
Contents(1)
• Goal and Scope
• Basic Concepts on OOT

– Basic Concepts to represent the world
– Basic Concepts for Reuse
– Information Hiding Principle and Java Program
– Superiority of OOT

• Modeling Techniques
– Static Model: Class and Association
– Dynamic Model: State Machine
– Dynamic Model: Interaction Diagram
– Concurrency Description: Active Object and Multi-thread

Programming
– Outline of UML2.0 JAIST Koichiro Ochimizu

Superiority of Object Oriented
approach

Koichiro Ochimizu

School of Information Science

JAIST
JAIST Koichiro Ochimizu

Framework of Study on Software Engineering

• (1) Declare one's research interest definitely and briefly
by observing and abstracting the superficial problematic
situations in a real world
(2) Set up a hypothesis on a Solution and its Effect by
abstracting an Essential Problem
(3) Give a name both for an abstraction of problem and
an effect of solution
(4) Change your concerns to basic theoretical
considerations apart from a real world. Concentrate your
attentions on constructing a solution by using proper
tools such as algebraic expressions, algorithms,
languages, software tools and so on.
(5) Evaluate effects of research results by performing a
field test in a real world to find new requirements for
technology evolution/revolutionJAIST Koichiro Ochimizu

Structured Programming
(1) Human beings do not have enough ability to develop the large-

scaled software system systematically with assuring the
correctness of the program during development

(2) Pearl and Necklace (Assume a virtual machine that can solve
the problem directly using ideal instruction set and data structure.
Construct lower level virtual machines which can simulate the
instruction of the upper level virtual machine, by performing
decomposition of instruction and data type exclusively) .
Stepwise Refinement using one-entry and one-exit control
structure during decomposition to enable each refinement to do
independently to control the complexity of the work.

(3) Structured Programming
(4) Pascal, C
(5) The effect of data type refinement is scattered over a program. JAIST Koichiro Ochimizu

Information Hiding or Data
Abstraction

• (1) The effects of modifying a data structure is
scattered over a program. It makes modification of
a program troublesome.
(2) Effects of modified data structure is localized,
if we can package both data structure and related
operations in the same place of a source code.
(3) Information Hiding or Data Abstraction,
localization of change effects
(4) Parnas's Module
(5) Easiness of change of data structures was
achieved.
(6) The same or similar descriptions appear in a
source code redundantlyJAIST Koichiro Ochimizu

Abstract Data Type or Class

• (1) The same or similar descriptions appear in a
source code redundantly, i.e. we should write code
for each instance, if we realize the information
hiding principle without type definition.
(2) We can modify a code only once by defining a
Parnas's Module as a type definition.
(3) abstract data type (Class and Instances)
(4) New Languages(e.g. CLU)
(5) There are lot of similar class definitions in a
source code.

JAIST Koichiro Ochimizu

(implementation) Inheritance
• (1) There are lot of similar class definitions in a

source code.
(2) By arranging the similarity and the differences
among classes as a tree structure, we can reuse an
parent's implementation.
(3) (implementation) Inheritance
(4) Class Libraries for programming, UI,
application domains
(5) It is difficult to maintain class libraries
especially for class libraries of some application
domain, because inheritance exposes a subclass to
details of its parent's implementation.

JAIST Koichiro Ochimizu

Interface inheritance
(or sub-typing)

• (1) Implementation Inheritance is not always
useful for promoting reuse(super class sensitibity)
(2) Programming to an Interface, not an
Implementation. single interface definition by
abstract class and different method
Implementation by concrete classes)
(3) Interface inheritance(or sub-typing)
(4) abstract class and concrete class
(5) Interface definition is not so stable for a long
time

JAIST Koichiro Ochimizu

Object Composition

• (1) Inheritance is not almighty for reuse. It is
ridiculous to define sub classes for all possible
combination in the case of “is-a-role-played-by”.
(2) Prepare components(objects) with primitive
functions. Facade combine them to response the
original message from the other object(delegation)
(3) Object Composition and Delegation
(4) Providing component library and connector
class
(5) Third-party components are not always reliable

JAIST Koichiro Ochimizu

Design Patterns

• (1) Granularity of reuse is too small when we
reuse classes. Experts on OOP use the recurring
patterns, collaborations of several classes
(2) Applying the Information Hiding Principles
more generally. Reuse of collaboration of objects
as micro architectures.
(3) Design Patterns
(4) Catalogue of Design Patterns
(5) too many patterns

JAIST Koichiro Ochimizu

Achievement

• Superiority of object oriented approach
– Localization of change effect(data abstraction or

information hiding)
– Removal of redundant description of Code by type

definition(abstract data type)
– Reuse by Sub Classing
– Extensibility by Sub Typing

JAIST Koichiro Ochimizu

Relationships

Implementation

Domain
dependency

Abstract(natural languages or
diagrams）

Concrete(machine readable)

Independent

Detailed
Domain
taxonomyApplications

Domain
models

Architectural
styles

Design
pattern

Frameworks

Kits

System Development path

New
Framework
development

Kits
Development

[38]W.M.Tepfenhart and J.J. Cusick,”A Unified Object Topology”, IEEE Software Jan/Feb. pp.31-35,1997.JAIST Koichiro Ochimizu

