
Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Contribution of OO technologies
in

Software Engineering

Japan Advanced Institute of Science and Technology
School of Information Science

Koichiro Ochimizu

JAIST Koichiro Ochimizu

Software Development is Challenging
but Difficult to Achieve!

• Software entities are more complex than
most things people build like buildings,
automobiles or VLSI.

• Within only 30 years the amount of software in cars went
from 0 to more than 10,000,000 lines of code. More than
2000 individual functions are realized or controlled by
software in premium cars, today. 50-70% of the
development costs of the software/hardware systems are
software costs. (Manfred Broy, “Challenges in Automotive
Software Engineering”, ICSE2006, pp33-42,2006)

JAIST Koichiro Ochimizu

Why is Software Development so
difficult ? (F.Brooks,Jr)

1. Complexity

Computer programs are complex by their nature: a huge amount of part
and their relationships.

2. Conformity

Software can not be created in isolation, but must conform to real-world
constraints – pre-existing hardware , third party components, government
regulations, legacy data formats, and so on.

3. Changeability
Software is always evolving, as the outer environments of software
change.

4. Invisibility
Software doesn’t exist in a way that can be represented using geometric
models, especially for representing the behavior of software.

JAIST Koichiro Ochimizu

Machine

SoC

Embedded Software

Business
Social rules

Computers
and Network

Information System
Complexity, Invisibility

Conformity

Evolution

Constraints

Constraints

Constraints

Constraints

Complexity, Invisibility

Evolution

Conformity

Conformity

JAIST Koichiro Ochimizu

Who makes
such a complex software?

• Human beings
• A group of human being should collaborate to

complete the work within specified time and
cost with producing high quality product.

• Difficult to deal with the following problems
caused by human beings
– instability
– Suddenness
– Uncertainty

JAIST Koichiro Ochimizu

Software Engineering
can support their activities

• Software Engineering Technologies
– Provide us to control the problems specific to

software developments
– Support the team to proceed the work smoothly

JAIST Koichiro Ochimizu

Major Topics in Software Engineering

• Software Process Model (SPM)
– SPM provides for the strategy for software development

• Project Management Technologies (PM)
– The application of knowledge, skills, tools and techniques to project

activities to meet project requirement. Managing a project includes:
identifying requirements; establishing clear and achievable objectives;
balancing the competing demands for quality, scope, time and cost
(PMBOK).

• Software Development Methodologies (SDM)
– SDM provides for the desirable structure of software and define the

procedure how to form them
– Several examples of structures :easy to verify correctness, easy to

encapsulate the change impact, easy to divide the whole work into
independent parts, easy to reuse, easy to evolve

• Languages and Environments
– Languages and Environments(Collection of tools) facilitates software

engineering activities JAIST Koichiro Ochimizu

Role of Software Process Model(SPM)

• Need to adopt the proper SPM for the project
or the organization to integrate individual
effort of team members to achieve the goal.

• Because individual member of a project team
has different levels of skills

• Sometimes, a project consists of people who
belong to different organizations

JAIST Koichiro Ochimizu

Is it enough to adopt the proper SPM?

• Can not achieve the high degree of software
quality only by adopting the proper software
process model.

• A project need to follow some standardized
procedure, Software Development
Methodology(SDM) , to achieve the high
degree of software quality.

• Need a SDM(procedure) based on some
SPM(strategy) to achieve the successful
software development.

JAIST Koichiro Ochimizu

Role of Software Development Methodologies
(SDM)

• In the field of SDM study, we have been
studying the desirable structure of software
and have been defining the procedure how to
form them

• Several examples of structures :easy to verify
correctness, easy to encapsulate the change
impact, easy to divide the whole work into
independent parts, easy to reuse, easy to
evolve

JAIST Koichiro Ochimizu

Is it enough to choose
proper SPM and SDM?

• There still remains problems on QCD after
adopting the proper SPM(integration of efforts
to the goal) and the SDM(standardization of
procedure).

• Software development project sometime end
up with: cost overruns; schedule delay; poor
quality.

JAIST Koichiro Ochimizu

Role of Technical Project Management

• The role of PM is:
– Initiating and planning a project to meet project

requirements within limited resources such as
human resources , facilities, budget and
information

– to achieve the high quality products on time within
budget

– Monitoring and Controlling the project status,
detecting project –specific risks that could not be
estimated or predicted at the beginning of the
project and being revealed as the project progress

JAIST Koichiro Ochimizu

History of SPM, SDM, PM
• Waterfall model (early in the 1970s)
• Development of Programming Methodologies (early in the 1970s)
• Development of Design Methodologies (late in the 1970s)
• Development of Requirement Engineering Technologies (late in the 1970s)
• Beginning of Technical Project Management (late in the 1970s to early in the 1980s)
• Improvement of Waterfall model (V model) (middle to late in the 1980s)
• Iterative Waterfall Model (mini waterfall, spiral) (early in the 1980s)
• Prototyping (early in the 1980s)
• Executable specifications and Formal Methods (middle in the 1980s)
• Process Programming (late in the 1980s)
• SPI (early in the 1990s)
• CASE tools (early in the 1990s)
• Architecture centric Development (middle in the 1990s)
• Object oriented software development technologies (after 1980s)
• Maturity of Software Assessment technologies (late in the 1990s)
• UML (late in the 1990s)
• Iterative Software Process Model(2000s)
• Agile (2000s)
• GORE, IR,COTS (middle of 2000s)

JAIST Koichiro Ochimizu

Change of SPM
• Waterfall Model

– Custom development, Large-scaled software
development

• V Model (System Engineering)
– Outsourcing

• Iteration by Mini Waterfall Model or Spiral
– Risk Management

• Prototyping
– User involvement

• Iterative & Incremental SPM
– Reduction of uncertainty by studying the project

specific features

JAIST Koichiro Ochimizu

How was Waterfall model constructed?
• Design of phases

– Starting from “Analysis” and “Coding”
– Add necessary phases to control a large program development

• System Requirements, Software Requirements, Program Design, Testing, Operation
– Add the Preliminary Design Phase to define the constraints
– Add information about ordering of phases

The design proceeds the change process is scoped down to manageable
limits. At any point in the design process after requirements analysis is
completed there exists a firm and close-up, moving baseline to which
to return in the event of unforeseen design

• Dealing with backtrack problems
– Implementation described the above item is risky and invites failure.

The testing phase which occurs at the end of the development cycle is
the first event for which timing, input/output transfer , etc., are
experienced. If the wrong phenomena occurs, it may cause backtrack
to program design or even to software requirements definition.

– R.Winston proposed the way how to deal with this problem.

Winston.W. Royce,”Managing the Development of Large Software Systems: Concepts and Techniques”,
Proc. of IEEE WESCON, pp.1-9, 1970 (Proc. of 9th ICSE, pp328-338, 1987。

JAIST Koichiro Ochimizu

Implementation steps to deliver a small
computer program for internal operation

Analysis

Coding

Customers are
happy to pay

Programmer: both steps involve
genuinely creative work

Effective for
internal use

JAIST Koichiro Ochimizu

Analysis

Coding

System
Requirements

Software
Requirements

Program
Design

Testing

Operations

Implementation steps to develop a large
computer program for delivery to a customer

Many additional development
steps are required to develop a
large computer program JAIST Koichiro Ochimizu

Analysis

Coding

System
Requirements

Software
Requirements

Program
Design

Testing

Operations

Hopefully, the iterative interaction between the
various phases is confined to successive steps

Unfortunately,
the design iteration

are never confined to
the successive steps

JAIST Koichiro Ochimizu

Analysis

Coding

System
Requirements

Software
Requirements

Program
Design

Testing

Operations

Preliminary
Program
DesignDocument

system
overview

Design
Data Base

and
Processors Allocate

Subroutine
Storage

Allocate
Subroutine
Execution

Times

Describe
Operating
Procedures

Insure that a preliminary
program design is complete

before analysis begins
Designer must impose on the analyst
the storage, timing, and operational

constraints

JAIST Koichiro Ochimizu

図６ 文書は最新で完全でなければならない少なくとも６つの異なる
文書が必要

Analysis

Coding

Software
Requirements

Testing

Operations

Preliminary
Program
DesignDoc.1 Software

Requirements

Doc.2 Preliminary
Design
Specification

Doc. 3 Interface
Specification

Doc. 4
Final Design
Specification

Doc. 5
Test Plan
Specification

Doc.4 Final
Design
as Built

Doc. 6
Operating
Instructions

Doc. 5 Test Plan
Specification and
Test Results

・・・

System
Requirements

Program
Design

Insure that documentation is
current and complete

(at least 6 types of documents)

Doc. 4
Final Design
Specification

JAIST Koichiro Ochimizu

Analysis

Coding

Software
Requirements

Program
Design

Testing

Operations

Preliminary
Program
Design

Preliminary
Design

Analysis

Program
Design

Coding

Testing

Usage

System
Requirements

Attempt to do the job twice

JAIST Koichiro Ochimizu

Analysis

Coding

Software
Requirements

Program
Design

Testing

Operations

Preliminary
Program
Design

Visually
inspect code
before testing

Test
every Logic Path Autonomous

and Detached
Test Group

Plan
the Testing Process

Use
Product

Assurance
Techniques

Configuration
Control, spec
maintenance

Test
Standards,
Procedures,

Tools

System
Requirements

Plan, control, and monitor
computer program testing JAIST Koichiro Ochimizu

Analysis

Coding

Software
Requirements

Program
Design

Testing

Operations

Preliminary
Program
Design

Preliminary
Software
Review

System
Requirements

Generation

Final
Software

Acceptance
Review

Critical
Software
Review

System
Requirements Involve the customer

the involvement
should be

formal, in-depth,
and continuing

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

JAIST Koichiro Ochimizu

Analysis

Coding

System
Requirements

Software
Requirements

Program
Design

Testing

Operations

Preliminary
Program
Design

Preliminary
Software
Review

System
Requirements

Generation

Final
Acceptance

Review

Critical
Software
Review

Preliminary
Program
DesignAnalysis

Program
Design

Coding

Testing

Use

Software
Requirements

Preliminary
Design

Specification

Interface
Specification

Final
Design

Specification

Final
Design

Specification

・・・

Test Plan Operating
Instructions

Waterfall Model
1. Complete program Design

before analysis and coding
begins

2. Documentation must be
current and complete

3. Do the job twice if possible

4. Testing must be planned,
controlled and monitored

5. Involve the customers

Winston.W.
Royce,”Managing the
Development of Large
Software Systems:
Concepts and Techniques”,
Proc. of IEEE WESCON,
pp.1-9, 1970 . Critical

Software
Review

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

Critical
Software
Review

JAIST Koichiro Ochimizu

Introduction of System Engineering

• Systems engineering techniques are used in complex projects:
spacecraft design, computer chip design, robotics, software
integration, and bridge building. Systems engineering uses a
host of tools that include modeling and simulation, requirements
analysis and scheduling to manage complexity.

• The V-model is a software development process which can be
presumed to be the extension of the waterfall model. Instead of
moving down in a linear way, the process steps are bent
upwards after the coding phase, to form the typical V shape.
The V-Model demonstrates the relationships between each
phase of the development life cycle and its associated phase of
testing.

Wikipedia “System engineering”and “V-Model”JAIST Koichiro Ochimizu

V Model

• Introduction of System Engineering Approach
– Define System Requirements
– Allocate system requirements to subsystems
– Define the detailed components
– Test components, Test subsystems

• Write specification to outsource parts of the whole
system with producing the specification of acceptance
test in the same level of abstraction.

JAIST Koichiro Ochimizu

Inside Structure of a Car

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.
JAIST Koichiro Ochimizu

System levels in automotive electronics

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.
JAIST Koichiro Ochimizu

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.

Project Management

Supplier Management Quality Assurance

Support Processes

Configuration
Management

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t

Overview of support processes for the development of
electronic systems and software

JAIST Koichiro Ochimizu

Overview of the core process for the development of
electronic systems and software

Analysis of User Requirements
and Specification of

Technical System Architecture

Analysis of
Logical System

Architecture
& Specification of

Technical
System Architecture

Analysis of
Software Requirements

& Specification of
Software Architecture

Specification of
Software Components

Design & Implementation
Of Software Components

Testing of
Software Components

Integration of Software Components

Software Integration Test

Integration of System Components

System Integration Test

Calibration

Acceptance Test
& System Test

Jorg Schauffele, Thomas Zurawka, “Automotive Software Engineering”, SAE Intnl. 2005.
JAIST Koichiro Ochimizu

Backtracking to Iteration

• Iteration
– Mini-Waterfall model, Spiral Model
– Risk Management
– Detect and Deal with project-specific risks on

QCD early
• Prototyping

– Involve user into iteration to fix requirements
smoothly

JAIST Koichiro Ochimizu

Iterative & Incremental Approach
• The basic idea behind iterative enhancement is to develop a

software system incrementally, allowing the developer to take
advantage of what was being learned during the development
of earlier, incremental, deliverable versions of the system.
Learning comes from both the development and use of the
system, where possible. Key steps in the process were to start
with a simple implementation of a subset of the software
requirements and iteratively enhance the evolving sequence of
versions until the full system is implemented. At each iteration,
design modifications are made and new functional capabilities
are added.(wikipedia)

• The earlier we can detect the project-specific problems, the
greater the chance to correct them become

• At the beginning of the project, we can not understand the
project goal clearly. After getting the development experience
once, we can use the knowledge got from the first increment
and can have a chance to change the process

JAIST Koichiro Ochimizu

What do Software Engineering Projects
consider important? by Pete McBreen

• Traditional Waterfall Projects
– Specialization of staff into different roles to support the different phases is

claimed to promote efficiency by reducing the number of skills a person
needs.

– With clear milestones between phases and known dependencies between
deliverables, it is easy to display a waterfall project on a PERT chart.

– Comprehensive documentation is important, so that at the end of the
project it is possible to justify the overall costs. This supports the tracking
of the project because it makes everything available for external review. A
side benefit of all of this documentation is traceability.

• Unified Process (supports Incremental development in the
context of a phased approach)
– Inception(evaluating the economic feasibility of the project, forcing the

team to define the overall project scope, plan the remaining phases, and
produce estimates)

– Elaboration (evaluating the technical feasibility of the project by creating
and validating the overall software architecture)

– Construction (at the end of each increment, new and changed
requirements can be incorporated into the plans, and the estimates can
be refined based on experiences in the previous increments)

Pete McBreen, “Questining eXtreme Programming”, Addison-Wesley, 2003.

JAIST Koichiro Ochimizu

Features of Iterative model
• Rather than being built sequentially, the artifacts are evolved together,

and the constraints , the different levels of abstractions, and the degree
of freedom are balanced among competing alternatives.

• The primary difference from the conventional approach is that within
each life-cycle phase, the workflow activities do not progress in a
simple linear way, nor does artifact building proceed monotonically
from one artifact to another

• Instead, the focus of activities sweeps across artifacts repeatedly,
incrementally enriching the entire system description and the process
with the lessons learned in preserving balance across the breadth and
depth of information

• An iteration represents the state of the overall architecture and the
complete deliverable system. An increment represents the current
work in progress that will be combined with the preceding iteration to
form the next iteration JAIST Koichiro Ochimizu

Relative levels of effort expected across the phases

Inception(idea) Elaboration(Architecture) Construction(Beta release) Transition(products)

Walker Royce,” Software Project Management A Unified Framework” , ADDISON-WESLEY,

Management

Environment

Design

Implementation

Assessment

Deployment

Requirements

JAIST Koichiro Ochimizu

Unit of Iteration

Manage
ment

Environ
ment

Require
ment

Design Implemen
tation

Assess
ment

Deploy
ment

Allocated
usage

scenario

Results
from the
previous
iteration

Results for
the next
iteration

JAIST Koichiro Ochimizu

Activities
• Management: iteration planning to determine the content

of the release and develop the detailed plan for the iteration;
assignment of work package, or tasks, to the development
team

• Environment: evolving the software change order
database to reflect all new baselines and changes to existing
baselines for all product, test, and environment components

• Requirements: analyzing the baseline plan, the baseline
architecture, and the baseline requirements set artifacts to fully
elaborate the use cases to be demonstrated at the end of this
iteration and their evaluation criteria; updating any
requirements set artifacts to reflect changes necessitated by
results of this iteration’s engineering activitiesJAIST Koichiro Ochimizu

Activities

• Design: evolving the baseline architecture and the baseline
design set artifacts to elaborate fully the design model and test
model components necessary to demonstrate against the
evaluation criteria allocated to this iteration; updating design
set artifacts to reflect changes necessitated by the results of
this iteration’s engineering activities

• Implementation: developing or acquiring any new
components, and enhancing or modifying any existing
components, to demonstrate the evaluation criteria allocated to
this iteration; integrating and testing all new and modified
components with existing baselines(previous versions)

JAIST Koichiro Ochimizu

Activities
• Assessment: evaluating the results of the iteration, including

compliance with the allocated evaluation criteria and the quality
of the current baselines; identifying any rework required and
determining whether it should be performed before deployment
of this release or allocated to the next release; assessing results
to improve the basis of the subsequent iteration’s plan. Testing
is only one aspect of the assessment workflow

• Deployment: transitioning the release either to an external
organization(such as a user, independent verification and
validation contractor, or regulatory agency) or to internal closure
by conducting a post-modern so that lessons learned can be
captured and reflected in the next iteration

JAIST Koichiro Ochimizu

An iterative development model

Planning

Initial Planning

Requirements Analysis & Design

Implementation

TestingEvaluation

Deployment

JAIST Koichiro Ochimizu

Iterations
Inception

Elaboration

management Environment Requirement Design Implementation Assessment Deployment

Prepare
business
case and
vision

Define
development
environment
and change
management
infrastructure

Define
operational
concept

Formulate
architecture
concept

Support
architecture
prototypes

Assess
plans,
visions,
prototypes

Analyze
user
community

management Environment Requirement Design Implementation Assessment Deployment

Plan
development

Install
development
environment
and establish
change
management
database

Define
architecture
objectives

Achieve
architecture
baseline

Assess
architecture

Define
user
manual

Produce
architecture
baseline

JAIST Koichiro Ochimizu

Iterations
Construction

Transition

management Environment Requirement Design Implementation Assessment Deployment

Monitor
and
control
development

Maintain
development
environment
and software
change order
database

Define
iteration
objectives

Design
components

Produce
complete
componentary

Assess
interim
release

Prepare
transition
materials

management Environment Requirement Design Implementation Assessment Deployment

Monitor
and
control
deployment

Transition
maintenance
environment
and
software
change order
database

Refine
release
objectives

Refine
architecture
and
components

Assess
product
release

Transition
product
To user

Maintain
components

JAIST Koichiro Ochimizu

The Artifact Sets

Management Set
Planning Artifacts
1. Work breakdown structure

(activity breakdown and financial tracking
mechanism)
2. Business case

(cost, schedule, profit expectation)
3. Release specification

(scope, plan, objectives for release baselines)
4. Software development plan

(project process instance)

Operational Artifacts
5. Release descriptions

(results of release baseline)
6. Status assessments

(periodic snapshots of project progress)
7. Software change order database

(descriptions of discrete baseline changes)
8. Deployment documents

(cutover plan, training course sales rollout kit)
9. Environment (hardware and software tools, process

automation, document, additional training)

Requirements set

1. Vision Document

Contract
Provided Services
Constraints

2. Requirement Model

Use case model
Domain model

Design set

1. Design models

components of the
solution space

2. Test model

3. Software
Architecture
description

Implementation set

1. Source code
baselines

2. Associated
compile-time files

3. Component
executables

Deployment set

1. Integrated
product
executable
baselines

2. Associated
run-time files

3. User manual

JAIST Koichiro Ochimizu

Software Process Workflow
• Management workflow: controlling the process and ensuring win

conditions for all stakeholders
• Environment workflow: automating the process and evolving the

maintenance environment
• Requirements workflow: analyzing the problem space and

evolving the requirements artifacts
• Design workflow: modeling the solution and evolving the

architecture and design artifacts
• Implementation workflow: programming the components and

evolving the implementation and deployment artifacts
• Assessment workflow: assessing the trends in process and product

quality
• Deployment workflow: transitioning the end products to the userJAIST Koichiro Ochimizu

Summary on SPM
• From “Controlling the Scale”
• To “Controlling Risks

caused by Instability, Suddenness, Uncertainty”

Risk management

Outsourcing and Off-shore Development
JAIST Koichiro Ochimizu

History of SDM
What structures and How

• Structured Programming
– easy to verify correctness a program, easy to divide the whole work into

independent parts
• Information Hiding Module

– Encapsulation of change impact
• Structured Analysis and Design

– Encapsulation of change impact
• Requirement Engineering

– Requirements definition
• Executable Specifications and Formal Methods

– Verifying and proving some properties of a program, Generation of a program,
• Object-Orientation

– easy to encapsulate the change impact, easy to reuse and easy to evolve a program
• Goal Oriented Requirement Engineering, Integrated Requirement Engineering,

COTS
– Shortening the development time

JAIST Koichiro Ochimizu

Principles on Software Engineering
1. Rigor and Formality

Rigorous approach enables us to produce more reliable products, control their cost, and
increase our confidence in their reliability. Formality is a stronger requirement than
rigor; it requires the software process to be driven and evaluated by mathematical laws.

2. Separation of Concerns
To deal with different individual aspects of a problem and we can concentrate on each
separately.

3. Modularity
Kind of Separation of Concerns. A complex system may be divided into simpler pieces
called modules, allowing details of each module being handled in isolation.

4. Abstraction
Kind of Separation of Concerns; Separation of what from how. The we can identify the
important aspects of a phenomenon and ignore its details.

5. Anticipation of Change
When likely changes are identified, special care must be taken to proceed in a way that
will make future changes easy to apply.

6. Generality
Generalizing the problem to make the solution more potential one for being reused.

7. Incrementality
A process that proceeds in stepwise fashion, in increments, for risk reduction.

JAIST Koichiro Ochimizu

Feature-Orientation &

Product Line Engineering

Object-Orientation
(class, inheritance, polymorphism)

complement

extension to product lines

cross-cutting
concerns

localize

UML (4+1 views)

separation of what
from how

primary concerns

data abstraction

Rigor and Formality

Separation
of Concerns

Modularity

Abstraction

Anticipation
of Change

Generality

Incrementality

Aspect orientation

Complexity

Conformity

Changeability

Invisibility

process

UP, Agile

SawSanda Aye and K. Ochimizu,” Defining Ontology for Complexity Issues in Software Engineering”, Natnl Conf. of JSSST, 2004.
JAIST Koichiro Ochimizu

Summary on SDM

• Principles pursued
–Objects to be made, verified and

modified should appear in the same
part of source code

–Reduce the volume of codes to be
written

JAIST Koichiro Ochimizu

Development of SPM
• Various Measures

– Cost-estimation
– Detection of risky factors (Software complexity

measures, V measure, E measure)
– Decision support for terminating test activities

(software reliability growth model)
• Measurement

– Function Points
• CMM

– Maturity Levels and Best Practices
• Software Assessment

– Benchmark and Baseline
• PMBOK

– Knowledge

JAIST Koichiro Ochimizu

History of Project Management
• 1910s: the Gantt chart by Henry Gantt
• prior to the 1950s, projects were managed on an ad hoc

basis using mostly Gantt Charts, and informal techniques
and tools. At that time, two mathematical project
scheduling models were developed. The "Critical Path
Method" (CPM) and the "Program Evaluation and
Review Technique” or PERT for Polaris missile
submarine program; These mathematical techniques
quickly spread into many private enterprises.

• In 1969, the Project Management Institute (PMI) was
formed to serve the interests of the project management
industry.

• 1970s: Theory of Constraint (TOC): Drum Buffer, Rope
by E.M. Goldratt

JAIST Koichiro Ochimizu

The Need for Software Measurement

Focus:

Time to Market Customer Satisfaction Cost Saving

Focus:

Productivity Cost Monitoring Efficiency Performance

Focus:

Function Effort Defects Schedule Compliance
Points

Level Audience

Tier 3

Senior Management

Tier 2

Middle Management

Tier 1

Project Management

David Garmus, David Herron, “ Function Point Analysis” ADDISON-WESLEY, 2001.JAIST Koichiro Ochimizu

Software Assessment
• Understand the source of troubles by qualitative data and

justify them by quantitative data
• There are several useful measures(FP measures) calculated by

Function Point
• Productivity: Hours per FP, Information technology

productivity, Rate of delivery, Delivered functionality and
developed functionality

• Quality: Functional requirement size, completeness, Rate of
change, Defect removal efficiency, Defect density, Test case
coverage, Volume of Documentation

• Financial: Cost per FP, Repair cost ratio, portfolio asset value
• Maintenance: Maintainability, Reliability, Assignment scope,

Rate of growth, portfolio size, Backfire value, Stability ratio

David Garmus, David Herron, “ Function Point Analysis” ADDISON-WESLEY, 2001.JAIST Koichiro Ochimizu

Summary on PM

• Not good to follow the successive phases in a
linear way(waterfall). Better to overlap
activities of phases(iterative)

• Still something wrong!
• Traditional PM techniques pursue the

efficiency, use up human resources to the
maximum

• Should take account of capacity and load of a
project team.

JAIST Koichiro Ochimizu

OOAD, SOA and Cloud

Object-Orientation

Service Orientation

Web
Services

EAI
Enterprise
Application
Integration

AOP
Aspect
Oriented
Programming

BPM
Business
Process
Management

Others

Modular
Development

Procedural
Programming

RPC
Others

OO OO OO

SOA

｛ ｛ ｛

IT
Enterprise

Thomas Erl, “SOA Principles of Service Design”, PRETICE HALL, 2008
JAIST Koichiro Ochimizu

OOAD, SOA, and Cloud
• The major benefit of the concept behind cloud computing is that

the average user does not require a compute that is extremely
powerful to handle complex database indexing tasks that server
farms can

• Instead, with the use of broadband, users can easily connect to
the cloud, which would commonly be referred to as the point of
contact with the larger network.

• With this point of contact, cloud computing users from all
across the world can reap the benefits of enormous processing
power without major capital or technical know-how.

• Benefits: Flexibility, Scalability, Capital Investment, Portability
• Drawback: Dependability, Security, Little or No Reference

“Cloud Computing – The Complete Cornerstone Guide to Cloud Computing Best Practices”, The Art of Services, 2008
JAIST Koichiro Ochimizu

Wrong Usage of Software Engineering

Team
+

Software
Engineering

Excessive
Competition

Rigid Deadline

Lack of Budget

Shortage of
Human Resource

Insufficient Skill

JAIST Koichiro Ochimizu

Software Engineering is a tool to
increase the Capacity of Software Team

Internal
Factors

External Factors

SDMs,
Language&Environments

Project Manager

Team Cohesion and
individual Expertise

Communication and
Sustainable learning

Increase the Capacity
of the team

Read the project risks early

SPM,PM

Death March

Instability,
Suddenness,
Uncertainty

Is the current
goal of SE

proper?
Too much
pursue of
generality Building the system with

desirable structure
Avoid the redundant Description
Encapsulation of relevant things

Outsourcing

Off-shore
Development

JAIST Koichiro Ochimizu

