
Contents(1)
• Goal and Scope
• Basic Concepts on OOT

– Basic Concepts to represent the world
– Basic Concepts for Reuse
– Information Hiding Principle and Java Program
– Superiority of OOT

• Modeling Techniques
– Static Model: Class and Association
– Dynamic Model: State Machine
– Dynamic Model: Interaction Diagram
– Concurrency Description: Active Object and Multi-thread

Programming
– Outline of UML2.0 JAIST Koichiro Ochimizu

Notations for Reuse
“Inheritance”

JAIST Koichiro Ochimizu

Basic Concepts for Reuse

• Super Class and Sub Class
• Generalization
• Class Library
• Multiple Inheritance
• Abstract Class
• Class Inheritance and Interface Inheritance
• Delegation and Object Composition

JAIST Koichiro Ochimizu

How can we promote reuse ?

• Class Inheritance or Sub-classing
• Interface Inheritance or Sub-typing
• Delegation and Object Composition

JAIST Koichiro Ochimizu

Super class and Sub class

• Apple is-a fruit
• Orange is-a fruit

Sub
class

fruit

apple orange

Super
class

generalization

Ochimizu, Higashida,”Object Modeling”, Addison-Wesley Publishers JapanJAIST Koichiro Ochimizu

Class inheritance

• We need not re-define the attributes and
operations which are already defined in a
super class.

A1
F1

A2
F2

A3
F3

A1
A3
F1
F3

Ochimizu, Higashida,”Object Modeling”, Addison-Wesley Publishers Japan

<<instanceOf>>

JAIST Koichiro Ochimizu

Class Library

• A class library is a group of classes
organized as a tree using “is-a” relationship.

Ochimizu, Higashida,”Object Modeling”, Addison-Wesley Publishers Japan

JAIST Koichiro Ochimizu

Knowledge Accumulation by Inheritance

stockproblem
domain 2

class drawer{ }

class stock{ }
April 2006 drawer

purse drawer money stock

A Bproblem
domain 3

class Ａ extend{ }

class B extend{ }
May 2007

purse moneyproblem
domain 1

class purse{ }

class money{ }
May 2005

case content

A B

JAIST Koichiro Ochimizu

Overriding

– Extension
– Restriction
– Speed up

Figure
rotate

circle
rotate

Figure
scale

ellipse
scale

JAIST Koichiro Ochimizu

Multiple Inheritance

something to eat

volume

apple

commodity

price

Ochimizu, Higashida,”Object Modeling”, Addison-Wesley Publishers JapanJAIST Koichiro Ochimizu

Class inheritance and
Interface Inheritance

• Class inheritance: copy attributes and operations
defined in a super class into its subclass. We only
add new attributes and operations specific to the
sub class. A sub class may override a super class
features (attributes and operations) by defining a
feature with the same name.

• Interface inheritance: inherit only the signature
defined in an abstract operation. We prepare the
different implementation of method in each
concrete sub class. And we invoke them with the
same signature.

JAIST Koichiro Ochimizu

Signature of Operation

Domain Range

f

D1 x D2 x …x Dn R

JAIST Koichiro Ochimizu

Signature of Operation

• Signature: a return-type, a name, zero or more parameters

Car

+ registration number : String
- data : CarData
+ speed : Integer
+ direction : Direction
- administration : String

+ drive(speed: Integer, direction: Direction)
+ getData(): CarData

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

Abstract class
and

Interface inheritance
• An abstract class is a class that has an

abstract operation
• An abstract operation only defines a

signature but does not define a method.
• A method is defined in a subclass with the

same signature.
• We can invoke different methods with the

same interface.
JAIST Koichiro Ochimizu

Interface Inheritance

A1
F1

A2
F1

A3
F1

Ochimizu, Higashida,”Object Modeling”, Addison-Wesley Publishers Japan
JAIST Koichiro Ochimizu

Observer

Subject
Attach(Observer)
Detach(Observer)
Notify()

Observer
Update()

ConcreteSubject
subjectState
GetState()

ConcreteObserver
ObserverState

Update()

*

Observers

Subject

observerState=
subject->Getstate()

return sujectstate

for all o in
observers{

o -> Update()}

“ConcreteSubject notifies its observers whenever a change occurs that could
make its observers’ state inconsistent with its own. After being Informed of a
change in the concrete subject, ConcreteObserver uses this information to
reconcile its state with that of the subject.”

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns”, Addison-Wesley Publishing

JAIST Koichiro Ochimizu

Implementation of Association

1 1

1 many

many many
JAIST Koichiro Ochimizu

cs:ConcreteSubject
subjectState

GetState()
Attach(Observer)
Detach(Observer)
Notify()

co1:ConcreteObserver1
ObserverState

Update()

observerState=
subject->Getstate()

return sujectstate

for all o in
observers{

o -> Update()}

co2:ConcreteObserver2
ObserverState

Update()

observerState=
subject->Getstate()

An example of an object diagram

JAIST Koichiro Ochimizu

Class Inheritance and
Interface Inheritance

• Class inheritance
– Define attributes and operations only for the difference

between superclass and subclass in Modeling
– Programming to the difference in Programming

• Interface Inheritance
– Open Closed Principles (B. Meyer)
– open to extension
– closed to modification

JAIST Koichiro Ochimizu

Delegation
• Inheritance is not almighty

– is-a-role-played-by
• The same person can play the multiple roles.

– A crew is sometimes a passenger
– A crew sometimes sells a ticket

• It is ridiculous to define sub classes for all combination
• A person sometimes plays multiple roles

person

passengerticket sellercrew
JAIST Koichiro Ochimizu

Object Composition
• We can extend the behavior of class crew,

ticket seller and passenger by using
delegation and object composition

• Delegation is more general than inheritance.

人

passengerticket seller
0..10..1 0..1

1
1

Uses
Uses refer

crew

Delegator Delegate

Uses
1

1 1

user usee

Uses

JAIST Koichiro Ochimizu

Achievements and Issues
Achievements

Topics

Easy-to-change of Data Structure (Information Hiding)
Programming-to-difference (Class Inheritance)
Easy-to-evolve (Interface inheritance)

Coarse-grained Reuse
(Design Patterns, Frameworks)

Distributed Computing
(Middleware, Component-ware)

JAIST Koichiro Ochimizu

Exercise
• Review the content of my lecture by answering the

following simple questions. Please describe the
definition of each technical term.

1. What is a super class?
2. What is a generalization?
3. What is a class inheritance?
4. What is an overriding?
5. What is an abstract operation?
6. What is an abstract class?
7. What is an interface inheritance?
8. What is a delegation?

JAIST Koichiro Ochimizu

Exercise
• Discuss extensibility in object-oriented

approach using the words; abstract class,
concrete class, interface inheritance,
signature, and Open Closed Principle.

JAIST Koichiro Ochimizu

