
Contents(1)
• Goal and Scope
• Basic Concepts on OOT

– Basic Concepts to represent the world
– Basic Concepts for Reuse
– Information Hiding Principle and Java Program
– Superiority of OOT

• Modeling Techniques
– Static Model: Class and Association
– Dynamic Model: State Machine
– Dynamic Model: Interaction Diagram
– Concurrency Description: Active Object and Multi-thread

Programming
– Outline of UML2.0

JAIST Koichiro Ochimizu

UML2（UML2.0）

James Rumbaugh, Ivar Jacobson, Grady Booch,
“The Unified Modeling Language Reference Manual, Second Edition”,

Addison-Wesley, 2005.

Koichiro Ochimizu
Japan Advanced Institute of

Science and technologies
School of Information Science

JAIST Koichiro Ochimizu

New Features of UML2.0
• Sequence Diagram constructs and notation based largely on the

ITU（International Telecommunication Union）Message
Sequence Chart standard, adapted to make it more object-
oriented. MDA

• Decoupling of activity modeling concepts from state machines
and use of notation popular in the business modeling
community. Business Modeling

• Contextual modeling constructs for the internal composition of
classes and collaborations. Theses constructs permit both loose
and strict encapsulation and wiring of internal structures from
smaller parts. Component Based Software Development

• Repositioning of components as design constructs and artifacts
as physical entities that are deployed CBSD

JAIST Koichiro Ochimizu

Structured Control constructs in a Sequence Diagram
sd ticketing

box of office：Box Officekiosk：Kiosk
Credit card service:
Credit Card Service

request(count, performance)

show availability (seat-list)

select(seat)

loop

demand payment (cost)

insert card (card number)

charge (card number, cost)

eject card

authorized

reject

unauthorized

print tickets (performance ,seats)alt

lifeline

message

JAIST Koichiro Ochimizu

propose show

produce?

schedule show

publicize
show

buy scripts
and music hire artists build sets design

lighting
make

costumes

rehearse

dress rehearsal

perform

initial node
decision

activity final node
activity

fork

join

completion
transition

Activity View (Activity Diagram)

• An activity shows the flow
of control among the
computational activities
involved in performing a
calculation or a workflow.
Activities are shown on
activity diagramsJAIST Koichiro Ochimizu

Structured Classifier

J.Rumbaugh, I.Jacobson, G.Booch,”The Unified Modeling Language Reference Manual, Second Edition” Addison-Wesley 2005

name: Type

name1:Type

port

connector

part

• A structured classifier is a classifier with internal structure.
• It contains a set of parts connected by connectors.
• An part has a type and a multiplicity within its container.
• An connector is a contextual relationship between two parts in a structured classifier.
• Structured classifiers may be tightly encapsulated by forcing all interactions between
external environment and the internal parts to pass through ports.
• A port is an interaction point with well-defined interface.
• Messages received by a port are automatically forwarded to the part.
• Each port has a set of provides interfaces and required interfaces that define its
external interactions.

JAIST Koichiro Ochimizu

Meta model
• A metamodel is the description of a model
• A UML metamodel defines the structure of UML models.
• A UML structured classifier is a type of classifier that is similar to a class. The

difference being, it shows the internal wiring of classes through ports,
connectors, and parts.

• A classifier is different from a class. In fact, classes are types of classifiers.
Classifiers are the parent class of several elements in the UML, including
classes, use cases, artifacts, and components.

a:account

balance=2000
withdraw
deposit

M0account

balance

withdraw
deposit

M1
class
name

operation attribute
**

M2

JAIST Koichiro Ochimizu

Design View (Internal structure diagram)
Box Office

seller: TicketSeller

guide: PerformanceGuide

db:PerformanceDB [*]

sellTickets

1

*

J.Rumbaugh, I.Jacobson, G.Booch,”The Unified Modeling Language Reference Manual, Second Edition” Addison-Wesley 2005

• Each port has a set of provides interfaces and required interfaces that define its external
interactions. A provided interface specifies the services that a message to the port may
request. A required interface specifies the services that a message from the port may
require from the external environment.JAIST Koichiro Ochimizu

Design View (component diagram)

• A component diagram is a kind of structured classifier, so its
internal structure may be defined on an internal structure
diagram.

• A component diagram shows the components in a system –
that is, the software units from which the application is
constructed. A small circle attached to a component or a class
is a provided interface- a coherent set of services made
available by a component or class.

• A small semicircle attached to a component or a class is a
required interface – a statement that the component or class
needs to obtain services from an element that provides them.

JAIST Koichiro Ochimizu

Component Definition

:CreditCardChargers : Tickets

:TicketSeller

: KioskInterface : ClerkInterface

: ManagerInterface

subscriptionSales IndividualSales

groupSales

required interface

purchase
status

applyCharges
manage

provides interface

component definition

port delegation connector

component
use

provided interface
required interface

supplier

client

CreditCardAgency

customerAccess clerkAccessJAIST Koichiro Ochimizu

Component Diagram
(is a kind of structured classifier)

CreditCardCharges
Tickets

KioskInterface ClerkInterface

ManagerInterface

subscriptionSales individualSales

required interface

purchase

status

applyCharges

manage

provided interface
on port

component
definition

port

provided interface

customerAccess clerkAccess

groupSales

individualSalessubscriptionSales

TicketSeller
groupSales

subscriptionSales IndividualSales

purchase
charge

charge
status

CreditCardAgencyapplyCharges

manage customerAccess clerkAcsess

compatible interface

JAIST Koichiro Ochimizu

UML2.0 Views
• Major Area,

– View
• Diagram

– Main Concepts
• structural

– static view：class diagram
– design view：internal structure (connector, interface, part, port, provided

interface, role, required interface), collaboration diagram (connector,
collaboration use, role), component diagram (component, dependency, port,
provided interface, realization, required interface, subsystem)

– use case view：usecase diagram
• dynamic

– state machine view：state machine diagram
– activity view：activity diagram
– interaction view：sequence diagram, communication diagram

• physical
– deployment view：deployment diagram

• model management
– model management view：package diagram
– profile：package diagram

JAIST Koichiro Ochimizu

Other Modifications

JAIST Koichiro Ochimizu

Use Case View (Use case diagram)

buy
tickets

buy
subscription

make
charges

survey
sales

Box Office

<<include>>
<<include>>relationship

use case

actor
subject

Clerk

Credit card
Service

Supervisor

Kiosk

JAIST Koichiro Ochimizu

Class Content
<<stereotypeName>>

Cname

+attrName:Cname = expression
#attrName:Cname
-attrName: Cname[*]

+opName(p:C1, q:C2): C3
<<constructor>>

opName(v:Cname = value)

Responsibility
text description

J.Rumbaugh, I.Jacobson, G.Booch,”The Unified Modeling Language Reference Manual, Second Edition” Addison-Wesley 2005

visibility

optional
named
compartment

stereotype icon
stereotype name
class name (italics for
abstract)
public attribute with initial
value
protected attribute
private attribute with
multiplicity many
public concrete operation
with return type
stereotype on subsequent
operations
abstract operation with
default value
compartment name
compartment list element

<<stereotypeName>>
tagName = value stereotype application

tagged value
JAIST Koichiro Ochimizu

Static View (class diagram)
Customer

name: String
phone: String

add (name, phone)

Reservation
date:Date

Subscription Series
series:integer

Individual
Reservation

Ticket
available: Boolean
sell(c:Customer)

exchange

Show
name: String

Performance
date: Date
time:TOD

seat:String

1

*

0..1 0..1

3..6

1

10..1

1

1..*

{xor}

show

performance

owner

purchased

attribute

static operation

rolenames (association end names)association

generalization

constraint multiplicity

qualifier

operations
JAIST Koichiro Ochimizu

Active Class

Cname

Attr: Atype

Op(par:Type):Rtype

J.Rumbaugh, I.Jacobson, G.Booch,”The Unified Modeling Language Reference Manual, Second Edition” Addison-Wesley 2005JAIST Koichiro Ochimizu

Relationship

J.Rumbaugh, I.Jacobson, G.Booch,”The Unified Modeling Language Reference Manual, Second Edition” Addison-Wesley 2005

<<kind>>

association

generalization

realization

dependency

Aname

JAIST Koichiro Ochimizu

Design View (collaboration diagram)
• A collaboration is a contextual relationship among

a set of objects that work together to fullfill some
purpose.

• It contains a collection of roles – contextual slots
within a generic pattern that can be played by, or
bound to, individual objects.

TheatreSales

kiosk: Kiosk[*] :BoxOffice terminal: SalesTerminal[*]
1 *

*

1

JAIST Koichiro Ochimizu

Interaction View

• The interaction view describes sequence of
message exchanges among the parts of a system.

• An interaction is based on a structured classifier or
a collaboration.

• A role is a slot that may be filled by objects in a
particular us of an interaction.

• Interaction view shows the flow of control across
many objects and is displayed in two diagrams
focused on different aspects: sequence diagrams
and communication diagrams. The communication
diagram is called a collaboration diagram in
UML1.5.

JAIST Koichiro Ochimizu

Interaction View (Sequence Diagram)
sd ticketing

box of office：Box Officekiosk：Kiosk
Credit card service:
Credit Card Service

request(count, performance)

show availability (seat-list)

select(seat)

loop

demand payment (cost)

insert card (card number)

charge (card number, cost)

eject card

authorized

reject

unauthorized

print tickets (performance ,seats)
alt

lifeline

message

JAIST Koichiro Ochimizu

Interaction View (communication diagram)

kiosk

ticketSeller

performanceGuide

role bound to active objects

link

connector bound to persistent links

message

connector bound to transitive links

guide: DBCluster

db db: PerformanceDB[*]
3: seat-list:=lock(count)

6: claim(seats)

7:unlock(seat-list)

1: request(count, performance)
4: offer(seat-list)
5: buy(seats)
8: comfirm(seats, cost)

2: db := findDB(performance)
guide

JAIST Koichiro Ochimizu

State Machine View (state machine diagram)

Available Locked Sold

subscribe/assign()

exchange(other)/assign();reset(other)

timed out/unlock()

select/lock()

reject/unlock()

accept/buy()
stateinitial state

trigger event event parameter effect

transition

JAIST Koichiro Ochimizu

Deployment View (deployment diagram – descriptor level)

<<artifact>>
CustomerInterface.c

KioskInterface ClerkInterface

Customer Clerk

Kiosk
<<artifact>>
ClerkInterface.c

SalesTerminal

CreditCardAgency Manager

TicketServer <<artifact>>
CreditCardCharges.jar

<<artifact>>
ManagerInterface.jar

<<artifact>>
TicketSeller.jar

<<artifact>>
TicketDB

1 1
* *

artifact

actor

node

dependency communication
association

<<manifest>><<manifest>>

JAIST Koichiro Ochimizu

Deployment View (deployment diagram – instance level)

Main St. kiosk: Kiosk

headquarters: TicketServer

River St. box office: SalesTerminal Telesales office: SalesTerminal

Valley Mail kiosk: Kiosk

node instance

node name node type
communication link

JAIST Koichiro Ochimizu

Model Management View (package diagram)

Operations

Purchasing

Planning

Publicity

Box Office

Ticket Sales

Scheduling

Customer
Records

Ticket
Records

Accounting Payroll

dependency

package

package

JAIST Koichiro Ochimizu

Model Management View (Profile)

• The profile mechanism permits limited changes to UML
without modifying the underlying metamodel.

• UML includes three main extensibility constructs:
constraints, stereotypes, and tagged

Show
name: String

<<database>>
TicketDB

<<database>>
Scheduling

{names for one season
must be unique}

TicketDB

<<authorship>>
author = “Frank Martin”

Due = Dec.31,2009

constraint

stereotype

application

stereotype icon

tagged values

JAIST Koichiro Ochimizu

