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Notations for Reuse
“Inheritance”
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Basic Concepts for Reuse

• Super Class and Sub Class
• Generalization
• Class Library
• Multiple Inheritance
• Abstract Class
• Class Inheritance and Interface Inheritance
• Delegation and Object Composition
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How can we promote reuse ?

• Class Inheritance or Sub-classing
• Interface Inheritance or Sub-typing
• Delegation and Object Composition
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Super class and Sub class

• Apple is-a fruit
• Orange is-a fruit
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generalization
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Class inheritance

• We need not re-define the attributes and 
operations which are already defined in a 
super class.
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Class Library

• A class library is a group of classes 
organized as a tree using “is-a” relationship.
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Knowledge Accumulation by Inheritance

stockproblem
domain 2

class drawer{ }

class stock{ }
April 2006 drawer
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A Bproblem
domain 3

class Ａ extend{ }

class B extend{ }
May 2007

purse moneyproblem
domain 1

class purse{ }

class money{ }
May 2005
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Overriding

– Extension
– Restriction
– Speed up
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Multiple Inheritance

something to eat

volume

apple

commodity

price
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Class inheritance and
Interface Inheritance

• Class inheritance: copy attributes and operations 
defined in a super class into its subclass. We only 
add new attributes and operations specific to the 
sub class. A sub class may override a super class 
features (attributes and operations) by defining a 
feature with the same name.

• Interface inheritance: inherit only the signature 
defined in an abstract operation. We prepare the 
different implementation of method in each 
concrete sub class. And we invoke them with the 
same signature.
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Signature of Operation

Domain Range
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Signature of Operation

• Signature: a return-type, a name, zero or more parameters 

Car

+ registration number : String
- data : CarData
+ speed : Integer
+ direction : Direction
- administration : String

+ drive(speed: Integer, direction: Direction)
+ getData(): CarData

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu



Abstract class
and

Interface inheritance
• An abstract class is a class that has an 

abstract operation
• An abstract operation only defines a 

signature but does not define a method.
• A method is defined in a subclass with the 

same signature.
• We can invoke different methods with the 

same interface.
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Interface Inheritance
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Observer

Subject
Attach(Observer)
Detach(Observer)
Notify()

Observer
Update()

ConcreteSubject
subjectState
GetState()

ConcreteObserver
ObserverState

Update()

*

Observers

Subject

observerState=
subject->Getstate()

return sujectstate

for all o in
observers{

o -> Update()}

“ConcreteSubject notifies its observers whenever a change occurs that could 
make its observers’ state inconsistent with its own. After being Informed of a 
change in the concrete subject,  ConcreteObserver uses this information to 
reconcile its state with that of the subject.”

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns”,  Addison-Wesley Publishing
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Implementation of Association

1 1

1 many

many many
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cs:ConcreteSubject
subjectState

GetState()
Attach(Observer)
Detach(Observer)
Notify()

co1:ConcreteObserver1
ObserverState

Update()

observerState=
subject->Getstate()

return sujectstate

for all o in
observers{

o -> Update()}

co2:ConcreteObserver2
ObserverState

Update()

observerState=
subject->Getstate()

An example of an object diagram
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Class Inheritance and 
Interface Inheritance

• Class inheritance
– Define attributes and operations only for the difference 

between superclass and subclass in Modeling
– Programming to the difference in Programming

• Interface Inheritance
– Open Closed Principles (B. Meyer)
– open to extension
– closed to modification
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Delegation
• Inheritance is not almighty

– is-a-role-played-by
• The same person can play the multiple roles.

– A crew is sometimes a passenger
– A crew sometimes sells a ticket

• It is ridiculous to define sub classes for all combination
• A person sometimes plays multiple roles

person

passengerticket sellercrew
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Object Composition
• We can extend the behavior of class crew, 

ticket seller and passenger by using 
delegation and object composition

• Delegation is more general than inheritance.
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Achievements and Issues
Achievements

Topics

Easy-to-change of Data Structure (Information Hiding)
Programming-to-difference           (Class Inheritance)
Easy-to-evolve (Interface inheritance)

Coarse-grained Reuse
( Design Patterns, Frameworks)

Distributed Computing
( Middleware, Component-ware)
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Exercise
• Review the content of my lecture by answering the 

following simple questions. Please describe the 
definition of each technical term.

1. What is a super class?
2. What is a generalization?
3. What is a class inheritance?
4. What is an overriding?
5. What is an abstract operation?
6. What is an abstract class?
7. What is an interface inheritance?
8. What is a delegation?
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Exercise
• Discuss extensibility in object-oriented 

approach using the words; abstract class, 
concrete class, interface inheritance, 
signature, and Open Closed Principle.
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