizu

* Incremental Software Construction Seclecting a subset
of the system to be constructed for each increment. The
subset is determined by choosing the use cases to be
Included in this increment. Incremental software
construction consists of the detailed design, coding, and
unit testing of the classes in the subset.

* Incremental Software Integration the integration testing
of each increment is performed. Integration test cases are
developed for each use case. Interfaces between the objects
that participates in each use case are tested.

« System Testing testing the system against Its functional
requirements.

JAIST Koichiro Ochimizu

 Definition of Functional Requirements by
Use Cases

JAIST Koichiro Ochimizu

1..* 1..* -
Floor Elevator Arrival
s 1..* | _Sensor
1,2 ,i\ 1,2 1..* 1,2
Floor Floor Direction
Button Lamp Lamp
1* | [1.* 1 1
Elevator Elevator
Button Lamp Motor Door
A M A ¥
lg—\ [123456789 |
12345
| 6789

N\

elevator control
program

JAIST Koichiro Ochimizu

Select Destination

X

Arrival Sensor

X

Elevator User

Request Elevator

JAIST Koichiro Ochimizu

Use Case name: Seclect Destination
Summary: The user in the elevator presses an up or down elevator button to select a destination

floor to which move

Dependency

Actor: Elevator User (primary), Arrival Sensor
Precondition: User in the elevator
Description:

1. User presses an up elevator button. The elevator button sensor sends the elevator button
request to the system, identifying the destination floor the user wishes to visit.

2. The new request is added to the list of floors to visit. If the elevator is stationary, The
system determines in which direction the system should move in order to service the next
request. The system commands the elevator door to close. When the door has closed, the
system commands the motor to start moving the elevator, either up or down.

3. As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the destination floor selected by the
user.

* Alternatives:

1. User presses down elevator button to move down. System response is the same as for the
main sequence.

2. If the elevator is at a floor and there is no new floor to move to, the elevator stays at the
current floor, with the door open.

- Postcondition: Elevator has arrived ¥th& Q0T MEYr selected by the user.

 Use Case name: Request Elevator

« Summary: The user at a floor presses an up or down floor button to request an elevator.
* Dependency

 Actor: Elevator User (primary), Arrival Sensor

* Precondition: User is at a floor and wants to an elevator

* Description:

— 1. User presses an up floor button. The floor button sensor sends the user request to the system,
identifying the floor number.

— 2. The system selects an elevator to visit this floor. The new request is added to the list of
floors to visit. If the elevator is stationary, The system determines in which direction the
system should move in order to service the next request. The system commands the elevator
door to close. After the door has closed, the system commands the motor to start moving the
elevator, either up or down.

— 3. As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

— If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the floor in response to the user
request.

* Alternatives:

— 1. User presses floor button to move down. System response is the same as for the main
sequence.

— 2. If the elevator is at a floor and there 1s no new floor to move to, the elevator stays at the
current floor, with the door open.

. Postcondition: Elevator has arrived¥th& PGB UPFAPEHSe to user request.

<<include>>

Dispatch
Elevator

Select Destination

Stop
Elevator at
Floor

<<include>>. ~"<<include>> include

Request Elevator

X

BIS/Aiooithssy Ochimizu

X

Arrival Sensor

Use Case Description

e Use Case name: Select Destination

« Summary: The user in the elevator presses an up or down elevator button to select a
destination floor to which move

 Dependency

 Actor: Elevator User
 Precondition: User in the elevator
* Description:

— 1. User presses an up elevator button. The elevator button sensor sends the elevator
button request to the system, identifying the destination floor the user wishes to visit.

— 2. The new request is added to the list of floors to visit. If the elevator is stationary,
Include Dispatch Elevator abstract use.
— 3. Include Stop Elevator at Floor abstract use case.

— If there are other outstanding requests, the elevator visits these floors on the way to
the floor requested by the user, following the above sequence of dispatching and
stopping. Eventually, the elevator arrives at the destination floor selected by the user.

* Alternatives:

— 1. User presses down elevator button to move down. System response is the same as
for the main sequence.

— 2. If the elevator 1s at a floor and there 1s no new floor to move to, the elevator stays
at the current floor, with the door open.

* Postcondition: Elevator has arrived at the destination floor selected by the user.
JAIST Koichiro Ochimizu

Use Case Description

 Use Case name: Request Elevator

« Summary: The user at a floor presses an up or down floor button to request an
elevator.

 Dependency

 Actor: Elevator User

 Precondition: User is at a floor and wants to an elevator
* Description:

— 1. User presses an up floor button. The floor button sensor sends the user request to
the system, identifying the floor number.

— 2. The system selects an elevator to visit this floor. The new request is added to the
list of floors to visit. If the elevator is stationary, then include Dispatch Elevator
abstract use case.

— 3. Include Stop Elevator at Floor abstract use case.

— If there are other outstanding requests, the elevator visits these floors on the way to
the floor requested by the user following the above sequence of dispatching and
stopping. Eventually, the elevator arrives at the floor in response to the user request.

* Alternatives:

— 1. User presses floor button to move down. System response is the same as for the
main sequence.

— 2. If the elevator 1s at a floor and there 1s no new floor to move to, the elevator stays
at the current floor, with the door open.

* Postcondition: Elevator has arriyed at the floor 1n response to user request.

o1cniro 1mizu

Use Case name: Stop Elevator at Floor abstract Use Case
Summary:

Dependency

Actor: Arrival Sensor

Precondition: Elevator is moving

Description:

— As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

Alternatives:
— The elevator is not required to stop at this floor and so continues past the floor.
Postcondition: Elevator has stopped at floor, with door open.

JAIST Koichiro Ochimizu

Use Case name: Dispatch Elevator abstract use case
Summary:

Dependency

Actor:

Precondition: Elevator is at a floor with the door open.
Description:

— The system determines in which direction the system should move in order to service the next
request. The system commands the elevator door to close. After the door has closed, the system
commands the motor to start moving the elevator, either up or down.

Alternatives:

— If'the elevator is at a floor and there is no new floor to move to, the elevator stays at the current
floor, with the door open.

Postcondition: Elevator is moving in the commanded direction.

JAIST Koichiro Ochimizu

Content(2)

* Object-oriented Software Development Methodology
— Qutline of Unified Process and Use-case Driven Approach
— Elevator Control System:
Problem Description and Use-case Model
— Elevator Control System:
Finding of Problem Domain Objects
— Elevator Control System:
Sub-System Design and Task Design
— Elevator Control System:
Performance Evaluation

 Product Line Technology
— Feature modeling

* Aspect Oriented Software Design

e Contribution of OOT in Software Engineering

— History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

<<external input
device>>
ElevatorButton

<<external output
device>>
Motor

%

<<external output
device>>
ElevatorLamp

l1..*

<<external output
device>>
FloorLamp

<<system>>

<<external input
device>>
ArrivalSensor

ElevatorControl
System

1

<<external output
device>>
DirectionLamp
JAIST Koichiro Qchimiz:

<<external output
device>>
Door

<<external input
device>>
FloorButton

* For every <<external input/output device>> object, there is
a corresponding software device interface object.

« Each elevator has a state-dependent control object called
Elevator Control, which control the elevator motor and
door.

* Because requests for the elevator can come at any time, a
decision 1s made to have a separate coordinator object,
called the Elevator Manager, to receive all incoming
requests for the elevator and to update the elevator plan.

* An entity object 1s needed for each elevator, which we call
Elevator Status & Plan.

JAIST Koichiro Ochimizu

El: Elevator

Button E2: Elevator E5: Elevator
Request Request Commitment
» | <<inputdevice | __, |__ coordinator>> ., <<coordinator>>
interface>>)
- Elevator : Scheduler
. Elevator .M
Button Interface Mlanager
- Elevator

E5a: UP or Down

User \

E3:Update l T E4: Acknowledge

<<state dependent
control>>
<<entity>> : Elevator
: Elevator Control
Status&Plan

JAIST Koichiro Ochimizu

E1: The Elevator Button Request arrives at the Elevator Button
Interface object.

E2: The Elevator Button Interface object sends the Elevator
Request to the Elevator Manager object.

E3: The Elevator Manager sends the request to Elevator Status
& Plan, which adds the request to the list of floors to be visited.

E4: The elevator plan 1s updated. An acknowledgement 1s
returned to the Elevator Manager object, which identifies
whether the elevator 1s 1dle.

ES5: The Elevator Manager sends an Elevator Commitment
message to the Scheduler, to inform 1t that this elevator 1s
committed to visit the given floor.

ESa: If the Elevator is 1dle, the Elevator Manager sends an Up
(or Down) message to the Elevator Control object, directing 1t
to move in the desired direction. This case is handled by the
DlSpatCh Elevator use GASE Koichiro Ochimizu

F1: Floor
Button
Request

=

<<input device
interface>>

: Floor
ButtonInterface

. Elevator
User

F2: Service F3: Scheduler
Request Request F4: Update
— , — | <<coordinator>>| ——» <<entity>>
<<coordinator>>
. Elevator «— : Elevator
- Scheduler «— R —
Manager Status&Plan
) F5:
F6: ElevatorCommitment Acknowledge

<<state dependent

control>>

: Elevator

Control

JAIST Koichiro Ochimizu

l Fé6a: Up or Down

The message sequence description

F1: The Floor Button Request arrives at the Floor Button
Interface object.

F2: The Floor Button Interface object sends a Service Request to
the Scheduler object.

F3: The Scheduler object selects an elevator and sends a
Scheduler Request to the Elevator Manager object in the selected
Elevator composite object.

F4: The Elevator Manager object sends an Update message to
the Elevator Status & Plan to add the new request to the elevator
plan of which floor it 1s to visit.

F5: An acknowledgement is returned to the Elevator Manager
object, which 1dentifies whether the elevator 1s 1dle.

F6: The Elevator Manager sends an Elevator Commitment
message to the Scheduler.

Fé6a: If the elevator 1s 1dle, the Elevator Manager sends an Up (or
Down) message to the Elevator Control object, directing it to
move 1n the desired direction. This case i1s handled by the
Dispatch Elevator use caser koichiro Ochimizu

<<external output

device>>
: DirectionLamp

Ab5a.1:DirectionLamp T

A9a.1:ElevatorLamp T

<<external output

device>>
: ElevatorLamp

A6: Stop Motor T

A16:No Request T

<<external output

device>>
: Motor

A15:Check
Next Destination

l A7:Motor Response

J AIS"fﬁed]gﬁYngchimizu

FlevatorStatus&Plan

<<coordinator>>
: Scheduler

<<external output
device>>

output output Command
<<output device <<output device <<output device
interface>> interface>> interface>>
: DirectionLamp : ElevatorLamp : Motor
Interface Interface AS5:Stop Interface
AS5a:0n /
<<fimer>> Al4:After \)irectionLamp A9a:0ff ‘/AS:Elevator Stopped
- DoorTimer (Timeout) ElevatorLamp A10:0
: Door limer :Open
Al'%t* Ny Door
Al:Arrival Timer
Sensor A9:0Open Door << devi Comm. and
Input <<input device |A2:Approaching <<state depend ., _Output evice
put interface>> [Eloor(Floori) control>> interface>>
- ArrivalSensor —> : ElevatorControl — : Door
' : , A12:Door Interface
: Arrival Sensor Interface .
A3:Check Thi Opened All:Door
A4:Approaching Requested T)) elc s Response
Floor (Floor #, direction) Floor (Floor #) A9c¢: Arrived(Floor #)
i A9b:Arrived(Floor #) \

: Door

The message sequence description

Al: The Arrival Sensor Interface object receives an input from the arrival sensor
external entity.

A2: The Arrival Sensor Interface object sends the floor number in the
Approaching Floor message to the Elevator Control object.

A3: The Elevator Control object sends a Check This Floor message to the
Elevator Status & Plan object, which checks whether the floor at which the
elevator is arriving is one where it should stop.

A4: As the elevator is arriving at a requested floor, the Elevator Status & Plan
object sends the Approaching Requested Floor message to the Elevator Control
object. The message contains the floor number and the future direction. On
receiving this message, Elevator Control transitions from Elevator Moving state
to Elevator Stopping state.

AS: As aresult of the transition to Elevator Stopping state, the Elevator Control
object commands the Motor Interface object to Stop.

ASa(parallel sequence): Elevator Control sends an On Direction Lamp (with up
or down as a parameter) to the Direction Lamp Interface object, which switches
on the real-world direction lamp(A5a.1).

A6: The Motor Interface object sends the Stop Motor Command to the real-
world motor.

A7: The Motor Interface object receives the Motor Response.

A8: Motor Interface object se Elevator Stopped message to the Elevator
AT Roichiic B

Control object, which then transitions to Efevator Door opening state.

The message sequence description

A9: On transitioning to Elevator Door Opening state, the Elevator Control object
sends the Door Interface object a command to Open Door.

A9a(parallel sequence because there are four actions associated with the state
transition): The Elevator Control object sends an Off Elevator Lamp message to
the Elevator Lamp Interface object, which then sends an Elevator Lamp Output
to the external lamp to switch it off(A9a.1).The Elevator Control object sends the
Arrived message to both the Elevator Status & Plan object(A9b, third parallel
sequence) and the Scheduler object(A9c, Fourth parallel sequence).

A10: The Door Interface object sends the Open Door Command to the real world
door.

Al1l: The Door Interface object receives the Door Response.

A12: The Door Interface object sends a Door Opened message to the Elevator
Control object, which then transitions to Elevator at Floor

A13: The Elevator Control object starts a timer.

Al4: A timer event is generated after a period of time equal to timeout, causing
the Elevator Control object to transition to Checking Next Destination state..

A15: As a result of the transition, Elevator Control sends a Check Next
Destination message to the Elevator Status & Plan object. The objective is to
determine the next destination just prior to departure, in case there has been a
recent update to the plan. If the elevator does not have any outstanding requests,

it transitions to Elevator Idle state (event A16). Otherwise, use the Dispatch
Elevator use JAIST Koichiro Ochimizu

A2:Approaching Floor
/A3:Check This Floor

Elevator Moving

A4:Approaching Requested Floor / A5 : Stop,
AS5al : On Direction Lamp

Elevator Stopping

AR8: Elevator Stopped/ A9 : Open Door, A9a :
Off Elevator Lamp, A9b,A9c: Arrived

Elevator D@

A12:Door Opened / A13: Start Timer

Elevato@

A14: After(Timeout) /A15: Check Next Destination

Checking Next . Elevator Idle
ALY 6: No Reques

DektTniasignro Oc

<<external output
device>>
: FloorLamp

<<output device
interface>>

: FloorLamp_
Interface

<<output device

interface>>
: DirectionLamp
Interface

T D2a.1:Floor
Lamp Output

D2a:Off Up Floor Lamp

T~

<<coordinator>>
: Scheduler

D7:Start Up Motor Command

Dé6a.1:Direction
Lamp Output

<<external output

device>>
: Direction Lamp

«—

D6a:Off Up
Direction Lamp

D1: Up Reques

l D10:Departed (Floor #)

T D10a: Departed
(Floor #) <<outputdevice| ___, |___ oo output
interface>> device>>
: Motor .
D6:Up Interface -Motor
D9:Elevator D8:Motor Response
<<state Started D3:Close Door
dependent D2: Close Door Co_m:nand
control>> — <<output device
: Elevator) interface>>
Control :
D5-Door Closed : Door Interface T
D4:Door Response

<<external output

device>>
: Door

<<entity>>

J AEEVakoo RthineDehimizu

The message sequence description

Starting preconditions are different for Dispatch Elevator.

— Stop Elevator at Floor is the first case. On entering Checking Next Destination
state, Elevator Control sends a Check Next Destination message to Elevator Status
& Plan . Elevator Status & Plan sends an Up Request (or Down Request)
message to Elevator Control, informing it of the direction in which to move.

— Elevator Control object is in Elevator Idle state is the second case. Elevator
Manager receives a message from either the Scheduler or the Elevator Button
Interface with a request for the elevator to visit the floor. Elevator Manager sends
a message to Elevator Status & Plan to update the plan. If the elevator is busy
servicing a request, Elevator Status & Plan returns an Acknowledgement message
with a null parameter. On the other hand, if the elevator is idle, Elevator Status &
Plan returns an Acknowledgement message with an up (or down) parameter.

D1: {Source object} sends Elevator Control an Up Request message. Elevator
Control transitions to Door Closing to Move Up state.

D2: As a result of this state transition, there are two concurrent outputs events.
Elevator Control sends a Close Door command to Door Interface. On the
statechart, the Close door event (as well as one other output event) is shown
as an entry action, because the Up Request event can arrive from either the
Elevator Idle state or the Checking Next Destination state.

D2a(parallel sequence): Elevator Control sends an Off Up Floor Lamp to the
Floor Lamp Interface object, which switches off the real-world

JAIST Koichiro Ochimizu

 D3: Door Interface sends a Close Door Command to the real —
world door.

« D4: The real-world door sends a Door Response when the door is
closed.

« DS5: The Door Interface sends a Door Closed message to Elevator
Control, which transitions to Elevator Starting Up state.

« D6: Elevator Control sends an Up Command to the Motor
Interface object.

« Dé6a: Elevator Control sends an Off Up Direction Lamp request to
the Direction Lamp Interface object, which switches off the
direction lamp.

« D7: The Motor Interface object sends the Start Up Motor
Command to the real-world motor.

« D8&: The real-world motor sends a Motor Response when the
elevator has started moving upward.

« DO9: The Motor Interface object sends an Elevator Started message
to Elevator Control, which transitions to Elevator Moving state.

« DI10: Elevator Control sends a Departed message to both the
Elevator Status & Plan and Scheduler object.
JAIST Koichiro Ochimizu

-

D1: Up Request

Door Closing to Move Up

~

Elevator Idle

N

Entry/ D2:Close Door
, D2a:Off Up Floor Lamp

/

Checking Next @Starﬁng Up
Destination

D5:Door Closed /

D1: Up Request

D6 : Up, Dé6a : Off Up Direction Lamp

f
Elevator Moving

D9: Elevator Started
JAIST Koichiro Ochimizu

\Entry/ D10, D10a:Departe

No Request (Elevator Idle W
L Entry/ update idle status J
~ ~ . B
Door Closing to Move Up Door Closing to Move Down
DI1:Up Down
Entry/ D2:Close Door Request Request o];:‘fn]tj)rY/ Clgie Dior
, own Floor Lam
, D2a:Off Up Floor Lamp A2:Approaching Floor _ P J
_ / :
_ _ /A3:Check This Floor Door Closed/ Down, Off
D5:Door Closed / D6 : Up, ,—\l/ D Direction L
Dé6a : Off Up Direction Lam}} ~ own birection Lamp
Elevator Movin i
[Elevator Starting Up] g [Elevator Starting Down]
| J| Entry/D10,D10a:Departed | Elevator Started
T\ J

D9: Elevator Started

D1:Up Request

[Elevator Stopping }

A4:Approaching Requested Floor /
A5 : Stop, ASal : On Direction Lamp

AS8:Elevator Stopped /

A9 : Door Opened, A9a :

Down Request

Off Elevator Lamp, A9b,A9¢c:Arrived

[Elevator Door Opening J

A12:Door Opened /A13:Start Timer

[Elevator at Floor J

-l

Al4:After(Timeout) /A15:Check Next Destination

AR ihira sk

J

* Consolidated Collaboration Diagram shows
all the objects that participate In the use
cases and all the interactions between these
objects.

JAIST Koichiro Ochimizu

Consolidated

Collaboration Diagram <<timer>> <<output device <<output device
: Door Timer interface>> interface>>
Floor Lamp : ElevatorLamp : Motor
Output <<output device Floor After Interface Up Interface
interface>> Lamp (Timeout) P -
2 00TLAMD Floor?am v\Command Off Elevator Down FElevator Started
Interface T Lamp Stop/
Start Elevator Stopped Door
Direction :
Lamp <<output device Direction <<state Command
Output) Lamp d d Open Door Close Door |<<output device
ependent
<« interface>> Command . : A
: DirectionLamp control>> interface>> >
. — : : Door «—
Interface : Elevator Door :
Control Opened Door Interface
Check Next Closed D
<<input device Next T Destination Roor
> interface>> _ Destination l Check This Floor (Floor #) esponse
ArrivalSensor | . AyrivalSensor A hi
: pproaching . :
Input Interf: Floor (Floor #) Approaching l Arrived(Floor #))
nteriace Requested
Floor Departed(Floor | Arived (Floor #
#))
Up, Down .
b oW <<entity>>
: Elevator Status&Plan
l Departed(Floor #)
Elevator Update l Acknowledge
Button Elevator Floor
Interface Request Scheduler Service Button
i i Request Request | <<jnput device | Interface
<<input device << - s < «— ~1nb «—
interface>> > C(_)%fgf:fr <<coordinator>> interface>>
: ElevatorButton .M —> : Scheduler : FloorButton
Interface ANASPAIST K dilstyaterOchirhizu Interface
—— Commitment

Content(2)

* Object-oriented Software Development Methodology
— Qutline of Unified Process and Use-case Driven Approach
— Elevator Control System:
Problem Description and Use-case Model
— Elevator Control System:
Finding of Problem Domain Objects
— Elevator Control System:
Sub-System Design and Task Design
— Elevator Control System:
Performance Evaluation

 Product Line Technology
— Feature modeling

* Aspect Oriented Software Design

e Contribution of OOT in Software Engineering

— History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

 Structuring Criterion: Principles "high coupling
within a subsystem and low coupling between
subsystems”

— Aggregate/composite object: Geographical location : If
two objects could potentially be physically separated in
different locations, they should be in different
subsystems to reduce communication cost

— Clients and servers must be in separate subsystems
— User interface objects are usually clients

— A control objects and all the entity and interface objects
it directly controls should all be part of one subsystem

JAIST Koichiro Ochimizu

<<Control>>

The subsystem receives its inputs from the external environment and
generates outputs to the external, usually without any human
intervention. It includes at least one state-dependent control object. In
some case, some Inputs data might be gathered by some other
subsystem (s).

<<Coordinator>>

In cases with more than one control subsystem, it is sometimes
necessary to have a coordinator subsystem that coordinates the control
subsystems.

<<Data collection>>

A data collection subsystem collects data from the external
environment.

<<Data analysis>>

A data analysis subsystem analyzes data and provides reports and/or
displays for data collected by another subsystem.

JAIST Koichiro Ochimizu

<<Server>>

A server subsystem provides a service for other subsystems. In the
simplest case, a server object could consist of a single entity object.

<<User interface>>

A user interface subsystem provides the user interface and acts as a
client. There may be more than one user interface subsystems. A user
interface subsystem is usually a composite object that is composed of
several simpler user interface objects.

<<I/O subsystem>>

In some systems, grouping al the device interface classes into an I/O
subsystem might be useful, because developing device interface
classes is a specialized skill.

<<System services>>

Certain services are not problem domain-specific but provide system-
level services, such as file management and network communication
management.

JAIST Koichiro Ochimizu

Subsystem Structuring i ;
<<timer>> <<output device <<output device
- Door Timer interface>> interface>>
Floor Lamp devi : ElevatorLamp I:%[\/I%
Output <<.OUtPU—t cvice Floor After Interface Up Interface
interface>> Lamp (Timeout) P -
—leriaimg v\Comrnand Off Elevator Down Elevator Started
Interface L
amp Stop v
Start Elevator Stopped Door
Direction . 2 ;
Direction omman
Lamp <<output device L <<state _
OUtpl’It . amp dependent Open Door CIOSC Door <<Output devlce
-« interface>> Command . : _
- DirectionLamp control>> interface>>
. — : : Door «—
Interface : Elevator Door : Door
Control Door Interface
Opened
Closed
Check Next D
<<input device Next T Destination Roor
> interface>> _ Destination l Check This Floor (Floor #) esponse
ArrivalSensor | . . : l Arrived (Floor #
Input : ArrivalSensor ?lpproa;}llmg# Approaching ¢ Arrived(Floor #)) ()
Interface oor (Floor #) Requested
Floor Departed(Floor Elevator Subsystem
#)) Floor Subsystem
Up. Down i - Scheduler Subsystem
<<entity>>
: Elevator Status&Plan
l Departed(Floor #)
Elevator Update l Acknowledge
Button Elevator Floor
Interface Request Scheduler Service Button
i i Request Request | <<jnput device | Interface
., <§1nput device __, |<<coordinator>> «— -« terfaces> |
interface>> . Blevator ! erface
: ElevatorButton Mana — : FloorButton
Interface FAIST K dilyiorOchi Interface
-— Commitment

Subsystem Structuring i ;
<<timer>> <<output device <§0utput device
: Door Timer interface>> interface>>
. : Motor
Floor Lamp . : ElevatorLamp e
Output <<.wf devrice 1 \ ThatberdBrvan Interface
1 . .
~— Door Interface object, Motor Interface object, \% Elevator Started
Elevator Lamp Interface object are the parts of
. . Elevator Stopped
Direction a Elevator composite object. PP Door
. omman
Lamp << *Each elevator needs an Elevator Control object, ;
Output k or |<<output device
& — an Elevator Manager object, and an Elevator interface>> |~
] .
-] Status & Plan object. : Door «—
: . : Interf:
» The Arrival Sensor Interface object is placed in the —
il Elevator Subsystem because it is more tightly coupled EOOY
—> g . . esSponse
, i\ with this subsystem(Stop Elevator use case)
ArrivalSensor | . A (Floor #)
Input Interface [T T Requesied | |V
Floor Departed(Floor Elevator Subsystem
#)) Floor Subsystem
Up, Down <<entity>> ~ Scheduler Subsystem
: Elevator Status&Plan
l Departed(Floor #)
Elevator Update l Acknowledge
Button Elevator Floor
Interface Request Scheduler Service Button
. . Request Request | <<input device | Interface
<<input device <<coordinator>> «— — | «—
—> nterface>> —> interface>>
interface : Elevator e T
: ElevatorButton Mana — = rloorbution
Interface FAIST K dilevitorOchi Interface
Commitment

il;ii; <<control subsystem>> <<output device M
t
<<external Output :Elevator Subsystem T N—— Coonfr;an 4| | <<external
ou.tput <+ : Elevator Lamp S Esues — output
device>> Interf interface>> device>>
: Elevator -terlace - Motor - : Motor
Lamp . . — -
<<timer>> Interface Motor
Off elevator Response
o D e After P
Floor Lamy : Door e (Ti) Lamp Up 7
Command 1meout /
\ Down/v Elevator Started | ,o: Command
Direction Start Timer Stop Elevator Stopped
<<sub Lamp <<state Open IC)I(?OS: . devi <<external
_: Floor control>> <« <+ | Interface>> . device>>
Subsystem | Approaching - Elevator Door ; gloord : Door - Door |
Floor(Floor #)) Control & 0s¢ Interface Door
Atrrival l Check Next Destinatio Response
Sensor
Input . . Next T l Check This Floor(Floor #))
<<external — <<input device Destination
1np ut interface>> Approaching l Arrived(Floor #) \
de\/;10§>1> : Arrival Sensor Requested Arrived(Floor #)
.STTO\? | Interface Floor l Departed (Floor #)
Departed(Floor #)
<<entity>>
Up, Down : Elevator Status & Plan
l Acknowledge Scheduler
Elevator Update Request
<<external Button
i R t . .
input eaues <<input device . «—
device>> , I — <<coordinator>>
: Elevator : Elevator manager —
Button i : Elevator Button 1 :
Interface Elevator R I Elevator
RIAEST Koichiro Ochimizu evato
Commitment

Subsystem Structuring i ;
<<timer>> <<output device <<output device
: Door Timer interface>> interface>>
Floor Lamp . : ElevatorLamp : Motor
Output <<.0utput device Floor After Interface Up Interface
interface>> Lamp (Timeout) P
: FloorLamp y\Command Off Elevator Down r'e Elevator Started
Interface T Lamp Stop
Start \ = Elevator Stopped
Direction
Lamp e \ Command
_ : .
Output i?lltlg;latceil(*Floor subsystem composite object ose Door [
< L consists Floor Lamp Interface object g interface>> ’
: DirectionLamy) —— D
Interface and Floor Button Interface object. b 1 Door «
: 0 . . oor Interface
* Direction Lamp Interface object is Closed
. . D
<<input device | allocated to the Floor subsystem, Roor
-) esponse
interface>> b
ArrivalSensor | . A rivalSensor \\608,1186 Arrived (Floor #)
Input Interface T T Requested | |V
Floor Departed(Floor Elevator Subsystem
#)) Floor Subsystem
Up, Down <<entity>>
: Elevator Status&Plan
Elevator ul The Scheduler coordinator
Button Elevator object is allocated to its own |, Floor
Interface Request o 1ce Button
<<input device - subsystem, because it is hest [<<input device | interface
<< . - . «—
—> | terfaces> —> coordinall iy jenendent of the number of interface>>
: Elevatol : FloorButton
: ElevatorButt —
cvatorBution Manageny £1QOLS ANHElENALOTS / i
Lol Commitment

<<control subsystem>>
: FloorSubsystem

Service
Request

—

Floor
Button
<<external Request
input <<input device
device>> — interface>>
: Arrival : FloorButton
Sensor Interface
Floor
Lamp
Output
<<external <<output device
output +— interface>>
device>> : Floorlamp
7&5 Interface
Direction
Lamp
Output
<<external - <<output device
output interface>>
dey1ce}> : DirectionLamp
—+ Direction Interface
Lamp ——

Floor Lamp

Command

<+—

<<subsystem>>
: Elevator
Control

Direction
Lamp
Command
«—

JAIST Koichiro Ochimizu

<<external input

device>>
: Elevator Button

<external output

device>>
: Elevator Lamp

A

<external input

device>>
: Arrival Sensor

Elevator Button Interface ™~

device>>
: Motor

<<external output

Elevator Lamp

/ Arrival Sensor Input

A

<external input

device>>
: Floor Button

<<external
output

device>>
: Door

Output
Motor
Command <system>> . Door
- Command
Elevator Control <<control
System —
bl subsystem>>
—> ' Elevator Subsystem |- «—
[Motor Scheduler Door
Response Floor Lamp Commarid/ Arrival (Floor#)\4 Request Response
Direction Lamp Departed (Floor #)\4
C d
Floor omman Elevator Commitment\
Button
Request | <<data collection <<coordinator
subsystem>> —» | subsystem>>
B : Floor Subsystem — Service : Scheduler
Request

Floor Lamp Output x”

device>>
: Floor Lamp

<xexternal output

v Direction Lamp Output

<

<external output
device>>

. DirectiddMLahpKo1

thiro Ochimizu

Refined Static Model (Class Diagram) for Elevator Control System

<<control subsystem>> ElevatorSubsystem

<<output device

interface>>
Door
Interface

<<input device

interface>>
Arrival Sensor
Interface

<<timer>>
Door Timer

Control

%

<<output device <<output device <<input device
interface>> interface>> interface>>
Elevator Lamp Motor Elevator Button
Interface Interface Interface
1.*
1.* !
Controls Controls Coriltrols Requests
1
1 ! Commands |<<coordinator>>
* 1 Elevator
‘ <<state dependent control>> | I 1 Manager
Notifies Elevator Control 1 Updates,
1 *
Notifies &hecks | Updates L.
1 1.* 1.* 1.* 1
1 <<entity>>
Elevator Status&Plan
Controls Notifies

*

<<data collection/subsystem>> FloorSubsystem
l..

*

1 1

Updates

Requests

<<output device

interface>>
Direction Lamp
Interface

* 1.*
<<input device| | <<output device
interface>> interface>>
Floor Button Floor Lamp

Interface Interface

<<coordinator sul

<<server>>
Elevator

Status & Plan
Server

l1.*

FATSTKoichito Ochfmizu !
l

Requests

1

1

ysystem>> Scheduler

Updates

<<entity>>
Overall Elevator

<<coordinator>>
Elevator Scheduler

Selects

Status & Plan

Task Structuring

* Design task structure and task interface by applying the
following task structuring criteria to problem domain
objects recognized as an consolidated collaboration
diagram.

— 1I/0 task structuring criteria

Criteria to decide whether each device interface object is an
active object or not, considering the properties: interrupt-driven,
polling, communication, discrete data or analog data Criteria to

— Internal task structuring criteria make the

. :) .. : : bjects (i

Criteria to decide whether each internal object is an active object Zoﬁ)ﬁé;tr; ;‘
or not, considering the properties: period, asynchronous, control,| ..iaboration
UL diagram)

— Task priority criteria active objects

Criteria to decide whether each internal object is an active object
or not, considering the properties: time-critical, computation

(CPU bound).) Criters
. . . riteria to
— Task clustering criteria — group the active
Criteria to group active objects selected by the above criteria, ;’:éeistfe
. . . o oal . u
cons@ermg properties: tlﬂ?gfﬁg&%%%&?ntrol, mutual T Lumber of tasks

exclusion..

I/0 task structuring criteria
— Asynchronous I/0O Device Interface tasks
— Periodic I/O Device Interface tasks
— Passive I/0 Device Interface tasks
— Resource Monitor tasks
Internal task structuring criteria
— Periodic Tasks
— Asynchronous tasks
— Control tasks
— User Interface tasks
Task priority criteria
— Time-Critical tasks
— Non-Time-Critical Computationally Intensive tasks
Task clustering criteria
— Temporal Clustering
— Sequential Clustering
— Control Clustering
— Mutually Exclusive Clustering

JAIST Koichiro Ochimizu

Necessary to determine the hardware characteristics of the I/0
device that interface to the system, and the nature of the data

being input to the system to these devices.

— Asynchronous (active) I/O devices:
For each asynchronous I/0O device, an asynchronous I/0O device interface

task 1s needed not to miss an interrupt.

— Periodic I/0 Device Interface Tasks:
If passive input (or output) devices are polled (or addressed) periodically

y a timer, a periodic I/O device interface task i1s needed.

— Passive I/0 Devices Interface Tasks:
For passive I/O devices that do not need to be polled, passive I/0 devices

interface tasks are needed when it is considered desirable to overlap

computation with I/O.

— Resource Monitor Task:
An input or output device that receives requests from multiple sources

should have a resource monitor task to coordinate these requests, even 1f
the device is passive. A resource monitor task has to sequence these
requests so as to maintain data integrity and ensure that no data is

corrupted or lost. JAIST Koichiro Ochimizu

Periodic Tasks

An activity that needs to be executed periodically (1.e. at
regular, equally spaced intervals of time) is structured as a
separate periodic task. The task 1s activated by a timer
event, performs the periodic activity.

Asynchronous Tasks

The demand-driven(the arrival of internal messages or
events) activities are typically handled by means of
asynchronous tasks.

Control Tasks

A task that executes a sequential state-chart 1s referred to as
a control task.

User Interface Tasks

A user typically performs a set of sequential operations,
this can be handled by a use Interface task.

JAIST Koichiro Ochimizu

Task Priority Criteria

Task priority criteria take into account priority
considerations in task structuring, in particular, high- and
low-priority tasks are considered.

* Time-Critical Tasks

A time-critical task is a task that needs to meet a hard
deadline. Such a task needs to run at a high priority.

 Non-Time-Critical Computationally Intensive Tasks

A non-time-critical computationally intensive task may run
as a low-priority task consuming spare CPU cycles. A low-
priority computationally intensive task executing as a
background task that 1s preempted by higher-priority
foreground tasks has its origin in early multiprogramming

systems and 1s typically supported by most modern
operating systemes.

JAIST Koichiro Ochimizu

Reduce the number of tasks
 Temporal Clustering

Certain candidate tasks may be activated by the same
event, e.g. a timer event. If there 1s no sequential
dependency between the candidate tasks, they may be
grouped 1nto the same task, based on the temporal
clustering. Some tradeoffs need to be considered.

— If some candidate task i1s more time critical than the others, the task
should not be combined.

— Iftwo candidate tasks could be executed on separate processors,
they should not be combined.

— Preference should be given in temporal clustering to tasks that are
functionally related and likely to be of equal importance from a
scheduling viewpoint.

— Two tasks with different periods may not be clustered.

JAIST Koichiro Ochimizu

Task Clustering Criteria(2/3)

Reduce the number of tasks

* Sequential Clustering

The first candidate task is triggered by an asynchronous
or periodic event and the other are then executed
sequentially after it. These sequentially dependent
candidate tasks may be grouped. But,

— If the last candidate task in a sequence does not send an
inter-task message, this terminates the group of tasks to
be considered for sequential clustering.

— If the next candidate task in the sequence also receives
inputs from another source and therefore can be
activated by receiving input from that source, this
candidate task should be left as a separate task.

— If the next candidate task in sequence 1s of a lower
priority, they shouldbekept asiseparate task.

Reduce the number of tasks
* Control Clustering

A control object, which executes a sequential state-chart,
1s mapped to a control task.

— The actions activated during state transition are
executed within the thread of control of the
control object.

— The activity should be structured as a separate
task.

 Mutually Exclusive Clustering

Mutually exclusive tasks may be clustered.
JAIST Koichiro Ochimizu

» The Elevator Control System 1s mapped to a single CPU or
tightly coupled multiprocessor configuration

« The Elevator Status & Plan entity object is accessible to all
elevators as well as scheduler, so that one centralized
repository of data can be used

JAIST Koichiro Ochimizu

Floor
_ | Lamp <<control subsystem>> <<output device Motor
ex:errza Output :Elevator Subsystem interface>> Com | | <<external
outpu 1
devicl:)e>> . — : Elevator Lamp <<.0utput device —> output
: interface>> device>>
: Elevator Interface
_._Elevator < ‘M
Lamp . : : Motor — Motor
<<timer>> Off elevator Interface Motor
Floor Lamy : Door Timer After Lamp Up Response
Ti t
Command \ (Timeout) Down/v / ‘/El evator Started oo Commang
Direction Start Timer et Stop Elevator Stopped
<<sub Lamp State 5 Close
pen i <<external
C oor [<< 1
system>> ommang dependent Dgor .OUtPFt device|| __, output
S% control>> < < Intertace>> device>>
Subsystem Approaching : Elevator \Izgor ,4 fl?]oor] : Door : Door |
Floor(Floor #)) e
. Arrival The objects “Elevator Button Interface”
ensor Next 2 . 29
<<external || mout —<input device | | Desinaio] aNd “Arrival Sensor Interface” are
. input interface>> approaching StrUCtUTEd as a separate task respectively,
evice>> . o . 5
- Arsival -AI’IﬂralfSenSOf Requesied | based on the asynchronous input device
- nterrace . o . .
Semsor |- interface task structuring criterion
<
Up’ Down : Elevator status oc TTam | 7
Acknowledge
I Elevator Update T l © IS{cheduier
<<external Button cques <<sub
input Request <<input device)
device>> — ' <<coordinator>> system>>
: Elevat interface>> — : Scheduler
e | : Elevator Button : Elevator manager - -
Button Interf Elevator
rerace RIAFST Koichiro Ochimizu Elevator
Commitment

Floor
Lam <<control subsystem>> <<output device
<<external P ‘Elevator Subsvst p Motor
ot Output - EValor SUDSYStem interface>> dovi Command| | <<external
outpu <<output device >
d .p . <« : Elevator Lamp ,0 p Ou,tput
evice interface>> device>>
- Elevator Interface v ‘ Mot
- : Motor —viotor
Lamn - . —_—
<<timer>> Interface Motor
Off elevator
Floor Lamy : Door Timer After L Response
2001 LU : am
Command (Timeout) P Pz *Flevator Started Door C d
\ oor Comman:
Direction Start Timer Stop Elevator Stopped
<<sub Lamp <<state Close <<external
b .
system>> | |Commang dependent Dgor POr|<<output device|| __, output
_: Floor. control>> <« <« interface>> device>>
Subsystem Approaching o THlevarian Door Door : Door ' - Door |
Floor(Floor #)) Control ned Closed Interface Door
Atrrival ¢ Check Next Destinatio Response
Sensor
Input . . Next T l Check This Floor(Floor #))
<<external <<input device Destination
1np ut interface>> Approaching 4 || Arrived(Floor #) \
de\[;10§>1> : Arrival Sensor Requested
. AITIvVa
—A L Interface Floor . ey s
Sensor |- Each Elevator Control Object” is
(19
{ mapped to a separate “Elevator
Up, Down .
Elevi Controller” task.
Vjcheduler
Elevator Upd | Request
<<external Button <<sub
input Request <<input device «— tem>>
device>> —» interface>> <<coordinator>> System
: Elevator Interface > - Elevat - : Scheduler
Button | : Elevator Button [~/ -~ 1 & cvator manager
Interface RIQuEST Koichiro Ochimizu Elevator —

Floor
Lam <<control subsystem>> <<output device
p p Motor
<<external Output :Elevator Subsystem interface>> o 1| <<external
output << 1
> S : Elevator Lamp .Olltp ut device —> output
device>>
interface>> device>>
: Elevator Interface
' Lamp : Motor y _ Motor
<<timer>> Off el Interface Motor
: After elevator Response
Floor Lamy : Door Timer : Lamp U
Command (Timeout) p A
v\ D own/v Elevator Started | pyor Command
1 [
Direction Start Timer Stop Elevator Stopped
<<sub Lamp <<state Open IC)lose : <<external
system>> | |Commang dependent Dgor P°0F |<<output device|| __,
y <+ —> . output
: terface>> P
: Floor control>> <«— <«— | nferiace | device>>
Subsystem | Approaching : Elevator Door Door : Door : Door
Floor(Floor #)) Control ned - Closed Interface Door
Arrival ¢ Check Next Destinatio Response
Sensor Next
Input . . . l Check This Floor(Floor #))
<<external <<input device Destination
d 1np Ut>> interface>> Approaching T ¢ Arrived(Floor #) \
evice A
" Arsival : Arrival Sensor II:ileOci)liested Arrived(Floor #)
Sensor i Interface l Departed (Floor #)
N | Departed(Floor #)
The “Elevator Controller” task is combined with
29 :
“Motor Interface” and “Door Interface” objects, Seheduler
Elevator c . . Request
<<external || Bution | based on the control clustering criterion. 9 et
input Request sSu
i tem>>
device>> 7 — | sys
—> TIITCT IATT .
: Elevator Bl B —> . Elevator manager . Scheduler
Button i : Elevator Button [, = ’
Interface o 1 - Elevat
—— RIAEST Koichiro Ochimizu evator

Commitment

Floor .
Lamp <<control subsystem>> <<output device Motor
<<external Output :Elevator Subsystem interface>> Command| | <<€xternal
ou.tput p . . |<<0utDut device - output
device>> y . . > device>>
_: Elevator Elevator The “Elevator Manager (one instance in the «— . Motor
non-distributed solution) executes asynchronously ﬁ"sf(fnse
Floor L .
comma| With the “Elevator Controller” task. The “Elevator S artod
. . Door Command
| Manager is structured as a separate coordinate task.
Direct bpped
<<sub Lamp devi <<external
: Floor control>> «— «— interface>> | device>>
Subsystem Approaching - Elevator Door ; Dloord : Door : Door |
Floor(Floor #)) Control qed Close Interface Door
Atrrival ¢ Check Next Destinatio Response
Isrf3 njf ' . . Next. . T Check This Floor(Floor #))
<<external p_» <<input device Destination l
nput interface>> Approaching 4 || Arrived(Floor #) \
dev1ge>> : Arrival Sensor Requested Arrived(Floor #)
ﬁsﬁ | Interface Floor l Departed (Floor #)
Departed(Floor #)
<<entity>>
Up, Down : Elevator Status & Plan
l Acknowledge Scheduler
Elevator Update Request
<<external Button <<sub
input Request << devi su
doui mput device di - «— system>>
evice) interface>> <<coordinator)
: Elevator —> - 79 t - . Scheduler
Buton | : Elevator Button [ST ALOT I
Interface evator Koichiro Ochimi Elevator
RIAEST Koichiro Ochimizu Commitr

T Elevator Lamp Output

<<control subsystem>> I Door Command <<data collection
: Elevator Subsystem <<control subsystem>>
. -« :Floor Subsystem
clustering>> Door
- Elevator Floor Lamp
Approaching TR Response Command loor
Floor (Floor #) Controller s N <<resource Famp
Arrival Sensor Check Next | n;?mtir>> Output
Destination . . : Floor Lamp —>
Input next T |, Chek This Floor (Floor #) Direction Lamp Monitor ——
> <<asynchronous estination Command dlonitor
mput device Approaching l Arrived (Floor #) \
interface>> Requested
: Arrival Sensor Floor l Departed (Floor #) <<resourc¢ [Inirection
Interface monitor>> Lamp
Uo. D <<data abstraction>> : Direction Lamp JQutgut
p, own T : Elevator Status&Plan Elevator Monitor
Select T l 4
Elevator Button l Acknowledge Elevator
Request Update
1 <<asynchronous Schedule <§async§1rqnous Floor
i i . Request mput device | Button
1pputfdev1ce <<coordinator>> q - <<co interface>> | Request
—> Iintertace>> : Elevator ordinator>> Fleor Boton | +—
: Elevator Button Elevator Manager — . Scheduler # I
Interface Reauest | Elevator +SCICAILT _nterface
eques JAIST KoiclGsm@ithieizh

Service Request

T Elevator Lamp Output

doorCommand(out

doorResponse) .
<<control subsystem>> I <<data collection
: Elevator Subsystem <<control subsystem>>
. : Floor Subsystem
cluster1ng>> offFloorLamp
. : Elevator \ (floor#
ApproachingFloor o o
pp g (Controller i direction) <<resource
elevator#, floor# — \ o>
: monitor
arrival / checkNextDestination(in fDirectionL. Floor L
Sensor l elevator#, out direction) g (eleI\tZtcolr(;;n am %
Input |<<asynchronous L jronror
P . M . checkThisFloor(in elevator#, in oor#, direction)
1nput device floor#, out floorStatus, out direction)
— N\ :
interface>> arrived(elevator#, floor#, direction) <<resource
. . . . u
: Arrival Sensor departed(elevator#, floor#, direction) onDirectionL.am .
Interface p(elevator#, - monitor>>
<<data abstraction>> floor, direction) : Direction Lamp
up(elevator#), - Elevator Status & Plan selectElevator(i M
down(elevator#) updatePlan(el T gf)OI?j, in t
evator#,floor# schedulerReque Irec lon, ou
elevator ,direction, out st(elevator#, clevatorf!) e h
Button <<asynchronous idleStatus) floor#, .asyncii ronous oot
. . direction) mput device
Request 1pput device <<coordinator>> <<co Al interfaces> Button
\ interface>> N - Elevator ordinators>> Request
: Elevator Button ~ [elevatorRech Manager - Schedul : Floor Button | <—
Interface est(elevatores elevatorCommit : Scheduler Interface
floor#, ment(elevator#,
dizcelion) LAIST K oildeitirlinetimiby

serviceRequest(floor#, direction)

<< data abstraction>>

ElevatorStatus&Plan

+ arrived(elevator#, floor#, direction)

+ departed(elevator#, floor#, direction)

+ checkThisFloor(in elevator#, in floor#, out floorStatus, out direction)
+ checkNextDestination(in elevator#, out direction)

+ updatePlan(elevator#, floor#, direction, out idleStatus)

+selectElevator(in floor#, in direction, out elevator#)

Data abstraction class for centralized solution
JAIST Koichiro Ochimizu

The physical configuration consists of multiple nodes interconnected by a
local area network.

Multiple instances of the Elevator Subsystem (one instance per elevator)
Multiple instances of the Floor Subsystem (one instance per floor)
One instance of the Scheduler subsystem

All communication between the subsystems is via loosely coupled message
communication.

There is no shared memory in a distributed configuration; thus the
“Scheduler” and multiple instances of the “Elevator Subsystem” can
not directly access the ~Elevator Status & Plan™ data abstraction object.

Client-Server solution presents the potential danger of creating a bottleneck
at this server. Instead, an alternative solution is to use replicated data. Each
instance of the Elevator Subsystem maintains its own local instance of the
Elevator Status & Plan, called Local Elevator Status & Plan. The scheduler
also maintains a copy of the Elevator Status & Plan, called Overall Elevator
Status & Plan.

JAIST Koichiro Ochimizu

: Elevator Subsystem
{1 node per elevator}

<< local area network >>

: Floor Subsystem

{1 node per floor}

: Scheduler

{1 node}

JAIST Koichiro Ochimizu

Distributed Software Architecture

<<external input

device>>
: Elevator Button

<<external output

device>>
: Elevator Lamp

A

<external input

device>>
: Arrival Sensor

Elevator Button Request T~

A

Elevator T
Lamp Output

/ Arrival Sensor Input

Floor Lamp Output x”

<<

<external output
device>>

: FloorLamp

v Direction Lamp Output

<

<external output
device>>

. J51 JAIST Koi

thiro Ochimizu

Motor Command Door
<SyStem>> E Command | <<external
ElevatorControl <<COl’ltI'01
<<external output|| «— |3 — output
: system subsystem>>)
device>> —> : ElevatorSubsystem [«— device>>
_ Motor i Floor Lamp Scheduler | oo, - Daoar
Motor Response Command Arrived (Floor #)\4 Request Response
Direction Lamp / Departed(Floor #) \
Floor Command Elevator \
Button I Commitme
<external input || Request| | <<data collection <<coordinator
device>> subsystem>> —» | subsystem>>
_: FloorButton B : FloorSubsystem Service : Scheduler
Request

Task Architecture (Distributed)

Elevator Lamp Output T

Motor Command

/

<<control subsystem>>

o Motor Response

Door Command

<<data collection

—>
: Elevator Subsystem <<control subsystem>>
: «— :Floor Subsystem
clustering>>
Approaching Floor : Elevator \ Door FloorLamp Floor
Arrival (Floor #)) Controller Response Coﬁnind <<re§0urce Lamp
Sensor / Check Next monitor>> [Output
Input Next Destination : Floor Lamp | —»
< h ext . Direction Lamp Monitor —
— -asynchronous Destination l Check This Floor (Floor # Command
input device A i l Arrived (Floor #) m&‘
interface>> Rp p roaf (;ng
. Arrival Sensors Fﬁ)‘gfs © |, Departed (Floor <<resource [pirection
Interface . monitor>> [amp
<<data abstraction>> l Arrived (Floor#) {1 DireCﬁOl} Lamp {Qutgut
Up, Down T : Local Elevator Status & Plan Monitor
l Departed (Floor #
T l Acknowledge
Elevator Update
Button | <<asynchronous Scheduler <§async§1rqnous Floor
: : ; Request mput device Button
Request 1pput device <<coordinator>> q st e | paen
—> interface>> > : K<subsystem>> 4
i Elevator : Floor Button)
: Elevator Buttons Elevat Manager — : Scheduler Je— - D100t DULOn gy
Interface R evator | Elevator Interface
equest JAIST Koicldom@izhimiZ

Service Request

<<subsystem>>
: Floor Subsystem

<<subsystem>>
: Elevator.

Subsystem

Arrive departe
d(eleva d(eleva <<coordinator subsystem>>
tOI'#,ﬂO tor#,ﬂo : Scheduler
or#t,dir or#,dir
ection) ection)
——> —>
<<server>> _
- Elevator Arrived, Departed
Status & Plan Server
—»
Elevator Update Plan
Commitment
<<data abstraction>>
: Overall
Elevator Status&Plan
Select Elevator /'
Service / Elevator #
Request
—

<<coordinator>>
: Elevator Scheduler

—

Scheduler request

ST oo Ot T

Content(2)

* Object-oriented Software Development Methodology
— Qutline of Unified Process and Use-case Driven Approach
— Elevator Control System:
Problem Description and Use-case Model
— Elevator Control System:
Finding of Problem Domain Objects
— Elevator Control System:
Sub-System Design and Task Design
— Elevator Control System:
Performance Evaluation

 Product Line Technology
— Feature modeling

* Aspect Oriented Software Design

e Contribution of OOT in Software Engineering

— History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

* A building with 10 floors and three elevators
* The Worst-Case Scenario

Elevator button interrupts arrive with a maximum frequency of 10
times a second, which represents a minimum inter-arrival time of 100
msec. This worst-case scenario assumes that all 30 buttons are pressed
within 3 seconds.

Floor button interrupts arrive with a maximum frequency of 5 times a
second, which represents a minimum inter-arrival time of 200 msec.
There are 18 floor buttons (2 X 8 +1--1). This worst-case scenario
assumes that all 30 buttons are pressed within 3 seconds.

All three elevators are in motion and arrive at floors simultaneously.
Three floor-arrival interrupts arrive within 50 msec of each other. This
1s the most time-critical aspect of the probem, because when a floor
arrival interrupt is received, the Elevator Controller has to determine
whether the elevator should stop at this floor or not. If it need to stop,
the controller must stop the elevator before the floor has been past.

Related usecases are “Select Destination”, “Request Elevator”, and

“Stop Elevator at Floor”.
JAIST Koichiro Ochimizu

» Stop Elevator at Floor (Period = Ta)

— A1l: The Arrival Sensors Interface receives and
process the interrupt

— A2: The Arrival Sensors Interface sends
“approaching Floor” message to the Elevator
Controller.

— A3: The Elevator Controller receives message and
checks the Elevator Status & Plan object to
determine whether the elevator should stop or not.

— A4: The Elevator Controller invokes “stop Motor”
operation if 1t should stop.

JAIST Koichiro Ochimizu

* Select Destination (Period = Tb)

— E1: The Elevator Buttons Interface receives and
processes the interrupt.

— E2: The Elevator Buttons Interface sends “‘elevator
Request” message to the Elevator Manager.

— E3: The Elevator Manager receives message and
records destination in Elevator Status & Plan object.

JAIST Koichiro Ochimizu

* Request Elevator (Period = Tc)

— F1: The Floor Buttons Interface receives and processes the
interrupt.

— F2: The Floor Buttons Interface sends “service Request”
message to the Scheduler.

— F3: The Scheduler receives message and interrogates
Elevator Status & Plan object to determine whether an
elevator 1s on its way to this floor. Assume not, so that the
Scheduler selects an elevator.

— F4: The Scheduler sends a “scheduler Request” message
identifying the selected elevator to the Elevator Manager.

— F5: The Elevator Manager receives message and records

destination in Elevator Status & Plan object.
JAIST Koichiro Ochimizu

Task Parameters

Task CPU time Ci Period Ti Utilization Ui Assigned
Stop Elevator at Floor Priority
Arrival Sensors Interface 2 50 0.04 1
Elevator Controller 5 50 0.10 4
Total elapsed time = 34 msec Total utilization = 0.68

Select Destination

Elevator Buttons Interface 3 100 0.03 2
Elevator Manager(Case b) 6 100 0.06 5
Total elapsed time = 47 msec Total utilization = 0.47

Request Elevator

Floor Buttons Interface 4 200 0.02 3
Scheduler 20 200 0.10 6
Elevator Manager(Case c) 6 200 0.03

Total elapsed time = 76msec Total utilization = 0.38

Other Tasks

Floor Lamps Monitor 5 500 0.01 7
Direction Lamps Monitor 5 JAIST Koichiro g)ﬁbimizu 0.01 8

Consolidated

Collaboration Diagram <<timer>> <<output device <<.0utput device
: Door Timer interface>> interface>>
. : Motor
Floor Lamp ~<output device - ' Elf;iﬁ;%:m]o Interface
Output outp oor After E— Up —
interface>> Lamp (Timeout) P ~
: FloorLamp y\Command Off Elevator Down Elevator Started
Interface T Lamp S top/
Start Elevator Stopped Door
Direction ; 4 d
Lamp ~<outout devi Direction <<ctate Comman
Output .Ou put device Lamp 5 msec Open Door Close Door |<<output device
-— interface>> Command —> — interface>> | —*
: DirectionLamp Lot UL «— «— D
. D : Elevator - oor D
50msec Interface - LACVAlOL Door
Control 0 d Door Interface
pene Closed
Check Next
L Door
—_— e Next T Destination Response
- 2 msec Destination l Check This Floor (Floor #) p
ArrivalSensor : ArrivalSensor Approaching Approaching Arrived(Floor #))
Input Interface Floor (Floor #) Requested T l
; Floor Departed(Floor | Arived (Floor #
#))
100msec Up, Down <<entity>> 200msec
: Elevator Status&Plan <>
J u L l Departed(Floor #)
Elevator Updat l Acknowledge 3
Button Elevator pee 6 Floor
Interface A Request 6 SS ec Scheduler Service 4 msec Button
- o |ln Request 20 msec Request <<input device | Interface
. ¢ 4+— . <
—> 3 msec —> <<00(])Er1d1ntator>> <<coordinator>> interface>>
: Elevator
' — : Scheduler : FloorButton
: ElevatorButton Mana . I
Managei I
Interface IST K dileyitorOchirmizu Interface

Commitment

10

14

18
20

40

46
50

))

Time-annotated sequence diagram

. Arrival . Elevator . Floor . Elevator . Elevator
Sensor Button Button (EoTleer m . Scheduler
Interface Interface Interface - ~anagel
2 . A2: apprpaching Floor ’_‘ |
3
E2: Elevator Request
4 F2: service Request
5
F4: scheduler|Request
~~
20 m

JAIST @ichiro Ochimizy|

» Stop elevator at Floor (Ta=50msec)

— Execution time: Total execution time Ca=2msec
(Arrival Sensors Interface)+5Smsec (Elevator
Controller). Execution utilization Ue=Ca/Ta=7/50=0.14

— Preemption by higher priority tasks: Total preemption
time Pa=3 (Elevator Buttons Interface)+4(Floor Buttons

Interface)=7msec, Preemption utilization Up=Pa/Ta
=7/50=0.14

— Blocking time: Total worst-case blocking time Ba=
20msec (Scheduler). Worst-blocking utilization Ub =
Ba/Ta=20/50=0.40

— Total Utilization= Ue+Up+Ub=0.14+0.14+0.40=0.68

JAIST Koichiro Ochimizu

« Seclect Destination (Tb=100msec)

Execution time: Total execution time Cb=3msec (Elevator

Buttons Interface) + 6msec(Elevator Manager). Execution
Utilization Ue=Ca/Ta=9/100=0.09

Preemption by higher priority tasks with shorter periods: Arrival
Sensors Interface and Elevator Controller (preempts Elevator
Manager) can each execute twice during 100 msec period, giving a
preemption time of 14 msec.

Preemption by higher priority tasks with longer periods: 4 msec
from Floor Buttons Interface to handle floor Button interrupt.

Total preemption time Cp=14+4=18 , Total preemption
utilization Up= Cp/Tb = 18/100 = 0.18

Blocking time: Worst-case blocking time Ba= 20msec (Scheduler).
Worst-case blocking utilization Ub = Bb/Tb=20/100=0.20

Total Utilization= Ue+Up+Ub=0.09+0.18+0.20=0.47
JAIST Koichiro Ochimizu

* Request Elevator (Tc=200msec)

Execution time: Total execution time Cc=4msec (Floor Buttons
Interface) + 20msec(Scheduler) +6msec(Elevator Manager).
Execution utilization Ue=Cc/Ta=30/200=0.15

Preemption by higher priority tasks with shorter periods: Arrival
Sensors Interface and Elevator Controller (preempts Elevator
Manager and Scheduler) can each execute four times for a total of
28 msec.

Total preemption time Cp=28+18=46. Preemption utilization
Up=Cp/Tp=0.23

Total elapsed time=30+46+0=76

Total Utilization= Ue+Up=0.15+0.23=0.38

JAIST Koichiro Ochimizu

* one node per elevator, one node per floor, one
scheduler node.

e 40 floors and 12 elevators

JAIST Koichiro Ochimizu

Task Parameters

Task CPUtime Ci Period Ti Utilization Ui Assigned Priority
Elevator Subsystem

Arrival Sensors Interface 2 50 0.04 1
Elevator Controller 5 50 0.10 3
Elevator Buttons Interface 3 100 0.03 2
Elevator Manager 6 100 0.06 4
Floor Subsystem

Floor Buttons Interface 4 200 0.02 1
Floor Lamps Monitor 5 500 0.01 7
Direction Lamps Monitor 5 500 0.01 8
Scheduler Subsystem

Elevator Status and Plan Server 2 10 0.20 1
Elevator Scheduler 20 50 0.40 2

Network transmission delay = 2 msec

Elapsed time for Stop Elevator at Floor = 41 msec < 50 msec

Elapsed time for Select Destination = 48 msec < 100 msec

Elapsed time for Request Elevator = 82 fIﬁA

% T<I§86:hiro Ochimizu

mscc

« Stop Elevator at Floor (Period = Ta)

— Al: The Arrival Sensors Interface receives and process the
interrupt

— A2: The Arrival Sensors Interface sends “approaching Floor”
message to the Elevator Controller.

— A3: The Elevator Controller receives message and checks the
Local Elevator Status & Plan object to determine whether the
elevator should stop or not.

— A4: The Elevator Controller invokes “stop Motor” operation 1f
it should stop.

— AS5: The Elevator controller sends arrived message over the
LAN to the Scheduler subsystem, where it 1s received by the
Elevator Status & Plan Server.

— A6: The Elevator Status & Plan Server calls the arrived
operation of the Overall Elevator Status & Plan data abstraction
object.

JAIST Koichiro Ochimizu

» Select Destination (Period = Tb)
— El: The Elevator Buttons Interface receives and processes the
interrupt.
— E2: The Elevator Buttons Interface sends “elevator Request”
message to the Elevator Manager.

— E3: The Elevator Manager receives message and records
destination in Local Elevator Status & Plan object.

— E4: The Elevator Manager sends an “elevator Commitment”
message over the LAN to the Scheduler subsystem, where it 1s
received by the Elevator Status & Plan Server.

— E5: The Elevator Status & Plan Server calls the update Plan
operation of the Overall Elevator Status & Plan data abstraction
object.

JAIST Koichiro Ochimizu

Request Elevator (Period = Tc)

F1: The Floor Buttons Interface receives and processes the interrupt.

F2: The Floor Buttons Interface sends “service Request” message over the
LAN to the Elevator Scheduler task in the Scheduler subsystem.

F3: The Elevator Scheduler receives message and interrogates Overall
Elevator Status & Plan object to determine whether an elevator 1s on its way
to this floor. Assume not, so that the Scheduler selects an elevator.

F4: The Elevator Scheduler sends a “scheduler Request” message
identifying the selected elevator over the LAN to the Elevator Manager task
in the selected elevator’s instance of the Elevator subsystem

F5: The Elevator Manager receives message and records destination in the
Local Elevator Status & Plan object.

F6: The Elevator Manager sends an “elevator Commitment” message over
the LAN to the Scheduler subsystem, where it is received by the Elevator
Status & Plan Server

F7: The Elevator Status & Plan Server calls the update Plan operation of the
Overall Elevator Status & Plan data abstraction object.

JAIST Koichiro Ochimizu

» Stop elevator at Floor (Ta=50msec)

Execution time: Total execution time Ca=2msec (Arrival Sensors

Interface) + Smsec (Elevator Controller) Execution utilization Ue=
Ca/Ta=7/50=0.14

Preemption by higher priority tasks with longer periods.
Preemption time Pa=3 (Elevator Buttons Interface). Preemption
utilization Up=3/50=0.06

Blocking time: Total worst-case blocking time Ba= 6msec
(Elevator Manager). Worst-case blocking utilization Ub =
Ba/Ta=6/50=0.12

Total elapsed time=7 +3 + 6 =16msec<50. Total Utilization=
Ue+Up+Ub=0.14+0.06+0.12=0.32

Total elapsed time for Stop elevator at Floor=16(Total elapsed
time for Elevator Subsystem)—+2 (Transmission Delay, 25byte,
100Mbau, Transmission Delay Dt = 200/100000 = 2msec +23

Worst-case elapsed time of Scheduler system)=16+2-+23=
41msec

JAIST Koichiro Ochimizu

» Select Destination (Tb=100msec)

— Execution time: Total execution time Cb=3msec
(Elevator Buttons Inteface) +6msec(Elevator Manager).

Execution utilization Ue=Ca/Ta=9/100=0.09

— Preemption time by higher priority tasks with shorter
periods: Arrival Sensors Interface and Elevator
Controller can each execute twice during the 100 msec

period, giving a total preemption time of 14 msec.
Up=0.14.

— Total elapsed time =9+14=23. Total utilization =
Ue+Up =0.09+0.14=0.23

— Total elapsed time for Select Destination Eb =23
(Elevator subsystem elapsed time) + 2(transmission
delay)+23 (Scheduler subsystem elapsed time)

=48msec.
JAIST Koichiro Ochimizu

* Request Elevator (Tc=200msec)

— Total elapsed time for floor subsystem Ef=4msec(floor
buttons Interface) +— Imsec(transmission delay)=5msec.

— Total elapsed time for scheduler subsystem
Es=Imsec(transmission delay)+20msec(elevator
Scheduler)+ 1 msec (transmission delay)+2msec
(Blocking time by Elevator Status & Plan subsystem)
= 14+20+1+2= 24msec.

— Execution time of Elevator Manager= 1+6+1=8.
— Total elapsed time of Elevator subsystem=16+8=24.

— Total elapsed time for Request Elevator =
5+2+24+2+24+2+23=82

JAIST Koichiro Ochimizu

