
Proof Scores in the OTS/CafeOBJ Method

Kazuhiro Ogata1,2 and Kokichi Futatsugi2

1 NEC Software Hokuriku, Ltd.
ogatak@acm.org

2 Japan Advanced Institute of Science and Technology (JAIST)
kokichi@jaist.ac.jp

Abstract. A way to write proof scores showing that distributed systems
have invariant properties in algebraic specification languages is described,
which has been devised through several case studies. The way makes it
possible to divide a formula stating an invariant property under discus-
sion into reasonably small ones, each of which is proved by writing proof
scores individually. This relieves the load to reduce logical formulas and
can decrease the number of subcases into which the case is split in case
analysis.
Keywords: algebraic specification, CafeOBJ, observational transition
system, proof scores, the NSLPK authentication protocol, verification.

1 Introduction

Equations are the most basic logical formulas and equational reasoning is the
most fundamental way of reasoning[1], which can moderate the difficulties of
proofs that might otherwise become too hard to understand. Algebraic speci-
fication languages make it possible to describe systems in terms of equations
and verify that systems have properties by means of equational reasoning. Writ-
ing proofs, or proof scores in algebraic specification languages has been mainly
promoted by researchers of the OBJ community[2].

We have been successfully applying such algebraic techniques to modeling,
specification and verification of distributed systems such as distributed mutual
exclusion algorithms[3, 4] and security protocols[5, 6]. In our method called the
OTS/CafeOBJ method, systems are modeled as observational transition sys-
tems, or OTSs, which are described in CafeOBJ[7, 8], an algebraic specification
language. The CafeOBJ description of OTSs can be regarded as restricted be-
havioral specification[9]. We verify that OTSs, which are models of systems, have
properties by writing proof scores in CafeOBJ.

In this paper, we describe a way to write proof scores showing that distributed
systems have invariant properties, which are most basic and important among
various kinds of properties because proofs of other kinds of properties often
need invariants. We have devised the way through several case studies[3–6]. The
way makes it possible to divide a formula stating an invariant property under
discussion into reasonably small ones, each of which is proved by writing proof
scores individually. This relieves the load to reduce logical formulas and can



decrease the number of subcases into which the case is split in case analysis.
The proofs of the small formulas may depend on each other in the sense that the
proof of one uses some other to strengthen inductive hypotheses and vice versa.

The rest of the paper is organized as follows. Section 2 mentions CafeOBJ
and OTSs. Section 3 describes compositional proofs of invariants. A way of writ-
ing proof scores based on the compositional proofs of invariants is described in
Sect. 4. Section 5 uses the NSLPK authentication protocol[10, 11] as an example
to demonstrate how to write proof scores. Section 6 discusses the advantages of
our method and concludes the paper.

2 Preliminaries

2.1 CafeOBJ in a Nutshell

CafeOBJ[7, 8] can be used to specify abstract machines as well as abstract data
types. A visible sort denotes an abstract data type, while a hidden sort the state
space of an abstract machine. There are two kinds of operators to hidden sorts:
action and observation operators. An action operator can change states of an
abstract machine. Only observation operators can be used to observe the inside
of an abstract machine. An action operator is basically specified with equations
by describing how the value of each observation operator changes. Declarations
of observation and action operators start with bop or bops, and those of other
operators with op or ops. Declarations of equations start with eq, and those
of conditional ones with ceq. The CafeOBJ system rewrites a given term by
regarding equations as left-to-right rewrite rules.

2.2 Observational Transition Systems

We assume that there exists a universal state space called Υ . We also suppose
that each data type used has been defined beforehand, including the equivalence
between two data values v1, v2 denoted by v1 = v2. A system is modeled by
observing, from the outside of each state of Υ , only quantities that are relevant
to the system and how to change the quantities by state transition. An OTS
(observational transition system) can be used to model a system in this way. An
OTS S = 〈O, I, T 〉 consists of:

– O : A set of observable values. Each o ∈ O is a function o : Υ → D, where D
is a data type and may be different for each observable value. Given an OTS
S and two states υ1, υ2 ∈ Υ , the equivalence between two states, denoted by

υ1 =S υ2, w.r.t. S is defined as υ1 =S υ2
def
= ∀o ∈ O.o(υ1) = o(υ2).

– I : The set of initial states such that I ⊂ Υ .
– T : A set of conditional transition rules. Each τ ∈ T is a function τ : Υ/=S →
Υ/=S on equivalence classes of Υ w.r.t. =S . Let τ(υ) be the representative
element of τ([υ]) for each υ ∈ Υ and it is called the successor state of υ
w.r.t. τ . The condition cτ for a transition rule τ ∈ T , which is a predicate on
states, is called the effective condition. The effective condition is supposed



to satisfy the following requirement: given a state υ ∈ Υ , if cτ is false in υ,
namely τ is not effective in υ, then υ =S τ(υ).

An OTS is described in CafeOBJ. Observable values are denoted by CafeOBJ
observations, and transition rules by CafeOBJ actions.

Multiple similar observable values and transition rules may be indexed. Gen-
erally, observable values and transition rules are denoted by oi1,...,im and τj1,...,jn

,
respectively, provided that m,n ≥ 0 and we assume that there exist data types
Dk such that k ∈ Dk (k = i1, . . . , im, j1, . . . , jn). For example, an integer array
a possessed by a process p may be denoted by an observable value ap, and the
increment of the ith element of the array may be denoted by a transition rule
inc-ap,i.

An execution of S is an infinite sequence υ0, υ1, . . . of states satisfying
3:

– Initiation : υ0 ∈ I.
– Consecution : For each i ∈ {0, 1, . . .}, υi+1 =S τ(υi) for some τ ∈ T .

A state is called reachable w.r.t. S iff it appears in an execution of S. Let RS be
the set of all the reachable states w.r.t. S.

All properties considered in this paper are invariants4, which are defined as
follows:

invariant p
def
= (∀υ ∈ I. p(υ)) ∧ (∀υ ∈ RS .∀τ ∈ T .(p(υ)⇒ p(τ(υ)))) ,

which means that the predicate p is true in any reachable state of S. Let x be
all free variables except for one for states in p. We suppose that invariant p is
interpreted as ∀x.(invariant p) in this paper.

2.3 Description of OTSs in CafeOBJ

An OTS S is described in CafeOBJ. The universal state space Υ is denoted by a
hidden sort, say H. An observable value oi1,...,im ∈ O is denoted by a CafeOBJ
observation operator. We assume that the data types Dk (k = i1, . . . , im) and D
are described in initial algebra and there exist visible sorts Vk (k = i1, . . . , im)
and V corresponding to the data types. The CafeOBJ observation operator de-
noting oi1,...,im is declared as follows:

bop o : H Vi1 . . . Vim -> V .

Any initial state in I is denoted by a constant (an operator with no argu-
ments), say init, which is declared as follows:

3 If we want to discuss liveness properties, an execution of S should also satisfy Fair-

ness : for each τ ∈ T , there exist an infinite number of indexes i ∈ {0, 1, . . .} such
that υi+1 =S τ(υi).

4 In addition to invariant properties, there are unless, stable, ensures and leads-to prop-
erties, which are inspired by UNITY[12]. The way to write proof scores described in
this paper can also be applied to unless, stable, ensures properties.



op init : -> H

Suppose that the initial value of oi1,...,im is f(i1, . . . , im). This is expressed by
the following equation:

eq o(init,Xi1 , . . . ,Xim) = f(Xi1 , . . . ,Xim) .

Xk (k = i1, . . . , im) is a CafeOBJ variable for Vk and f(Xi1 , . . . ,Xim) is a term
denoting f(i1, . . . , im).

A transition rule τj1,...,jn
∈ T is denoted by a CafeOBJ action operator. We

assume that the data types Dk (k = j1, . . . , jn) are described in initial algebra
and there exist visible sorts Vk (k = j1, . . . , jn) corresponding to the data types.
The CafeOBJ action operator denoting τj1,...,jn

is declared as follows:

bop a : H Vj1 . . . Vjn -> H .

If τj1,...,jn
is applied in a state in which it is effective, the value of oi1,...,im

may be changed, which can be described in CafeOBJ generally as follows:

ceq o(a(W,Xj1 , . . . ,Xjn),Xi1 , . . . ,Xim) = e-a(W,Xj1 , . . . ,Xjn ,Xi1 , . . . ,Xim)

if c-a(W,Xj1 , . . . ,Xjn) .

W is a CafeOBJ variable for H and Xk (k = j1, . . . , in) is a CafeOBJ vari-
able for Vk. a(W,Xj1 , . . . ,Xjn

) denotes the successor state of W w.r.t. τj1,...,jn
.

e-a(W,Xj1 , . . . ,Xjn
,Xi1 , . . . ,Xim) denotes the value of oi1,...,im in the successor

state. c-a(W,Xj1 , . . . ,Xjn
) denotes the effective condition cτj1,...,jn

of τj1,...,jn
.

If τj1,...,jn
is applied in a state in which it is not effective, the value of any

observable value is not changed. Therefore all we have to do is to declare the
following equation:

ceq a(W,Xj1 , . . . ,Xjn) = W if not c-a(W,Xj1 , . . . ,Xjn) .

If the value of oi1,...,im is not affected by applying τj1,...,jn
in any state (re-

gardless of the truth value of cτj1,...,jn
), the following equation may be declared:

eq o(a(W,Xj1 , . . . ,Xjn),Xi1 , . . . ,Xim) = o(W,Xi1 , . . . ,Xim) .

3 Compositional Proofs of Invariants

Suppose that we prove that a system has an invariant property. The system is
first modeled as an OTS, which is described in CafeOBJ. Let H be the hidden
sort denoting the state space Υ , and let the invariant be invariant pred 1(s,x1),
where s is a free variable for states and x1 the other free variables. It is often
impossible to prove invariant pred 1(s,x1) alone. Suppose that it is possible to
prove that pred1(s,x1), together with n − 1 other predicates, is invariant to
the OTS. Let the n− 1 predicates be pred 2(s,x2), . . . , predn(s,xn). That is, we
prove invariant (pred1(s,x1)∧. . .∧predn(s,xn)), instead of the original invariant,
from which the original invariant can be deduced. Let pred(s,x1, . . . ,xn) be
pred1(s,x1) ∧ . . . ∧ predn(s,xn).



Although sometimes invariants may be proved by reduction and/or case anal-
ysis only, we often need to use induction, especially induction on the number of
transition rules applied or executed.

Suppose that invariant pred(s,x1, . . . ,xn) is proved by induction on the num-
ber of transition rules applied. Let us consider an inductive case in which it is
shown that any transition rule denoted by a CafeOBJ action operator a preserves
pred(s,x1, . . . ,xn). To this end, it is sufficient to show this formula:

pred(s,x1, . . . ,xn)⇒ pred(a(s,y),x1, . . . ,xn) (1)

for any s,x1, . . . ,xn,y, where y is the arguments of the CafeOBJ action operator
except for s. It is often the case that we cannot prove the formula as it is because
the inductive hypothesis pred(s,x1, . . . ,xn) is too weak. Then, we can strengthen
the inductive hypothesis by adding a formula, say SIH, of the following form:

pred(s, t11, . . . , t
1
n) ∧ . . . ∧ pred(s, tm1 , . . . , tmn ) ,

where ti1, . . . , t
i
n (i = 1, . . . ,m) are lists of terms. Then, the proof of (1) can be

replaced with the proof of the following formula:

(SIH ∧ pred(s,x1, . . . ,xn))⇒ pred(a(s,y),x1, . . . ,xn) .

This formula can be proved compositionally. The proof of the formula is equiv-
alent to the proofs of the following n formulas:

(SIH ∧ pred(s,x1, . . . ,xn))⇒ pred1(a(s,y),x1) ,
...

(SIH ∧ pred(s,x1, . . . ,xn))⇒ predn(a(s,y),xn) .

(2)

Moreover, it suffices to prove the following n formulas, if possible, instead of the
above n formulas:

pred1(s,x1)⇒ pred1(a(s,y),x1) ,
...

predn(s,xn)⇒ predn(a(s,y),xn) ,

(3)

because the ith formula of (2) can be deduced from the ith formula of (3), where
1 ≤ i ≤ n.

Some of (3) cannot be proved as they are because their inductive hypotheses
are too weak. Let pred i(s,xi) ⇒ pred i(a(s,y),xi), where 1 ≤ i ≤ n, be one of
such formulas. Suppose that pred j(s,uj), where 1 ≤ j ≤ n and uj is xj , t

1
j , . . . ,

or tmj , can be used to strengthen the inductive hypothesis pred i(s,xi) in order
to prove the formula. The proof of the formula can be replaced with the proof
of the following formula5:

(pred j(s,uj) ∧ pred i(s,xi))⇒ pred i(a(s,y),xi) ,
5 If invariant pred j(s, xj) has been proved independent of invariant pred i(s, xi), the
proof can also be replaced with the proof of the following:

(pred j(a(s, y),uj) ∧ pred i(s, xi)) ⇒ pred i(a(s, y), xi) .

In this case, the jth invariant is used as usual lemma for the proof of the ith invariant.



because the ith formula of (2) can be deduced from this formula. Generally what
strengthens the inductive hypothesis can be pred j1

(s,uj1) ∧ . . . ∧ pred jk
(s,ujk

),

where 1 ≤ j1, . . . , jk ≤ n and uj (j = j1, . . . , jk) is xj , t
1
j , . . . , or tmj . Let SIH i be

this formula to strengthen the inductive hypothesis pred i(s,xi). Then, the proof
of the ith formula of (3) can be replaced with the proof of the following:

(SIH i ∧ pred i(s,xi))⇒ pred i(a(s,y),xi) . (4)

Moreover, we may have to split the case into multiple subcases in order to
prove (4). Suppose that the case is split into l subcases. The l subcases are
denoted by l formulas case i1, . . . , case

i
l, which should satisfy the following:

(casei1 ∨ . . . ∨ caseil) = true.

Then, the proof of (4) can be replaced with the proofs of the following l formulas:

(casei1 ∧ SIH i ∧ pred i(s,xi))⇒ pred i(a(s,y),xi) ,
...

(caseil ∧ SIH i ∧ pred i(s,xi))⇒ pred i(a(s,y),xi) .

(5)

SIH i may not be needed for some subcases.
From what has been discussed, it follows that the n invariants can be proved

compositionally even if they depend on each other, namely that the ith invariant
is used to strengthen inductive hypotheses for the proof of the jth invariant and
vice versa. The original invariant invariant pred 1(s,x1), which we would like to
prove, may be divided into multiple invariants. Proof scores in the OTS/CafeOBJ
method are based on what has been discussed, especially (5), and therefore, we
can write proof scores of the n invariants individually.

4 Proof Scores of Invariants

Let us consider that we write proof scores of the n invariants discussed in the pre-
vious section. We first write a module, say INV, where pred i(s,xi) (i = 1, . . . , n)
is expressed as a CafeOBJ term as follows:

op inv1 : H V1 -> Bool

· · ·

op invn : H Vn -> Bool

eq inv1(W,X1) = pred1(W,X1) .

· · ·

eq invn(W,Xn) = predn(W,Xn) .

Vi (i = 1, . . . , n) is a list of visible sorts corresponding to xi, W is a CafeOBJ
variable for the hidden sort H and Xi (i = 1, . . . , n) is a list of CafeOBJ variables
for Vi. The term predi(W,Xi) (i = 1, . . . , n) denotes pred i(s,xi).

In the module, we also declare constants xi (i = 1, . . . , n) for Vi. In proof
scores, a constant that is not constrained is used for denoting an arbitrary object



for the intended sort. For example, if we declare a constant x for Nat that is the
visible sort for natural numbers in a proof score, x can be used to denote an
arbitrary natural number. Such constants are constrained with equations, which
make it possible to split the state space, or the case. Suppose that the case is
split into two: one where x equals 0 and the other where x does not, namely that
x is greater than 0. The former is expressed by declaring the following equation:

eq x = 0 .

The latter is expressed by declaring the following equation:

eq (x > 0) = true .

We are going to mainly describe the proof score of the ith invariant. Let init

denote any initial state of the system under consideration. All we have to do to
show that pred i(s,xi) holds in any initial state is to write the CafeOBJ code,
which looks like this:

open INV

red invi(init,xi) .

close

We next write a module, say ISTEP, where two constants s, s′ are declared,
denoting any state and the successor state after applying a transition rule in
the state, and the predicates to prove in each inductive case are expressed as
CafeOBJ terms as follows:

op istep1 : V1 -> Bool

· · ·

op istepn : Vn -> Bool

eq istep1(X) = inv1(s,X1) implies inv1(s
′,X1) .

· · ·

eq istepn(X) = invn(s,Xn) implies invn(s
′,Xn) .

These predicates correspond to (3) in the previous section.
In each inductive case, the case is usually split into multiple subcases with

basic predicates declared in the CafeOBJ specification. Suppose that we prove
that any transition rule denoted by a CafeOBJ action operator a preserves
pred i(s,xi). As described in the previous section, the case is supposed to be
split into the l subcases case i1, . . . , case

i
l. Then, the CafeOBJ code showing that

the transition rule preserves pred i(s,xi) for case
i
j (j = 1, . . . , l) looks like this:

open ISTEP

Declare constants denoting arbitrary objects.

Declare equations denoting case i
j .

Declare equations denoting facts if necessary.

eq s′ = a(s,y) .

red istepi(xi) .

close



y is a list of constants that are used as the arguments of the CafeOBJ action
operator a, which are declared in this CafeOBJ code and denote arbitrary objects
for the intended sorts. In addition to y, other constants may be declared in the
CafeOBJ code for the case split. Equations are used to express case ij . If necessary,
equations denoting facts about data structures used, etc. may be declared as well.
The equation with s′ as its left-hand side specifies that s′ denotes the successor
state after applying any transition rule denoted by a in the state denoted by s.

If istepi(xi) is reduced to true, it is shown that the transition rule preserves
pred i(p,x) in the subcase j, which corresponds to the proof of the jth formula
of (5) in the previous section. Otherwise, we have to strengthen the inductive
hypothesis in the way described in the previous section. Let SIHi be the term
denoting SIH i. Then, instead of istepi(xi), we reduce the following term

(SIHi and invi(s,xi)) implies invi(s
′,xi),

or

SIHi implies istepi(xi).

5 Example: The NSLPK Authentication Protocol

The NSLPK authentication protocol[10, 11] is the modified version of the NSPK
authentication protocol[13] by G. Lowe. The protocol can be described as follows:

Msg1 p→ q : Eq(np, p)
Msg2 q → p : Ep(np, nq, q)
Msg3 p→ q : Eq(nq)

Suppose that each principal is given a private/public key pair, and the public
counterpart is available to all principals but the private counterpart to its owner
only. Given a message m, the one encrypted with the public key given to a
principal p is denoted by Ep(m).

If a principal p wants a principal q to authenticate herself/himself and wants
to authenticate q, she/he newly generates a nonce np and sends it to q, together
with her/his ID, encrypted with q’s public key. On receipt of the message, q
first decrypts it, obtains a nonce and a principal ID, and checks if the principal
ID matches the sender of the message. Then, q newly generates a nonce nq and
sends it to p, together with the received nonce and her/his ID, encrypted with
p’s public key. On receipt of the message, p first decrypts it and obtains two
nonces and a principal ID, and checks if the principal ID equals the sender of
the message and one of the nonces is the exact one that p has sent to the sender
in this session, which is supposed to convince p that the responder is really q.
Then, p sends the other nonce to q, encrypted with q’s public key. On receipt of
the message, q decrypts it, obtains a nonce and checks if the nonce is the exact
one that q has sent to the sender in this session, which supposedly assures q that
the initiator is really p.



5.1 Modeling and Description of the Protocol

We suppose that there exist untrustable principals as well as trustable ones.
Trustable principals exactly follow the protocol, but untrustable ones may do
something against the protocol as well, namely eavesdropping and/or faking
messages. The combination and cooperation of untrustable principals is modeled
as the most general intruder à la Dolev and Yao[14]. The intruder can do the
following:

– Eavesdrop any message flowing in the network.
– Glean any nonce and cipher from the message; however the intruder can

decrypt a cipher only if she/he knows the key to decrypt.
– Fake and send messages based on the gleaned information; however the in-

truder cannot guess unknown nonces.

We first describe the basic data types used to model the protocol. The visible
sorts and the corresponding data constructors are as follows:

– Principal denotes principals.
– Random denotes random numbers, which make nonces unguessable and

unique.
– Nonce denotes nonces. Given principals p, q and a random number r, n(p, q, r)

denotes a nonce created by p for q. Projections creator, forwhom and random

return the first, second and third arguments.
– Cipher1 denotes ciphers used in Msg1’s. Given principals p, q and a nonce n,

enc1(p, n, q) denotes Ep(n, q). Projections key, nonce and principal return
the first, second and third arguments.

– Cipher2 denotes ciphers used in Msg2’s. Given principals p, q and nonces
n1, n2, enc2(p, n1, n2, q) denotes Ep(n1, n2, q). Projections key, nonce1,
nonce2 and principal return the first, second, third and fourth arguments.

– Cipher3 denotes ciphers used in Msg3’s. Given a principal p and a nonce
n, enc3(p, n) denotes Ep(n). Projections key and nonce return the first and
second arguments.

In addition to those visible sorts, we use the visible sort Bool that denotes
truth values, declared in the built-in module BOOL, where the constants true

and false with usual meanings, and the operators not_ for negation, _and_ for
conjunction, _or_ for disjunction and _implies_ for implication are declared.
An underscore _ indicates where an argument is put.

The three operators (data constructors) to denote the three kinds of messages
are declared as follows:

op m1 : Principal Principal Principal Cipher1 -> Message
op m2 : Principal Principal Principal Cipher2 -> Message
op m3 : Principal Principal Principal Cipher3 -> Message

The visible sort Message denotes messages. Projections creator, sender and
receiver return the first, second and third arguments of each message. A pro-
jection cipheri (i = 1, 2, 3) returns the fourth argument of Msgi. A predicate
mi? checks if a given message is Msgi. The first, second and third arguments of



each constructor mean the actual creator, the seeming sender and the receiver of
the corresponding message. The first argument is meta-information that is only
available to the outside observer and the principal that has sent the correspond-
ing message, and that cannot be forged by the intruder, while the remaining
arguments may be forged by the intruder.

The network is modeled as a bag (multiset) of messages, which is used as the
storage that the intruder can use. The network is also used as each principal’s
private memory that reminds the principal to send messages, of which the first
argument is the principal. Any message that has been sent or put once into the
network is supposed to be never deleted from the network because the intruder
can replay the message repeatedly, although the intruder cannot forge the first
argument. Consequently, the emptiness of the network means that no messages
have been sent.

The intruder tries to glean four kinds of quantities from the network. The
four kinds of quantities are nonces and three kinds of ciphers. The collections of
those quantities gleaned by the intruder are denoted by the following operators:

op cnonce : Network -> ColNonce op cenc1 : Network -> ColCipher1
op cenc2 : Network -> ColCipher2 op cenc3 : Network -> ColCipher3

The visible sort Network denotes networks and the visible sort ColX denotes col-
lections of quantities denoted by the visible sort X. Those operators are defined
with equations.

cnonce is defined as follows:

eq N \in cnonce(void) = (creator(N) = intruder) .
ceq N \in cnonce(M,NW) = true

if m1?(M) and key(cipher1(M)) = intruder and nonce(cipher1(M)) = N .
ceq N \in cnonce(M,NW) = true

if m2?(M) and key(cipher2(M)) = intruder and nonce1(cipher2(M)) = N .
ceq N \in cnonce(M,NW) = true

if m2?(M) and key(cipher2(M)) = intruder and nonce2(cipher2(M)) = N .
ceq N \in cnonce(M,NW) = true

if m3?(M) and key(cipher3(M)) = intruder and nonce(cipher3(M)) = N .
ceq N \in cnonce(M,NW) = N \in cnonce(NW)

if not(m1?(M) and key(cipher1(M)) = intruder and nonce(cipher1(M)) = N) and
not(m2?(M) and key(cipher2(M)) = intruder and nonce1(cipher2(M)) = N) and
not(m2?(M) and key(cipher2(M)) = intruder and nonce2(cipher2(M)) = N) and
not(m3?(M) and key(cipher3(M)) = intruder and nonce(cipher3(M)) = N) .

The constant void denotes the empty bag and the operator _,_ denotes the data
constructor of nonempty bags. The operator _\in_ is the membership predicate
of bags. The equations say that nonces created by the intruder are always avail-
able to the intruder, and a nonce created by one of the other principals is available
to the intruder iff there exists a message in the network, and the cipher in the
message is encrypted with the intruder’s public key and includes the nonce.

cenc1 is defined as follows:

eq E1 \in cenc1(void) = false .
ceq E1 \in cenc1(M,NW) = true

if m1?(M) and not(key(cipher1(M)) = intruder) and E1 = cipher1(M) .
ceq E1 \in cenc1(M,NW) = E1 \in cenc1(NW)

if not(m1?(M) and not(key(cipher1(M)) = intruder) and E1 = cipher1(M)) .

The equations say that no ciphers appearing in Msg1’s are available if the net-
work is empty, and the intruder glean such a cipher from the network iff there



exists a Msg1 in the network and the cipher in the message is not encrypted with
the intruder’s public key. If the cipher is encrypted with the intruder’s public
key, the intruder can rebuild the cipher and it is not necessary to collect it. cenc2
and cenc3 can be defined likewise.

We are about to describe the OTS modeling the protocol. Two observable
values and nine kinds of transition rules are used. The corresponding CafeOBJ
observations and actions are as follows:

-- observations
bop ur : System -> URand
bop nw : System -> Network
-- actions
bop sdm1 : System Principal Principal Random -> System
bop sdm2 : System Principal Random Message -> System
bop sdm3 : System Principal Random Message Message -> System
bop fkm11 : System Principal Principal Cipher1 -> System
bop fkm12 : System Principal Principal Nonce -> System
bop fkm21 : System Principal Principal Cipher2 -> System
bop fkm22 : System Principal Principal Nonce Nonce -> System
bop fkm31 : System Principal Principal Cipher3 -> System
bop fkm32 : System Principal Principal Nonce -> System

The hidden sort System denotes the state space. The observation ur denotes the
set of used random numbers and the observation nw denotes the network. The
first three actions formalize sending messages following to the protocol, and the
remaining the intruder’s faking messages.

The equations to define sdm2 are as follows:

op c-sdm2 : System Principal Random Message -> Bool
eq c-sdm2(S,Q,R,M)

= (M \in nw(S) and m1?(M) and receiver(M) = Q and key(cipher1(M)) = Q and
principal(cipher1(M)) = sender(M) and not(R \in ur(S))) .

--
ceq ur(sdm2(S,Q,R,M)) = R ur(S) if c-sdm2(S,Q,R,M) .
ceq nw(sdm2(S,Q,R,M))

= m2(Q,Q,sender(M),enc2(sender(M),nonce(cipher1(M)),n(Q,sender(M),R),Q)) , nw(S)
if c-sdm2(S,Q,R,M) .

ceq sdm2(S,Q,R,M) = S if not c-sdm2(S,Q,R,M) .

The operator c-sdm2 denotes the effective condition of any transition rule de-
noted by sdm2. c-sdm2(s, q, r,m) means that in a state s, there exists a Msg1
m in the network that is addressed to q, the cipher in m is encrypted with q’s
public key, the principal in the cipher equals the seeming sender, and the nonce
generated by q for replying to m is really fresh. If this condition holds, the Msg2
denoted by the term m2(. . .) is put into the network. The juxtaposition operator
__ of ‘R ur(S)’ is the data constructor of nonempty sets.

The equations to define fkm22 are as follows:

op c-fkm22 : System Principal Principal Nonce Nonce -> Bool
eq c-fkm22(S,P,Q,N1,N2) = N1 \in cnonce(nw(S)) and N2 \in cnonce(nw(S)) .
--
eq ur(fkm22(S,P,Q,N1,N2)) = ur(S) .
ceq nw(fkm22(S,P,Q,N1,N2)) = m2(intruder,P,Q,enc2(Q,N1,N2,P)) , nw(S)

if c-fkm22(S,P,Q,N1,N2) .
ceq fkm22(S,P,Q,N1,N2) = S if not c-fkm22(S,P,Q,N1,N2) .

The equations say that if two nonces are available to the intruder, the intruder
can fake and send a Msg2. The constant intruder denotes the intruder.



5.2 Proof Scores of Nonce Secrecy

We describe the proof scores showing that nonces are really secret in the proto-
col, which means that the intruder cannot obtains nonces generated by another
principal for yet another one illegally. This can be expressed by the following
invariant:

invariant (n \in cnonce(nw(s)) implies
(creator(n) = intruder or forwhom(n) = intruder)) .

(6)

It is impossible to prove this invariant alone. We need six more invariants, which
are as follows:

invariant (e1 \in cenc1(nw(s)) implies not(key(e1) = intruder)) , (7)

invariant (e2 \in cenc2(nw(s)) implies not(key(e2) = intruder)) , (8)

invariant (e3 \in cenc3(nw(s)) implies not(key(e3) = intruder)) , (9)

invariant (e1 \in cenc1(nw(s)) and principal(e1) = intruder

implies nonce(e1) \in cnonce(nw(s))) ,
(10)

invariant (e2 \in cenc2(nw(s)) and principal(e2) = intruder

implies nonce(e2) \in cnonce(nw(s))) ,
(11)

invariant (creator(n) = intruder implies n \in cnonce(nw(s))) . (12)

The proof of (6) uses (7), (8), (9), (10) and (11) to strengthen inductive hy-
potheses. The proofs of (10) and (11) use (7), (8), (9) and (12) to strengthen
inductive hypotheses. (7), (8), (9) and (12) can be proved independently.

In this paper, we partly show the proof scores showing that any transition
rule denoted by sdm2 preserves (6), which uses (10) to strengthen inductive
hypotheses. As described in Sect. 4, (6) and (10) are first expressed as CafeOBJ
terms, which are denoted by the operators inv1 and inv2 that are declared and
defined as follows:

op inv1 : System Nonce -> Bool
op inv2 : System Cipher1 -> Bool
eq inv1(S,N) = (N \in cnonce(nw(S))

implies (creator(N) = intruder or forwhom(N) = intruder)) .
eq inv2(S,E1) = (E1 \in cenc1(nw(S)) and principal(E1) = intruder

implies nonce(E1) \in cnonce(nw(S))) .

A constant n for Nonce and a constant e1 for Cipher1 are also declared. The
predicates to prove in each inductive case are next expressed as CafeOBJ terms,
which are denoted by the operators istep1 and istep2 that are declared and
defined as follows:

op istep1 : Nonce -> Bool
op istep2 : Cipher1 -> Bool
eq istep1(N) = inv1(s,N) implies inv1(s’,N) .
eq istep2(E1) = inv2(s,E1) implies inv2(s’,E1) .

The constants s, s’ for System are also declared.



In the inductive case under consideration, the case is split into six subcases
based on the following predicates:

bp1
def
= c-sdm2(s,p10,r10,m10)

bp2
def
= (sender(m10) = intruder)

bp3
def
= (n(p10,intruder,r10) = n)

bp4
def
= (nonce(cipher1(m10)) = n)

bp5
def
= (p10 = intruder)

The constants p10 for Principal, r10 for Random and m10 for Message are used
as the arguments of c-sdm2. Then, the case is split as follows:

1 ¬bp2

2 bp3

3 bp1 bp2 ¬bp4

4 ¬bp3 bp4 bp5

5 ¬bp5

6 ¬bp1

Each case is denoted by the predicate obtained by connecting ones appearing in
the row with conjunction.

The proof score for subcase 5 is shown.
open ISTEP
-- arbitrary objects

op p10 : -> Principal . op r10 : -> Random .
op m10 : -> Message . op nw10 : -> Network .

-- assumptions
-- eq c-sdm2(s,p10,r10,m10) = true .
eq nw(s) = m10 , nw10 . eq m1?(m10) = true .
eq receiver(m10) = p10 . eq key(cipher1(m10)) = p10 .
eq principal(cipher1(m10)) = sender(m10) . eq r10 \in ur(s) = false .
--
eq sender(m10) = intruder .
eq (n(p10,intruder,r10) = n) = false .
eq nonce(cipher1(m10)) = n .
eq (p10 = intruder) = false .

-- successor state
eq s’ = sdm2(s,p10,r10,m10) .

-- check if the predicate is true.
red inv2(s,cipher1(m10)) implies istep1(n) .

close

The condition that there exists a message denoted by m10 in the network denoted
by nw(s) is expressed by the equation “eq nw(s) = m10 , nw10 .” Except for
the conjunct corresponding to this condition, each conjunct in bp1 is expressed
by one equation.

For the remaining five subcases, similar proof scores can be written, which
do not use any other invariant to strengthen inductive hypotheses. For subcase 6
where the effective condition is false, it is not necessary to write the proof score
in theory because nothing changes. But, from an engineering point of view, the
proof score is worth writing because the specification may be miswritten.

6 Discussion

If we write proof scores of invariants in CafeOBJ, the compositional proofs of
invariants described in Sect. 3 has the following advantages:



1. CafeOBJ reduces a logical formula into an exclusive-or normal form à
la Hsiang[15], of which response time crucially depends on the length of
the formula, essentially the possible number of or’s in it. The compo-
sitional proofs of invariants make it possible to focus on each conjunct
pred i(s,xi) (i = 1, . . . , n) of a large formula pred(s,x1, . . . ,xn) and relieve
the complexity of the reduction.

2. Since we prove each conjunct of a large formula individually, case analy-
ses can be done w.r.t. this conjunct only. This can ease the complexity of
case analyses. Suppose that we have to consider Ni subcases for pred i(s,xi)
and Nj subcases for pred j(s,xj) in an inductive case. If we try to prove
pred i(s,xi) ∧ pred j(s,xj) together, then we may have to consider Ni × Nj

subcases in the inductive case.

It is often the case that a large formula is divided into smaller ones to ease
the proof. In our method, however, any two of such smaller formulas may depend
on each other in the sense that the proof of one uses the other to strengthen
inductive hypotheses in inductive cases and vice versa. Existing proof assistants
such as Isabelle/HOL[16] may not allow to divide a formula into such two sub-
formulas.

It is significant to split the case into multiple subcases in an inductive case
and find another inductive hypothesis (or a lemma) to strengthen the direct one
of what being proved in order to make progress on a proof. The former can
be done based on predicates used in a specification such as _=_ and _\in_ in
the NSLPK protocol. If you encounter a subcase where the formula stating a
property under discussion is reduced to false, the subcase may be unreachable
and you may conjecture another invariant.

Although the OTS/CafeOBJ method is not specific to object-orientation, it
can be easily applied to object-based distributed systems by modeling an object
as an OTS. In the behavioral specification in CafeOBJ, modeling and verification
techniques that are specific to object-orientation have been studied[17], which
can be incorporated in the OTS/CafeOBJ method.

In addition to the proof that nonces are really secret in the NSLPK protocol,
we have proved that the protocol has one-to-many agreement property[18], which
is expressed as the following two invariants:

invariant (not(p = intruder) and
m1(p, p, q, enc1(q, n(p, q, r), p)) \in nw(s) and
m2(q1, q, p, enc2(p, n(p, q, r), n, q)) \in nw(s)
implies m2(q, q, p, enc2(p, n(p, q, r), n, q)) \in nw(s)) ,

invariant (not(q = intruder) and
m2(q, q, p, enc2(p, n, n(q, p, r), q)) \in nw(s) and
m3(p1, p, q, enc3(q, n(q, p, r))) \in nw(s)
implies m3(p, p, q, enc3(q, n(q, p, r))) \in nw(s)) .

The former describes that if a principal p has sent a Msg1 to a principal q and
has received a Msg2 in response to the Msg1 seemingly from q, although the
actual sender q1 might be the intruder, then the Msg2 originates from q, and



the latter describes a similar phenomenon. We need (6) and eight more invariants
to prove these two invariants. The proof has been done by writing proof scores
in CafeOBJ likewise.

The modeling and proof scores described in [19] are different than those
described in this paper.

References

1. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Texts and
Monographs in Computer Science. Springer, NY (1993)

2. Goguen, J., Malcolm, G., eds.: Software Engineering with OBJ: Algebraic Speci-
fication in Action. Kluwer Academic Publishers (2000)

3. Ogata, K., Futatsugi, K.: Formally modeling and verifying Ricart&Agrawala dis-
tributed mutual exclusion algorithm. In: APAQS ’01, IEEE CS Press (2001) 357–
366

4. Ogata, K., Futatsugi, K.: Formal analysis of Suzuki&Kasami distributed mutual
exclusion algorithm. In: FMOODS ’02, Kluwer Academic Publishers (2002) 181–
195

5. Ogata, K., Futatsugi, K.: Formal analysis of the iKP electronic payment protocols.
In: ISSS 2002. Volume 2609 of LNCS., Springer (2003) 441–460

6. Ogata, K., Futatsugi, K.: Formal verification of the Horn-Preneel micropayment
protocol. In: VMCAI 2003. Volume 2575 of LNCS., Springer (2003) 238–252

7. CafeOBJ: CafeOBJ web page. http://www.ldl.jaist.ac.jp/cafeobj/ (2001)
8. Diaconescu, R., Futatsugi, K.: CafeOBJ report. AMAST Series in Computing, 6.

World Scientific, Singapore (1998)
9. Diaconescu, R., Futatsugi, K.: Behavioural coherence in object-oriented algebraic

specification. Journal of Universal Computer Science 6 (2000) 74–96
10. Lowe, G.: An attack on the Needham-Schroeder public-key authentication proto-

col. Inf. Process. Lett. 56 (1995) 131–133
11. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In: TACAS ’96. LNCS 1055, Springer (1996) 147–166
12. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,

Reading, MA (1988)
13. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large

networks of computers. Comm. ACM 21 (1978) 993–999
14. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inform.

Theory IT-29 (1983) 198–208
15. Hsiang, J.: Refutational Theorem Proving using Term Rewriting Systems. PhD

thesis, University of Illinois at Champaign-Urbana (1981)
16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for

Higer-Order Logic. LNCS 2283. Springer (2002)
17. Diaconescu, R., Futatsugi, K., Iida, S.: Component-based algebraic specification

and verification in CafeOBJ. In: World Congress on Formal Methods. Volume 1709
of LNCS., Springer (1999) 1644–1663

18. Lowe, G.: A hierarchy of authentication specifications. In: 10th IEEE Computer
Security Foundations Workshop, IEEE CS Press (1997) 31–43

19. Ogata, K., Futatsugi, K.: Rewriting-based verification of authentication protocols.
In: WRLA ’02. Volume 71 of ENTCS., Elsevier Science Publishers (2002)


