
Compositional Writing of Proof Scores∗

Kazuhiro Ogata†,‡ Kokichi Futatsugi‡

† NEC Software Hokuriku, Ltd.
1 Anyoji, Tsurugi, Ishikawa 920-2141, Japan

‡ Graduate School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan

Abstract

The foundation of a way to write proof scores showing that sys-
tems have invariants in algebraic specification languages is described.
The way, called the compositional writing of proof scores, has been
devised through several case studies. The compositional writing of
proof scores makes it possible to divide a formula stating an invariant
into reasonably small ones, each of which is proved by writing proof
scores individually. This relieves the load to reduce terms denoting
logical formulas and decreases the number of subcases into which the
case is split in case analysis.
Keywords: algebraic specification, CafeOBJ, OTS, proof scores,
specification, verification

1 Introduction

Equations are the most basic logical formulas and equational reasoning is the

most fundamental way of reasoning[13], which can moderate the difficulties of

∗An earlier version of the paper appears in [27].

1



proofs that might otherwise become too hard to understand. Algebraic spec-

ification languages make it possible to describe systems in terms of equations

and verify that systems have properties by means of equational reasoning.

Writing proofs, or proof scores in algebraic specification languages has been

mainly promoted by researchers of the OBJ community[9, 11, 8].

We have been successfully applying such algebraic techniques to model-

ing, specification and verification of distributed systems such as distributed

mutual exclusion algorithms[20, 21, 22] and security protocols[23, 25, 26, 28].

In our method called the OTS/CafeOBJ method, systems are modeled as

observational transition systems, or OTSs, which are the definition of tran-

sition systems for writing them in terms of equations, and OTSs are written

in CafeOBJ[2, 5], an algebraic specification language. We then verify that

the OTSs have properties by writing proof scores in CafeOBJ and executing

them with the CafeOBJ system[18].

In this paper, we describe the foundation of a way to write proof scores

of invariants in the OTS/CafeOBJ method. Invariants are the most basic

and important properties among various kinds of properties because proofs

of other kinds of properties often need invariants. We have devised the

way, called the compositional writing of proof scores, through several case

studies. The compositional writing of proof scores makes it possible to divide

a formula stating an invariant property under discussion into reasonably

small ones, each of which is proved by writing proof scores individually. This

relieves the load to reduce terms denoting logical formulas and decreases the

2



number of subcases into which the case is split in case analysis. Invariants

are mainly proved by induction, and the proofs of the small formulas may

depend on each other in the sense that the proof of one uses some other to

strengthen inductive hypotheses and vice versa.

The rest of the paper is organized as follows. Section 2 describes the

OTS/CafeOBJ method. We use a small example to exemplify writing proof

scores compositionally in Section 3. We describe the foundation of a way to

write proof scores compositionally in Section 4, and describe how to write

proof scores based on the foundation in Section 5. Section 6 discusses the

advantages of the compositional writing of proof scores and compares with

related work. We conclude the paper with Section 7.

2 The OTS/CafeOBJ Method

2.1 CafeOBJ in a Nutshell

CafeOBJ[2, 5] can be used to specify abstract machines as well as abstract

data types. A visible sort denotes an abstract data type, while a hidden

sort the state space of an abstract machine[10, 6]. There are two kinds of

operators to hidden sorts, which are action and observation operators. An

action operator can change states of an abstract machine. Only observation

operators can be used to observe the inside of an abstract machine. An

action operator is basically specified with equations by describing how the

value returned by each observation operator changes.

Visible sorts are declared by enclosing [ and ], and hidden ones by en-

3



closing *[ and ]*. Action and observation operators are declared by starting

with bop, and other operators by starting with op. After bop or op, an oper-

ator name is written, followed by a colon : and a list of sorts, and then, ->

and a sort are written. The list of sorts is called the arity of the operator,

and the sort after -> the coarity of the operator. The pair of the arity and

coarity is called the rank of the operator. When declaring more than one

operators which ranks are the same simultaneously, bops and ops are used

instead of bop and op. Operators with the empty arity are called constants.

Operators are defined in terms of equations. An equation is declared

by starting with eq, and a conditional one by starting with ceq. After eq,

two terms connected with = are written, ended with a full stop. After ceq,

two terms connected with = are written, followed by if, and then, a term

denoting the condition and a full stop are written.

The CafeOBJ system uses declared equations as left-to-right rewrite rules

and rewrites (or reduces) a given term. This executability makes it possible to

simulate a specified system and verify that a specified system has properties.

CafeOBJ inherits OBJ3’s powerful module facilities[12]. The CafeOBJ

system provides built-in modules, one of which is BOOL where visible sort

Bool denoting truth values is declared. Module Bool is implicitly imported

unless it is explicitly declared not to import the module. In the module, con-

stants true and false with the usual meaning, and operators not_, _and_,

_or_, _implies_ and _iff_ denoting ¬, ∧, ∨, ⇒ and ⇔ are declared. An

underscore _ indicates the place where an argument is put. The operator

4



if_then_else_fi corresponding to the if statement in programming lan-

guages is also declared.

2.2 Observational Transition Systems

Observational transition systems, or OTSs are the definition of transition

systems for writing transition systems in terms of equations. We assume

that there exists a universal state space called Υ. We also suppose that

each data type used has been defined beforehand, including the equivalence

between two values v1, v2 of the data type denoted by v1 = v2. An OTS S

consists of 〈O, I, T 〉 where

• O : A set of observable values. Each o ∈ O is a function o : Υ → D,

where D is a data type and may be different for each observable value.

Given an OTS S and two states υ1, υ2 ∈ Υ, the equivalence between

two states, denoted by υ1 =S υ2, with respect to S is defined as υ1 =S

υ2
def
= ∀o ∈ O.o(υ1) = o(υ2).

• I : The set of initial states such that I ⊂ Υ.

• T : A set of conditional transition rules. Each τ ∈ T is a function

τ : Υ/=S → Υ/=S on equivalence classes of Υ with respect to =S . Let

τ(υ) be the representative element of τ([υ]) for each υ ∈ Υ and it is

called the successor state of υ with respect to τ . The condition cτ for

a transition rule τ ∈ T , which is a predicate on states, is called the

effective condition. The effective condition is supposed to satisfy the

5



following requirement: given a state υ ∈ Υ, if cτ is false in υ, namely

τ is not effective in υ, then υ =S τ(υ).

Multiple similar observable values and transition rules may be indexed.

Generally, observable values and transition rules are denoted by oi1,...,im and

τj1,...,jn
, respectively, provided that m,n ≥ 0 and we assume that there exist

data types Dk such that k ∈ Dk (k = i1, . . . , im, j1, . . . , jn). For example, an

integer array a possessed by a process p may be denoted by an observable

value ap, and the increment of the ith element of the array may be denoted

by a transition rule inc-ap,i.

An execution of S is an infinite sequence υ0, υ1, . . . of states satisfying
1

• Initiation : υ0 ∈ I,

• Consecution : For each i ∈ {0, 1, . . .}, υi+1 =S τ(υi) for some τ ∈ T .

A state is called reachable with respect to S if and only if there exists an

execution of S in which the state appears. Let RS be the set of all the

reachable states with respect to S.

All properties considered in this paper are invariants2, which are defined

as follows:

invariant p
def
= ∀υ ∈ RS .p(υ) .

1If we want to discuss liveness properties, an execution of S should also satisfy Fairness :
for each τ ∈ T , there exist an infinite number of indexes i ∈ {0, 1, . . .} such that υi+1 =S

τ(υi).
2In addition to invariant properties, there are unless, stable, ensures and leads-to prop-

erties, which are inspired by UNITY[3]. The way to write proof scores described in this
paper can also be applied to unless, stable, ensures properties.

6



Let x be all free variables except for one for states in p. We suppose that

invariant p is interpreted as ∀x.(invariant p) in this paper. When proof scores

are written to prove ∀x.(invariant p), x are replaced with constants that de-

note arbitrary values corresponding to x and the universally quantifier is

eliminated. If a variable is existentially quantified in invariant p, the variable

is replaced with a Skolem constant or function and the existential quantifier

is eliminated.

2.3 Description of OTSs in CafeOBJ

An OTS S is described in CafeOBJ. The universal state space Υ is denoted

by a hidden sort, say H.

An observable value oi1,...,im ∈ O is denoted by a CafeOBJ observation

operator. We assume that the data types Dk (k = i1, . . . , im) and D are de-

scribed and there exist visible sorts Vk (k = i1, . . . , im) and V corresponding

to the data types. The CafeOBJ observation operator denoting oi1,...,im is

declared as follows:

bop o : H Vi1 . . . Vim -> V

Any initial state in I is denoted by a constant, say init, which is declared

as follows:

op init : -> H

Suppose that the initial value of oi1,...,im is f(i1, . . . , im). This is expressed by

this equation

eq o(init,Xi1 , . . . ,Xim) = f(Xi1 , . . . ,Xim) .

7



where each Xk is a CafeOBJ variable for Vk where k = i1, . . . , im and

f(Xi1 , . . . ,Xim) is a term denoting f(i1, . . . , im).

A transition rule τj1,...,jn
∈ T is denoted by a CafeOBJ action operator.

We assume that the data types Dk (k = j1, . . . , jn) are described and there

exist visible sorts Vk (k = j1, . . . , jn) corresponding to the data types. The

CafeOBJ action operator denoting τj1,...,jn
is declared as follows:

bop a : H Vj1 . . . Vjn
-> H

If τj1,...,jn
is applied in a state in which it is effective, the value returned by

oi1,...,im may change, which can be generally described in CafeOBJ as follows:

ceq o(a(S,Xj1 , . . . ,Xjn
),Xi1 , . . . ,Xim)

= e-a(S,Xj1 , . . . ,Xjn
,Xi1 , . . . ,Xim)

if c-a(S,Xj1 , . . . ,Xjn
) .

where S is a CafeOBJ variable for H and each Xk is a CafeOBJ variable for

Vk where k = i1, . . . , im, j1, . . . , jn. a(S,Xj1 , . . . ,Xjn
) denotes the successor

state of S with respect to τj1,...,jn
. e-a(S,Xj1 , . . . ,Xjn

,Xi1 , . . . ,Xim) denotes

the value returned by oi1,...,im in the successor state, which is determined

by only the values returned by observable values in S. c-a(S,Xj1 , . . . ,Xjn
)

denotes the effective condition cτj1,...,jn
of τj1,...,jn

in S.

If τj1,...,jn
is applied in a state in which it is not effective, the value returned

by any observable value does not change. Therefore all we have to do is to

declare this equation

ceq a(S,Xj1 , . . . ,Xjn
) = S if not c-a(S,Xj1 , . . . ,Xjn

) .

8



If the value returned by oi1,...,im is not affected by applying τj1,...,jn
in any

state (regardless of the truth value of cτj1,...,jn
), we may declare this equation

eq o(a(S,Xj1 , . . . ,Xjn
),Xi1 , . . . ,Xim) = o(S,Xi1 , . . . ,Xim) .

3 Example: Mutual Exclusion Algorithm

A mutual exclusion algorithm using a queue is used as an example. The

pseudo-code executed by each process i repeatedly can be described as this

l1: put(queue, i)
l2: repeat while top(queue) = i

Critical Section
cs: get(queue)

queue is the queue of process IDs shared by all processes. put(queue, i) puts

a process ID i into queue at the end, get(queue) deletes the top element from

queue, and top(queue) returns the top element of queue. They are atomically

processed. Moreover, each iteration of the loop at label l2 is supposed to be

atomically processed. Initially each process i is at label l1 and queue is

empty.

In this section, we describe how to write proof scores compositionally,

which show that there exists at most one process at any given time in the

critical section of the system in which processes execute the pseudo-code. In

the two succeeding sections, we will describe the foundation of a way to write

proof scores compositionally.

9



3.1 Description of Example

We use two kinds of observable values and three kinds of transition rules to

model the system as an OTS, which are as follows:

• Observable values.

– queue returns the queue of process IDs shared by all processes. It

initially returns the empty queue.

– pci (i ∈ Pid) returns the label of a command that process i will

execute next, where Pid is the set of process IDs. Each pci initially

returns label l1.

• Transition rules.

– waiti (i ∈ Pid) denotes that process i executes the command at

label l1.

– tryi (i ∈ Pid) denotes that process i executes one iteration of the

loop at label l2.

– exiti (i ∈ Pid) denotes that process i executes the command at

label cs.

The OTS is described in CafeOBJ. The signature of the CafeOBJ speci-

fication is as follows:

*[Sys]*

-- any initial state

10



op init : -> Sys

-- observation operators

bop pc : Sys Pid -> Label

bop queue : Sys -> Queue

-- action operators

bop want : Sys Pid -> Sys

bop try : Sys Pid -> Sys

bop exit : Sys Pid -> Sys

A comment starts with -- and terminates at the end of the line. Sys is the

hidden sort denoting the state space Υ. Pid, Label and Queue are the visible

sorts denoting process IDs, labels and queues of process IDs, respectively.

Constant init denotes any initial state of the system. Observation operators

pc and queue denote observable values pci and queue, and action operators

want, try and exit denote transition rules wanti, tryi and exiti.

In the following, let X, I and J be CafeOBJ variables for Sys, Pid and

Pid, respectively. Action operator want is defined with these equations

op c-want : Sys Pid -> Bool

eq c-want(S,I) = (pc(S,I) = l1) .

--

ceq pc(want(S,I),J)

= (if I = J then l2 else pc(S,J) fi) if c-want(S,I) .

ceq queue(want(S,I)) = put(queue(S),I) if c-want(S,I) .

ceq want(S,I) = S if not c-want(S,I) .

11



put(queue(S),I) denotes the queue obtained by putting I into the queue

denoted by queue(S) at the end.

Action operator try is defined with these equations

op c-try : Sys Pid -> Bool

eq c-try(S,I) = (pc(S,I) = l2 and top(queue(S)) = I) .

--

ceq pc(try(S,I),J)

= (if I = J then cs else pc(S,J) fi) if c-try(S,I) .

eq queue(try(S,I)) = queue(S) .

ceq try(S,I) = S if not c-try(S,I) .

top(queue(S)) denotes the top element of the queue denoted by queue(S).

Action operator exit is defined with these equations

op c-exit : Sys Pid -> Bool

eq c-exit(S,I) = (pc(S,I) = cs) .

--

ceq pc(exit(S,I),J)

= (if I = J then l1 else pc(S,J) fi) if c-exit(S,I) .

ceq queue(exit(S,I)) = get(queue(S)) if c-exit(S,I) .

ceq exit(S,I) = S if not c-exit(S,I) .

get(queue(S)) denotes the queue obtained by deleting the top element from

the queue denoted by queue(S).

12



3.2 Verification of Example

We verify that there exists at most one process at any given time in the crit-

ical section of the system, namely that the algorithm is mutually exclusive.

To this end, all we have to do is to prove the following predicate invariant to

the OTS modeling the system:

(pci(υ) = cs ∧ pcj(υ) = cs)⇒ (i = j) . (1)

To prove (1) invariant to the OTS, we need to prove the following three

predicates invariant to the OTS:

(pci(υ) = cs)⇒ (top(queue(υ)) = i) , (2)

(pci(υ) = l2 ∨ pci(υ) = cs)⇒ ¬empty?(queue(υ) , (3)

(pci(υ) = l2)⇒ (i ∈ queue(υ)) . (4)

empty? is a predicate to check if a given queue is empty and ∈ is a membership

predicate of queues.

We may consider proving (2), (3) and (4) invariant to the OTS first, and

then proving (1) invariant to the OTS. But, this strategy does not work in

this case because the proofs of (2) and (3) need (1). The dependence of their

proofs can be depicted as Figure 1.

We connect the four predicates with conjunctions to make this predicate

(pci1(υ) = cs ∧ pci2(υ) = cs)⇒ (i1 = i2)
∧ (pci3(υ) = cs)⇒ (top(queue(υ)) = i3)
∧ (pci4(υ) = l2 ∨ pci4(υ) = cs)⇒ ¬empty?(queue(υ)
∧ (pci5(υ) = l2)⇒ (i5 ∈ queue(υ))

(5)

13



¾
½
»
¼(1)

¾
½
»
¼(2)

¾
½
»
¼(3)

¾
½
»
¼(4)

6
¾

©©©©©©¼©©
©©

©©*

HH
HH

HHYHHHHHHj ©©
©©

©©*

Figure 1: Dependence of proofs

and may consider proving the large predicate invariant to the OTS. This

strategy can work. But, the larger the predicate is, the longer and more

complicated the corresponding proof score is.

Instead of directly proving (5) invariant to the OTS, we simultaneously

prove the four predicates (1), (2), (3) and (4) invariant to the OTS. Although

this strategy is similar to the second strategy, this strategy makes it possible

to write the proof score of each of the four predicates individually.

We write proof scores to prove the four predicates invariant to the OTS

according to the third strategy by induction on the number of transition rules

applied. We first write a module, say INV, in which the four predicates are

expressed as CafeOBJ terms as follows:

op inv1 : Sys Pid Pid -> Bool

op inv2 : Sys Pid -> Bool

op inv3 : Sys Pid -> Bool

op inv4 : Sys Pid -> Bool

eq inv1(S,I,J) = (pc(S,I) = cs and pc(S,J) = cs

14



implies I = J) .

eq inv2(S,I) = (pc(S,I) = cs implies top(queue(S)) = I) .

eq inv3(S,I) = (pc(S,I) = l2 or pc(S,I) = cs

implies not empty?(queue(S))) .

eq inv4(S,I) = (pc(S,I) = l2 implies I \in queue(S)) .

In the module, constants i and j for Pid are declared, denoting an arbitrary

process ID.

We next write a module, say ISTEP that imports module INV, in which

formulas to prove in each inductive case are expressed as CafeOBJ terms as

follows:

op istep1 : Pid Pid -> Bool

op istep2 : Pid -> Bool

op istep3 : Pid -> Bool

op istep4 : Pid -> Bool

eq istep1(I,J) = inv1(s,I,J) implies inv1(s’,I,J) .

eq istep2(I) = inv2(s,I) implies inv2(s’,I) .

eq istep3(I) = inv3(s,I) implies inv3(s’,I) .

eq istep4(I) = inv4(s,I) implies inv4(s’,I) .

s and s’ are constants for Sys, denoting an arbitrary state and the successor

state after applying a transition rule in the state denoted by s. The constants

are declared in the module.

Let us consider the inductive case in which any transition rule denoted

15



by action operator try preserves (1) denoted by inv1. In this inductive case,

basically we should prove the formula denoted by this CafeOBJ term

inv1(s,i,j) implies inv1(try(s,k),i,j)

where k is a constant for Pid, denoting an arbitrary process ID. But,

it is impossible to prove the formula because the inductive hypothesis

denoted by inv1(s,i,j) is too weak to imply the formula denoted by

inv1(try(s,k),i,j). (2) is used to strengthen the inductive hypothesis

and then we instead prove the formula denoted by this CafeOBJ term

(inv2(s,i) and inv2(s,j) and inv1(s,i,j))

implies inv1(try(s,k),i,j).

Although it is possible to prove this formula, we need to split the state space,

or the case. When the effective condition of any transition rule denoted by

try holds, the case is split into these four subcases

1. (i = k) ∧ (j = k), which needs nothing,

2. (i = k) ∧ (j 6= k), which needs inv2(s,j),

3. (i 6= k) ∧ (j = k), which needs inv2(s,i), and

4. (i 6= k) ∧ (j 6= k), which needs nothing.

We show the passage of the proof score for subcase 2, which is as follows:

open ISTEP

-- arbitrary objects

16



op k : -> Pid .

-- assumptions

-- eq c-try(s,k) = true .

eq pc(s,k) = l2 . eq top(queue(s)) = k .

--

eq i = k . eq (j = k) = false .

-- successor state

eq s’ = try(s,k) .

-- check

red inv2(s,j) implies istep1(i,j) .

close

The proof passage is a very basic unit of proof scores, which consists of four

parts. Constants are first declared, denoting arbitrary values for intended

sorts. In the proof passage, constant k is declared, denoting an arbitrary

process ID. Equations are secondly declared, denoting the assumptions, or

the result of case analysis. In the proof passage, four equations are declared.

The first two equations correspond to the effective condition of any transition

rule denoted by try, and the remaining to subcase 2. An equation is thirdly

declared, meaning that s’ denotes the successor state after applying a tran-

sition rule. In this proof passage, the equation means that s’ denotes the

successor state after applying any transition rule denoted by try in a state

denoted by s. A term denoting a formula to prove is finally reduced. In the

proof passage, term inv2(s,j) implies istep1(i,j) is reduced. The term

17



is actually reduced to true, which means that any transition rule denoted

by try preserves (1) denoted by inv1 in subcase 2.

One more proof passage is shown. Then let us consider the inductive case

in which any transition rule denoted by exit preserves (2) denoted by inv2.

In this inductive case, basically we should prove the formula denoted by this

CafeOBJ term

inv2(s,i) implies inv2(exit(s,k),i).

But, it is impossible to prove the formula because the inductive hypoth-

esis denoted by inv2(s,i) is too weak to imply the formula denoted by

inv2(exit(s,k),i). (1) is used to strengthen the inductive hypothesis and

then we instead prove the formula denoted by this CafeOBJ term

(inv1(s,i,k) and inv2(s,i)) implies inv2(exit(s,k),i).

We need to split the case in order to prove this formula. When the effective

condition of any transition rule denoted by exit holds, the case is split into

these three subcases

1. i = k, which needs nothing,

2. (i 6= k) ∧ (pc(s,i) = cs), which needs inv1(s,i,k), and

3. (i 6= k) ∧ (pc(s,i) 6= cs), which needs nothing.

We show the passage of the proof score for subcase 2, which is as follows:

18



open ISTEP

-- arbitrary objects

op k : -> Pid .

-- assumptions

-- eq c-exit(s,k) = true .

eq pc(s,k) = cs .

--

eq (i = k) = false . eq pc(s,i) = cs .

-- successor state

eq s’ = exit(s,k) .

-- check

red inv1(s,i,k) implies istep2(i) .

close

The proof passage consists of four pars as the previous proof passage.

We will describe the foundation of a way to write proof scores composi-

tionally in the two succeeding sections, which assures that the compositional

writing of proof scores is sound.

4 Compositional Proof of Invariants

Suppose that we prove that a predicate is invariant to a system. The

system is first modeled as an OTS, which is written in CafeOBJ. Let H

be the hidden sort denoting the state space Υ, and let the predicate be

pred1(s, x11, . . . , x1m1
), where s is a free variable for H and x11, . . . , x1m1

19



the other free variables for data types. It is often impossible to prove

invariant pred1(s, x11, . . . , x1m1
) by itself. Suppose that it is possible to

prove that pred1(s, x11, . . . , x1m1
), together with n − 1 predicates, is invari-

ant to the OTS. Let the n − 1 predicates be pred2(s, x21, . . . , x2m2
), . . .,

predn(s, xn1, . . . , xnmn
), and let pred(s, x11, . . . , x1m1

, . . . , xn1, . . . , xnmn
) be

pred1(s, x11, . . . , x1m1
)∧. . .∧predn(s, xn1, . . . , xnmn

). We may use xi to denote

xi1, . . . , ximi
where i = 1, . . . , n. Then we prove invariant pred(s,x1, . . . ,xn),

instead of the original invariant, from which the original invariant can be

deduced.

Proofs of invariants often need induction, especially induction on the

number of transition rules applied. Suppose that invariant pred(s,x1, . . . ,xn)

is proved by induction on the number of transition rules applied. First let us

consider the base case and let init denote any initial state of the system. For

the base case, all we have to do is to prove pred(init,x1, . . . ,xn). We may

prove each predi(init,xi), where i = 1, . . . , n, individually.

Next let us consider an inductive case in which it is shown that

any transition rule denoted by a CafeOBJ action operator a preserves

pred(s,x1, . . . ,xn). To this end, it is sufficient to show this formula

pred(s,x1, . . . ,xn)⇒ pred(a(s, y1, . . . , ym),x1, . . . ,xn) (6)

for arbitrary s,x1, . . . ,xn, y1, . . . , ym, where y1, . . . , ym are the arguments of

the CafeOBJ action operator except for s. We may use y to denote y1, . . . , ym.

20



Instead of proving (6) directly, it is sufficient to prove these n formulas

pred1(s,x1)⇒ pred1(a(s,y),x1) ,
...

predn(s,xn)⇒ predn(a(s,y),xn)

(7)

because (6) can be deduced from these n formulas. But some of (7), especially

the first formula from the assumption, may not be proved by themselves.

Let predi(s,xi) ⇒ predi(a(s,y),xi) be one of such formulas. The reason

why it is impossible to prove the formula by itself is that the inductive hy-

pothesis predi(s,xi) is too weak to imply predi(a(s,y),xi). Generally what

strengthens the inductive hypothesis can be predji
1
(s, tji

1
)∧. . .∧predji

ui
(s, tji

ui
),

where 1 ≤ ji1, . . . , j
i
ui
≤ n, tj (j = ji1, . . . , j

i
ui
) is tj1, . . . , tjmj

and tk (k =

j1, . . . , jmj) is a term that is xk, another variable whose sort is the same

as xk’s, or more concrete value whose sort is the same as xk’s. Let SIHi

be predji
1
(s, tji

1
) ∧ . . . ∧ predji

ui
(s, tji

ui
). Suppose that SIHi can be used to

strengthen the inductive hypothesis predi(s,xi) to show predi(a(s,y),xi).

Then the proof of the ith formula of (7) can be replaced with the proof

of this formula3

(SIHi ∧ predi(s,xi))⇒ predi(a(s,y),xi) . (8)

3Let us consider the case where ui = 1. If invariant predji

1

(s,xji

1

) has been proved

independent of invariant predi(s,xi), the proof can also be replaced with the proof of this
formula

(predji

1

(a(s,y), tji

1

) ∧ predi(s,xi)) ⇒ predi(a(s,y),xi)

because predji

1

(s,xji

1

) holds for any reachable state s.

21



Then, we generally prove these n formulas

(SIH1 ∧ pred1(s,x1))⇒ pred1(a(s,y),x1) ,
...

(SIHn ∧ predn(s,xn))⇒ predn(a(s,y),xn) ,

(9)

to show that any transition rule denoted by the CafeOBJ action operator

a preserves pred(s,x1, . . . ,xn). From these n formulas, we can deduce the

formula

(SIH1 ∧ . . . ∧ SIHn) ∧ pred(s,x1, . . . ,xn)⇒ pred(a(s,y),x1, . . . ,xn) .

SIH1 ∧ . . . ∧ SIHn can be used as the inductive hypothesis to show that

any transition rule denoted by the CafeOBJ action operator a preserves

pred(s,x1, . . . ,xn) because x1, . . . ,xn are just instantiated in SIH1∧. . .∧SIHn.

Therefore, the proof of (9) makes it possible to show what we would like to

prove.

In order to prove (8), we may have to do case analysis, namely splitting

the state space, or the case into multiple subcases. Suppose that the case

is split into l subcases denoted by casei1, . . . , case
i
l that should satisfy this

condition

(casei1 ∨ . . . ∨ caseil) = true .

Then the proof of (8) can be replaced with the proofs of these l formulas

(casei1 ∧ SIHi ∧ predi(s,xi))⇒ predi(a(s,y),xi) ,
...

(caseil ∧ SIHi ∧ predi(s,xi))⇒ predi(a(s,y),xi) .

(10)

SIHi may not be needed for some subcases.

22



From what has been discussed, it follows that each of the n predicates

can be proved invariant to a system individually and compositionally even if

the proofs mutually depend on each other, e.g. the ithe predicate is used to

strengthen inductive hypotheses to prove the jth predicate invariant to the

system and vice versa. The original predicate pred1(s,x1), which we would

like to prove invariant to the system, may be divided into multiple predicates.

5 Proof Scores of Invariants

Proof scores in the OTS/CafeOBJ method are based on (10), and therefore,

we can write each of them individually and compositionally.

Let us consider writing proof scores of the n invariants discussed in the

previous section. We first write a module, say INV, in which each predi(s,xi),

where i = 1, . . . , n, is expressed as a CafeOBJ term as follows:

op inv1 : H V11 . . . V1m1
-> Bool
...

op invn : H Vn1 . . . Vnmn
-> Bool

eq inv1(S,X11, . . . ,X1m1
) = pred1(S,X11, . . . ,X1m1

) .
...

eq invn(S,Xn1, . . . ,Xnmn
) = predn(S,Xn1, . . . ,Xnmn

) .

where each Vk is a visible sort corresponding to xk and each Xk is a CafeOBJ

variable for Vk where k = 11, . . . , 1m1, . . . , n1, . . . , nmn, S is a CafeOBJ

variable for H and each predi(S,Xi1, . . . ,Ximi
) denotes predi(s,xi) where i =

1, . . . , n.

In the module, we also declare a constant xk for each Vk, where k =

11, . . . , 1m1, . . . , n1, . . . , nmn. In proof scores, a constant that is not con-

23



strained is used for denoting an arbitrary value for the indented sort. For

example, if we declare a constant x for Nat that is the visible sort for natural

numbers, x can be used to denote an arbitrary natural number. Such con-

stants are constrained with equations, which makes it possible to split the

state space, or the case. Suppose that the case is split into two: one where

x equals 0 and the other where x does not, namely that x is greater than 0.

The former is expressed by declaring the equation

eq x = 0 .

The latter is expressed by declaring the equation

eq x = succ(n) . (11)

where succ is the successor function of natural numbers and n is a constant

that denotes an arbitrary natural numbers. Therefore, succ(n) denotes an

arbitrary positive integer.

We are going to mainly describe the proof score of the ith invariant.

Let init be a constant that denote any initial state of the system under

consideration. In order to show that predi(s,xi) holds in any initial state, we

write the CafeOBJ code that looks like

open INV

red invi(init, xi1, . . . , ximi
) .

close

and execute it with the CafeOBJ system. We may have to split the case in

order to prove predi(init,xi).

24



We next write a module, say ISTEP, in which two constants s, s′ are de-

clared, denoting an arbitrary state and the successor state after applying a

transition rule in the state, and the formulas to prove in each inductive case

are expressed as CafeOBJ terms as follows:

op istep1 : V11 . . . V1m1
-> Bool

...
op istepn : Vn1 . . . Vnmn

-> Bool

eq istep1(X11, . . . ,X1m1
)

= inv1(s,Xn1, . . . ,Xnmn
) implies inv1(s

′,Xn1, . . . ,Xnmn
) .

...
eq istep1(X11, . . . ,X1m1

)
= inv1(s,Xn1, . . . ,Xnmn

) implies inv1(s
′,Xn1, . . . ,Xnmn

) .

These formulas correspond to (7) in the previous section.

Let us consider the inductive case in which it is shown that any transition

rule denoted by the CafeOBJ action operator a preserves predi(s,xi). As

supposed in the previous section, SIHi is used to strengthen the inductive

hypothesis and the case is split into the l subcases denoted by casei1, . . . ,

caseil. The CafeOBJ code to show that any transition rule denoted by a

25



preserves predi(s,xi) in the case denoted by caseij looks like this

open ISTEP

-- arbitrary objects

op y1 : -> V1 .
...

op ym : -> Vm .

Declare other constants if necessary.
-- assumptions

Declare equations denoting caseij.
-- successor state

eq s′ = a(s, y1, . . . , ym) .
-- check

red (predji
1
(s, tji

11, . . . , tji
1mji

1

) and . . . and predji
u
(s, tji

u1, . . . , tji
umji

u

))

implies istepi(xi1, . . . , ximi
) .

close

where each Vk is a visible sort corresponding to yk where k = 1, . . . ,m and

each tk is a term denoting tk where k = ji11, . . . , j
i
1mji

1
, . . . , jiu, . . . , j

i
umji

u
. For

the case splitting, we may need constants such as n in (11). Such constants

may also be declared in the CafeOBJ code.

6 Discussion

The compositional writing of proof scores has the following advantages:

• The CafeOBJ systems reduces a term denoting a logical formula into

an exclusive-or normal form à la Hsiang[15], whose response time cru-

cially depends on the length of the formula, essentially the possible

number of or’s in it. The compositional writing of proof scores makes

it possible to focus on each conjunct predi(s,xi), where i = 1, . . . , n,

26



of a large formula pred(s,x1, . . . ,xn) and relieve the complexity of the

reduction. Let inv5 be the CafeOBJ operator denoting the formula to

prove in each inductive case corresponding to (5). We tried to reduce

inv5(i1,i2,i3,i4,i5) with the CafeOBJ system on a laptop with

850MHz Pentium III processor and 512MB memory but did not get

the result in one hour. On the other hand, it took about four seconds

to load the CafeOBJ specification and the four proof scores of (1), (2),

(3) and (1) with the CafeOBJ system on the same laptop.

• Since the compositional writing of proof scores makes it possible to

focus on each conjunct of a large formula, case analysis can be done

with respect to each conjunct only. This can ease the complexity of case

analysis. Suppose that we have to consider Ni subcases for predi(s,xi)

and Nj subcases for predj(s,xj) in an inductive case to prove them

invariant to a system. If we try to prove pred i(s,xi) ∧ pred j(s,xj)

invariant to the system, then we may have to consider Ni×Nj subcases

in the inductive case.

Writing proof scores in algebraic specification languages was started by

Goguen and his colleagues[9, 11, 8]. If his way to write proof scores is used

to prove a predicate invariant to a system and it is impossible to prove the

predicate by itself invariant to the system, we first prove other predicates

invariant to the system and then use them as lemmas to prove the predicate

invariant to the system, or we find a large predicate that implies the pred-

27



icate and prove the large predicate invariant to the system. The former is

the first strategy in Subsection 3.2, and the latter is the second strategy in

Subsection 3.2. The first strategy cannot be applied to the verification of the

example discussed in Section 3. It also seems impossible to use the second

strategy to verify the example with the CafeOBJ system on a usual personal

computer.

Many theorem provers and proof assistants have been proposed. Among

them are PVS[29] and Isabelle/HOL[19], which are often cited and have

been used to verify various systems. If these proof assistants are used to

prove predicates invariant to a system, the first and second strategies in

Subsection 3.2 are used. It seems difficult to use the third strategy, namely

the compositional proof of invariants to prove predicates invariant to a system

with such a proof assistant.

PVS and Isabelle/HOL are based on higher-order logic and higher-order

unification, while the OTS/CafeOBJ method is based on equations and equa-

tional reasoning. Equations and equational reasoning are easier to under-

stand than higher-order logic and higher-order unification. Therefore, spec-

ifications and proofs (proof scores) in the OTS/CafeOBJ method are easier

to read and understand than those in the proof assistants. On the other

hand, the proof assistants can automate more verification processes than the

OTS/CafeOBJ method. In the case studies performed so far, proof scores

were entirely written by hand. Since proof scores in the OTS/CafeOBJ

method are well stylized, most part of proof scores can be automatically

28



generated. Therefore, we have been designing a tool, called Gateau, that is

fed scripts to generate proof scores in order to automate more verification

processes. A prototype has been implemented. All the Gateau scripts for the

four invariants in Subsection 3.2 consist of 142 lines and the generated proof

scores consist of 2,946 lines, while the proof scores written by hand consist

of 878 lines.

When a predicate is proved invariant to a system with the OTS/CafeOBJ

method, it is significant to split the case into multiple subcases and find other

predicates that are invariant to the system and can be used to strengthen the

inductive hypothesis of the original proof in inductive cases in order to make

progress on the proof. The former can be done based on predicates used in

specifications such as the equivalence between process IDs in the example

describe in Section 3. If you encounter a subcase in which the term denoting

a formula to be proved is reduced to false, then the subcase may denote

unreachable states and you may conjecture other invariants.

7 Conclusion

We have described the foundation of the compositional writing of proof scores

in the OTS/CafeOBJ method and used the queuing lock algorithm to demon-

strate how to write proof scores. We have been demonstrating the usefulness

of the compositional writing of proof scores by performing several case stud-

ies, especially verification of security protocols.

The security protocols verified by writing proof scores compositionally

29



are as follows:

• The NSLPK authentication protocol[16]: We have verified that the

protocol has nonce secrecy and one-to-many agreement properties[23,

27].

• iKP(i = 1, 2, 3) payment protocols[1]: We have found that 2KP and

3KP as well as 1KP do not have a property that seems important while

verifying that 2KP and 3KP have the property and proposed a possible

solution[24]. The property is that if an acquirer authorizes a payment,

then both the buyer and seller concerned always agree on it. We have

verified that the modified 2KP and 3KP have the property[25].

• The Horn-Preneel micropayment protocol[14]: We have verified that a

payee cannot overcharge a payer[26].

• The SET payment protocol[17]: We have verified that the protocol

has several properties. Among the properties are that if the payment

gateway authorizes a payment, then both cardholder and merchant con-

cerned always agree on the payment, and at this time the two principals

also agree on the transaction amount.

• NetBill electronic commerce protocol[4]: We have found that the pro-

tocol does not have a property, called goods atomicity in a strict sense

and proposed a possible solution. We have finished the invariant part

of the verification that the modified protocol has the property and also

30



verified that it has several other desired properties[28].

• TLS handshake protocol[7]: We have verified that the protocol have

several properties. Among the properties are that pre-master secrets

cannot be leaked, when a client has negotiated a cipher suite and se-

curity parameters with a server, the server has really agreed on them,

and client cannot be identified if they dot not send their certificates to

servers.

We also have mentioned a tool, called Gateau that help generate proof

scores. We have been designing the tool and are going to implement it.

References

[1] Mihir Bellare, Juan Garay, Ralf Hauser, Amir Herzberg, Hugo

Krawczyk, Michael Steiner, Gene Tsudik, Els Van Herreweghen, and

Michael Waidner. Design, implementation and deployment of the iKP

secure electronic payment system. IEEE Journal of Selected Areas in

Communications, 18(4):611–627, 2000.

[2] CafeOBJ web page. http://www.ldl.jaist.ac.jp/cafeobj/.

[3] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-

dation. Addison-Wesley, Reading, MA, 1988.

31



[4] Benjamin Cox, J. D. Tygar, and Marvin Sirbu. NetBill security and

transaction protocol. In First USENIX Workshop on Electronic Com-

merce, pages 77–88, 1995.

[5] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report, volume 6

of AMAST Series in Computing. World Scientific, Singapore, 1998.

[6] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in

object-oriented algebraic specification. Journal of Universal Computer

Science, 6:74–96, 2000.

[7] T. Dierks and C. Allen. The TLS protocol version 1.0. Request for

Commnets: 2246, http://www.ietf.org/rfc/rfc2246.txt, 1999.

[8] Joseph Goguen. Theorem Proving and Algebra. The MIT Press, (to

appear).

[9] Joseph Goguen and Grant Malcolm, editors. Algebraic Semantics of

Imperative Programs. The MIT Press, 1996.

[10] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical

Computer Science, 245:55–101, 2000.

[11] Joseph Goguen and Grant Malcolm, editors. Software Engineering with

OBJ: Algebraic Specification in Action. Kluwer Academic Publishers,

2000.

32



[12] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi,

and Jean-Pierre Jouannaud. Introducing OBJ. In Joseph Goguen and

Grant Malcolm, editors, Software Engineering with OBJ: algebraic spec-

ification in action, pages 3–167. Kluwer Academic Publishers, 2000.

[13] David Gries and Fred B. Schneider. A Logical Approach to Discrete

Math. Texts and Monographs in Computer Science. Springer, NY, 1993.

[14] Gunther Horn and Bart Preneel. Authentication and payment in future

mobile systems. In 5th European Symposium on Research in Computer

Security (ESORICS 98), LNCS 1485, pages 277–293. Springer, 1998.

[15] Jieh Hsiang. Refutational Theorem Proving Using Term Rewriting Sys-

tems. PhD thesis, University of Illinois at Champaign-Urbana, 1981.

[16] Gavin Lowe. An attack on the Needham-Schroeder public-key authen-

tication protocol. Information Processing Letters, 56:131–133, 1995.

[17] MasterCard/Visa. SET secure electronic transactions pro-

tocol – book 1: Business specifications; book 2: Tech-

nical specification; book 3: Formal protocol definition.

http://www.setco.org/set specifications.html, May 1997.

[18] Ataru N. Nakagawa, Toshimi Sawada, and Kokichi Futatsugi. CafeOBJ

user’s manual. http://www.ldl.jaist.ac.jp/cafeobj/doc/, 1999.

33



[19] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-

abelle/HOL: A Proof Assistant for Higher-Order Logic, volume 2283

of LNCS. Springer, Berlin, 2002.

[20] Kazuhiro Ogata and Kokichi Futatsugi. Formal verification of the MCS

list-based queuing lock. In 5th Asian Computing Science Conference

(ASIAN 1999), LNCS 1742, pages 281–293. Springer, 1999.

[21] Kazuhiro Ogata and Kokichi Futatsugi. Formally modeling and verifying

Ricart&Agrawala distributed mutual exclusion algorithm. In 2nd Asia-

Pacific Conference on Quality Software (APAQS 2001), pages 357–366.

IEEE CS Press, 2001.

[22] Kazuhiro Ogata and Kokichi Futatsugi. Formal analysis of

Suzuki&Kasami distributed mutual exclusion algorithm. In 5th IFIP

TC6/WG6.1 International Conference on Formal Methods for Open

Object-Based Distributed Systems (FMOODS 2002), pages 181–195.

Kluwer Academic Publishers, 2002.

[23] Kazuhiro Ogata and Kokichi Futatsugi. Rewriting-based verification of

authentication protocols. In 4th International Workshop on Rewriting

Logic and its Applications (WRLA 2002), volume 71 of ENTCS. Elsevier

Science Publishers, 2002.

34



[24] Kazuhiro Ogata and Kokichi Futatsugi. Flaw and modification of

the iKP electronic payment protocols. Information Processing Letters,

86:57–62, 2003.

[25] Kazuhiro Ogata and Kokichi Futatsugi. Formal analysis of the iKP

electronic payment protocols. In International Symposium on Software

Security (ISSS 2002), volume 2609 of LNCS, pages 441–460. Springer,

2003.

[26] Kazuhiro Ogata and Kokichi Futatsugi. Formal verification of the Horn-

Preneel micropayment protocol. In 4th International Conference on Ver-

ification, Model Checking and Abstract Interpretation (VMCAI 2003),

volume 2575 of LNCS, pages 238–252. Springer, 2003.

[27] Kazuhiro Ogata and Kokichi Futatsugi. Proof scores in the

OTS/CafeOBJ method. In 6th IFIP WG6.1 International Confer-

ence on Formal Methods for Open Object-Based Distributed Systems

(FMOODS 2003), volume 2884 of LNCS, pages 170–184. Springer, 2003.

[28] Kazuhiro Ogata and Kokichi Futatsugi. Formal analysis of the Net-

Bill electronic commerce protocol. In 2nd International Symposium on

Software Security (ISSS 2003), LNCS, page (to appear). Springer, 2004.

[29] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.

Formal verification for fault-tolerant architectures: Prolegomena to the

35



design of PVS. IEEE Transactions on Software Engineering, 21:107–125,

1995.

36


