Content(2)

* Object-oriented Software Development Methodology
— Qutline of Unified Process and Use-case Driven Approach
— Elevator Control System:
Problem Description and Use-case Model
— Elevator Control System:
Finding of Problem Domain Objects
— Elevator Control System:
Sub-System Design and Task Design
— Elevator Control System:
Performance Evaluation

 Product Line Technology
— Feature modeling

* Aspect Oriented Software Design

e Contribution of OOT in Software Engineering

— History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Hassan Gomaa, Designing Software
Product Line with, Addison Wesley, (2004)

Koichiro Ochimizu

School of Information Science
Japan Advanced Institute of Science and Technology

JAIST Koichiro Ochimizu

Basic Ideas and Terms

* A software product line 1s a set of software-intensive
systems sharing a common, managed set of features
that satisfy the specific needs of a particular market
segment or mission and that are developed from a
common set of core assets 1n prescribed way.

 Core assets are those asset that form the basis for the
software product line.

— Core assets often include, but are not limited to, the
architecture, reusable software components, domain
models, requirement statements, documentations
and specifications, performance models, schedules,
budgets, test plans, test cases, work plans, and

process description

JAIST Koichiro Ochimizu
Paul Clements an Linda Northrop, “Software Product Lines”, Addison-Wesley, 2002.

What is Software Development?

* Development 1s a generic term used to describe how
core assets come to fruition.

— The organization can Build 1t itself (either from scratch or
by mining legacy software),
— Purchase it (buy 1t, largely unchanged, off the shelf)

— Commission it (contract with someone else to develop 1t
especially for the organization)

* Development may actually involve building,
acquisition, purchase, retrofitting earlier work.

Paul Clements an Linda Northrop, “Software Product Lines”, Addison-Wesley, 2002.
JAIST Koichiro Ochimizu

Basic Ideas and Terms(2/2)

* Software product line practice 1s the systematic
use of core assets to assemble, instantiate, or
generate the multiple products that constitute a
software product line. Software Product line
practice involves strategic, large-grained reuse.

e The Three Essential Activities

— Core Asset Development (or Domain Engineering)

— Product Development using the core assets (Application
Engineering)
— Management

Paul Clements an Linda Northrdjf) S &fitQiCRFOdWENIMLY Addison-Wesley, 2002.

Product line use case model,

product line analysis model.

product line software architecture,

. /\
Product line reusable components M~

requirements Software Software
> Product Line Product Line

Engineering &sitory

A 4

Product line

1 Executable

engineer

L. application
Application
PP” Software %
requirements _

Application
Engineering

Application Customer

engineer

Unsati'so\i?gt_ir r&quiﬁem%ltsﬁ_errors, adaptations
. chiro Ochi ,
Hassan Gomaa, “Designing Software i’roduct ines with rﬂﬁL”, Addison-Wesley, 2005.

Characteristics of PLUS

* Feature modeling based on Use case modeling
with variation points.

« Use case driven object-oriented approach ,
partially adopting CBSD(Component-Based
Software

* Definite correspondence among Features,
Classes and Components

JAIST Koichiro Ochimizu

 Features are characteristics that are used
to differentiate among members of the
product line

* Feature Modeling 1s a Variability
Analysis in requirement modeling to
determine and define the common and
variable functionality of a software
product line

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software f’roduct ines wfth"{}lﬁL”, Addison-Wesley, 2005.

(D Use Case Feature
Modeli d Use Cases Features, @ Feature
Pl‘ObleIIl_> 0. e.lng a.n —» with N @Feature _’Feature/Use — Dependency —> Dependency
Domain Variation Points Variation Modeling Case dependency pendency .
Analysis Points. ™ table Analysis Diagram
l Kernel Use Case
@Static Modeling Optional Use Cases
Variation Points for every feature

v
Context class Diagram

for kernel use case

y

Revised Communication Diagram

l Communication Diagram__, ®Impact Analysis —> Revised State Machine
®Dynamic Modeling [State Machine Diagram Diagram
v
Component Architectural @ Class Definition Class Diagram and
Structuring Communication (Reuse Categorization) Feature/Class
Architectural Criteria Patterns
Patterns Dependency Table
Component
Kernel Classes | ®Component |, based © Message o
Communication Structuring Architecture Interface — Concurrent Communication Diagram
Diagram (Kernel) Design ‘
Optional Components l L Product Line @Component _, Components
—»| @Product Line [—> o — Interface
Variant Components Evolution™ S Koichirch@ettinrizu Design (PIM)

Outline of PLUS (Use Case Modeling and Variation Points Analysis)

Problem
Domain

l

(D Use Case
Modeling and
Variation Points
Analysis

— with

Use Cases

NP
Variation

@Feature
Modeling

|, Feature/Use

Pointg,..f""

@Static Modeling

v

Context cld

'

®Dynan

Architectural
Patterns

Kernel Clas

Define

e Kernel Use Case which all members of

Kernel Use Case
_Optional Use Cases
ion Points

Features,

Case dependency
table

Feature

—>

@ Feature
Dependency
Analysis

|, Dependency

Diagram

for every feature

the product line must provide
* Optional Use Case which only some
members of the product line provide

Diagram

i

Communicat pgram
Diagram
Optional Components L Product Line @Component ., Components
@Product Line [—*> > Interface
Variant Components Evolution™ S Koichirch@ettinrizu Design (PIM)

<<kernel>>
Cool Food

<<optional>>
Set Time of Day

/1N

User

<<optional>>
Display Time of Day

<<optional>>
Cook Food with Recipe

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software f’roduct ines wfth"ﬁlﬁL”, Addison-Wesley, 2005.

Use case name: Cook Food
Reuse category: Kernel
Summary: User puts food in oven, and microwave oven cooks food.
Actors: User(primary), Timer(secondary)
Precondition: Microwave oven is idle
Description:
1. User opens the door, puts food in the oven, and closes the door.
2. User presses the Cooking Time button.
3. System prompts for cooking time.
4. User enters the cooking time on the numeric keypad and presses Start.
5. System starts cooking the food.
6. System continually displays the cooking time remaining.
7. Timer elapses and notifies the system.
8. System stops cooking the food and displays the end message.
9. User opens the door, removes the food from the oven, and closes door.
10.System clears display.

.. AIST Koichiro Ochimj :
Hassan Gomaa, “Designing Software f’roduct ines chtlllrﬁlﬁ}fL”, Addison-Wesley, 2005.

* Alternatives:
Linel: User presses Start when the door is open. System does not start cooking.

Line4: User presses Start when the door is closed and the oven is empty. System
does not start cooking.

Line4: User presses Start when the door 1s closed and the cooking time is equal to
zero. System does not start cooking.

Line6: User opens the door during cooking. System stops cooking. User removes
food and presses Cancel, or user closes the door and presses Start to resume
cooking.

Line6: User presses Cancel. System stops cooking. User may press Start to
resume cooking. Alternatively, user may press Cancel again; system then
cancels timer and clears display.

 Post-conditions: Microwave oven has cooked the food.

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software f’roduct ines wfth"ﬁlﬁL”, Addison-Wesley, 2005.

* Define variation points for each use case

* For small variations, the variation point 1s
described 1n the (kernel) use case itself,
1dentifying the place 1n the use case where
the change occur

* For large variations, the variation 1s defined
as an optional use case

* An optional use case has its own variation
points

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software f’roduct ines wfth"ﬁlﬁL”, Addison-Wesley, 2005.

Name: Display Language
Type of functionality: Mandatory alternative
Line number(s): 3,8

Description of functionality: There is a choice of language for displaying messages.
The default is English. Alternative mutually exclusive languages are French, Spanish,
German, or Italian.

Name: Weight Sensor
Type of functionality: Mandatory alternative
Line number(s): 1

Description of functionality: Cooking is prohibited if no item is present. The default is
Boolean weight sensor, which indicates if item is present. Alternative mutually
exclusive variation is analog sensor. Analog weight sensor provides weight of item.

Name: Heating Element
Type of functionality: Mandatory alternative
Line number(s): 5

Description of functionality: Default is a one-level heating element: high power level.
Alternative is a multi-level heating element, with high, medium, and low power levels.

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct ines wfth"{}lﬁL”, Addison-Wesley, 2005.

Variation Points in the “Cook Food” Use Case(2/3)

Name: Power Level
Type of functionality: Optional
Line number(s): 2

Description of functionality: Microwave oven has power level buttons for
high power(default), medium , and low. User may select the power level.
Requires multi-level heating element as prerequisite.

Name: Display Unit
Type of functionality: Mandatory alternative
Line number(s): 3,4, 6, 8, 10

Description of functionality: Default is a one-line display unit. Alternative is
multi-line display unit.

Name: Minute Plus
Type of functionality: Optional
Line number(s): 2, 6

Description of functionality: User may press Minute Plus, which results in
one minute being added to the cooking time. If the cooking time was previously

zero, cooking is started

. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software f)roductoﬁnlég Wﬁhl rlnjllz\XL”, Addison-Wesley, 2005.

Name: Light
Type of functionality: Optional
Line number(s): 1, 5,8, 9

Description of functionality: If light option is selected, lamp is switched on
for duration of cooking and when the door 1s open. Light 1s switched off when
door is closed and when cooking stops.

Name: Turntable
Type of functionality: Optional
Line number(s): 5,8

Description of functionality: If turntable option is selected, turntable rotates
for duration of cooking.

Name: Beeper

Type of functionality: Optional

Line number(s): 8

Description of functionality: If beeper option is selected, system activates the
beeper when cooking stops.

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct ines wfth"{}lﬁL”, Addison-Wesley, 2005.

« Use case name: Set Time of Day
* Reuse category: Optional
* Dependency: Variation point in Cook Food use case: at Display Unit variation point, select Multi-
line Display.
* Summary: User sets time-of-day clock
* Actors: User
* Precondition: Microwave oven is idle
* Description:
1. User presses Time of Day(TOD) button.
System prompts for time of day.
User enters the time of day (in hours and minutes) on the numeric keypad.
System stores and displays the entered time of day.
User presses Start.
6. System starts the time-of-day timer.

* Alternatives:
Line 1,3: If the oven is busy, the system will not accept the user input.
Line 5: The user may press Cancel if the incorrect time was entered. The system clears the display.
* Variation Points in the Set Time of Day Use case
— Name: 12/24Hour Clock
— Type of functionality: Mandatory alternative.
— Line number(s): 4
— Description of functionality: TOD display is either 12-hour clock(default) or 24-hour clock.
Post Condition: TOD clock has been set.

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct ines wfthnwﬁL”, Addison-Wesley, 2005.

A

Hassan Gomaa, “Designing Software f)roduct

Optional Use Case “Display Time of Day”

Use case name: Display Time of Day
Reuse category: Optional

Dependency: Variation point in Cook Food use case: at Display Unit variation
point, select Multi-line Display.

Summary: System displays time-of-day
Actors: Timer(primary actor), User(secondary actor).
Precondition: TOD clock has been set(by Set Time of Day use case)
Description:
1. Timer notifies system that one second has elapsed.
2. System increments TOD clock every second, adjusting for minutes and hours.
3. System updates the display with time of day every minute.
Variation Points in the Display Time of Day Use case
— Name: 12/24Hour Clock
— Type of functionality: Mandatory alternative.
— Line number(s): 2

— Description of functionality: TOD display is either 12-hour clock(default)
or 24-hour clock.

Post Condition: TOD clock has been updated (every second) and time of day

displayed(every minute). AIST Keichiro Ochim
IGNIro Imiz
Olﬁnes Wﬁh Ul\XL”, Addison-Wesley, 2005.

Use case name: Cook Food with Recipe
Reuse category: Optional

Dependency: Variation points in Cook Food use case: at Display Unit variation point,
select Multi-line Display; at Heating Element variation point, select Multi-level Heater; at
Weight Sensor variation point, select Analog Weight Sensor.

Summary: User puts food in microwave oven cooks food, using recipe.
Actors: User(primary), Timer(secondary)

Precondition: Microwave oven is idle

Description:

l.
2.
3.

© N

9.

User opens the door, puts food in the oven, and closes the door.
User presses the desired recipe button from the recipe buttons on the keypad.

System displays the recipe name. Recipe has name, power level(p), fixed time(tl),
and time per unit weight(t2).

User presses Start button.

System starts cooking the food for a time given by the following equation: Cooking
Time = tl + w*t2, where t1 and t2 are times specified in the recipe.

System continually displays the cooking time remaining.

Timer elapses and notifies the system.

System stops cooking the food and displays the end message.

User opens the door, removes the food from the oven, and closes door.

10.System clears display. JAIST Koichiro Ochimizu
Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

* Alternatives:
Linel: User presses Start when the door is open. System does not start cooking.

Line4: User presses Start when the door is closed and the oven is empty. System
does not start cooking.

Line4: User presses Start when the door 1s closed and a recipe has not been
chosen. System does not start cooking.

Line4: User presses Cancel. System cancels recipe and clears display.

Line6: User opens the door during cooking. System stops cooking. User removes
food and presses Cancel, or user closes the door and presses Start to resume
cooking.

Line6: User presses Cancel. System stops cooking. User may press Start to
resume cooking. Alternatively, user may press Cancel again; system then
cancels the recipe and clears display.

Line7: If the recipe has more than one step, system completes one step, cooking
food for the computed time and specified power level, and then proceeds to the
next step.

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct ines wfth"{}lﬁL”, Addison-Wesley, 2005.

 Name: Display Language
» Type of functionality: Mandatory alternative
* Line number(s): 3,8

» Description of functionality: There is a choice of language for displaying messages. The default is
English. Alternative mutually exclusive languages are French, Spanish, German, or Italian.

 Name: Light
* Type of functionality: Optional
* Line number(s): 1, 5, 8,9

* Description of functionality: If light option is selected, lamp is switched on for duration of
cooking and when the door 1s open. Light is switched off when door is closed and when cooking
stops.

* Name: Turntable
* Type of functionality: Optional
* Line number(s): 5,8

* Description of functionality: If turntable option is selected, turntable rotates for duration of
cooking.

 Name: Beeper
* Type of functionality: Optional
 Line number(s): 8

» Description of functionality: If beeper option is selected, system activates the beeper when
cooking stops.

» Post-condition: Microwave oven ha¢8tkedidtartoodhistizgirecipe
Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

Outline of PLUS (Feature Modeling)

Feature

|, Dependency

Diagram

(D Use Case
. Use Cases Features
Proble.m Mo.de!lng a.nd —> with > @Feature R Feature/EJse N D® Flelilitl:'e
Domain NERIEUONELOINES Variation Modeling Case dependency cpendency
Analysis Points. ™. table Analysis
l Kernel
- - - Op#
@Static Modeling for every feature

Context class Diagram

®D

Archite
Pattern

Kernel

Commy
Diagraj

Revised Communication Diagram

Determine features to differentiate among members of the J
product line from Use Case Description.

The common, optional, and alternative features are
determined by commonality/variability analysis.
»The common features is identified by the kernel use case
» The optional and alternative are identified by the
optional use case and the variation points

ram

Variant Components

>

Evolutio

JAIST Koichirchettiurizu

Design

(PIM)

Feature Modeling

After the use case model, the next step 1s to address 1s the
feature model and to determine how the use case and use
case variation points correspond to features.

* The feature model 1s developed as a result of a
commonality/variability analysis in which the common,
optional, and alternative features are determined.

— The common features 1dentify the common functionality in the
product line , as specified by the kernel use case

— The optional and alternative features represent the variability 1n
the product line as specified by the optional use case and the
variation points

IST Kaichiro Och :
Hassan Gomaa, “Designing Software f)roductolﬁnlég with I I1Z\XL”, Addison-Wesley, 2005.

Feature Name Feature Use Case Use Case Variation

Category Name Category/ Point

Variation Name
Point (vp)
Microwave Oven Cook Food Kernel
common

Kernel
Light optional Cook Food VP Light
Turn Table optional Cook Food VP Turn Table
Beeper optional Cook Food VP Beeper
Minute Plus optional Cook Food VP Minute Plus
One-line Display default Cook Food VP Display Unit
Multi-line Display alternative Cook Food VP Display Unit

AIST K

: ichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct%]ﬁnlerg wfthnwﬁL”, Addison-Wesley, 2005.

Feature Name Feature Use Case Use Case Variation
Category Name Category/ Point
Variation Name
Point (vp)
English default Cook Food vp Display Language
French alternative Cook Food vp Display Language
Spanish alternative Cook Food vp Display Language
German alternative Cook Food vp Display Language
[talian alternative Cook Food vp Display Language
Boolean Weight default Cook Food vp Weight Sensor
Analog Weight alternative Cook Food vp Weight Sensor
.. JAIST Koichiro Ochimi ,
Hassan Gomaa, “Designing Software Product Lines with GML”, Addison-Wesley, 2005.

Feature Name Feature Use Case Use Case Variation

Category Name Category/ Point
Variation Name
Point (vp)

One-level Heating | default Cook Food vp Heating Element

Multi-level alternative Cook Food vp Heating Element

Heating

Power Level optional Cook Food vp Power Level

TOD Clock optional Set Time of Day optional

Display Time of optional
Day

12/24 Hour Clock parameterized Set Time of Day vp 12/24 Hour Clock

Display Time of
Day

Recipe optional Cook Food with optional
Recipe

JATS T Rofchiro-Ochimitzo
Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

Door

— Every microwave oven has a door. Cooking is permitted only when the door is closed.
Weight Sensor

— Every microwave oven has a weight sensor. Cooking is permitted only when there is an
item in the oven, as detected by the weight sensor

Keypad

— The basic keypad consists of a numeric keypad for entering the time, a Cooking Time
button, a Start button, and Stop/Cancel button.

Display
— Every microwave oven has a display to show the time remaining, as well as any prompts
or warning messages.
Heating element
— This 1s the power source for cooking food.
Timer

— A timer is needed to count down the cooking time remaining and to determine when
cooking must be stopped

<<common feature>>
Microwave Oven
Kernel

AIST Koaichiro Ochi

Hassan Gomaa, “Designing Software f’roduct ines with rﬁﬁL”, Addison-Wesley, 2005.

« <<optional feature>>Light

— If the light option is selected, the lamp is switched on for the duration of cooking
and when the door is open.

« <<optional feature>> Turntable

— If the turn table option is selected, the turn table rotates for the duration of cooking.

« <<optional feature>> Beeper

— If the beeper option is selected, the system activates the beeper when cooking stops.

« <<optional feature>> Minute Plus

— If the oven is already cooking food, pressing Minute Plus button adds one minute
to the cooking time

— If the oven is not cooking food and the cooking time is set to zero, the cooking
time is set to 60 seconds and cooking is started.

— If the door is open, a press of Minute Plus button is ignored.

— If the oven is not cooking food but the cooking time is greater than zero, a press of
the Minute Plus button is ignored.

<<optional feature>>
Light

<<optional feature>>
Turntable

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

AIST Koichiro Ochimj .
ines wfthnwﬁL”, Addison-Wesley, 2005.

Hassan Gomaa, “Designing Software i’roduct

Outline of PLUS (Feature Dependency)

Feature

|, Dependency

Diagram

(D Use Case
. Use Cases Features
Proble.m Mo.de!lng a.nd —> with @Feature _,Feature/ijse) D® Flelilitl:'e
Domain NEREUONELOINES Variation Modeling Case dependency | — peneency
Analysis Points.” . table Analysis
l Kernel Use Case |
@Static Modeling Optional Use Cases
; Variation Points for ey

Context class Diagram for kernel use case

®Dyna

ed Communication Diagram

Define relations, such as “requires”,
“mutually includes”, “use exclusively”,

line

im and
s 2IONG features to define The Feature |,
xeme iy [Jependency Diagram. on Dingram
Disgram | .
Optional Components l L Product Line @Component _, Components

Variant Components

—»| @Product Line [—* — Interface
Evolutio

« <<exactly-one-of feature group>> Display Unit
{default = One-line Display, alternative = Multi-line Display}
« << exactly-one-of feature group >> Display Language
{default = English, alternative = French, Spanish, German, Itakian}
« << exactly-one-of feature group >> Weight
{default = Boolean Weight, alternative = Analog Weight}
« << exactly-one-of feature group >> Heating Element

{default = One-level Heating, alternative = Multi-level Heating}

— The default heating element mode is one level: high. The alternative is multi-level,
with high, medium, and low power levels.

<< exactly-one-of feature group >>

Display Unit
| {mutually exclusive
feature}
<<default feature>> <<alternative feature>>
One-line Display Multi-line Display

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct ines wfthnwﬁL”, Addison-Wesley, 2005.

* Power Level

<<optional feature>> Power Level {mutually includes = Multi-level
Heating}

— With this optional feature, a Power Level button is provided on the keypad. The
power level can be set to high, medium, or low. One consideration is whether his
functionality should be part of Multi-level Heating feature. However, multi-level
heating can be provided for cooking with recipes, in which case it can be used
without a Power Level button. For this reason, Power Level and Multi-level
Heating are kept as separate but mutually inclusive features.

* Recipe
<<optional feature>> Recipe { prerequisite = Multi-line Display, mutually
includes = Analog Weight, Multi-level Heating }

— With this optional feature, a Recipe button is provided on the keypad. Food is
cooked as prescribed in the selected recipe. There is one prerequisite feature: Multi-
line Display. There are two mutually inclusive features: Analog Weight(which is
used only for cooking with recipes) and Multi-level Heating (as described above):

 TOD Clock

<<optional feature>> TOD Clock { prerequisite = Multi-line Display}

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct ines wfthnwﬁL”, Addison-Wesley, 2005.

<<exactly-one-of-feature group>>
Display Unit

Y

{mutually exclusive feature}

v

<<default feature>>
One-line Display

<<alternative feature>>
Multi-line Display

<<exactly-one-of-feature group>>
Heating Element

<

{mutually exclusive feature}

A
v

<<alternative feature>>
Multi-level Heating

<<default feature>>
One-level Heating

requires

J

mutually
includes

A
Not allowed to be Not allowed
Can be
selected selected to b
individually <<exaCﬂY'0n‘?'0f'feat“r e group>> individually seledted
Weight Sensor indiyidually
{mutually exclusive feature}
. mutually
<<default feature>>| <<alternative feature>> includ
Boolean Weight Analog Weigh Includes
Not leowed to be <<optional feature>>

selected individually Power Level

mutually
includes

u

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

 12/24 Hour Clock
<<parameterized feature>> 12/24 Hour Clock
{ type = Time, permitted value = 12:00, 24:00,
default value = 12:00, mutually includes = TOD Clock}

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software f’roduct ines chthlrﬂlﬁL”, Addison-Wesley, 2005.

Feature Dependency Diagram

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>

Spanish

<<alternative feature>3
German

>

<<alternative feature>3
Italian

<<optional feature>>

<

{mutually exclusive feature}

<<exactly-one-of-feature group>>

<<optional feature>>

Display Language
Minute Plus Turn Table
equires requires requires
<<0pt10n2?l feature>> . <<common feature>> . <<optional feature>>
Light requires | Microwave Oven Kernel | F€qulres Beeper
require requires

Display Unit

<<exactly-one-of-feature group>>

i

requires

<<exactly-one-of-feature group>>
Heating Element

{mutually exclusive feature}

<<exactly-one-of-feature group>>

Weight Sensor

<&

A

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

requires

<<optional feature>>
TOD Clock

mutually includes

<<parameterized feature>>
12/24 Hour Clock

<

{mutually exclusive feature}

<<default feature>>
One-level Heating

<

v

<<alternative feature>3
Multi-level Heating

{mutually exclusive feature}

<<default

Boolean Weight

A

feature>>

<<alternative feature>3
Analog Weigh

v

require |

mutually

includes

mutually
includes

mutually

Sk Hjatiiomiad feofunaizel

Recipe

includes

<<optional feature>>

Power Level

v

Kernel

<<default feature>>| <<alternative feature>>i
English French

<<alternative feature>>

Spanish

<<alternative feature>3

German

>

<<alternative feature>3
Italian

<

{mutually exclusive feature}

<<optional feature>>

<<exactly-one-of-feature group>>

<<optional feature>>

Display Language
Minute Plus Turn Table
equires requires requires
<<0pt10na}l feature>> . <<common feature>> ‘ <<optional feature>>
Light requires _| Microwave Oven Kernel |_ F€quIres Beeper
require requires

<<exactly-one-of-feature group>>
Display Unit

requires

<<exactly-one-of-feature group>>
Heating Element

<

| <<exactly-one-of-feature group>>

Weight Sensor

<&

{mutually exclusive feature}

A

<<default feature>>
One-line Display

<<alternative feature>>
Multi-line Display

<

{mutually exclusive feature}

<<default feature>>

One-level Heating

<

v

<<alternative feature>3
Multi-level Heating

v

mutually

requires {mutually exclusive feature}
<<optional feature>> <<default feature>>| £<alternative feature>>
TOD Clock Boolean Weight Analog Weigh
mutually includes)
mutually includes
<<parameterized feature>> ISF tstiichiad fetuine:
. mm’
12/24 Hour Clock require Recipe

includes

mutually
includes

<<optional feature>>

Power Level

v

Optional

<<default feature>>| <<alternative feature>> <<alternative feature>> <alternative feature>> <<alternative feature>>
English French Spanish German Italian

|
<> {mutually exclusive feature}

<<exactly-one-of-feature group>> .
. <<optional feature>>
<<optional feature>> Display Language P Turn Table
Minute Plus
equires requires requires
Light requires _| Microwave Oven Kernel | I'€qulres Beeper
require requires

<<exactly-one-of-feature group>> <<exactly-one-of-feature group>>

Display Unit Heating Element

O <

| <<exactly-one-of-feature group>> |

requires

Weight Sensor
. 35 {mutually exclusive feature}
{mutually exclusive feature}
£<alternative feature>> | <<default feature>> <<default feature>> | x<alternative feature>>
Multi-line Display One-line Display One-level Heating Multi-level Heating
L A
requires {mutually exclusive feature}
<<optional feature>> <<default feature>>| £<alternative feature>> mutually
TOD Clock Boolean Weight Analog Weigh includes
mutually includes) .
mutually includes mutually <<optional feature>>
<<parameterized feature>> IS hiatiiomiad foaira:] Power Level
. mﬂm:hl Mt
12/24 Hour Clock require Recipe includes

v

Feature Group

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>

Spanish

<<alternative feature>3
German

>

<<alternative feature>3
Italian

v

<<optional feature>>

<

{mutually exclusive feature}

<<exactly-one-of-feature group>>

<<optional feature>>

Display Language
Minute Plus Turn Table
equires requires requires
<<0pt10na}l feature>> . <<common feature>> ‘ <<optional feature>>
Light requires | Microwave Oven Kernel | F€qulres Beeper
require requires

Display Unit

<<exactly-one-of-feature group>>

i

requires

<<exactly-one-of-feature group>>
Heating Element

{mutually exclusive feature}

<<exactly-one-of-feature group>>

Weight Sensor

<&

A

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

requires

<<optional feature>>
TOD Clock

mutually includes

<<parameterized feature>>
12/24 Hour Clock

<

{mutually exclusive feature}

<<default feature>>
One-level Heating

<

v

<<alternative feature>3
Multi-level Heating

{mutually exclusive feature}

<<default

Boolean Weight

A

feature>>

<<alternative feature>>
Analog Weigh

v

require |

mutually

includes

mutually
includes

mutually

Sk Hjatiiomiad feofunaizel

Recipe

includes

<<optional feature>>

Power Level

Requires

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>

Spanish

<<alternative feature>3

German

>

<<alternative feature>3
Italian

<

{mutually exclusive feature}

<<optional feature>>

<<exactly-one-of-feature group>>

<<optional feature>>

Display Language
Minute Plus Turn Table
requires requires requires
<<0pt10ngl feature>> . <<common feature>> ‘ <<optional feature>>
Light requires | Microwave Oven Kernel | Féqulires Beeper
require requires

<<exactly-one-of-feature group>>

Display Unit

requires

<<exactly-one-of-feature group>>
Heating Element

<

| <<exactly-one-of-feature group>>

{mutually exclusive feature}

Weight Sensor

<&

<

{mutually exclusive feature}

A

Multi-line Display

<<alternative feature>>

One-line Display

<<default feature>>

<<default feature>>

One-level Heating

<

v

<<alternative feature>3
Multi-level Heating

requires

TOD Clock

<<optional feature>>

{mutually exclusive feature}

mutually includes

<<default feature>>
Boolean Weight

A

<<alternative feature>3
Analog Weigh

v

<<parameterized feature>>
12/24 Hour Clock

mutually

includes

mutually

Sk fatiicmiad feotureizel
Recipe

includes

mutually
includes

<<optional feature>>

Power Level

v

mutually includes

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>

Spanish

<<alternative feature>3
German

>

<<alternative feature>3
Italian

<<optional feature>>

<

{mutually exclusive feature}

<<exactly-one-of-feature group>>

<<optional feature>>

Display Language
Minute Plus Turn Table
equires requires requires
<<0pt10n2?l feature>> . <<common feature>> . <<optional feature>>
Light requires | Microwave Oven Kernel | F€qulres Beeper
require requires

Display Unit

<<exactly-one-of-feature group>>

i

requires

<<exactly-one-of-feature group>>
Heating Element

{mutually exclusive feature}

<<exactly-one-of-feature group>>

Weight Sensor

<&

A

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

requires

<<optional feature>>
TOD Clock

mutually includes

<<parameterized feature>>
12/24 Hour Clock

<

{mutually exclusive feature}

<<default feature>>
One-level Heating

<

v

<<alternative feature>3
Multi-level Heating

{mutually exclusive feature}

<<default

Boolean Weight

A

feature>>

<<alternative feature>3
Analog Weigh

v

require |

mutually

includes

mutually
includes

mutually

Sk Hjatiiomiad feofunaizel

Recipe

includes

<<optional feature>>

Power Level

v

Outline of PLUS (Finding problem domain objects)

Feature

—>

@ Feature
Dependency
Analysis

., Dependency

Diagram

M® Uls-e Case Use Cases Features,
Problem odeling and | ;4 _,| OFeature | _ Feature/Use
Domain Variation P.omts Variation Modeling Case dependency
l Analysis Points. table
Kernel Use Case
@Static Modeling Optional Use Cases
' Variation Points for every feature

Context class Diagram er

v

®Dynamic Modeling[> Stat

Component

Structuring
Architectural Criteria
Patterns

Define “Software Product Line
Context Model” that defines J
the boundary between product
line system and the external

Kernel Classes

_,| ®Component

environment

jagram

Communication Structuring gram
Diagram
]
Optional Components l L Product Line @Component ., Components
—»| @Product Line [—> > Interface
Variant Components Evolutiod™S[Koichirch@ettinrizu Design (PIM)

* The product line context class diagram defines the boundary between a product line
system (i.e. any member of the product line) and the external environment(i.e. the
external classes to which members of the product line have to interface)

<<kernel>>
<<external input device>>
DoorSensor

<<kernel>>
<<external input device>>
WeightSensor

<<kernel>>
<<external input device>>
Keypad

<<product line system>> |

MicrowaveOven
ProductLineSystem

1 Output

s tov
1

<<kernel>>
<<external timer>>

Clock

<<kernel>>
<<external output device>>
HeatingElement

AIST Koaichiro Ochi

<<optional>>
<<external output device>>
Beeper

<<kernel>>
<<external output device>>
DisplayUnit

<<optional>>
<<external output device>>
Turntable

<<optional>>
<<external output device>>
Lamp

Hassan Gomaa, “Designing Software i’roduct ines with rﬁﬁL”, Addison-Wesley, 2005.

Outline of PLUS (Finding problem domain objects)

(D Use Case Feature
Modeli d Use Cases Features, ®) Feature
Problem 0. e-lng a.n . » with N @Feature |, Feature/Use S p d ., Dependency
Domain Variation Points Variation Modeling Caco denenden o ependency
Analysis sl T o . . am
l Points.~ ~. Write a “Communication
Kernel Use Case
. o ,, [
@static Modeling Optional Use Cas Diagram” that implements the
iati int
v SR 2 Kernel use case to find problem
Context class Diagram for kernel use case d om ain Ob j ects. ram
l Communication Diagram_|
®Dynamic Modeling hine Diagram .
Define a “State Machine
Component Diagram” to a state dependent
Structuring Com . .
Architectural Criteria Patterns COIltI‘Ol ObJ ECt 1mn the
Patterns
Component 1 1 i .
Kernel Classes | @Component |, o communication diagram
Communication Structuring Architecture pm
Diagram (Kernel) Desigh |
. l L : @Component
Optional Components Product Line S Interface __, Components
—»| @QWProduct Line [—*> . e
Variant Components Evolution™ S Koichirch@ettinrizu Design (PIM)

e Develop a dynamic model of the product line after the
external classes have been determined in the system
context model.

* The kernel of the product line 1s analyzed first with
the forward evolutionary engineering strategy.

— Initially the kernel classes are determined by consideration
of the kernel use cases and the interaction among those
objects on communication diagrams and state machines.

— After that, the optional and variant classes are determined
by consideration of variation points (as determined from
the use case and feature models) and the optional use cases.

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software f’roduct ines wfth"ﬁlﬁL”, Addison-Wesley, 2005.

<<external input device>> <<external input device>> <<external input device>>

K<external input device>>

DoorSensor WeightSensor Keypad Clock
1 1 1 1
<<product line system>>
MicrowaveOvenSystem | 1 1 1
<<input device interface>> | <<input device interface>3<< input device interface>» <<timer>>
DoorSensorInterface WeightSensorInterface KeypadInterface OvenTimer
K<state dependent control>> <<entity>> <<entity>>
MicrowaveOvenControl DisplayPrompts OvenData

<< output device interface>>

<<output device interface>>

HeatingElementInterface DisplayInterface
1 1
1 1

Hassan Gomaa, “Designing Software Product

<<external output device>>

Lines with UML”, Addison-Wesley, 2008IST Kojchiro @riaititigElement

<<external output device>>

Display

<<external input device>>

<<external input device>>

K<external input device>>

<<external input device>>

: DoorSensor : BooleanWeightSensor : Keypad : Clock
1,9: Door Opened Input 2. 10: Weight 4: Cooking Time Key Input 7*,8: Timer
3: Door Closed Input nput 5%: Numeric Key Input Event
<<product line system>> 6:Start Key Input \1'
: MicrowaveOvenSystem
<<input device interface> << input device interface>}
<<input device interface>> : BooleanWeighSensor : KeypadInterface <<timer>>
: DoorSensorlInterface Inteface .) : OvenTimer
L 1,.9:1 Door 2.1: Ttem Placed g'e]légggkfng Tfme 7.1, 8.1: 7.2: Time left
pened \ \1: . [E'Illfe(lg&f king Time {502 ément 8.2:Finished
. C 10.1: Item removed
3.1: Door Closed 6.1: Start Cooking Time
r<state dependent control>> —> <<entity>>

: MicrowaveOvenControl

4

6.2: Start Cooking
8.4::Stop Cooking

N\

<< output device interface>>
: One-levelHeatingElementInterface

5.2a:Update Cooking Time

4.2:Prompt for Time
.2:Display Cooking Time

: OvenData

—

6.2a: Start Timer

<<output device interface>>
: One-lineDisplayInterface

8.3:

Timer Expired

€

¢ 6.3: Start Cooking Output
8.5: Stop Cooking Output

4.5:Time Prompt
5.3, 7.4: Display Tj
8.3a.3: End Prompt

4.3, 8.3a.1: Read
—
4.4, 8.3a.2: Prompt

in‘as p Pag,date Cooking Time
8.3a: Display End Prompt

<<entity>>
: EnglishDisplayPrompts

<<external output device>> Jﬁéﬁ*%ﬂ.?&‘@&ﬁ ﬁlﬁ&&iﬁe>>

: One-level HeatingElement

: One-lineDisplay

1. Door Opened Input. The user opens the door. The external Door
Sensor object sends this input to the Door Sensor Interface object.

1.1 Door Opened. Door Sensor Interface sends the Door Opened
message to the Microwave Oven Control object , which changes
state.

2. Weight Input. The user places an item to be cooked into the oven.
The external Boolean Weight Sensor object sends this input to the
Boolean Weight Sensor Interface object.

2.1 Item Placed. Boolean Weight Sensor Interface sends the Item
Placed message to the Microwave Oven Control object, which
changes state.

3. Door Closed Input. The user closes the door. The external Door
Sensor object sends this input to the Door Sensor Interface object.

3.1 Door Closed. Door Sensor Interface sends the Door Closed
message to the Microwave Oven Control object, which changes

state.
JAIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software roduct Lines with UML”, Addison-Wesley, 2005.

The Sequence of messages
for the kernel communication diagram(2/7)

4. Cooking Time Key Input. The user presses the Cooking
Time button on the keypad. The external Keypad object
sends this input to the Keypad Interface object.

4.1 Cooking Time Selected. Keypad Interface sends the
Cooking Time Selected message to the Microwave Oven
Control object, which changes state.

4.2 Prompt for Time. As a result of changing state,
Microwave Oven Control object sends Prompt for Time
message to the One-line Display Interface object.

4.3 Read. The message arriving at One-line Display Interface
contains a prompt ID, so One-line Display Interface sends
a Read message to English Display Prompts to get the
corresponding prompt message.

4.4 Prompt. English Display Prompts returns the text for the
Time Prompt message.

4.5 Time Prompt. One-line Display Interface sends the Time

Prompt output to the external One-line Display object.
JAIST Koichiro Ochimizu

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

The Sequence of messages
for the kernel communication diagram(3/7)

5* Numeric Key Input. The user enters the numeric value of the
time on the keypad, pushing one or more keys. Keypad sends
the value of the numeric key(s) input to Keypad Interface.

5.1 Cooking Time Entered. Keypad Interface sends the internal
value of each numeric key to Microwave Oven Control.

5.2 Display Cooking Time. Microwave Oven Control sends the
value of each numeric key to One-line Display Interface, to
ensure that these values are sent only in the appropriate state.

5.2a Update Cooking Time. Microwave Oven Control
concurrently sends the numeric value of each numeric key to
Oven Data to Update the cooking time.

5.3 Display Time. One-line Display Interface shifts the previous
digit to the left and adds the new digit. It then sends the new
value of cooking time to the external One-line Display object.

Hassan Gomaa, “Designing Softw#iSPiddietirbi@enimitu UML”, Addison-Wesley, 2005.

The Sequence of messages
for the kernel communication diagram(4/7)

6. Start Key Input. The user presses the Start button. The
external Keypad object sends his input to the Keypad
Interface object.

6.1 Start. Keypad Interface sends the Start message to
Microwave Oven Control, which changes state.

6.2 Start Cooking. As a result of changing state, Microwave
Oven Control sends the Start Cooking message to the One-
level Heating Element Interface object.

6.2a Start Timer. Microwave Oven Control concurrently
notifies the Oven Timer to start the oven timer.

6.3 Start Cooking Output. One-level Heating Element
Interface sends this output to One-level Heating Element to
start cooking the food.

.. JAIST Kaichiro Ochimj)
Hassan Gomaa, “Designing Software Product Elnes with UML”, Addison-Wesley, 2005.

7* Timer Event. The external Clock object sends a timer
event every second to Oven timer.

7.1 Decrement Cooking Time. As Oven Timer 1s counting, I
sends this message to the Oven Data object, which
maintains the cooking time.

7.2 Time Left. After decrementing the cooking time, which 1s
assumed to be greater than zero at this step of the scenario,
Oven Data sends the Time Left message to Oven Timer.

7.3 Update Cooking Time Display. Oven Timer sends the
cooking time left to One-line Display Interface.

7.4 Display Time. One-line Display Interface outputs the
new cooking time value to the external One-line Display
object.

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software roduct Lines with UML”, Addison-Wesley, 2005.

8 Timer Event. The external Clock object sends a timer event every second to Oven Timer

8.1 Decrement Cooking Time. As Oven Timer is counting, it sends this message to the
Oven Data object, which maintains the cooking time.

8.2 Finished. After decrementing the cooking time, which is assumed to be equal to zero at
this step of the scenario, Oven Data sends the Finished message to Oven Timer.

8.3 Timer Expired. Oven Timer sends the Timer Expired message to Microwave Oven
Control, which changes state.

8.3a Display End Prompt. Oven Timer concurrently sends the Display End Prompt
message to One-line Display Interface.

8.3a.1 Read. The message arriving at One-line Display Interface contains a prompt ID, so
One-line Display Interface sends a Read message to English Display Prompts to get the
corresponding prompt message.

8.3a.2 Prompt. English Display Prompts returns the text for the End Prompt message,

8.3a.3 End Prompt. One-line Display Interface outputs the End Prompt message to the
external One-line Display object.

8.4 Stop Cooking. As a result of changing state(in step 8.3), Microwave Oven Control
sends the Stop Cooking message to One-level Heating Element Interface object.

8.5 Stop Cooking Output. One-level Heating Element Interface sends this output to the
One-level Heating Element object to stop cooking the food.

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software ErodluctI ines with UML”, Addison-Wesley, 2005.

9 Door Opened Input. The user opens the door. The
external Door Sensor object sends this input to the Door
Sensor Interface object.

9.1 Door Opened. Door Sensor Interface sends the Door
Opened message to the Microwave Oven Control object,
which changes state.

10 Weight Input. The user removes the cooked item from the
oven. The external Boolean Weight Sensor object sends
this input to the Boolean Weight Sensor Interface object.

10.1 Item Removed. Boolean Weight Sensor Interface sends
the Item Removed message to the Microwave Oven
Control object, which changes state.

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software roduct Lines with UML”, Addison-Wesley, 2005.

N 1.1: Door Opened (
Door Shut Door Open }
J Door Closed >
2.1: Item Placed 10.1: Item Removed
Door Open
with Item

/ \ 3.1: Door Closed

Co oking [Zero Time] 9.1:Door Opened
entry/6.2: Start Cooking 8.3: Timer Expired (Door Shut
exit/8.4: Stop Cooking L Waiting for User
. . 4.1: Cooking Time Selected
k 5.1: Cooking Time Entere

/ 4.2: Prompt for Time

/ 5.2: Display Cooking Time

\
6.1: Start
Ready to w 5.2a: Update Cooking Time (Door Shut
/ 6.2a: Start Timer Yy Waiting .
Cook : .
Cooking Time

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software ElrodluctI ines with UML”, Addison-Wesley, 2005.

Cooking w

Time
Idle

6.2a: Start Timer

7, 8: Timer Event/

7.1, 8.1: Decrement
~ Cooking Time

Cooking

)

(
L Food

) 7.2: Time Left/

7.3: Update Cooking
Time Display

Updating
Cooking
Time

~

/

8.2: Finished /

8.3: Timer Expired
8.3a: Display End
Prompt

AISEr}éoichir Ochimj

. J :
Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

/ Microwave Oven Control

(Microwave
Oven

Sequencing
Superstate

%{ Zero Time }

Cancel Timer/

5.2a: Update Cooking Time

Clear Display, 8.3: Timer
Clear Cooking Time Expired
[Time Remaining]

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software ErodluctI ines with UML”, Addison-Wesley, 2005.

1.1: Door Opened

<
Door Shut Door Closed Door Open }
\
J
2.1: Item Placed 10.1: Item Removed
N
Door Open
Cancel / Cancel Timer . P
with Item
_~/ Door Opened
Door Opened/ Stop Timer 3.1: Door Closed

-

Cooking

~

8.3: Timer Expired

[ZeroTime]

entry/6.2: Start Cooking
exit/8.4: Stop Cooking

N

/

Cooking Time Entered/ Disgﬁg?%&i&%rgiwgh%

6.1: Start
/ 6.2a: Start Timer

5.1: Cooking Time Entered

Cancel /' /5.2: Display Cooking Time , Cancel /
Stop Timer 52a: Update Cooking Time Cancel Timer

date Cooking Time
Zu

9.1: Door Opened

~

Ready to Clock
i | ~ Door Closed

[Time Remaining]

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

Door Open
with Item

3.1: Door Closed[Zero Time] 9.1: Door Opened

[Cooking }

8.3: Timer
Expired

Cancel/ Cancel Timer 5.1: Cooking Time Entered

Hassan Gomaa, “Designing Software /5.2: Display Cooking Time,
Product Lines with UML”, J AQST R&@ﬂ% @CG,Q,% } 5.2a: Update Cooking Time
Addison-Wesley, 2005.

Stop Timer 7, 8: Timer Event/
/ \ 7.1, 8.1: Decrement
Cooking Time

~
Cookin 6.2a: Start Timer]
Time g Cooking
Idl Food
€) 7.2: Time Left/
7.3: Update Cooking
Time Display

Updating
Cooking
Time

~

/

8.2: Finished/
8.3: Timer Expired
8.3a: Display End Prompt

Koichiro Ochimj

JAIS
Hassan Gomaa, “Designing Software Eroduct ines with UML”, Addison-Wesley, 2005.

(D Use Case Feature
Modeli d Use Cases Features, @ Feature
Pl‘ObleIIl_> 0. e.lng a.n —» with N @Feature _’Feature/Use — Dependency —> Dependency
Domain Variation Points Variation Modeling Case dependency pendency .
Analysis Points. ™ table Analysis Diagram
l Kernel Use Case
@Static Modeling Optional Use Cases
Variation Points for every feature

v

Context class Diagram

v

®Dynamic Modeling

Architectural

Patterns

Kernel Classes

Communication

Diagram

Optional C

Component

for kernel use case

Communication Diagram__,

—* State Machine Diagram

Axohitantywal

y

@®Impact Analysis —> Revised State Machine

Revised Communication Diagram

Diagram
Mgram and

Revise both the Communication Diagram
— and State Machine Diagram by adding the
feature one by one.

Class
1cy Table

lication Diagram

Components

—

Variant Components

WPToduct Line
Evolutio

JAIST Koichirch@ettimmizu

XIEUUCI IAAL VL

Design

(PIM)

The beeper is Switched on when cooking has finished

Impact 1: The need for the Beeper external output device and the Beeper Interface
output device interface object.

Impact 2: The Microwave Oven Control object is the state-dependent control object that
sends the Beep command to Beeper Interface when cooking is stopped. The impact on
the Microwave Oven Control state machine is that it needs to have an optional Beep
action, which is also guarded by the [beeper] feature condition

<<optional feature>> Beeper
optional object: Beeper Interface
affected object: Microwave Oven Control

<<state dependent control>>
8.4a[beeper]: Beep / : MicrowaveOvenControl

<<output device interface>>
8.4a.1: Beep Olltp/llf/ : BeeperInterface

<<external output device>>
: Beeper

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software ErodluctI ines with UML”, Addison-Wesley, 2005.

Cancel/ Cancel Timer

1.1: Door Opened/1.2: Switch on|[light]

N

Item Removed/Cancel Recipe,

w Display Recipe Canceled

Door Open

Door Closed/Switch off[light]|

Door Opened /
/ Cooking \ Stop Timer 3.1: Door
entry/ 8.3: Timer Expired/ 8.4d: Clear

2.1: Item Placed

Closed|[Zero Time] /
3.2: Switch off[light]

-

~

10.1: Item Removed

Door Open

with Item

9.1: Door Opened/ 9.2: Switch On|[light]

R4.1: Recipe Entered|recipe]/
R4.2:Select Recipe, R4.2a:

Door Opened /
Switch On|light]

4M.2a, 6.2:Start Cooking
6.2c:Start Turning|turntabld

e

9

Power level[power|, 8.4b: Switch
off [light]

6..2b:Switch On|light]

exit/
8.4: Stop Cooking,
8.4a: Beep|beeper],

A\/4

8.4c:Stop Turning|turntablg

4M.1:Minute Plus|minuteplus] /
4M.2: Start Time

Cancel/ Cancel
Recipe, Display

—_

6.11:Minute Plus
[minuteplus]

/6.12: Add
Minute

6.1: Start/ 6.2a:

Feature dependent
parts are identified by
[Guard Condition]

Cooking Time Entered/ Recipe Cancel
] Cancel/ Stop Timer. Display Cooking,5.2p:
Switch Off[light] ate Cooking Time R8.3: Time Expired

/R8.4b:Clear Recipe, Switch
Off][light]

Q[Ready to Cook

~N

Cancel/Cancel Timer

J/

A

JATST Koichiro Ochi

Cooking Time Entered/ Dlsplay Cooking Time,
Update Cooking Time

Door Closed[Time
Remaining]/Switch Off[light]

<<external input device>>

<<external input device>>

K<external input device>>

<<external input device>>

: Door Sensor :Analog Weight Sensor :Keypad :Clock

1, 9: Door Opened Input . . R4: Recipe Input R6*, R7, R8:

3: Door Closed Input l’ l’ 2, 10: Weight Input ‘1’R5: Start Key Input l, Timer Event
<<product line system>>

i . .. <<entity>> .
MicrowaveOvenSystem ¥<input device interface>> Reci Z’S <<timer>>

. .. :AnalogWeightInterface |[. .. 1— :OvenTimer
<<input device interface>> £< input device interface>> R4.4, R7.5:
:DoorSensorInterface :KeypadlInterface Recipe R7.2: End df
[analogweight]: Weigm ¢R4.1:Recipe Entered ﬂ Ge ¢ Rec1 e R6.2, R7.6:
. R5.1: Start P .
1.1, 9.1: Door Opene . Time Left
3.1:Door Closed \ 2.1: Item Placed R6.1, R7.1, R8.1: R8.2:End o
10.1:Item Removed Decrement Cooking b Recipe
R4.2: Select Recipe 7.3: Update Recipe
—_a .
K<state dependent control>> : <<entity>>
. R8.4.b: Clear Recipe
. :MicrowaveOvenControl :OvenData
RS5.2: Start Recipe ower
. . & —_— R5.2a: Start Recipe Timer

R7.8: Adjust Rec
R 4.5t J“C - 'P RS3. R7.9[multilevelHeater]: < :

4:5t0 00KIn et Power . . R7.7: Next Step R8.3: Time Expired

P ~ R4.2a: Display Recipe extotep fme Expire
<«

<< output device interface>>
:Multi-levelHeatingElementInterface

<<output device interface>>
:Multi-lineDisplayInterface

RS.5: Start Cooking Output
¢R7.11: Adjust Cooking Output
R8.5:Stop Cooking Output

R4.2a.3:Recipe Output

Blsplgfazl%bllit
R8.3a.3: End Prompt

{

4.2a.1, R8.3a.1: Read

&
R4.2a.2, R8.3a.2: Prompt

Bﬁ.3 R7.7a :Update Cooking Time
isplay
R8.3a:Display End Prompt

<<entity>>
:EnglishDisplayPrompts

<<external output device>>
:Multi-level HeatingElement

Jﬁéﬁ*%&@lu?&‘@&ﬁﬁ‘??ﬁe»

Multi-lineDisplay

Outline of PLUS (Feature/Class Dependency Analysis)

Pr|
Da

Define classes that have “Reuse Categorization”
as a stereotype. Analyze the relationship

| between classes and features to define the table
that represents Feature/Class Dependencies

Cq
v ¥ Communication Diagram__, ®Impact / ¢ Machine
®Dynamic Modeling[> State Machine Diagram iagram
v
Component Architectural (@ Class Definition Class Diagram and
Structuring Communication | (Reuse Categorization) Feature/Class
Architectural Criteria Patterns
Patterns Dependency Table
Component
Kernel Classes | ®Component | , based © Message o
Communication Structuring Architecture] Interface — Concurrent Communication Diagram
Diagram (Kernel) Design ‘
Optional Components l L Product Line @Component ., Components
—»| @Product Line [—> > Interface
Variant Components Evolution™ S Koichirch@ettinrizu Design (PIM)

The Impact analyses identifies both the optional objects
and the affected objects.

Optional objects are new objects that were not used 1n the
kernel communication diagrams but are needed to support
an optional or alternative feature.

Affected objects are objects that must behave differently to
support an optional or alternative feature.

For the affected objects, an important decision is whether
to handle the change by using inheritance or by
parameterization.

Each of the classes is considered from a product line reuse
perspective.

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software roduct Lines with UML”, Addison-Wesley, 2005.

« Main class reuse category

<<kernel>> A class provided by every member of the
product line and used without change by every member.

<<optional>> A class provided by some members of the
product line but not all. When used, it is used without
change.

<<variant>> One of a set of similar classes, which have
some 1dentical properties but others that are different.
Different variant classes are used by different members of
the product line.

<<default>> The default class among a set of variant
classes, which 1s provided by some members of the product
line.

JAIST Koichiro Ochimj

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

« Parameterized class reuse category

— <<kernel-param-vp>> Kernel. The values of the
configuration parameters need to be set by the individual
product line member. Example: Microwave Oven Control

— <<optional-param-vp>> Optional. The values of the
configuration parameters need to be set by the individual
product line member. Example: TOD Timer

— <<variant-param-vp>> Variant. The values of the
configuration parameters need to be set by the individual
product line member.

— <<default-param-vp>> Default. The values of the
configuration parameters need to be set by the individual

product line member.
JAIST Koichiro Ochimizu

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

 abstract class reuse category

— <<kernel-abstract-vp>> An abstract class provided by every
member of the product line.

— <<optional-abstract-vp>> An abstract class provided by
some members of the product line but not all.
* concrete class reuse category
— <<kernel-vp>> Concrete sub class of kernel-abstract-vp
— <<optional-vp>> Concrete sub class of optional-abstract-vp

— <<variant-vp>> One of a set of concrete variant classes.

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software roduct Lines with UML”, Addison-Wesley, 2005.

Feature Feature Class Class Class
Name Category Name Category Parameter
Microwave common Door Sensor kernel
Oven Kernel Interface
Weight Sensor kernel-abstract-vp
Interface
Keypad Interface kernel-param-vp

Heating Element
Interface

kernel-abstract-vp

Display Interface

kernel-abstract-vp

Microwave Oven

kernel-param-vp

Control

Oven Timer kernel-param-vp

Oven Data kernel-param-vp
JAI PisKlaic Riran@®chim|zkernel-abstract-vp

Feature Feature Class Class Class
Name Category Name Category Parameter
Light optional Lamp Interface optional
Microwave Oven Control kernel-param-vp light:Boolean
Turntable optional Turntable Interface optional
kernel-param-vp turntable:Boolean
Beeper optional Beeper Interface optional
Microwave Oven Control kernel-param-vp beeper:Boolean
Minute Plus | optional Keypad Interface kernel-param-vp minuteplus:Boolean
Microwave Oven Control kernel-param-vp minuteplus:Boolean
Oven Timer kernel-param-vp minuteplus:Boolean
Oven DathAIST Koichiro Ochjrkizuel-param-vp minuteplus:Boolean

Feature Feature Class Class Class
Name Category Name Category Parameter
One-line Display | default One-line Display default
Interface
Multi-line Display alternative Multi-line Display variant
Interface
English default English Display default
Prompts
French alternative French Display variant
Prompt
Spanish alternative Spanish Display variant
Prompts
German alternative German Display variant
Prompts
Italian alternative Italian Display variant
Prompts

JAIST Koichiro Ochimizu

Feature Feature Class Class Class
Name Category Name Category Parameter
Boolean Weight default Boolean Weight default
Sensor Interface
Analog Weight alternative Analog Weight variant
Sensor
Oven Data kernel-param-vp itemWeight:Real
One-level Heating | default One-level Heating default
Element Interface
Multi-level alternative Multi-level Heating variant
Heating Element Interface
Microwave Oven | kernel-param-vp Multi-levelHeater:
Control Boolean
Oven Data kernel-param-vp selectedPowerLev
el: Integer
Power Level optional Keypad Interface kernel-param-vp power: Boolean
JAIRTiKeighieoddehim|ziemel-param-vp power: Boolean

Control

Feature Feature Class Class Class
Name Category Name Category Parameter
TOD Clock optional TOD Timer optional
Keypad Interface kernel-param-vp TODClock:
Boolean
Microwave Oven kernel-param-vp TODClock:
Control Boolean
Oven Data kernel-param-vp TODvalue: Real
12/24 Hour parameterized Oven Data kernel-param-vp TODmaxHour:
Clock Integer

JAIST Koichiro Ochimizu

Feature Feature Class Class Class
Name Category Name Category Parameter
Recipe optional Recipes optional
Recipe optional
Keypad Interface | kernel-param-vp recipe: Boolean

Microwave Oven
Control

kernel-param-vp

recipe: Boolean

Oven Data kernel-param-vp selectedRecipe:
Integer
Oven Timer kernel-param-vp recipe: Boolean

JAIST Koichiro Ochimizu

Outline of PLUS (Component Structuring)

(D Use Case Feature
Modeli d Use Cases Features, ®) Feature
Proble.m 0. e-lng a.n . » with N @Feature |, Feature/Use | Dependency —> Dependency
Domain Variation Points Variation Modeling Case dependency pendency .
. . ' ram
| |Define components
Wsuic| hy grouping the objects in the communication
v
Context class dlagram \gram
: by applying the component structuring criteria
®Dynami > “‘"“"““b| . Dragrant
v
Comp< itectural @Class Definition Class Diagram and
Struct Communication | (Reuse Categorization) Feature/Class
Architectural Criter Patterns
Patterns Dependency Table
Component
Kernel Classes | @®Component | , based © Message o
Communication Structuring Architecture] Interface — Concurrent Communication Diagram
Diagram (Kernel) Design ‘
Optional Components l L Product Line @Component ., Components
—»| @Product Line [—> > Interface
Variant Components Evolution™ S Koichirch@ettinrizu Design (PIM)

The Microwave Oven software product line 1s designed as a component-based
software architecture based on the Centralized Control pattern(One control
component provides the overall control of the system, receiving messages from
other components).

The product line 1s designed as a distributed component-based software
architecture.

The component architecture is developed gradually

— Starting with the design of the kernel system, which contains the kernel and default
components

— Next, the message communication between components is designed.
— With the evolutionary design approach, this process is repeated for the full product line, at
which point the optional and variant components are added.
On the basis of the design of the overall product line component and
communication architecture, the component ports and connectors are designed
with the goal of maximizing component reuse in the different product line
member configurations.

Finally, the provide and required interfaces of each component are described.

. JAIST Koichirp Ochimj ,
Hassan Gomaa, “Designing Software roduct Lines with UML”, Addison-Wesley, 2005.

<<product line system>>
Microwave Oven System

<<kernel>> <<variant>> <<kernel-param-vp>>
<<input component>> <<input component>> << input component>>
DoorComponent WeightComponent KeypadComponent

<<kernel>> <<control component>>

MicrowaveControl
<<kernel-param-vp>> <<kernel-param-vp>>|| |<<kernel-param-vp>>
¥<state dependent control>> <<entity>> <<timer>>
MicrowaveOvenControl OvenData OvenTimer

<<variant>> <<output component>>
MicrowaveDisplay
<<variant>>
<< output component>> <<variant>> <<variant>>
HeatingElementComponent <<output device interface>> <<entity>>
DisplayInterface DisplayPrompts

JAIST Koichiro Ochimizu

(D Use Case Feature
Modeli d Use Cases Features, @ Feature
Proble.m_> odeling and | _ . N @Feature |, Feature/Use _,| d |, Dependency
Domain Variation Points Variation Modeling Case dependency | — penaency .
Analysis Points.” ™ table Analysis Diagram
l Kernel Use Case
@Static Modelin Optional Use Cases

. 8 Variation Points for every feature

Context class Diagram for kel munication Dia
gram
| Define Message Interface
Comi te Machine

®Dynamic Modeling| > State

between components

Component Architectural |—> @Cla Class Diagram and
Structuring Communication (Reuse Zation) —> Feature/Class
Architectural Criteria Patterns
Patterns V Dependency Table
Component
Kernel Classes | @Component |, based © Message o
Communication Structuring Architecture | Interface — Concurrent Communication Diagram
Diagram (Kernel) Design ‘
Optional Components l L Product Line @Component _, Components
—»| @Product Line > . ™ Interface
Variant Components Evolution™ S Koichirch@ettinrizu Design (PIM)

<<kernel>> <<kernel>> <<variant>> <<kernel>>
<<external timer>> r<external input device>> r<external input device>> g<external input device>>
:Clock :DoorSensor :WeightSensor :Keypad

\

<<product line syst¢m>>

l DoorInput

‘1’ WeightInput

\
\»(eypadlnput

MicrowaveOvenSystem

<<kernel>> <<variant>> <<kernel-param-vp>>
<<input component>> <<input component>> << input component>>
Timer Event :DoorComponent :WeightComponent :KeypadComponent
sendControlReque
l, st (doorEvent)
<<kernel>> / sendControlReque
<<control component>> st (keypadEvent)
:MicrowaveControl
\ displayPrompt(promptl
startCooking(level) l, D) displayTime(time)
stopCooking <<variant>> <<variant>>

<< output device interface>>

<<output component>>

:HeatingElementComponent :MicrowaveDisplay
I Display Output
L 4 Heating Element Output v
<<variant>> <<variant>>
<<externallAplitducieies=Ochimizu <<external output device>>
:Heating Element :Display

Outline of PLUS (Product Line Architecture)

Feat
M® dUls'e Case d Use Cases Features, ®) Feature catire
Problem 0. e-lng a.n . » with N @Feature |, Feature/Use S p d ., Dependency
Domain Variation Points Variation Modeling Case dependency ependency .
Analysis Points.” " table Analysis Diagram
l Kernel Use Case
@Static Modelin Optional Use Cases
. 5 Variation Points for every feature
. (44 o s 29
context chass Ding [)efine “Product Line Architecture”, jigam

'

®Dynamic Mod

adding optional components and
variant components.

i

Architectural
Patterns v \ p
Kernel Classes | ®Component © Message o .
Communication Structuring Interface — Concurrent Communication Diagram
Diagram Design ‘

Optional Components L Product Line @Component ., Components

—»| @Product Line [—*> o —> Interface
Variant Components Evolution™ S| Koichirch@ettiarizu Design (PIM)

<<kernel>> <<kernel>> <<variant>> <<kernel>>
<<external timer>> r<external input device>> r<external input device>> g<external input device>>
:Clock :DoorSensor :WeightSensor :Keypad

Timer Event

v\

¢ Door Input

¢ Weigh Input

\ N Keypad Input
1

;<pr0duct <<kernel>> <<variant>> <<kernel-param-vp>>
e <<input component>> <<input component>> << input component>>
I\?Stem>>0 :DoorComponen :WeightComponent :Keypad Component
1Icrowavevven
System sendControlReque sendControl
st (doorEvent) / st (wei vent)
<<kernel>> / sendControlReque
<<control component>> st (keypadEvent)
:MicrowaveControl
startCooklng(l"fy’ l, switchOn() l, startTurning \ \ displayPrompt(promptl
i . . bee D) displayTime(time
stopCooking switchOff() stopTurning() PO) display ()
<<variant>> <<optional>> <<optional>> <<optional>> <<variant>>
<< output << output << output << output <<output component>>
component>> component>> component>> component>> :MicrowaveDisplay
:HeatingElement :Lamp :Turntable :Beeper
Component Component
ICoponent Component p p 1 Display Output
] l
Hez}tihg Element Output | ¥ Lamp Output l Turntable Outpu 7 Beeper Output
<<variant>> <<optional>> <<optional>> <<optional>> <<variant>>
<<external <<external JASE I‘Eﬂiro Och mizu<<external <<external output device>>
output device>> output device>> output device>> output device>> :Display
|_:HeatingElement | [:Tamp | :Turntable . :Beeper |

(D Use Case Feature
Modeli d Use Cases Features, ®) Feature
Proble.m_> odeling and | _ . N @Feature |, Feature/Use | o o | o Dependency
Domain Variation Points Variation Modeling Case dependency pendency)
Analysis Points.~ " table Analysis Diagram
l Kernel Use Case
; : Optional Use Cases
@Stitlc Modeling Vzll)riation Points for every feature
Context class Diagram for kernel use case i Revised Communication Diagram
l Communication Diagram__, ®Impact Analysis —> Revised State Machine
®Dynamic Modeling[> State Machine Diagram Diagram
v
~ . ol | P
waewr | D€TINE ports of each component
Patterns
Kernel Classes .Componen © Message o .
Communication Structurmg Inter.face — Concurrent Communication Diagram
Diagram Design ‘
Optional Components \ L Product Line @Component |, Components
—»| @Product Line —> o —| Interface
Variant Components Evolution™ S| Koichirch@ettiarizu Design (PIM)

Microwave oven software product line architecture

<<product line system>>

Microwave Oven System

<<kernel>> <<variant>> <<kernel-param-vp>>
<<input component>> <<input component>> <<input component>>
DoorC0_|mp0nent WeightCl_(l)mponent Keypad'gl)mponent

RMWControl RMWControl

PMWContro

L1
<<kernel>>
<<control component>>
MicrowaveControl
]] []
RHeat RLamp \RTurntab
PHeater PLamp PTurntable
I._I .I_I .I_I .I_I L
<<variant>> <<optional>> <<optional>> <<optional>> i
<<variant>>
<<output <<output <<output <<output
<<output
component>> component>> component>> component>> o>
HeatingElement] Lamp Turntable Beeper cqmponep
MicrowaveDisplay
Component Component ofGemponent, . | - Component

@Feature
Modeling

Features,

|, Feature/Use
Case dependency
table

Feature

—>

@ Feature
Dependency
Analysis

., Dependency

Diagram

D Us.e Case Use Cases
Problem Modeling and | | _.
—> . . with
Domain Variation Points Variation
Analysis Points.” ™
l Kernel Use Case
@Static Modeling

v

Variation Points

Optional Use Cases

for every feature

Context class Diag

. | Define provides/required interfaces

Diagram

i

Ooymamic Mo¢ For each port of the component
T . XTI CITITCTTUT ax W CTASS =
Structuring Communication (Reuse Catléé)\ ture/Class
Architectural Criteria Patterns
Patterns pendency Table
Component

Kernel Classes | ®Component |, based © Message o
Communication Structuring Architecture Inter.face — Con ommunication Diagram
Diagram (Kernel) Design ‘

Optional Components l L Product Line @Component __, Components

—»| @Product Line [—> o — Interface
Variant Components Evolution™ S| Koichirch@ettiarizu Design (PIM)

IMWControl

PMWControl
L
ROvenTime
| 7 I10venTimer
I'WeightDat
ROvenData a
P Dat
<<kernel-param-vp>> | owerBata
<<state dependent control>> 1
. ITODData
:MicrowaveOvenControl
ICookingTimeDat
a
IRecipeData
-‘]—C TODTimer
RTODTime

! I I I ! |
RHeati ;—‘\RLamp /‘—iRTurntabl RBeeper— RDisplay

IHeatingElemen ILamp
¢ ITurntable IBeeper IDisplay
o o RBeeper RDisplay
JAIST Koichiro Ochimizu

Feature N tion of Subset of (Feature Dependency @Fix the
Dependency related features Diagram, Feature/Usecase ™ variation [Usecase
Diagram \ Dependerllcies, Context Diagram) point
v
@Selection of Subset of
related devices Context
Diagram v o
Revised Communication @Selection of Sl,lbset of (Communlcz}tlon
Diagram " related Dynamic Diagram, State Machines)
1
Revised State Machines mode 7
; Subset of class Diagram
Class Diagram R ®Selection of g
Feature/Class Dependencies related classes Subset of Feature/Class
Dependencies
Components v
Product line architecture @Se]ection of Subset of Components
[Related Component (PIM)

Rroduct Specific: Use

Core Assets oo
JAIST Koichiro Ochimizu cages; classes,

componer

Feature
Dependency |

(DSelection of
related features

Diagram

Subset of (Feature Dependency
Diagram, Feature/Usecase
Dependencies, Context Diagram)

v

@Selection of |—»
related devices

Revised Communication

Diagram

Revised State Mach|

Class Diagram

Feature/Class Depe

Components

Product line architecture

\ 4
\@Selection of -

@Fix the
variation
point

—» Use case

Subset of (Communication

Select features involved in a
specific product and then Fix s Diagram
the Product-specific Use Case
Model and Context Diagram

o S+~~~ Machines)

ature/Class

S

®Selection of
[Related Component

-

JAIST Koichiro Ochimizu

Supset or Components
(PIM)

Selected Features

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>

Spanish

<<alternative feature>3
German

>

<<alternative feature>3
Italian

<<optional feature>>

<

{mutually exclusive feature}

<<exactly-one-of-feature group>>

<<optional feature>>

Display Language
Minute Plus Turn Table
equires requires requires
<<0pt10na?l 0TI . <<common feature>> . <<optional feature>>
Light requires | Microwave Oven Kernel | Fequlres Beeper
require requires

Display Unit

<<exactly-one-of-feature group>>

i

requires

<<exactly-one-of-feature group>>
Heating Element

{mutually exclusive feature}

<<exactly-one-of-feature group>>

Weight Sensor

<&

A

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

requires

<<optional feature>>
TOD Clock

mutually includes

<<parameterized feature>>
12/24 Hour Clock

<

{mutually exclusive feature}

<<default feature>>
One-level Heating

<

v

<<alternative feature>3
Multi-level Heating

{mutually exclusive feature}

<<default

Boolean Weight

A

feature>>

<<alternative feature>3
Analog Weigh

v

require |

mutually

includes

mutually
includes

mutually

Sk Hjatiiomiad feofunaizel

Recipe

includes

<<optional feature>>

Power Level

v

Feature Name Feature Use Case Use Case Variation

Category Name Category/ Point

Variation Name
Point (vp)
Microwave Oven Cook Food Kernel
common

Kernel
Light optional Cook Food VP Light
Turn Table optional Cook Food VP Turn Table
Beeper optional Cook Food VP Beeper
Minute Plus optional Cook Food VP Minute Plus
One-line Display default Cook Food VP Display Unit
Multi-line Display alternative Cook Food VP Display Unit

AIST K

.. ichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct%]ﬁnlerg wfth"{yﬁ/lfL”, Addison-Wesley, 2005.

<<kernel>>
Cool Food

<<optional>>
Set Time of Day

/1N

User

<<optional>>
Display Time of Day

<<optional>>
Cook Food with Recipe

.. AIST Kaichiro Ochimj :
Hassan Gomaa, “Designing Software i’roduct ines wfth"{}lﬁL”, Addison-Wesley, 2005.

* The product line context class diagram defines the boundary between a product line
system (i.e. any member of the product line) and the external environment(i.e. the
external classes to which members of the product line have to interface)

<<kernel>>
<<external input device>>
DoorSensor

<<kernel>>
<<external input device>>
WeightSensor

<<kernel>>
<<external input device>>
Keypad

<<product line system>> |

MicrowaveOven
ProductLineSystem

1 Output

s tov
1

<<kernel>>
<<external timer>>

Clock

<<kernel>>
<<external output device>>
HeatingElement

AIST Koaichiro Ochi

<<optional>>
<<external output device>>
Beeper

<<kernel>>
<<external output device>>
DisplayUnit

<<optional>>
<<external output device>>
Turntable

<<optional>>
<<external output device>>
Lamp

Hassan Gomaa, “Designing Software i’roduct ines with I{Hﬁ/lfL”, Addison-Wesley, 2005.

Feature

Dependency |

Diagram

(DSelection of
related features

Subset of (Feature Dependency
Diagram, Feature/Usecase
Dependencies, Context Diagram)

related devices

Revised Communication

Diagram

Revised State Machines

Class Diagram

|
v
@Selection of | —» Subset of
Context
Diagram v
@Selection of
related Dynamic
model
A 4
. ®Selection of
related classes

Feature/Class Dependencies

s

P

Customize the dynamic models(communication
diagram and state machines) and the related classes

@Fix the
variation
point

—» Use case

Subset of (Communication

—> Diagram, State Machines)

Subset of class Diagram
Subset of Feature/Class

Dependencies

JAIST Koichiro Ochimizu

<<external input device>>

<<external input device>>

K<external input device>>

<<external input device>>

:Door Sensor :BooleanWeightSensor :Keypad :Clock
;’3 Dogi Op(;ellled I?put ¢ ‘1, fﬁlg't Weight 4: Cooking Time Key Input 7*,8: Timer
Door Llosed Inpu P 5*:Numeric Key Input Event
<<product line system>> 6: Start Key Input
MicrowaveOvenApplication l’
. L. << input device interface>»
. . . <<input device interface>> . .
<<input device interface>> :BooleanWeightSensorInterface :Keypadinterface <<timer>>
:DoorSensorlInterface) :OvenTimer
4.1: Cooking Time Selected mle
1.1, 9.1: Door Opened ‘1’ 2.1: Item placed 5.1:Cooking Time Entered [:3 Cooking T}
. . 6.1: Start .1, 8.1: 1‘
3.1:Door Closed 10.1:Item removed ar E(l)blgi}lgpﬁg gment 8.2:Finished
_ 5.2a: Update Cooking Time -
yhoan. oalighd: - <<state dependent control>> —> <<entity>>
W1
:MicrowaveOvenControl :OvenData
=3 6.2a: Start Timer

3.2, 8.4b[light]:
Switch Off ¢

8.4abeeper]: Beep

|

8.4::Stop Cooking

6.2: Start Cookin \

4.2: Prompt for TintE=—
5.2:Display Cooking Time

<<output device
interface>>

: Lamplnterface

<<output device
interface>>
: Beeperlnterface

£< output device interface>3
:One-level HeatingElement

8.3: Timer Expired

v

<<output device interface>>

Interface

1.3,6.2b.1,9.3:

:Multi-lineDisplay Interface

Switch on Output

3.3, 8.4b.1: Switch
Off Ouput

|

6.3: Start Cooking Output
¢ 8.4a.1:Beep Output g 5..Stop Cooking ut

€

4.5: Time Prompt
5.3, 7.4:Display Ti
8.3a.3: End Prompt

&4.4, 8.3a.2: Prompt
4.3, 8.3a.1 Read

B?s p Pa];,date Cooking Time

8.3a::Display End Prompt
<<entity>>

:FrenchDisplay

|___Prompts |

<<external output

<<external output

~

external optpat desjeRizs

A4
—\

SSreRiepal output device>>

device>> device>> . . 3 .
: Lamp : Beeper tOne-level HeatingElement :Multi--lineDisplay

Feature/class Dependencies

Feature Feature Class Class Class
Name Category Name Category Parameter
Light optional Lamp Interface optional
Microwave Oven Control kernel-param-vp light:Boolean
Turntable optional Turntable Interface optional
kernel-param-vp turntable:Boolean
Beeper optional Beeper Interface optional
Microwave Oven Control kernel-param-vp beeper:Boolean
Minute Plus | optional Keypad Interface kernel-param-vp minuteplus:Boolean
Microwave Oven Control kernel-param-vp minuteplus:Boolean
Oven Timer kernel-param-vp minuteplus:Boolean
Oven DathAIST Koichiro Ochjrkizuel-param-vp minuteplus:Boolean

Feature N (DSelection of Sl.lbset of (Feature Dependency @Fix the
Dependency related features Diagram, Feature/Usecase — variation [~ Usecase
Diagram Dependencies, Context Diagram) point

|
v
@Selection of |—» Subset of

ralatad daxicac P

Select the related components, setting the value of parameters.
Integrate them into one using Product line architecture

Revised State Machines model ll
Class Diagram A ®Selection et of class Diagram
Feature/Class Dependencies related clas Subset of Feature/Class

Dependencies

Components

Subset of Components

Product line architecture ®Selection of
|Related Component (PIM)

JAIST Koichiro Ochimizu

<<kernel>> <<kernel>> <<variant>> <<kernel>>
<<external timer>> r<external input device>> r<external input device>> g<external input device>>
:Clock :DoorSensor :BooleanWeightSensor :Keypad

Timer Event

v\

¢ Door Input

¢ Weigh Input

\ N Keypad Input
1

<< .
- product <<kernel>> <<variant>> <<Kkernel-param-vp>>
e <<input component>> <<input component>> << input component>>
1\§[)'IStem>>O :DoorComponen :BooleanWeightComponent :Keypad Component
iIcrowaveuvven
sendControlReque sendControl

System l

st (doorEvent) / st (wei vent)
<<kernel>> / sendControlReque
<<control component>> st (keypadEvent)
) :MicrowaveControl
startCooklng(ley, ‘l, switchOn() \ \ displayPrompt(promptl
i . D) displayTime(time
stopCooking switchOff() beep()) display Time(time)
<<variant>> <<optional>> <<optional>> <<variant>>
<< output << output << output <<output component>>
co'gponlenti> component>> component>> :Multi-line
-one-leve :Lam :Beeper Microwave Display
. : p
HeatingElement Component Component I
Coponent P 1 Display Output
I
Hegtihig Element Output | ¥ -2mp Qutput " Beeper Output :
<<variant>> <<optional>> <<optional>> <<variant>>
<<external <<external JAIST Koichiro Ochjmizy ~¢xternal <<external output device>>
output device>> output device>> output device>> :Multi-line Display
:One-levelHeatingElement Lamp ——Becper

Evaluation of PLUS

 PLUS provides with the well-organized way
to determine features, classes, and components

and to define the clear relationships among
them.

 PLUS only supports to make a core asset from
scratch. It does not support to build the core

asset by mining legacy software or purchasing
COTS

JAIST Koichiro Ochimizu

