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 Requirements Modeling functional requirements defined
by actors and use cases

* Analysis Modeling

Static model: structural relationships among problem
domain classes depicted on class diagrams,

Dynamic model: objects and their interactions depicted
on either communication diagrams or sequence diagrams.

The state-dependent aspects of the system are defined
using hierarchical statecharts (finite state machines).

* Design Modeling The software architecture of the system
1s designed. The analysis model 1s mapped to an operational
environment. Subsystem structuring criteria are provided.
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* Incremental Software Construction Seclecting a subset
of the system to be constructed for each increment. The
subset is determined by choosing the use cases to be
Included in this increment. Incremental software
construction consists of the detailed design, coding, and
unit testing of the classes in the subset.

* Incremental Software Integration the integration testing
of each increment is performed. Integration test cases are
developed for each use case. Interfaces between the objects
that participates in each use case are tested.

« System Testing testing the system against Its functional
requirements.
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 Definition of Functional Requirements by
Use Cases
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Use Case name: Seclect Destination
Summary: The user in the elevator presses an up or down elevator button to select a destination

floor to which move

Dependency

Actor: Elevator User (primary), Arrival Sensor
Precondition: User in the elevator
Description:

1. User presses an up elevator button. The elevator button sensor sends the elevator button
request to the system, identifying the destination floor the user wishes to visit.

2. The new request is added to the list of floors to visit. If the elevator is stationary, The
system determines in which direction the system should move in order to service the next
request. The system commands the elevator door to close. When the door has closed, the
system commands the motor to start moving the elevator, either up or down.

3. As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the destination floor selected by the
user.

* Alternatives:

1. User presses down elevator button to move down. System response is the same as for the
main sequence.

2. If the elevator is at a floor and there is no new floor to move to, the elevator stays at the
current floor, with the door open.

- Postcondition: Elevator has arrived ¥th& Q0T MEYr selected by the user.



 Use Case name: Request Elevator

« Summary: The user at a floor presses an up or down floor button to request an elevator.
* Dependency

 Actor: Elevator User (primary), Arrival Sensor

* Precondition: User is at a floor and wants to an elevator

*  Description:

— 1. User presses an up floor button. The floor button sensor sends the user request to the system,
identifying the floor number.

— 2. The system selects an elevator to visit this floor. The new request is added to the list of
floors to visit. If the elevator is stationary, The system determines in which direction the
system should move in order to service the next request. The system commands the elevator
door to close. After the door has closed, the system commands the motor to start moving the
elevator, either up or down.

— 3. As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

— If there are other outstanding requests, the elevator visits these floors on the way to the floor
requested by the user. Eventually, the elevator arrives at the floor in response to the user
request.

* Alternatives:

— 1. User presses floor button to move down. System response is the same as for the main
sequence.

— 2. If the elevator is at a floor and there 1s no new floor to move to, the elevator stays at the
current floor, with the door open.

. Postcondition: Elevator has arrived¥th& PGB UPFAPEHSe to user request.



<<include>>

Dispatch
Elevator

Select Destination

Stop
Elevator at
Floor

<<include>>. ~"<<include>> include

Request Elevator

X

BIS/Aiooithssy Ochimizu

X

Arrival Sensor



Use Case Description

e Use Case name: Select Destination

« Summary: The user in the elevator presses an up or down elevator button to select a
destination floor to which move

 Dependency

 Actor: Elevator User
 Precondition: User in the elevator
* Description:

— 1. User presses an up elevator button. The elevator button sensor sends the elevator
button request to the system, identifying the destination floor the user wishes to visit.

— 2. The new request is added to the list of floors to visit. If the elevator is stationary,
Include Dispatch Elevator abstract use.
— 3. Include Stop Elevator at Floor abstract use case.

— If there are other outstanding requests, the elevator visits these floors on the way to
the floor requested by the user, following the above sequence of dispatching and
stopping. Eventually, the elevator arrives at the destination floor selected by the user.

* Alternatives:

— 1. User presses down elevator button to move down. System response is the same as
for the main sequence.

— 2. If the elevator 1s at a floor and there 1s no new floor to move to, the elevator stays
at the current floor, with the door open.

* Postcondition: Elevator has arrived at the destination floor selected by the user.
JAIST Koichiro Ochimizu



Use Case Description

 Use Case name: Request Elevator

« Summary: The user at a floor presses an up or down floor button to request an
elevator.

 Dependency

 Actor: Elevator User

 Precondition: User is at a floor and wants to an elevator
* Description:

— 1. User presses an up floor button. The floor button sensor sends the user request to
the system, identifying the floor number.

— 2. The system selects an elevator to visit this floor. The new request is added to the
list of floors to visit. If the elevator is stationary, then include Dispatch Elevator
abstract use case.

— 3. Include Stop Elevator at Floor abstract use case.

— If there are other outstanding requests, the elevator visits these floors on the way to
the floor requested by the user following the above sequence of dispatching and
stopping. Eventually, the elevator arrives at the floor in response to the user request.

* Alternatives:

— 1. User presses floor button to move down. System response is the same as for the
main sequence.

— 2. If the elevator 1s at a floor and there 1s no new floor to move to, the elevator stays
at the current floor, with the door open.

* Postcondition: Elevator has arriyed at the floor 1n response to user request.
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Use Case name: Stop Elevator at Floor abstract Use Case
Summary:

Dependency

Actor: Arrival Sensor

Precondition: Elevator is moving

Description:

— As the elevator moves between floors, the arrival sensor detects that the elevator is
approaching a floor and notifies the system. The system checks whether the elevator should
stop at this floor. If so, the system commands the motor to stop. When the elevator has stopped,
the system commands the elevator door to open.

Alternatives:
— The elevator is not required to stop at this floor and so continues past the floor.
Postcondition: Elevator has stopped at floor, with door open.
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Use Case name: Dispatch Elevator abstract use case
Summary:

Dependency

Actor:

Precondition: Elevator is at a floor with the door open.
Description:

— The system determines in which direction the system should move in order to service the next
request. The system commands the elevator door to close. After the door has closed, the system
commands the motor to start moving the elevator, either up or down.

Alternatives:

— If'the elevator is at a floor and there is no new floor to move to, the elevator stays at the current
floor, with the door open.

Postcondition: Elevator is moving in the commanded direction.
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* For every <<external input/output device>> object, there is
a corresponding software device interface object.

« Each elevator has a state-dependent control object called
Elevator Control, which control the elevator motor and
door.

* Because requests for the elevator can come at any time, a
decision 1s made to have a separate coordinator object,
called the Elevator Manager, to receive all incoming
requests for the elevator and to update the elevator plan.

* An entity object 1s needed for each elevator, which we call
Elevator Status & Plan.
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E1: The Elevator Button Request arrives at the Elevator Button
Interface object.

E2: The Elevator Button Interface object sends the Elevator
Request to the Elevator Manager object.

E3: The Elevator Manager sends the request to Elevator Status
& Plan, which adds the request to the list of floors to be visited.

E4: The elevator plan 1s updated. An acknowledgement 1s
returned to the Elevator Manager object, which identifies
whether the elevator 1s 1dle.

ES5: The Elevator Manager sends an Elevator Commitment
message to the Scheduler, to inform 1t that this elevator 1s
committed to visit the given floor.

ESa: If the Elevator is 1dle, the Elevator Manager sends an Up
(or Down) message to the Elevator Control object, directing 1t
to move in the desired direction. This case is handled by the
DlSpatCh Elevator use GASE Koichiro Ochimizu
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The message sequence description

F1: The Floor Button Request arrives at the Floor Button
Interface object.

F2: The Floor Button Interface object sends a Service Request to
the Scheduler object.

F3: The Scheduler object selects an elevator and sends a
Scheduler Request to the Elevator Manager object in the selected
Elevator composite object.

F4: The Elevator Manager object sends an Update message to
the Elevator Status & Plan to add the new request to the elevator
plan of which floor it 1s to visit.

F5: An acknowledgement is returned to the Elevator Manager
object, which 1dentifies whether the elevator 1s 1dle.

F6: The Elevator Manager sends an Elevator Commitment
message to the Scheduler.

Fé6a: If the elevator 1s 1dle, the Elevator Manager sends an Up (or
Down) message to the Elevator Control object, directing it to
move 1n the desired direction. This case i1s handled by the
Dispatch Elevator use caser koichiro Ochimizu
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The message sequence description

Al: The Arrival Sensor Interface object receives an input from the arrival sensor
external entity.

A2: The Arrival Sensor Interface object sends the floor number in the
Approaching Floor message to the Elevator Control object.

A3: The Elevator Control object sends a Check This Floor message to the
Elevator Status & Plan object, which checks whether the floor at which the
elevator is arriving is one where it should stop.

A4: As the elevator is arriving at a requested floor, the Elevator Status & Plan
object sends the Approaching Requested Floor message to the Elevator Control
object. The message contains the floor number and the future direction. On
receiving this message, Elevator Control transitions from Elevator Moving state
to Elevator Stopping state.

AS: As aresult of the transition to Elevator Stopping state, the Elevator Control
object commands the Motor Interface object to Stop.

ASa(parallel sequence): Elevator Control sends an On Direction Lamp (with up
or down as a parameter) to the Direction Lamp Interface object, which switches
on the real-world direction lamp(A5a.1).

A6: The Motor Interface object sends the Stop Motor Command to the real-
world motor.

A7: The Motor Interface object receives the Motor Response.

A8: Motor Interface object se Elevator Stopped message to the Elevator
AT Roichiic B

Control object, which then transitions to Efevator Door opening state.



The message sequence description

A9: On transitioning to Elevator Door Opening state, the Elevator Control object
sends the Door Interface object a command to Open Door.

A9a(parallel sequence because there are four actions associated with the state
transition): The Elevator Control object sends an Off Elevator Lamp message to
the Elevator Lamp Interface object, which then sends an Elevator Lamp Output
to the external lamp to switch it off(A9a.1).The Elevator Control object sends the
Arrived message to both the Elevator Status & Plan object( A9b, third parallel
sequence) and the Scheduler object(A9c, Fourth parallel sequence).

A10: The Door Interface object sends the Open Door Command to the real world
door.

Al1l: The Door Interface object receives the Door Response.

A12: The Door Interface object sends a Door Opened message to the Elevator
Control object, which then transitions to Elevator at Floor

A13: The Elevator Control object starts a timer.

Al4: A timer event is generated after a period of time equal to timeout, causing
the Elevator Control object to transition to Checking Next Destination state..

A15: As a result of the transition, Elevator Control sends a Check Next
Destination message to the Elevator Status & Plan object. The objective is to
determine the next destination just prior to departure, in case there has been a
recent update to the plan. If the elevator does not have any outstanding requests,

it transitions to Elevator Idle state (event A16). Otherwise, use the Dispatch
Elevator use JAIST Koichiro Ochimizu
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The message sequence description

Starting preconditions are different for Dispatch Elevator.

— Stop Elevator at Floor is the first case. On entering Checking Next Destination
state, Elevator Control sends a Check Next Destination message to Elevator Status
& Plan . Elevator Status & Plan sends an Up Request ( or Down Request )
message to Elevator Control, informing it of the direction in which to move.

— Elevator Control object is in Elevator Idle state is the second case. Elevator
Manager receives a message from either the Scheduler or the Elevator Button
Interface with a request for the elevator to visit the floor. Elevator Manager sends
a message to Elevator Status & Plan to update the plan. If the elevator is busy
servicing a request, Elevator Status & Plan returns an Acknowledgement message
with a null parameter. On the other hand, if the elevator is idle, Elevator Status &
Plan returns an Acknowledgement message with an up (or down) parameter.

D1: {Source object} sends Elevator Control an Up Request message. Elevator
Control transitions to Door Closing to Move Up state.

D2: As a result of this state transition, there are two concurrent outputs events.
Elevator Control sends a Close Door command to Door Interface. On the
statechart, the Close door event (as well as one other output event ) is shown
as an entry action, because the Up Request event can arrive from either the
Elevator Idle state or the Checking Next Destination state.

D2a( parallel sequence): Elevator Control sends an Off Up Floor Lamp to the
Floor Lamp Interface object, which switches off the real-world

JAIST Koichiro Ochimizu



 D3: Door Interface sends a Close Door Command to the real —
world door.

« D4: The real-world door sends a Door Response when the door is
closed.

« DS5: The Door Interface sends a Door Closed message to Elevator
Control, which transitions to Elevator Starting Up state.

« D6: Elevator Control sends an Up Command to the Motor
Interface object.

« Dé6a: Elevator Control sends an Off Up Direction Lamp request to
the Direction Lamp Interface object, which switches off the
direction lamp.

« D7: The Motor Interface object sends the Start Up Motor
Command to the real-world motor.

« D8&: The real-world motor sends a Motor Response when the
elevator has started moving upward.

« DO9: The Motor Interface object sends an Elevator Started message
to Elevator Control, which transitions to Elevator Moving state.

« DI10: Elevator Control sends a Departed message to both the
Elevator Status & Plan and Scheduler object.
JAIST Koichiro Ochimizu
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* Consolidated Collaboration Diagram shows
all the objects that participate In the use
cases and all the interactions between these
objects.

JAIST Koichiro Ochimizu
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 Structuring Criterion: Principles "high coupling
within a subsystem and low coupling between
subsystems”

— Aggregate/composite object: Geographical location : If
two objects could potentially be physically separated in
different locations, they should be in different
subsystems to reduce communication cost

— Clients and servers must be in separate subsystems
— User interface objects are usually clients

— A control objects and all the entity and interface objects
it directly controls should all be part of one subsystem

JAIST Koichiro Ochimizu



<<Control>>

The subsystem receives its inputs from the external environment and
generates outputs to the external, usually without any human
intervention. It includes at least one state-dependent control object. In
some case, some Inputs data might be gathered by some other
subsystem (s).

<<Coordinator>>

In cases with more than one control subsystem, it is sometimes
necessary to have a coordinator subsystem that coordinates the control
subsystems.

<<Data collection>>

A data collection subsystem collects data from the external
environment.

<<Data analysis>>

A data analysis subsystem analyzes data and provides reports and/or
displays for data collected by another subsystem.

JAIST Koichiro Ochimizu



<<Server>>

A server subsystem provides a service for other subsystems. In the
simplest case, a server object could consist of a single entity object.

<<User interface>>

A user interface subsystem provides the user interface and acts as a
client. There may be more than one user interface subsystems. A user
interface subsystem is usually a composite object that is composed of
several simpler user interface objects.

<<I/O subsystem>>

In some systems, grouping al the device interface classes into an I/O
subsystem might be useful, because developing device interface
classes is a specialized skill.

<<System services>>

Certain services are not problem domain-specific but provide system-
level services, such as file management and network communication
management.

JAIST Koichiro Ochimizu
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Refined Static Model (Class Diagram ) for Elevator Control System
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Task Structuring

* Design task structure and task interface by applying the
following task structuring criteria to problem domain
objects recognized as an consolidated collaboration
diagram.

— 1I/0 task structuring criteria

Criteria to decide whether each device interface object is an
active object or not, considering the properties: interrupt-driven,
polling, communication, discrete data or analog data Criteria to

— Internal task structuring criteria make the

. : ) .. : : bjects ( i

Criteria to decide whether each internal object is an active object Zoﬁ)ﬁé;tr; ;‘
or not, considering the properties: period, asynchronous, control,| ..iaboration
UL diagram )

— Task priority criteria active objects

Criteria to decide whether each internal object is an active object
or not, considering the properties: time-critical, computation

( CPU bound). ) Criters
. . . riteria to
— Task clustering criteria —  group the active
Criteria to group active objects selected by the above criteria, ;’:éeistfe
. . . o oal . u
cons@ermg properties: tlﬂ?gfﬁg&%%%&?ntrol, mutual T Lumber of tasks

exclusion..



I/0 task structuring criteria
— Asynchronous I/0O Device Interface tasks
— Periodic I/O Device Interface tasks
— Passive I/0 Device Interface tasks
— Resource Monitor tasks
Internal task structuring criteria
— Periodic Tasks
— Asynchronous tasks
— Control tasks
— User Interface tasks
Task priority criteria
— Time-Critical tasks
— Non-Time-Critical Computationally Intensive tasks
Task clustering criteria
— Temporal Clustering
— Sequential Clustering
— Control Clustering
— Mutually Exclusive Clustering

JAIST Koichiro Ochimizu



Necessary to determine the hardware characteristics of the I/0
device that interface to the system, and the nature of the data

being input to the system to these devices.

— Asynchronous (active) I/O devices:
For each asynchronous I/0O device, an asynchronous I/0O device interface

task 1s needed not to miss an interrupt.

— Periodic I/0 Device Interface Tasks:
If passive input (or output) devices are polled (or addressed ) periodically

y a timer, a periodic I/O device interface task i1s needed.

— Passive I/0 Devices Interface Tasks:
For passive I/O devices that do not need to be polled, passive I/0 devices

interface tasks are needed when it is considered desirable to overlap

computation with I/O.

— Resource Monitor Task:
An input or output device that receives requests from multiple sources

should have a resource monitor task to coordinate these requests, even 1f
the device is passive. A resource monitor task has to sequence these
requests so as to maintain data integrity and ensure that no data is

corrupted or lost. JAIST Koichiro Ochimizu



Periodic Tasks

An activity that needs to be executed periodically ( 1.e. at
regular, equally spaced intervals of time) is structured as a
separate periodic task. The task 1s activated by a timer
event, performs the periodic activity.

Asynchronous Tasks

The demand-driven( the arrival of internal messages or
events) activities are typically handled by means of
asynchronous tasks.

Control Tasks

A task that executes a sequential state-chart 1s referred to as
a control task.

User Interface Tasks

A user typically performs a set of sequential operations,
this can be handled by a use Interface task.

JAIST Koichiro Ochimizu



Task Priority Criteria

Task priority criteria take into account priority
considerations in task structuring, in particular, high- and
low-priority tasks are considered.

* Time-Critical Tasks

A time-critical task is a task that needs to meet a hard
deadline. Such a task needs to run at a high priority.

 Non-Time-Critical Computationally Intensive Tasks

A non-time-critical computationally intensive task may run
as a low-priority task consuming spare CPU cycles. A low-
priority computationally intensive task executing as a
background task that 1s preempted by higher-priority
foreground tasks has its origin in early multiprogramming

systems and 1s typically supported by most modern
operating systemes.

JAIST Koichiro Ochimizu



Reduce the number of tasks
 Temporal Clustering

Certain candidate tasks may be activated by the same
event, e.g. a timer event. If there 1s no sequential
dependency between the candidate tasks, they may be
grouped 1nto the same task, based on the temporal
clustering. Some tradeoffs need to be considered.

— If some candidate task i1s more time critical than the others, the task
should not be combined.

— Iftwo candidate tasks could be executed on separate processors,
they should not be combined.

— Preference should be given in temporal clustering to tasks that are
functionally related and likely to be of equal importance from a
scheduling viewpoint.

— Two tasks with different periods may not be clustered.

JAIST Koichiro Ochimizu



Task Clustering Criteria(2/3)

Reduce the number of tasks

* Sequential Clustering

The first candidate task is triggered by an asynchronous
or periodic event and the other are then executed
sequentially after it. These sequentially dependent
candidate tasks may be grouped. But,

— If the last candidate task in a sequence does not send an
inter-task message, this terminates the group of tasks to
be considered for sequential clustering.

— If the next candidate task in the sequence also receives
inputs from another source and therefore can be
activated by receiving input from that source, this
candidate task should be left as a separate task.

— If the next candidate task in sequence 1s of a lower
priority, they shouldbekept asiseparate task.



Reduce the number of tasks
* Control Clustering

A control object, which executes a sequential state-chart,
1s mapped to a control task.

— The actions activated during state transition are
executed within the thread of control of the
control object.

— The activity should be structured as a separate
task.

 Mutually Exclusive Clustering

Mutually exclusive tasks may be clustered.
JAIST Koichiro Ochimizu



» The Elevator Control System 1s mapped to a single CPU or
tightly coupled multiprocessor configuration

« The Elevator Status & Plan entity object is accessible to all
elevators as well as scheduler, so that one centralized
repository of data can be used

JAIST Koichiro Ochimizu
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<< data abstraction>>

ElevatorStatus&Plan

+ arrived(elevator#, floor#, direction)

+ departed(elevator#, floor#, direction)

+ checkThisFloor( in elevator#, in floor#, out floorStatus, out direction)
+ checkNextDestination( in elevator#, out direction)

+ updatePlan(elevator#, floor#, direction, out idleStatus)

+selectElevator( in floor#, in direction, out elevator#)

Data abstraction class for centralized solution
JAIST Koichiro Ochimizu



The physical configuration consists of multiple nodes interconnected by a
local area network.

Multiple instances of the Elevator Subsystem (one instance per elevator)
Multiple instances of the Floor Subsystem (one instance per floor)
One instance of the Scheduler subsystem

All communication between the subsystems is via loosely coupled message
communication.

There is no shared memory in a distributed configuration; thus the
“Scheduler” and multiple instances of the “Elevator Subsystem” can
not directly access the ~Elevator Status & Plan™ data abstraction object.

Client-Server solution presents the potential danger of creating a bottleneck
at this server. Instead, an alternative solution is to use replicated data. Each
instance of the Elevator Subsystem maintains its own local instance of the
Elevator Status & Plan, called Local Elevator Status & Plan. The scheduler
also maintains a copy of the Elevator Status & Plan, called Overall Elevator
Status & Plan.

JAIST Koichiro Ochimizu



: Elevator Subsystem
{1 node per elevator}

<< local area network >>

: Floor Subsystem

{1 node per floor}

: Scheduler

{1 node}
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Distributed Software Architecture
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Task Architecture ( Distributed )
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* Object-oriented Software Development Methodology
— Qutline of Unified Process and Use-case Driven Approach
— Elevator Control System:
Problem Description and Use-case Model
— Elevator Control System:
Finding of Problem Domain Objects
— Elevator Control System:
Sub-System Design and Task Design
— Elevator Control System:
Performance Evaluation

 Product Line Technology
— Feature modeling

* Aspect Oriented Software Design

e Contribution of OOT in Software Engineering

— History of SE Technologies and Contribution of OOT
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* A building with 10 floors and three elevators
* The Worst-Case Scenario

Elevator button interrupts arrive with a maximum frequency of 10
times a second, which represents a minimum inter-arrival time of 100
msec. This worst-case scenario assumes that all 30 buttons are pressed
within 3 seconds.

Floor button interrupts arrive with a maximum frequency of 5 times a
second, which represents a minimum inter-arrival time of 200 msec.
There are 18 floor buttons (2 X 8 +1--1). This worst-case scenario
assumes that all 30 buttons are pressed within 3 seconds.

All three elevators are in motion and arrive at floors simultaneously.
Three floor-arrival interrupts arrive within 50 msec of each other. This
1s the most time-critical aspect of the probem, because when a floor
arrival interrupt is received, the Elevator Controller has to determine
whether the elevator should stop at this floor or not. If it need to stop,
the controller must stop the elevator before the floor has been past.

Related usecases are “Select Destination”, “Request Elevator”, and

“Stop Elevator at Floor”.
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» Stop Elevator at Floor (Period = Ta)

— A1l: The Arrival Sensors Interface receives and
process the interrupt

— A2: The Arrival Sensors Interface sends
“approaching Floor” message to the Elevator
Controller.

— A3: The Elevator Controller receives message and
checks the Elevator Status & Plan object to
determine whether the elevator should stop or not.

— A4: The Elevator Controller invokes “stop Motor”
operation if 1t should stop.
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* Select Destination (Period = Tb)

— E1: The Elevator Buttons Interface receives and
processes the interrupt.

— E2: The Elevator Buttons Interface sends “‘elevator
Request” message to the Elevator Manager.

— E3: The Elevator Manager receives message and
records destination in Elevator Status & Plan object.
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* Request Elevator (Period = Tc)

— F1: The Floor Buttons Interface receives and processes the
interrupt.

— F2: The Floor Buttons Interface sends “service Request”
message to the Scheduler.

— F3: The Scheduler receives message and interrogates
Elevator Status & Plan object to determine whether an
elevator 1s on its way to this floor. Assume not, so that the
Scheduler selects an elevator.

— F4: The Scheduler sends a “scheduler Request” message
identifying the selected elevator to the Elevator Manager.

— F5: The Elevator Manager receives message and records

destination in Elevator Status & Plan object.
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Task Parameters

Task CPU time Ci Period Ti Utilization Ui Assigned
Stop Elevator at Floor Priority
Arrival Sensors Interface 2 50 0.04 1
Elevator Controller 5 50 0.10 4
Total elapsed time = 34 msec Total utilization = 0.68

Select Destination

Elevator Buttons Interface 3 100 0.03 2
Elevator Manager( Case b) 6 100 0.06 5
Total elapsed time = 47 msec Total utilization = 0.47

Request Elevator

Floor Buttons Interface 4 200 0.02 3
Scheduler 20 200 0.10 6
Elevator Manager( Case c) 6 200 0.03

Total elapsed time = 76msec Total utilization = 0.38

Other Tasks

Floor Lamps Monitor 5 500 0.01 7
Direction Lamps Monitor 5 JAIST Koichiro g)ﬁbimizu 0.01 8
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» Stop elevator at Floor (Ta=50msec)

— Execution time: Total execution time Ca=2msec
(Arrival Sensors Interface)+5Smsec (Elevator
Controller). Execution utilization Ue=Ca/Ta=7/50=0.14

— Preemption by higher priority tasks: Total preemption
time Pa=3 (Elevator Buttons Interface)+4(Floor Buttons

Interface)=7msec, Preemption utilization Up=Pa/Ta
=7/50=0.14

— Blocking time: Total worst-case blocking time Ba=
20msec (Scheduler). Worst-blocking utilization Ub =
Ba/Ta=20/50=0.40

— Total Utilization= Ue+Up+Ub=0.14+0.14+0.40=0.68
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« Seclect Destination (Tb=100msec)

Execution time: Total execution time Cb=3msec (Elevator

Buttons Interface) + 6msec(Elevator Manager). Execution
Utilization Ue=Ca/Ta=9/100=0.09

Preemption by higher priority tasks with shorter periods: Arrival
Sensors Interface and Elevator Controller (preempts Elevator
Manager) can each execute twice during 100 msec period, giving a
preemption time of 14 msec.

Preemption by higher priority tasks with longer periods: 4 msec
from Floor Buttons Interface to handle floor Button interrupt.

Total preemption time Cp=14+4=18 , Total preemption
utilization Up= Cp/Tb = 18/100 = 0.18

Blocking time: Worst-case blocking time Ba= 20msec (Scheduler).
Worst-case blocking utilization Ub = Bb/Tb=20/100=0.20

Total Utilization= Ue+Up+Ub=0.09+0.18+0.20=0.47
JAIST Koichiro Ochimizu



* Request Elevator (Tc=200msec)

Execution time: Total execution time Cc=4msec (Floor Buttons
Interface) + 20msec(Scheduler) +6msec(Elevator Manager).
Execution utilization Ue=Cc/Ta=30/200=0.15

Preemption by higher priority tasks with shorter periods: Arrival
Sensors Interface and Elevator Controller (preempts Elevator
Manager and Scheduler) can each execute four times for a total of
28 msec.

Total preemption time Cp=28+18=46. Preemption utilization
Up=Cp/Tp=0.23

Total elapsed time=30+46+0=76

Total Utilization= Ue+Up=0.15+0.23=0.38
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* one node per elevator, one node per floor, one
scheduler node.

e 40 floors and 12 elevators
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Task Parameters

Task CPUtime Ci  Period Ti Utilization Ui Assigned Priority
Elevator Subsystem

Arrival Sensors Interface 2 50 0.04 1
Elevator Controller 5 50 0.10 3
Elevator Buttons Interface 3 100 0.03 2
Elevator Manager 6 100 0.06 4
Floor Subsystem

Floor Buttons Interface 4 200 0.02 1
Floor Lamps Monitor 5 500 0.01 7
Direction Lamps Monitor 5 500 0.01 8
Scheduler Subsystem

Elevator Status and Plan Server 2 10 0.20 1
Elevator Scheduler 20 50 0.40 2

Network transmission delay = 2 msec

Elapsed time for Stop Elevator at Floor = 41 msec < 50 msec

Elapsed time for Select Destination = 48 msec < 100 msec

Elapsed time for Request Elevator = 82 fIﬁA

% T<I§86:hiro Ochimizu
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« Stop Elevator at Floor (Period = Ta)

— Al: The Arrival Sensors Interface receives and process the
interrupt

— A2: The Arrival Sensors Interface sends “approaching Floor”
message to the Elevator Controller.

— A3: The Elevator Controller receives message and checks the
Local Elevator Status & Plan object to determine whether the
elevator should stop or not.

— A4: The Elevator Controller invokes “stop Motor” operation 1f
it should stop.

— AS5: The Elevator controller sends arrived message over the
LAN to the Scheduler subsystem, where it 1s received by the
Elevator Status & Plan Server.

— A6: The Elevator Status & Plan Server calls the arrived
operation of the Overall Elevator Status & Plan data abstraction
object.
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» Select Destination (Period = Tb)
— El: The Elevator Buttons Interface receives and processes the
interrupt.
— E2: The Elevator Buttons Interface sends “elevator Request”
message to the Elevator Manager.

— E3: The Elevator Manager receives message and records
destination in Local Elevator Status & Plan object.

— E4: The Elevator Manager sends an “elevator Commitment”
message over the LAN to the Scheduler subsystem, where it 1s
received by the Elevator Status & Plan Server.

— E5: The Elevator Status & Plan Server calls the update Plan
operation of the Overall Elevator Status & Plan data abstraction
object.
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Request Elevator (Period = Tc)

F1: The Floor Buttons Interface receives and processes the interrupt.

F2: The Floor Buttons Interface sends “service Request” message over the
LAN to the Elevator Scheduler task in the Scheduler subsystem.

F3: The Elevator Scheduler receives message and interrogates Overall
Elevator Status & Plan object to determine whether an elevator 1s on its way
to this floor. Assume not, so that the Scheduler selects an elevator.

F4: The Elevator Scheduler sends a “scheduler Request” message
identifying the selected elevator over the LAN to the Elevator Manager task
in the selected elevator’s instance of the Elevator subsystem

F5: The Elevator Manager receives message and records destination in the
Local Elevator Status & Plan object.

F6: The Elevator Manager sends an “elevator Commitment” message over
the LAN to the Scheduler subsystem, where it is received by the Elevator
Status & Plan Server

F7: The Elevator Status & Plan Server calls the update Plan operation of the
Overall Elevator Status & Plan data abstraction object.
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» Stop elevator at Floor (Ta=50msec)

Execution time: Total execution time Ca=2msec (Arrival Sensors

Interface) + Smsec (Elevator Controller) Execution utilization Ue=
Ca/Ta=7/50=0.14

Preemption by higher priority tasks with longer periods.
Preemption time Pa=3 (Elevator Buttons Interface). Preemption
utilization Up=3/50=0.06

Blocking time: Total worst-case blocking time Ba= 6msec
(Elevator Manager). Worst-case blocking utilization Ub =
Ba/Ta=6/50=0.12

Total elapsed time=7 +3 + 6 =16msec<50. Total Utilization=
Ue+Up+Ub=0.14+0.06+0.12=0.32

Total elapsed time for Stop elevator at Floor=16(Total elapsed
time for Elevator Subsystem)—+2 (Transmission Delay, 25byte,
100Mbau, Transmission Delay Dt = 200/100000 = 2msec +23

Worst-case elapsed time of Scheduler system)=16+2-+23=
41msec
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» Select Destination (Tb=100msec)

— Execution time: Total execution time Cb=3msec
(Elevator Buttons Inteface) +6msec(Elevator Manager).

Execution utilization Ue=Ca/Ta=9/100=0.09

— Preemption time by higher priority tasks with shorter
periods: Arrival Sensors Interface and Elevator
Controller can each execute twice during the 100 msec

period, giving a total preemption time of 14 msec.
Up=0.14.

— Total elapsed time =9+14=23. Total utilization =
Ue+Up =0.09+0.14=0.23

— Total elapsed time for Select Destination Eb =23
(Elevator subsystem elapsed time) + 2(transmission
delay)+23 (Scheduler subsystem elapsed time)

=48msec.
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* Request Elevator (Tc=200msec)

— Total elapsed time for floor subsystem Ef=4msec( floor
buttons Interface) +— Imsec(transmission delay)=5msec.

— Total elapsed time for scheduler subsystem
Es=Imsec(transmission delay)+20msec(elevator
Scheduler)+ 1 msec (transmission delay)+2msec
(Blocking time by Elevator Status & Plan subsystem)
= 14+20+1+2= 24msec.

— Execution time of Elevator Manager= 1+6+1=8.
— Total elapsed time of Elevator subsystem=16+8=24.

— Total elapsed time for Request Elevator =
5+2+24+2+24+2+23=82
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