
Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

Software Product Line
Technologies

Koichiro Ochimizu
School of Information Science

Japan Advanced Institute of Science and Technology

Hassan Gomaa, Designing Software
Product Line with, Addison Wesley, (2004)

JAIST Koichiro Ochimizu

Basic Ideas and Terms
• A software product line is a set of software-intensive

systems sharing a common, managed set of features
that satisfy the specific needs of a particular market
segment or mission and that are developed from a
common set of core assets in prescribed way.

• Core assets are those asset that form the basis for the
software product line.
– Core assets often include, but are not limited to, the

architecture, reusable software components, domain
models, requirement statements, documentations
and specifications, performance models, schedules,
budgets, test plans, test cases, work plans, and
process description
Paul Clements an Linda Northrop, “Software Product Lines”, Addison-Wesley, 2002.

JAIST Koichiro Ochimizu

What is Software Development?

• Development is a generic term used to describe how
core assets come to fruition.
– The organization can Build it itself (either from scratch or

by mining legacy software),
– Purchase it (buy it, largely unchanged, off the shelf)
– Commission it (contract with someone else to develop it

especially for the organization)

• Development may actually involve building,
acquisition, purchase, retrofitting earlier work.

Paul Clements an Linda Northrop, “Software Product Lines”, Addison-Wesley, 2002.

JAIST Koichiro Ochimizu

Basic Ideas and Terms(2/2)

• Software product line practice is the systematic
use of core assets to assemble, instantiate, or
generate the multiple products that constitute a
software product line. Software Product line
practice involves strategic, large-grained reuse.

• The Three Essential Activities
– Core Asset Development (or Domain Engineering)
– Product Development using the core assets (Application

Engineering)
– Management

Paul Clements an Linda Northrop, “Software Product Lines”, Addison-Wesley, 2002.JAIST Koichiro Ochimizu

PLUS
(Product Line UML-based Software Engineering)

Software
Product Line
Engineering

Software
Application
Engineering

Software
Product Line
Repository

Product line

engineer

Application

engineer
Customer

Application
requirements

Executable

application

Product line

requirements

Product line use case model,

product line analysis model.

product line software architecture,

reusable components

Unsatisfied requirements, errors, adaptations
Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

JAIST Koichiro Ochimizu

Characteristics of PLUS

• Feature modeling based on Use case modeling
with variation points.

• Use case driven object-oriented approach ,
partially adopting CBSD(Component-Based
Software

• Definite correspondence among Features,
Classes and Components

JAIST Koichiro Ochimizu

What is a Feature?

• Features are characteristics that are used
to differentiate among members of the
product line

• Feature Modeling is a Variability
Analysis in requirement modeling to
determine and define the common and
variable functionality of a software
product line

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

PLUS Phases in Product line Engineering

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

JAIST Koichiro Ochimizu

Outline of PLUS (Use Case Modeling and Variation Points Analysis)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define
• Kernel Use Case which all members of
the product line must provide
• Optional Use Case which only some
members of the product line provide

JAIST Koichiro Ochimizu

Use Case Model

<<kernel>>
Cool Food

User Timer

<<optional>>
Set Time of Day

<<optional>>
Display Time of Day

<<optional>>
Cook Food with Recipe

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Kernel Use Case “ Cook Food ”
• Use case name: Cook Food
• Reuse category: Kernel
• Summary: User puts food in oven, and microwave oven cooks food.
• Actors: User(primary), Timer(secondary)
• Precondition: Microwave oven is idle
• Description:

1. User opens the door, puts food in the oven, and closes the door.
2. User presses the Cooking Time button.
3. System prompts for cooking time.
4. User enters the cooking time on the numeric keypad and presses Start.
5. System starts cooking the food.
6. System continually displays the cooking time remaining.
7. Timer elapses and notifies the system.
8. System stops cooking the food and displays the end message.
9. User opens the door, removes the food from the oven, and closes door.
10.System clears display.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Kernel Use Case “ Cook Food ”
• Alternatives:

Line1: User presses Start when the door is open. System does not start cooking.
Line4: User presses Start when the door is closed and the oven is empty. System

does not start cooking.
Line4: User presses Start when the door is closed and the cooking time is equal to

zero. System does not start cooking.
Line6: User opens the door during cooking. System stops cooking. User removes

food and presses Cancel, or user closes the door and presses Start to resume
cooking.

Line6: User presses Cancel. System stops cooking. User may press Start to
resume cooking. Alternatively, user may press Cancel again; system then
cancels timer and clears display.

• Post-conditions: Microwave oven has cooked the food.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Variability Analysis

• Define variation points for each use case
• For small variations, the variation point is

described in the (kernel) use case itself,
identifying the place in the use case where
the change occur

• For large variations, the variation is defined
as an optional use case

• An optional use case has its own variation
points

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Variation Points in the “Cook Food” Use Case(1/3)

• Name: Display Language
• Type of functionality: Mandatory alternative
• Line number(s): 3,8
• Description of functionality: There is a choice of language for displaying messages.

The default is English. Alternative mutually exclusive languages are French, Spanish,
German, or Italian.

• Name: Weight Sensor
• Type of functionality: Mandatory alternative
• Line number(s): 1
• Description of functionality: Cooking is prohibited if no item is present. The default is

Boolean weight sensor, which indicates if item is present. Alternative mutually
exclusive variation is analog sensor. Analog weight sensor provides weight of item.

• Name: Heating Element
• Type of functionality: Mandatory alternative
• Line number(s): 5
• Description of functionality: Default is a one-level heating element: high power level.

Alternative is a multi-level heating element, with high, medium, and low power levels.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Variation Points in the “Cook Food” Use Case(2/3)

• Name: Power Level
• Type of functionality: Optional
• Line number(s): 2
• Description of functionality: Microwave oven has power level buttons for

high power(default), medium , and low. User may select the power level.
Requires multi-level heating element as prerequisite.

• Name: Display Unit
• Type of functionality: Mandatory alternative
• Line number(s): 3, 4, 6, 8, 10
• Description of functionality: Default is a one-line display unit. Alternative is

multi-line display unit.

• Name: Minute Plus
• Type of functionality: Optional
• Line number(s): 2, 6
• Description of functionality: User may press Minute Plus, which results in

one minute being added to the cooking time. If the cooking time was previously
zero, cooking is started

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Variation Points in the “Cook Food” Use Case(3/3)
• Name: Light
• Type of functionality: Optional
• Line number(s): 1, 5, 8, 9
• Description of functionality: If light option is selected, lamp is switched on

for duration of cooking and when the door is open. Light is switched off when
door is closed and when cooking stops.

• Name: Turntable
• Type of functionality: Optional
• Line number(s): 5,8
• Description of functionality: If turntable option is selected, turntable rotates

for duration of cooking.

• Name: Beeper
• Type of functionality: Optional
• Line number(s): 8
• Description of functionality: If beeper option is selected, system activates the

beeper when cooking stops.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Optional Use Case “Set Time of Day”
• Use case name: Set Time of Day
• Reuse category: Optional
• Dependency: Variation point in Cook Food use case: at Display Unit variation point, select Multi-

line Display.
• Summary: User sets time-of-day clock
• Actors: User
• Precondition: Microwave oven is idle
• Description:

1. User presses Time of Day(TOD) button.
2. System prompts for time of day.
3. User enters the time of day (in hours and minutes) on the numeric keypad.
4. System stores and displays the entered time of day.
5. User presses Start.
6. System starts the time-of-day timer.

• Alternatives:
Line 1,3: If the oven is busy, the system will not accept the user input.
Line 5: The user may press Cancel if the incorrect time was entered. The system clears the display.

• Variation Points in the Set Time of Day Use case
– Name: 12/24Hour Clock
– Type of functionality: Mandatory alternative.
– Line number(s): 4
– Description of functionality: TOD display is either 12-hour clock(default) or 24-hour clock.

• Post Condition: TOD clock has been set.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Optional Use Case “Display Time of Day”
• Use case name: Display Time of Day
• Reuse category: Optional
• Dependency: Variation point in Cook Food use case: at Display Unit variation

point, select Multi-line Display.
• Summary: System displays time-of-day
• Actors: Timer(primary actor), User(secondary actor).
• Precondition: TOD clock has been set(by Set Time of Day use case)
• Description:

1. Timer notifies system that one second has elapsed.
2. System increments TOD clock every second, adjusting for minutes and hours.
3. System updates the display with time of day every minute.

• Variation Points in the Display Time of Day Use case
– Name: 12/24Hour Clock
– Type of functionality: Mandatory alternative.
– Line number(s): 2
– Description of functionality: TOD display is either 12-hour clock(default)

or 24-hour clock.
• Post Condition: TOD clock has been updated (every second) and time of day

displayed(every minute).
Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

JAIST Koichiro Ochimizu

Optional Use Case “ Cook Food with Recipe”(1/3)
• Use case name: Cook Food with Recipe
• Reuse category: Optional
• Dependency: Variation points in Cook Food use case: at Display Unit variation point,

select Multi-line Display; at Heating Element variation point, select Multi-level Heater; at
Weight Sensor variation point, select Analog Weight Sensor.

• Summary: User puts food in microwave oven cooks food, using recipe.
• Actors: User(primary), Timer(secondary)
• Precondition: Microwave oven is idle
• Description:

1. User opens the door, puts food in the oven, and closes the door.
2. User presses the desired recipe button from the recipe buttons on the keypad.
3. System displays the recipe name. Recipe has name, power level(p), fixed time(t1),

and time per unit weight(t2).
4. User presses Start button.
5. System starts cooking the food for a time given by the following equation: Cooking

Time = t1 + w*t2, where t1 and t2 are times specified in the recipe.
6. System continually displays the cooking time remaining.
7. Timer elapses and notifies the system.
8. System stops cooking the food and displays the end message.
9. User opens the door, removes the food from the oven, and closes door.
10.System clears display.
Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

JAIST Koichiro Ochimizu

Optional Use Case “ Cook Food with Recipe”(2/3)

• Alternatives:
Line1: User presses Start when the door is open. System does not start cooking.
Line4: User presses Start when the door is closed and the oven is empty. System

does not start cooking.
Line4: User presses Start when the door is closed and a recipe has not been

chosen. System does not start cooking.
Line4: User presses Cancel. System cancels recipe and clears display.
Line6: User opens the door during cooking. System stops cooking. User removes

food and presses Cancel, or user closes the door and presses Start to resume
cooking.

Line6: User presses Cancel. System stops cooking. User may press Start to
resume cooking. Alternatively, user may press Cancel again; system then
cancels the recipe and clears display.

Line7: If the recipe has more than one step, system completes one step, cooking
food for the computed time and specified power level, and then proceeds to the
next step.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Optional Use Case “Cook Food with Recipe” (3/3)
• Name: Display Language
• Type of functionality: Mandatory alternative
• Line number(s): 3,8
• Description of functionality: There is a choice of language for displaying messages. The default is

English. Alternative mutually exclusive languages are French, Spanish, German, or Italian.

• Name: Light
• Type of functionality: Optional
• Line number(s): 1, 5, 8, 9
• Description of functionality: If light option is selected, lamp is switched on for duration of

cooking and when the door is open. Light is switched off when door is closed and when cooking
stops.

• Name: Turntable
• Type of functionality: Optional
• Line number(s): 5,8
• Description of functionality: If turntable option is selected, turntable rotates for duration of

cooking.

• Name: Beeper
• Type of functionality: Optional
• Line number(s): 8
• Description of functionality: If beeper option is selected, system activates the beeper when

cooking stops.
• Post-condition: Microwave oven has cooked he food using recipe

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

JAIST Koichiro Ochimizu

Outline of PLUS (Feature Modeling）

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram
Determine features to differentiate among members of the
product line from Use Case Description.
The common, optional, and alternative features are
determined by commonality/variability analysis.
The common features is identified by the kernel use case
The optional and alternative are identified by the
optional use case and the variation points

JAIST Koichiro Ochimizu

Feature Modeling

• After the use case model, the next step is to address is the
feature model and to determine how the use case and use
case variation points correspond to features.

• The feature model is developed as a result of a
commonality/variability analysis in which the common,
optional, and alternative features are determined.
– The common features identify the common functionality in the

product line , as specified by the kernel use case
– The optional and alternative features represent the variability in

the product line as specified by the optional use case and the
variation points

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Microwave Oven
Kernel

common Cook Food Kernel

Light optional Cook Food VP Light

Turn Table optional Cook Food VP Turn Table

Beeper optional Cook Food VP Beeper

Minute Plus optional Cook Food VP Minute Plus

One-line Display default Cook Food VP Display Unit

Multi-line Display alternative Cook Food VP Display Unit

Feature Name Feature Use Case Use Case Variation
Category Name Category/ Point

Variation Name
Point (vp)

Feature/Use Case Dependencies(1/3)

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

English default Cook Food vp Display Language

French alternative Cook Food vp Display Language

Spanish alternative Cook Food vp Display Language

German alternative Cook Food vp Display Language

Italian alternative Cook Food vp Display Language

Boolean Weight default Cook Food vp Weight Sensor

Analog Weight alternative Cook Food vp Weight Sensor

Feature Name Feature Use Case Use Case Variation
Category Name Category/ Point

Variation Name
Point (vp)

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

Feature/Use Case Dependencies(2/3)

JAIST Koichiro Ochimizu

One-level Heating default Cook Food vp Heating Element

Multi-level
Heating

alternative Cook Food vp Heating Element

Power Level optional Cook Food vp Power Level

TOD Clock optional Set Time of Day optional

Display Time of
Day

optional

12/24 Hour Clock parameterized Set Time of Day
Display Time of
Day

vp 12/24 Hour Clock

Recipe optional Cook Food with
Recipe

optional

Feature Name Feature Use Case Use Case Variation
Category Name Category/ Point

Variation Name
Point (vp)

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

Feature/Use Case Dependencies(3/3)

JAIST Koichiro Ochimizu

Every Microwave Oven must have
• Door

– Every microwave oven has a door. Cooking is permitted only when the door is closed.
• Weight Sensor

– Every microwave oven has a weight sensor. Cooking is permitted only when there is an
item in the oven, as detected by the weight sensor

• Keypad
– The basic keypad consists of a numeric keypad for entering the time, a Cooking Time

button, a Start button, and Stop/Cancel button.
• Display

– Every microwave oven has a display to show the time remaining, as well as any prompts
or warning messages.

• Heating element
– This is the power source for cooking food.

• Timer
– A timer is needed to count down the cooking time remaining and to determine when

cooking must be stopped

<<common feature>>
Microwave Oven

Kernel

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Optional Features
• <<optional feature>>Light

– If the light option is selected, the lamp is switched on for the duration of cooking
and when the door is open.

• <<optional feature>> Turntable
– If the turn table option is selected, the turn table rotates for the duration of cooking.

• <<optional feature>> Beeper
– If the beeper option is selected, the system activates the beeper when cooking stops.

• <<optional feature>> Minute Plus
– If the oven is already cooking food, pressing Minute Plus button adds one minute

to the cooking time
– If the oven is not cooking food and the cooking time is set to zero, the cooking

time is set to 60 seconds and cooking is started.
– If the door is open, a press of Minute Plus button is ignored.
– If the oven is not cooking food but the cooking time is greater than zero, a press of

the Minute Plus button is ignored.

<<optional feature>>
Light

<<optional feature>>
Turntable

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Outline of PLUS (Feature Dependency)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

DiagramDefine relations, such as “requires”,
“mutually includes”, “use exclusively”,
among features to define The Feature
Dependency Diagram.

JAIST Koichiro Ochimizu

Alternative Features and Feature Groups
• <<exactly-one-of feature group>> Display Unit

{default = One-line Display, alternative = Multi-line Display}
• << exactly-one-of feature group >> Display Language

{default = English, alternative = French, Spanish, German, Itakian}
• << exactly-one-of feature group >> Weight

{default = Boolean Weight, alternative = Analog Weight}
• << exactly-one-of feature group >> Heating Element

{default = One-level Heating, alternative = Multi-level Heating}
– The default heating element mode is one level: high. The alternative is multi-level,

with high, medium, and low power levels.

<<default feature>>
One-line Display

<<alternative feature>>
Multi-line Display

<< exactly-one-of feature group >>
Display Unit

{mutually exclusive
feature}

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Optional Features with Prerequisite and
Mutually inclusive Features

• Power Level
<<optional feature>> Power Level {mutually includes = Multi-level
Heating}

– With this optional feature, a Power Level button is provided on the keypad. The
power level can be set to high, medium, or low. One consideration is whether his
functionality should be part of Multi-level Heating feature. However, multi-level
heating can be provided for cooking with recipes, in which case it can be used
without a Power Level button. For this reason, Power Level and Multi-level
Heating are kept as separate but mutually inclusive features.

• Recipe
<<optional feature>> Recipe { prerequisite = Multi-line Display, mutually
includes = Analog Weight, Multi-level Heating }

– With this optional feature, a Recipe button is provided on the keypad. Food is
cooked as prescribed in the selected recipe. There is one prerequisite feature: Multi-
line Display. There are two mutually inclusive features: Analog Weight(which is
used only for cooking with recipes) and Multi-level Heating (as described above):

• TOD Clock
<<optional feature>> TOD Clock { prerequisite = Multi-line Display}

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Difference of meaning between “requires” and “mutually includes”

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

｛mutually exclusive feature｝

mutually
includes

mutually
includes

mutually
includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

Can be
selected
individually

Not allowed to be
selected individually

Not allowed to be
selected
individually

Not allowed
to be
selected
individually

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Parameterized Features

• 12/24 Hour Clock
<<parameterized feature>> 12/24 Hour Clock

{ type = Time, permitted value = 12:00, 24:00,
default value = 12:00, mutually includes = TOD Clock}

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Feature Dependency Diagram

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>
Spanish

<<alternative feature>>
German

<<alternative feature>>
Italian

<<exactly-one-of-feature group>>
Display Language

<<common feature>>
Microwave Oven Kernel

<<optional feature>>
Turn Table

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

<<optional feature>>
Light

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

｛mutually exclusive feature｝

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<optional feature>>
TOD Clock

<<parameterized feature>>
12/24 Hour Clock

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

requiresrequires

requires

requires

requires
requires requires

requires

｛mutually exclusive feature｝

mutually includes mutually
includes

mutually
includes

requires

mutually includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

JAIST Koichiro Ochimizu

Kernel

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>
Spanish

<<alternative feature>>
German

<<alternative feature>>
Italian

<<exactly-one-of-feature group>>
Display Language

<<common feature>>
Microwave Oven Kernel

<<optional feature>>
Turn Table

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

<<optional feature>>
Light

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

｛mutually exclusive feature｝

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<optional feature>>
TOD Clock

<<parameterized feature>>
12/24 Hour Clock

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

requiresrequires

requires

requires

requires
requires requires

requires

｛mutually exclusive feature｝

mutually includes mutually
includes

mutually
includes

requires

mutually includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

JAIST Koichiro Ochimizu

Optional

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>
Spanish

<<alternative feature>>
German

<<alternative feature>>
Italian

<<exactly-one-of-feature group>>
Display Language

<<common feature>>
Microwave Oven Kernel

<<optional feature>>
Turn Table

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

<<optional feature>>
Light

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

｛mutually exclusive feature｝

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<optional feature>>
TOD Clock

<<parameterized feature>>
12/24 Hour Clock

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

requiresrequires

requires

requires

requires
requires requires

requires

｛mutually exclusive feature｝

mutually includes mutually
includes

mutually
includes

requires

mutually includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

JAIST Koichiro Ochimizu

Feature Group

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>
Spanish

<<alternative feature>>
German

<<alternative feature>>
Italian

<<exactly-one-of-feature group>>
Display Language

<<common feature>>
Microwave Oven Kernel

<<optional feature>>
Turn Table

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

<<optional feature>>
Light

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

｛mutually exclusive feature｝

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<optional feature>>
TOD Clock

<<parameterized feature>>
12/24 Hour Clock

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

requiresrequires

requires

requires

requires
requires requires

requires

｛mutually exclusive feature｝

mutually includes mutually
includes

mutually
includes

requires

mutually includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

JAIST Koichiro Ochimizu

Requires

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>
Spanish

<<alternative feature>>
German

<<alternative feature>>
Italian

<<exactly-one-of-feature group>>
Display Language

<<common feature>>
Microwave Oven Kernel

<<optional feature>>
Turn Table

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

<<optional feature>>
Light

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

｛mutually exclusive feature｝

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<optional feature>>
TOD Clock

<<parameterized feature>>
12/24 Hour Clock

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

requiresrequires

requires

requires

requires
requires requires

requires

｛mutually exclusive feature｝

mutually includes mutually
includes

mutually
includes

requires

mutually includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

JAIST Koichiro Ochimizu

mutually includes

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>
Spanish

<<alternative feature>>
German

<<alternative feature>>
Italian

<<exactly-one-of-feature group>>
Display Language

<<common feature>>
Microwave Oven Kernel

<<optional feature>>
Turn Table

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

<<optional feature>>
Light

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

｛mutually exclusive feature｝

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<optional feature>>
TOD Clock

<<parameterized feature>>
12/24 Hour Clock

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

requiresrequires

requires

requires

requires
requires requires

requires

｛mutually exclusive feature｝

mutually includes mutually
includes

mutually
includes

requires

mutually includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

JAIST Koichiro Ochimizu

Outline of PLUS (Finding problem domain objects)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define “Software Product Line
Context Model” that defines
the boundary between product
line system and the external
environment

JAIST Koichiro Ochimizu

Software Product Line Context Model
• The product line context class diagram defines the boundary between a product line

system (i.e. any member of the product line) and the external environment(i.e. the
external classes to which members of the product line have to interface)

<<kernel>>
<<external timer>>

Clock

<<kernel>>
<<external output device>>

HeatingElement

<<optional>>
<<external output device>>

Beeper

<<kernel>>
<<external output device>>

DisplayUnit

<<kernel>>
<<external input device>>

Keypad

<<kernel>>
<<external input device>>

WeightSensor

<<kernel>>
<<external input device>>

DoorSensor

<<optional>>
<<external output device>>

Turntable

<<optional>>
<<external output device>>

Lamp

<<product line system>>
MicrowaveOven

ProductLineSystem

１

１

１

0..１

0..１

0..１

１

１

１

１

１

１

１

１

１

１

１

１

Inputs
to

Inputs
to

Inputs
to

Inputs
to

Output
s to

Output
s to

Output
s to

Output
s to

Output
s to

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Outline of PLUS (Finding problem domain objects)

Write a “Communication
Diagram” that implements the
kernel use case to find problem
domain objects.

Define a “State Machine
Diagram” to a state dependent
control object in the
communication diagram.

JAIST Koichiro Ochimizu

Dynamic Modeling
• Develop a dynamic model of the product line after the

external classes have been determined in the system
context model.

• The kernel of the product line is analyzed first with
the forward evolutionary engineering strategy.
– Initially the kernel classes are determined by consideration

of the kernel use cases and the interaction among those
objects on communication diagrams and state machines.

– After that, the optional and variant classes are determined
by consideration of variation points (as determined from
the use case and feature models) and the optional use cases.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Kernel classes

<<external input device>>
Clock

<<external output device>>
HeatingElement

<<external output device>>
Display

<<external input device>>
Keypad

<<external input device>>
WeightSensor

<<external input device>>
DoorSensor

１

<<product line system>>
MicrowaveOvenSystem

<<input device interface>>
DoorSensorInterface

<<input device interface>>
WeightSensorInterface

<< input device interface>>
KeypadInterface

<<timer>>
OvenTimer

<< output device interface>>
HeatingElementInterface

<<output device interface>>
DisplayInterface

<<state dependent control>>
MicrowaveOvenControl

<<entity>>
OvenData

<<entity>>
DisplayPrompts

１

１

１

１

１

１

１

１

１

１

１

Hassan Gomaa, “Designing Software Product
Lines with UML”, Addison-Wesley, 2005.JAIST Koichiro Ochimizu

Communication diagram for kernel use case “Cook Food”

<<external input device>>
: Clock

<<external output device>>
: One-level HeatingElement

<<external output device>>
: One-lineDisplay

<<external input device>>
: Keypad

<<external input device>>
: BooleanWeightSensor

<<external input device>>
: DoorSensor

1, 9: Door Opened Input
3: Door Closed Input

<<product line system>>
: MicrowaveOvenSystem

<<input device interface>>
: DoorSensorInterface

<<input device interface>
: BooleanWeighSensor

Inteface

<< input device interface>>
: KeypadInterface <<timer>>

: OvenTimer

<< output device interface>>
: One-levelHeatingElementInterface

<<output device interface>>
: One-lineDisplayInterface

<<state dependent control>>
: MicrowaveOvenControl

<<entity>>
: OvenData

2, 10: Weight Input
4: Cooking Time Key Input
5*: Numeric Key Input
6:Start Key Input

7*,8: Timer
Event

1.1, 9.1: Door Opened
3.1: Door Closed

2.1: Item Placed
10.1: Item removed

4.1: Cooking Time Selected
5.1: Cooking Time Entered
6.1: Start

7.1, 8.1:
Decrement
Cooking Time

7.2: Time left
8.2:Finished

5.2a:Update Cooking Time

6.2: Start Cooking
8.4::Stop Cooking

4.2:Prompt for Time
5.2:Display Cooking Time

6.2a: Start Timer

8.3: Timer Expired

7.3: Update Cooking Time Display
8.3a: Display End Prompt

<<entity>>
: EnglishDisplayPrompts

4.3, 8.3a.1: Read

4.4, 8.3a.2: Prompt
6.3: Start Cooking Output
8.5: Stop Cooking Output

4.5:Time Prompt
5.3, 7.4: Display Time
8.3a.3: End Prompt

JAIST Koichiro Ochimizu

The Sequence of messages
for the kernel communication Diagram(1/7)

1. Door Opened Input. The user opens the door. The external Door
Sensor object sends this input to the Door Sensor Interface object.

1.1 Door Opened. Door Sensor Interface sends the Door Opened
message to the Microwave Oven Control object , which changes
state.

2. Weight Input. The user places an item to be cooked into the oven.
The external Boolean Weight Sensor object sends this input to the
Boolean Weight Sensor Interface object.

2.1 Item Placed. Boolean Weight Sensor Interface sends the Item
Placed message to the Microwave Oven Control object, which
changes state.

3. Door Closed Input. The user closes the door. The external Door
Sensor object sends this input to the Door Sensor Interface object.

3.1 Door Closed. Door Sensor Interface sends the Door Closed
message to the Microwave Oven Control object, which changes
state.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

The Sequence of messages
for the kernel communication diagram(2/7)

4. Cooking Time Key Input. The user presses the Cooking
Time button on the keypad. The external Keypad object
sends this input to the Keypad Interface object.

4.1 Cooking Time Selected. Keypad Interface sends the
Cooking Time Selected message to the Microwave Oven
Control object, which changes state.

4.2 Prompt for Time. As a result of changing state,
Microwave Oven Control object sends Prompt for Time
message to the One-line Display Interface object.

4.3 Read. The message arriving at One-line Display Interface
contains a prompt ID, so One-line Display Interface sends
a Read message to English Display Prompts to get the
corresponding prompt message.

4.4 Prompt. English Display Prompts returns the text for the
Time Prompt message.

4.5 Time Prompt. One-line Display Interface sends the Time
Prompt output to the external One-line Display object.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

The Sequence of messages
for the kernel communication diagram(3/7)

5* Numeric Key Input. The user enters the numeric value of the
time on the keypad, pushing one or more keys. Keypad sends
the value of the numeric key(s) input to Keypad Interface.

5.1 Cooking Time Entered. Keypad Interface sends the internal
value of each numeric key to Microwave Oven Control.

5.2 Display Cooking Time. Microwave Oven Control sends the
value of each numeric key to One-line Display Interface, to
ensure that these values are sent only in the appropriate state.

5.2a Update Cooking Time. Microwave Oven Control
concurrently sends the numeric value of each numeric key to
Oven Data to Update the cooking time.

5.3 Display Time. One-line Display Interface shifts the previous
digit to the left and adds the new digit. It then sends the new
value of cooking time to the external One-line Display object.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.JAIST Koichiro Ochimizu

The Sequence of messages
for the kernel communication diagram(4/7)

6. Start Key Input. The user presses the Start button. The
external Keypad object sends his input to the Keypad
Interface object.

6.1 Start. Keypad Interface sends the Start message to
Microwave Oven Control, which changes state.

6.2 Start Cooking. As a result of changing state, Microwave
Oven Control sends the Start Cooking message to the One-
level Heating Element Interface object.

6.2a Start Timer. Microwave Oven Control concurrently
notifies the Oven Timer to start the oven timer.

6.3 Start Cooking Output. One-level Heating Element
Interface sends this output to One-level Heating Element to
start cooking the food.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

The Sequence of messages
for the kernel communication diagram(5/7)

7* Timer Event. The external Clock object sends a timer
event every second to Oven timer.

7.1 Decrement Cooking Time. As Oven Timer is counting, I
sends this message to the Oven Data object, which
maintains the cooking time.

7.2 Time Left. After decrementing the cooking time, which is
assumed to be greater than zero at this step of the scenario,
Oven Data sends the Time Left message to Oven Timer.

7.3 Update Cooking Time Display. Oven Timer sends the
cooking time left to One-line Display Interface.

7.4 Display Time. One-line Display Interface outputs the
new cooking time value to the external One-line Display
object.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

The Sequence of messages
for the kernel communication diagram(6/7)

8 Timer Event. The external Clock object sends a timer event every second to Oven Timer
8.1 Decrement Cooking Time. As Oven Timer is counting, it sends this message to the

Oven Data object, which maintains the cooking time.
8.2 Finished. After decrementing the cooking time, which is assumed to be equal to zero at

this step of the scenario, Oven Data sends the Finished message to Oven Timer.
8.3 Timer Expired. Oven Timer sends the Timer Expired message to Microwave Oven

Control, which changes state.
8.3a Display End Prompt. Oven Timer concurrently sends the Display End Prompt

message to One-line Display Interface.
8.3a.1 Read. The message arriving at One-line Display Interface contains a prompt ID, so

One-line Display Interface sends a Read message to English Display Prompts to get the
corresponding prompt message.

8.3a.2 Prompt. English Display Prompts returns the text for the End Prompt message,
8.3a.3 End Prompt. One-line Display Interface outputs the End Prompt message to the

external One-line Display object.
8.4 Stop Cooking. As a result of changing state(in step 8.3), Microwave Oven Control

sends the Stop Cooking message to One-level Heating Element Interface object.
8.5 Stop Cooking Output. One-level Heating Element Interface sends this output to the

One-level Heating Element object to stop cooking the food.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

The Sequence of messages
for the kernel communication diagram(7/7)

9 Door Opened Input. The user opens the door. The
external Door Sensor object sends this input to the Door
Sensor Interface object.

9.1 Door Opened. Door Sensor Interface sends the Door
Opened message to the Microwave Oven Control object,
which changes state.

10 Weight Input. The user removes the cooked item from the
oven. The external Boolean Weight Sensor object sends
this input to the Boolean Weight Sensor Interface object.

10.1 Item Removed. Boolean Weight Sensor Interface sends
the Item Removed message to the Microwave Oven
Control object, which changes state.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

State Machine for Micro Oven Control : for one scenario
representing the main sequence through Use Case “Cook Food”

Door Shut Door Open

Cooking

entry/6.2: Start Cooking
exit/8.4: Stop Cooking

Door Open
with Item

Door Shut
Waiting for User

Door Shut
Waiting for

Cooking Time

Ready to
Cook

1.1: Door Opened

Door Closed

2.1: Item Placed 10.1: Item Removed

3.1: Door Closed
[Zero Time] 9.1:Door Opened

4.1: Cooking Time Selected

/ 4.2: Prompt for Time
5.1: Cooking Time Entered

/ 5.2: Display Cooking Time

5.2a: Update Cooking Time

8.3: Timer Expired

6.1: Start

/ 6.2a: Start Timer

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

State Machine for Oven Timer

Cooking
Time
Idle

Cooking
Food

6.2a: Start Timer Updating
Cooking

Time

7, 8: Timer Event/

7.1, 8.1: Decrement
Cooking Time

7.2: Time Left/

7.3: Update Cooking
Time Display

8.2: Finished /

8.3: Timer Expired

8.3a: Display End
Prompt

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

State Machine for Microwave Oven Control
(Kernel top-level State Machine)

Zero Time

Microwave
Oven

Sequencing
Superstate

Time Remaining

5.2a: Update Cooking Time
Cancel Timer/

Clear Display,

Clear Cooking Time

Microwave Oven Control

8.3: Timer
Expired

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Decomposition of the Microwave Oven
Sequencing Superstate

Door Shut Door Open

Cooking

entry/6.2: Start Cooking
exit/8.4: Stop Cooking

Door Open
with Item

Door Shut
with Item

Ready to Clock

1.1: Door Opened

Door Closed

2.1: Item Placed 10.1: Item Removed

3.1: Door Closed
[ZeroTime] 9.1: Door Opened

5.1: Cooking Time Entered

/ 5.2: Display Cooking Time ,
5.2a: Update Cooking Time

8.3: Timer Expired

6.1: Start

/ 6.2a: Start Timer

Cancel / Cancel Timer

Cancel /
Stop Timer

Cooking Time Entered/ Display Cooking Time, Update Cooking Time

Door Opened/ Stop Timer
Door Opened

Door Closed
[Time Remaining]

Cancel /
Cancel Timer

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.

JAIST Koichiro Ochimizu

Decomposition of the superstate “Door Shut with Item”

Cooking

Door Open
with Item

Ready to Cook

3.1: Door Closed[Zero Time] 9.1: Door Opened

5.1: Cooking Time Entered

/ 5.2: Display Cooking Time,
5.2a: Update Cooking Time

8.3: Timer
Expired

Cancel/ Cancel Timer

Door Shut with ItemH

Waiting for User

Waiting for Cooking Time

4.1: Cooking Time
Selected / 4.2:
Prompt for Time

Cancel/ Clear Display

Hassan Gomaa, “Designing Software
Product Lines with UML”,
Addison-Wesley, 2005.

JAIST Koichiro Ochimizu

Kernel State Machine for Oven Timer

Cooking
Time
Idle

Cooking
Food

6.2a: Start Timer Updating
Cooking

Time

7, 8: Timer Event/

7.1, 8.1: Decrement
Cooking Time

7.2: Time Left/

7.3: Update Cooking
Time Display

8.2: Finished/

8.3: Timer Expired

8.3a: Display End Prompt

Stop Timer

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Outline of PLUS (Impact Analysis)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Revise both the Communication Diagram
and State Machine Diagram by adding the
feature one by one.

JAIST Koichiro Ochimizu

Impact Analysis of the Beeper Feature
• The beeper is Switched on when cooking has finished
• Impact 1: The need for the Beeper external output device and the Beeper Interface

output device interface object.
• Impact 2: The Microwave Oven Control object is the state-dependent control object that

sends the Beep command to Beeper Interface when cooking is stopped. The impact on
the Microwave Oven Control state machine is that it needs to have an optional Beep
action, which is also guarded by the [beeper] feature condition

• <<optional feature>> Beeper
optional object: Beeper Interface
affected object: Microwave Oven Control

<<state dependent control>>
: MicrowaveOvenControl

<<output device interface>>
: BeeperInterface

<<external output device>>
: Beeper

8.4a[beeper]: Beep

8.4a.1: Beep output

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

State Machine for Microwave Control with all features

Door Shut Door Open

Cooking

entry/
4M.2a, 6.2:Start Cooking

6.2c:Start Turning[turntable],
6..2b:Switch On[light]

exit/
8.4: Stop Cooking,
8.4a: Beep[beeper],

8.4c:Stop Turning[turntable]

Door Open
with Item

Door Shut
with Item

Ready to Cook

1.1: Door Opened/1.2: Switch on[light]

Door Closed/Switch off[light]
2.1: Item Placed 10.1: Item Removed

3.1: Door
Closed[Zero Time] /
3.2: Switch off[light]

9.1: Door Opened/ 9.2: Switch On[light]

5.1:Cooking Time Entered/
5.2:Display Cooking,5.2a:
Update Cooking Time

8.3: Timer Expired/ 8.4d: Clear
Power level[power], 8.4b: Switch
off [light]

6.1: Start/ 6.2a: Start Timer

Cancel/ Cancel Timer

Cancel/ Cancel
Recipe, Display
Recipe Cancel

Cancel/ Stop Timer,
Switch Off[light]

Cooking Time Entered/ Display Cooking Time,
Update Cooking Time

Door Opened /

Stop Timer
Door Opened /
Switch On[light]

Door Closed[Time
Remaining]/Switch Off[light]

6.11:Minute Plus

[minuteplus]

/ 6.12: Add
Minute

4M.1:Minute Plus[minuteplus] /
4M.2: Start Time

{feature=
recipe}
Recipe

R4.1: Recipe Entered[recipe]/
R4.2:Select Recipe, R4.2a:
Display Recipe

Cancel/Cancel Timer

R8.3: Time Expired
/R8.4b:Clear Recipe, Switch
Off[light]

Item Removed/Cancel Recipe,

Display Recipe Canceled

Feature dependent
parts are identified by
[Guard Condition]

JAIST Koichiro Ochimizu

Result of Impact analysis for Recipe feature !

<<external input device>>
:Clock

<<external output device>>
:Multi-level HeatingElement

<<external output device>>
:Multi-lineDisplay

<<external input device>>
:Keypad

<<external input device>>
:Analog Weight Sensor

<<external input device>>
: Door Sensor

1, 9: Door Opened Input
3: Door Closed Input

<<product line system>>
MicrowaveOvenSystem

<<input device interface>>
:DoorSensorInterface

<<input device interface>>
:AnalogWeightInterface << input device interface>>

:KeypadInterface

<<timer>>
:OvenTimer

<< output device interface>>
:Multi-levelHeatingElementInterface

<<output device interface>>
:Multi-lineDisplayInterface

<<state dependent control>>
:MicrowaveOvenControl

<<entity>>
:OvenData

2, 10: Weight Input R4: Recipe Input
R5: Start Key Input

R6*, R7, R8:
Timer Event

1.1, 9.1: Door Opened
3.1:Door Closed 2.1: Item Placed

10.1:Item Removed

R4.1:Recipe Entered
R5.1: Start

R6.1, R7.1, R8.1:
Decrement Cooking Time
R7.3: Update Recipe

R7.2: End of
Step
R6.2, R7.6:
Time Left
R8.2:End of
Recipe

R4.2: Select Recipe

R5.2: Start Recipe
R7.8: Adjust Recipe
R8.4:Stop Cooking R4.2a: Display Recipe

R5.2a: Start Recipe Timer

R7.7: Next Step R8.3: Time Expired

R6.3,R7.7a :Update Cooking Time Display
R8.3a:Display End Prompt

<<entity>>
:EnglishDisplayPrompts

R4.2a.1, R8.3a.1: Read

R4.2a.2, R8.3a.2: Prompt

R5.5: Start Cooking Output
R7.11: Adjust Cooking Output
R8.5:Stop Cooking Output

R4.2a.3:Recipe Output
R6.4, R7.7a.1: DisplayOutput
R8.3a.3: End Prompt

R8.4.b: Clear Recipe

R2.2, R10.2
[analogweight]: Weight

R5.3, R7.9[multilevelHeater]:
Get Power

R5.4, R7.10: Power

<<entity>>
:Recipes

R4.3, R7.4:
Get Recipe

R4.4, R7.5:
Recipe

JAIST Koichiro Ochimizu

Outline of PLUS (Feature/Class Dependency Analysis)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define classes that have “Reuse Categorization”
as a stereotype. Analyze the relationship
between classes and features to define the table
that represents Feature/Class Dependencies

JAIST Koichiro Ochimizu

Feature/Class Dependency Analysis

• The Impact analyses identifies both the optional objects
and the affected objects.

• Optional objects are new objects that were not used in the
kernel communication diagrams but are needed to support
an optional or alternative feature.

• Affected objects are objects that must behave differently to
support an optional or alternative feature.

• For the affected objects, an important decision is whether
to handle the change by using inheritance or by
parameterization.

• Each of the classes is considered from a product line reuse
perspective.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Class Reuse Categorization
for Software Product line

• Main class reuse category
– <<kernel>> A class provided by every member of the

product line and used without change by every member.
– <<optional>> A class provided by some members of the

product line but not all. When used, it is used without
change.

– <<variant>> One of a set of similar classes, which have
some identical properties but others that are different.
Different variant classes are used by different members of
the product line.

– <<default>> The default class among a set of variant
classes, which is provided by some members of the product
line.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Parameterized Class Reuse Categories
• Parameterized class reuse category

– <<kernel-param-vp>> Kernel. The values of the
configuration parameters need to be set by the individual
product line member. Example: Microwave Oven Control

– <<optional-param-vp>> Optional. The values of the
configuration parameters need to be set by the individual
product line member. Example: TOD Timer

– <<variant-param-vp>> Variant. The values of the
configuration parameters need to be set by the individual
product line member.

– <<default-param-vp>> Default. The values of the
configuration parameters need to be set by the individual
product line member.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Abstract/Concrete Class Reuse Categories

• abstract class reuse category
– <<kernel-abstract-vp>> An abstract class provided by every

member of the product line.
– <<optional-abstract-vp>> An abstract class provided by

some members of the product line but not all.

• concrete class reuse category
– <<kernel-vp>> Concrete sub class of kernel-abstract-vp
– <<optional-vp>> Concrete sub class of optional-abstract-vp
– <<variant-vp>> One of a set of concrete variant classes.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Feature/class Dependencies(1/6)

Microwave
Oven Kernel

common Door Sensor
Interface

kernel

Weight Sensor
Interface

kernel-abstract-vp

Keypad Interface kernel-param-vp

Heating Element
Interface

kernel-abstract-vp

Display Interface kernel-abstract-vp

Microwave Oven
Control

kernel-param-vp

Oven Timer kernel-param-vp

Oven Data kernel-param-vp

Display Prompts kernel-abstract-vp

Feature Feature Class Class Class
Name Category Name Category Parameter

JAIST Koichiro Ochimizu

Feature/class Dependencies(2/6)
Feature Feature Class Class Class
Name Category Name Category Parameter

Light optional Lamp Interface optional

Microwave Oven Control kernel-param-vp light:Boolean

Turntable optional Turntable Interface optional

kernel-param-vp turntable:Boolean

Beeper optional Beeper Interface optional

Microwave Oven Control kernel-param-vp beeper:Boolean

Minute Plus optional Keypad Interface kernel-param-vp minuteplus:Boolean

Microwave Oven Control kernel-param-vp minuteplus:Boolean

Oven Timer kernel-param-vp minuteplus:Boolean

Oven Data kernel-param-vp minuteplus:BooleanJAIST Koichiro Ochimizu

Feature/class Dependencies(3/6)
Feature Feature Class Class Class
Name Category Name Category Parameter

One-line Display default One-line Display
Interface

default

Multi-line Display alternative Multi-line Display
Interface

variant

English default English Display
Prompts

default

French alternative French Display
Prompt

variant

Spanish alternative Spanish Display
Prompts

variant

German alternative German Display
Prompts

variant

Italian alternative Italian Display
Prompts

variant

JAIST Koichiro Ochimizu

Feature/class Dependencies(4/6)

Boolean Weight default Boolean Weight
Sensor Interface

default

Analog Weight alternative Analog Weight
Sensor

variant

Oven Data kernel-param-vp itemWeight:Real

One-level Heating default One-level Heating
Element Interface

default

Multi-level
Heating

alternative Multi-level Heating
Element Interface

variant

Microwave Oven
Control

kernel-param-vp Multi-levelHeater:
Boolean

Oven Data kernel-param-vp selectedPowerLev
el: Integer

Power Level optional Keypad Interface kernel-param-vp power: Boolean

Microwave Oven
Control

kernel-param-vp power: Boolean

Feature Feature Class Class Class
Name Category Name Category Parameter

JAIST Koichiro Ochimizu

Feature/class Dependencies(5/6)
Feature Feature Class Class Class
Name Category Name Category Parameter

TOD Clock optional TOD Timer optional

Keypad Interface kernel-param-vp TODClock:
Boolean

Microwave Oven
Control

kernel-param-vp TODClock:
Boolean

Oven Data kernel-param-vp TODvalue: Real

12/24 Hour
Clock

parameterized Oven Data kernel-param-vp TODmaxHour:
Integer

JAIST Koichiro Ochimizu

Feature/class Dependencies(6/6)
Feature Feature Class Class Class
Name Category Name Category Parameter

Recipe optional Recipes optional

Recipe optional

Keypad Interface kernel-param-vp recipe: Boolean

Microwave Oven
Control

kernel-param-vp recipe: Boolean

Oven Data kernel-param-vp selectedRecipe:
Integer

Oven Timer kernel-param-vp recipe: Boolean

JAIST Koichiro Ochimizu

Outline of PLUS (Component Structuring)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define components
by grouping the objects in the communication
diagram
by applying the component structuring criteria

JAIST Koichiro Ochimizu

Design Modeling

• The Microwave Oven software product line is designed as a component-based
software architecture based on the Centralized Control pattern(One control
component provides the overall control of the system, receiving messages from
other components).

• The product line is designed as a distributed component-based software
architecture.

• The component architecture is developed gradually
– Starting with the design of the kernel system, which contains the kernel and default

components
– Next, the message communication between components is designed.
– With the evolutionary design approach, this process is repeated for the full product line, at

which point the optional and variant components are added.
• On the basis of the design of the overall product line component and

communication architecture, the component ports and connectors are designed
with the goal of maximizing component reuse in the different product line
member configurations.

• Finally, the provide and required interfaces of each component are described.

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Component Structuring for Kernel

<<product line system>>
Microwave Oven System

<<kernel>>
<<input component>>

DoorComponent

<<variant>>
<<input component>>

WeightComponent

<<kernel-param-vp>>
<< input component>>

KeypadComponent

<<kernel-param-vp>>
<<timer>>
OvenTimer

<<variant>>
<< output component>>

HeatingElementComponent
<<variant>>

<<output device interface>>
DisplayInterface

<<kernel-param-vp>>
<<entity>>
OvenData

<<variant>>
<<entity>>

DisplayPrompts

<<kernel>> <<control component>>
MicrowaveControl

<<kernel-param-vp>>
<<state dependent control>>

MicrowaveOvenControl

<<variant>> <<output component>>
MicrowaveDisplay

JAIST Koichiro Ochimizu

Outline of PLUS (Concurrent Communication Diagram)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define Message Interface
between components

JAIST Koichiro Ochimizu

Distributed Software Architecture for Kernel: message Interface

<<product line system>>
MicrowaveOvenSystem

<<variant>>
<<output component>>

:MicrowaveDisplay

<<kernel>>
<<input component>>

:DoorComponent

<<variant>>
<<input component>>

:WeightComponent

<<kernel-param-vp>>
<< input component>>

:KeypadComponent

<<kernel>>
<<control component>>

:MicrowaveControl

<<variant>>
<< output device interface>>
:HeatingElementComponent

<<kernel>>
<<external timer>>

:Clock

<<kernel>>
<<external input device>>

:Keypad

<<variant>>
<<external input device>>

:WeightSensor

<<kernel>>
<<external input device>>

:DoorSensor

<<variant>>
<<external output device>>

:Heating Element

<<variant>>
<<external output device>>

:Display

Timer Event

DoorInput WeightInput KeypadInput

Heating Element Output

Display Output

startCooking(level)

stopCooking

sendControlReque
st (doorEvent)

sendControlReque
st (weightEvent)

sendControlReque
st (keypadEvent)

displayPrompt(promptI
D) displayTime(time)

JAIST Koichiro Ochimizu

Outline of PLUS (Product Line Architecture)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define “Product Line Architecture”,
adding optional components and
variant components.

JAIST Koichiro Ochimizu

Distributed software architecture for the microwave oven software product line

<<product
line
system>>

MicrowaveOven
System

<<variant>>
<<output component>>

:MicrowaveDisplay

<<kernel>>
<<input component>>

:DoorComponen

<<variant>>
<<input component>>

:WeightComponent

<<kernel-param-vp>>
<< input component>>

:Keypad Component

<<kernel>>
<<control component>>
:MicrowaveControl

<<variant>>
<< output

component>>
:HeatingElement

Coponent

<<kernel>>
<<external timer>>

:Clock

<<kernel>>
<<external input device>>

:Keypad

<<variant>>
<<external input device>>

:WeightSensor

<<kernel>>
<<external input device>>

:DoorSensor

<<variant>>
<<external

output device>>
:HeatingElement

<<variant>>
<<external output device>>

:Display

Timer Event Door Input Weigh Input Keypad Input

Heating Element Output

Display Output

startCooking(level)

stopCooking

sendControlReque
st (doorEvent)

sendControlReque
st (weightEvent)

sendControlReque
st (keypadEvent)

displayPrompt(promptI
D) displayTime(time)

<<optional>>
<< output

component>>
:Lamp

Component

<<optional>>
<< output

component>>
:Turntable
Component

<<optional>>
<< output

component>>
:Beeper

Component

<<optional>>
<<external

output device>>
:Lamp

<<optional>>
<<external

output device>>
:Turntable

<<optional>>
<<external

output device>>
:Beeper

Lamp Output Turntable Outpu Beeper Output

switchOn()

switchOff()

startTurning()

stopTurning() beep()

JAIST Koichiro Ochimizu

Outline of PLUS (Product Line Architecture)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define ports of each component

JAIST Koichiro Ochimizu

Microwave oven software product line architecture

RMWControl

PMWControl

<<kernel>>
<<input component>>

DoorComponent

<<kernel>>
<<control component>>

MicrowaveControl

<<variant>>
<<input component>>

WeightComponent

<<kernel-param-vp>>
<<input component>>

KeypadComponent
RMWControlRMWControl

<<variant>>
<<output

component>>
HeatingElement

Component

<<optional>>
<<output

component>>
Lamp

Component

<<optional>>
<<output

component>>
Turntable

Component

<<optional>>
<<output

component>>
Beeper

Component

<<variant>>
<<output

component>>
MicrowaveDisplay

RHeater RLamp RTurntable RBeeper
RDisplay

PHeater PLamp PTurntable PBeeper
PDisplay

<<product line system>>

Microwave Oven System

JAIST Koichiro Ochimizu

Outline of PLUS (Component Interface Definition)

① Use Case
Modeling and

Variation Points
Analysis

②Feature
Modeling

③ Feature
Dependency

Analysis

Use Cases
with
Variation
Points

Features,
Feature/Use
Case dependency
table

Feature

Dependency

Diagram

④Static Modeling

Problem
Domain

Context class Diagram

⑤Dynamic Modeling

Communication Diagram

State Machine Diagram
⑥Impact Analysis

for every feature

⑦Class Definition
(Reuse Categorization)

Kernel Use Case
Optional Use Cases
Variation Points

Class Diagram and

Feature/Class
Dependency Table

Architectural
Patterns

Kernel Classes

Communication
Diagram

⑧Component
Structuring

Component
based
Architecture
(Kernel)

⑨ Message
Interface

Design

Architectural
Communication
Patterns

Concurrent Communication Diagram

Component
Structuring
Criteria

⑩Product Line
Evolution

Optional Components

Variant Components

Product Line

Architecture

⑪Component
Interface

Design

Components

（PIM)

for kernel use case Revised Communication Diagram

Revised State Machine

Diagram

Define provides/required interfaces
For each port of the component

JAIST Koichiro Ochimizu

Ports and interfaces of
the Microwave Oven Control component

<<kernel-param-vp>>
<<state dependent control>>

:MicrowaveOvenControl

RTurntable

RBeeper RDisplay

RHeater RLamp RBeeper RDisplay

PMWControl

RTODTime
r

ITODTimer

ROvenData

ROvenTime
r IOvenTimer

IMWControl

IHeatingElemen
t

ILamp ITurntable IBeeper IDisplay

IWeightDat
a
IPowerData

ITODData

ICookingTimeDat
a
IRecipeData

JAIST Koichiro Ochimizu

Application Engineering in PLUS

①Selection of
related features

Subset of (Feature Dependency
Diagram, Feature/Usecase
Dependencies, Context Diagram)

Feature
Dependency
Diagram

④Selection of
related Dynamic

model

Subset of
Context
Diagram

③Selection of
related devices

Revised Communication
Diagram

Revised State Machines

Class Diagram

Feature/Class Dependencies

Subset of (Communication
Diagram, State Machines)

Use case

⑤Selection of
related classes

⑥Selection of
Related Components

Components

Product line architecture
Subset of Components

（PIM)

②Fix the
variation

point

Subset of class Diagram

Subset of Feature/Class

Dependencies

Core Assets
Product Specific: Use
cases; classes,
components

JAIST Koichiro Ochimizu

Application Engineering in PLUS

①Selection of
related features

Subset of (Feature Dependency
Diagram, Feature/Usecase
Dependencies, Context Diagram)

Feature
Dependency
Diagram

④Selection of
related Dynamic

model

Subset of
Context
Diagram

③Selection of
related devices

Revised Communication
Diagram

Revised State Machines

Class Diagram

Feature/Class Dependencies

Subset of (Communication
Diagram, State Machines)

Use case

⑤Selection of
related classes

⑥Selection of
Related Components

Components

Product line architecture
Subset of Components

（PIM)

②Fix the
variation

point

Subset of class Diagram

Subset of Feature/Class

Dependencies

Select features involved in a
specific product and then Fix
the Product-specific Use Case
Model and Context Diagram

JAIST Koichiro Ochimizu

Selected Features

<<default feature>>
English

<<alternative feature>>
French

<<alternative feature>>
Spanish

<<alternative feature>>
German

<<alternative feature>>
Italian

<<exactly-one-of-feature group>>
Display Language

<<common feature>>
Microwave Oven Kernel

<<optional feature>>
Turn Table

<<optional feature>>
Beeper

<<optional feature>>
Minute Plus

<<optional feature>>
Light

<<exactly-one-of-feature group>>
Display Unit

<<exactly-one-of-feature group>>
Heating Element

｛mutually exclusive feature｝

<<exactly-one-of-feature group>>
Weight Sensor

<<alternative feature>>
Multi-line Display

<<default feature>>
One-line Display

<<optional feature>>
TOD Clock

<<parameterized feature>>
12/24 Hour Clock

<<default feature>>
One-level Heating

<<alternative feature>>
Multi-level Heating

<<optional feature>>
Power Level

<<default feature>>
Boolean Weight

<<alternative feature>>
Analog Weigh

<<optional feature>>
Recipe

requiresrequires

requires

requires

requires
requires requires

requires

｛mutually exclusive feature｝

mutually includes mutually
includes

mutually
includes

requires

mutually includes

requires

｛mutually exclusive feature｝
｛mutually exclusive feature｝

JAIST Koichiro Ochimizu

Microwave Oven
Kernel

common Cook Food Kernel

Light optional Cook Food VP Light

Turn Table optional Cook Food VP Turn Table

Beeper optional Cook Food VP Beeper

Minute Plus optional Cook Food VP Minute Plus

One-line Display default Cook Food VP Display Unit

Multi-line Display alternative Cook Food VP Display Unit

Feature Name Feature Use Case Use Case Variation
Category Name Category/ Point

Variation Name
Point (vp)

Feature/Use Case Dependencies

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Selected Use Cases

<<kernel>>
Cool Food

User Timer

<<optional>>
Set Time of Day

<<optional>>
Display Time of Day

<<optional>>
Cook Food with Recipe

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Selected External Environments
• The product line context class diagram defines the boundary between a product line

system (i.e. any member of the product line) and the external environment(i.e. the
external classes to which members of the product line have to interface)

<<kernel>>
<<external timer>>

Clock

<<kernel>>
<<external output device>>

HeatingElement

<<optional>>
<<external output device>>

Beeper

<<kernel>>
<<external output device>>

DisplayUnit

<<kernel>>
<<external input device>>

Keypad

<<kernel>>
<<external input device>>

WeightSensor

<<kernel>>
<<external input device>>

DoorSensor

<<optional>>
<<external output device>>

Turntable

<<optional>>
<<external output device>>

Lamp

<<product line system>>
MicrowaveOven

ProductLineSystem

１

１

１

0..１

0..１

0..１

１

１

１

１

１

１

１

１

１

１

１

１

Inputs
to

Inputs
to

Inputs
to

Inputs
to

Output
s to

Output
s to

Output
s to

Output
s to

Output
s to

Hassan Gomaa, “Designing Software Product Lines with UML”, Addison-Wesley, 2005.
JAIST Koichiro Ochimizu

Application Engineering in PLUS

①Selection of
related features

Subset of (Feature Dependency
Diagram, Feature/Usecase
Dependencies, Context Diagram)

Feature
Dependency
Diagram

④Selection of
related Dynamic

model

Subset of
Context
Diagram

③Selection of
related devices

Revised Communication
Diagram

Revised State Machines

Class Diagram

Feature/Class Dependencies

Subset of (Communication
Diagram, State Machines)

Use case

⑤Selection of
related classes

⑥Selection of
Related Components

Components

Product line architecture
Subset of Components

（PIM)

②Fix the
variation

point

Subset of class Diagram

Subset of Feature/Class

Dependencies

Customize the dynamic models(communication
diagram and state machines) and the related classes

JAIST Koichiro Ochimizu

Communication Diagram for the application

<<external input device>>
:Clock

<<external output device>>
:One-level HeatingElement

<<external output device>>
:Multi--lineDisplay

<<external input device>>
:Keypad

<<external input device>>
:BooleanWeightSensor

<<external input device>>
:Door Sensor

1, 9: Door Opened Input
3:Door Closed Input

<<product line system>>
MicrowaveOvenApplication

<<input device interface>>
:DoorSensorInterface

<<input device interface>>
:BooleanWeightSensorInterface

<< input device interface>>
:KeypadInterface <<timer>>

:OvenTimer

<< output device interface>>
:One-level HeatingElement

Interface
<<output device interface>>
:Multi-lineDisplay Interface

<<state dependent control>>
:MicrowaveOvenControl

<<entity>>
:OvenData

2, 10: Weight Input 4: Cooking Time Key Input
5*:Numeric Key Input
6: Start Key Input

7*,8: Timer
Event

1.1, 9.1: Door Opened
3.1:Door Closed

2.1: Item placed
10.1:Item removed

4.1: Cooking Time Selected
5.1:Cooking Time Entered
6.1: Start 7.1, 8.1: Decrement

Cooking Time

7.2: Cooking Time
Left
8.2:Finished

5.2a: Update Cooking Time

6.2: Start Cooking
8.4::Stop Cooking 4.2: Prompt for Time

5.2:Display Cooking Time

6.2a: Start Timer

8.3: Timer Expired

7.3: Update Cooking Time Display
8.3a::Display End Prompt

<<entity>>
:FrenchDisplay

Prompts
4.3, 8.3a.1 Read

4.4, 8.3a.2: Prompt6.3: Start Cooking Output
8.5::Stop Cooking Ouput

4.5: Time Prompt
5.3, 7.4:Display Time
8.3a.3: End Prompt

<<output device
interface>>

: LampInterface

<<external output
device>>
: Lamp

1.2, 6.2b, 9.2[light]:
Switch On

3.2, 8.4b[light]:
Switch Off

1.3, 6.2b.1, 9.3:
Switch on Output

3.3, 8.4b.1: Switch
Off Ouput

<<external output
device>>
: Beeper

<<output device
interface>>

: BeeperInterface

8.4a[beeper]: Beep

8.4a.1:Beep Output

JAIST Koichiro Ochimizu

Feature/class Dependencies
Feature Feature Class Class Class
Name Category Name Category Parameter

Light optional Lamp Interface optional

Microwave Oven Control kernel-param-vp light:Boolean

Turntable optional Turntable Interface optional

kernel-param-vp turntable:Boolean

Beeper optional Beeper Interface optional

Microwave Oven Control kernel-param-vp beeper:Boolean

Minute Plus optional Keypad Interface kernel-param-vp minuteplus:Boolean

Microwave Oven Control kernel-param-vp minuteplus:Boolean

Oven Timer kernel-param-vp minuteplus:Boolean

Oven Data kernel-param-vp minuteplus:BooleanJAIST Koichiro Ochimizu

Application Engineering in PLUS

①Selection of
related features

Subset of (Feature Dependency
Diagram, Feature/Usecase
Dependencies, Context Diagram)

Feature
Dependency
Diagram

④Selection of
related Dynamic

model

Subset of
Context
Diagram

③Selection of
related devices

Revised Communication
Diagram

Revised State Machines

Class Diagram

Feature/Class Dependencies

Subset of (Communication
Diagram, State Machines)

Use case

⑤Selection of
related classes

⑥Selection of
Related Components

Components

Product line architecture
Subset of Components

（PIM)

②Fix the
variation

point

Subset of class Diagram

Subset of Feature/Class

Dependencies

Select the related components, setting the value of parameters.
Integrate them into one using Product line architecture

JAIST Koichiro Ochimizu

Distributed software architecture for the microwave oven software product line

<<product
line
system>>

MicrowaveOven
System

<<variant>>
<<output component>>

:Multi-line
Microwave Display

<<kernel>>
<<input component>>

:DoorComponen

<<variant>>
<<input component>>

:BooleanWeightComponent

<<kernel-param-vp>>
<< input component>>

:Keypad Component

<<kernel>>
<<control component>>
:MicrowaveControl

<<variant>>
<< output

component>>
:One-level

HeatingElement
Coponent

<<kernel>>
<<external timer>>

:Clock

<<kernel>>
<<external input device>>

:Keypad

<<variant>>
<<external input device>>

:BooleanWeightSensor

<<kernel>>
<<external input device>>

:DoorSensor

<<variant>>
<<external

output device>>
:One-levelHeatingElement

<<variant>>
<<external output device>>

:Multi-line Display

Timer Event Door Input Weigh Input Keypad Input

Heating Element Output

Display Output

startCooking(level)

stopCooking

sendControlReque
st (doorEvent)

sendControlReque
st (weightEvent)

sendControlReque
st (keypadEvent)

displayPrompt(promptI
D) displayTime(time)

<<optional>>
<< output

component>>
:Lamp

Component

<<optional>>
<< output

component>>
:Beeper

Component

<<optional>>
<<external

output device>>
:Lamp

<<optional>>
<<external

output device>>
:Beeper

Lamp Output Beeper Output

switchOn()

switchOff() beep()

JAIST Koichiro Ochimizu

Evaluation of PLUS

• PLUS provides with the well-organized way
to determine features, classes, and components
and to define the clear relationships among
them.

• PLUS only supports to make a core asset from
scratch. It does not support to build the core
asset by mining legacy software or purchasing
COTS

JAIST Koichiro Ochimizu

