
Content(2)
• Object-oriented Software Development Methodology

– Outline of Unified Process and Use-case Driven Approach
– Elevator Control System:

Problem Description and Use-case Model
– Elevator Control System:

Finding of Problem Domain Objects
– Elevator Control System:

Sub-System Design and Task Design
– Elevator Control System:

Performance Evaluation
• Product Line Technology

– Feature modeling
• Aspect Oriented Software Design
• Contribution of OOT in Software Engineering

– History of SE Technologies and Contribution of OOT
in SE field JAIST Koichiro Ochimizu

The world view：We can
represent the domain
simply by “A set of objects
and their interaction)

Abstraction of entities in the
domain from the viewpoint
of satisfy-one’s-hunger

h2

h1 a1

a2

hungry
person

Description of
possibility

state of
hunger

eat

apple

volume

eatensatisfy
hunger

Definition of static structure
and dynamic behavior

：hungry person ：apple

public class hungry-
person {

int state-of-hunger

void eat ()

}

public class apple {

int volume

void eaten ()

}

Program

Reproduction of the
Domain in the main
memory

state-of-
hunger

eat()

state-of-
hunger
eat()

volume

eaten()

volume

eaten()

Four worlds in OOT

abstraction specification
implementation instanciation

JAIST Koichiro Ochimizu

Relationship
between

Methods and UML

UML

Method 1 Method 2 Method 3

Description

JAIST Koichiro Ochimizu

Diagrams of UML are used for
• Very popular now and help us make and analyze:

– Use-case Diagrams for defining functional requirements
– Communication Diagrams for finding analysis classes
– Class Diagrams for designing the static structure
– Sequence Diagrams for defining objects interaction
– State Diagrams for defining the behavior of each object
– Deployment Diagrams for allocating objects to machines
– Component Diagrams for packaging

JAIST Koichiro Ochimizu

Use-case Driven approach

JAIST Koichiro Ochimizu

Use Case

System

Actor

Use Case Description

Event Sequences between actors
and the system

Functional Requirements

JAIST Koichiro Ochimizu

Use Case Model
Use Case Model : A use case model represents the
functional requirements and consists of actors and use
cases. A use case model helps the customer, users, and
developers agree on how to use the system.

Actor: An actor is someone or something that interacts
with system.

System: Black box provided with use cases

Use Case: A use case specifies a sequence of actions that
the system can perform and that yields an observable result
of value to a particular actor.

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

JAIST Koichiro Ochimizu

What is an Actor ?
• An actor is someone or something that interacts

with the system.
• The actor is a type (a class), not an instance.
• The actor represents a role, not an individual user

of the system.
• Actors can be ranked. A primary actor is one that

uses the primary functions of the system. A
secondary actor is one that uses secondary
functions of the system, those functions that
maintain the system, such as managing data bases,
communication, backups, and other administration
tasks.

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.JAIST Koichiro Ochimizu

What is a Use Case ?

• A use case represents a complete
functionality as perceived by an actor.

• A use case is always initiated by an actor.
• A use case provides values to an actor.
• Use cases are connected to actors through

associations (communication association).

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.
JAIST Koichiro Ochimizu

Use Case

Actor

Use Case Description

Event Sequences between actors and
the system

Collaboration

Collaboration

Collaboration

Analysis of inside of the system

JAIST Koichiro Ochimizu

Use case

Actor

Use Case Description

Event Sequences between actors and the System

Collaboration

Collaboration

Collaboration

Collaboration
Diagram

Event Flow
Description

Analysis Classes

JAIST Koichiro Ochimizu

Analysis Stereotypes

Dispenser Cashier Interface
Boundary

Account
Entity

Withdrawal
Control

In the analysis model, three different stereotypes on
classes are used: <<boundary>>, <<control>>, <<entity>>.

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999. JAIST Koichiro Ochimizu

Analysis Stereotypes
• <<boundary>> classes in general are used to

model interaction between the system and its
actors.

• <<entity>> classes in general are used to model
information that is long-lived and often persistent.

• <<control>> classes are generally used to
represent coordination, sequencing, transactions,
and control of other objects. And it is often used
to encapsulate control related to a specific use
case.

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

JAIST Koichiro Ochimizu

Use Case

Actor

Class Diagram (Analysis Class + Design Class)

JAIST Koichiro Ochimizu

Use case

Actor

Final Step of Modeling (Definition of Static Structure
and Dynamic Behavior)

JAIST Koichiro Ochimizu

Exercise
• Review the content of my lecture by answering the following

simple questions. Please describe the definition of each technical
term.

1. Please describe the relationship between UML and methods.
2. Why do we define the use case model?
3. What is a use case description ?
4. What is an collaboration of UML?
5. What are analysis (or problem domain) classes?
6. What are design classes?
7. How can we define the interaction among objects using UML

notations?
8. How can we define the behavior (or lifecycle) of an object using

UML notations?
9. What is a stereotype of UML?

JAIST Koichiro Ochimizu

