

Constructor-based Logics

Lecture Note 03b CafeOBJ Team for JAIST-FSSV2010

Introduction	Framework 000 0 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Overview						

- extension of CafeOBJ logic to a logic with constructors (in the signatures)
- this logic may be seen as the underlying logic of an (under developing) language

We use:

- CafeOBJ notation for examples, and
- ② CafeOBJ rewriting engine for proofs.

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work

What we do...

Constructor-based logics = base logic + restriction to reachable models

- define entailment systems for the constructor-based logics;
- investigate soundness, completeness and initiality;

Set the logical foundations for OTS method (FMOODS 2002, Inf Process Lett. 2003, VSTTE 2005);

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Related work						

- Equational specification and programming basis of modern algebraic specification.
- Birkhoff 1935 On the structure of abstract algebras completeness result for equational logic, unsorted case.
- Goguen and Meseguer 1985 Completeness of many-sorted equational logic - many-sorted case
- Codescu and Gaina 2008 *Birkhoff Completeness in Institutions* framework of institutions.
- Constructor-based Institutions (present work) .

The key ingredients of a logic:

- signatures and sentences,
- entailment of a sentence from a set of axioms,

Entailment systems are represented by its generators = proof rules

• model and satisfaction of a sentence by a model.

Introduction	Framework ●○○○ ○○	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Institutions						

The Concept of Institution (The semantic part)

An institution (Goguen and Burstall ACM 1992) $\mathcal{I} = (\mathbb{S}ig, \mathbb{S}en, \mathbb{M}od, \models)$:

- category of signatures Sig,
- sentence functor $\mathbb{S}en : \mathbb{S}ig \to \mathbb{S}et$,
- **model** functor $\mathbb{M}od : \mathbb{S}ig^{op} \to \mathbb{C}at$,
- for each signature Σ, a satisfaction relation ⊨_Σ between Σ-models and Σ-sentences s.t. the satisfaction condition holds

$$\begin{array}{ccc} \Sigma' & M' \models \varphi(\rho) \\ \varphi & & & \\ \varphi & & & \\ \Sigma & & \mathbb{M}od(\varphi)(M') \models \rho \end{array}$$

Introduction	Framework ○●○O ○○	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Institutions						

First Order Logic with equality (FOL)

- Signatures (S, F, P)
 - S -sorts
 - F function symbols
 - P predicate symbols
- (S, F, P)-models interprets
 - sorts as carrier sets
 - function symbols as functions
 - predicate symbols as relations
- (S, F, P)-sentences
 - two kinds of atoms:
 - equations: t = t'
 - relations: $\pi(t_1,\ldots,t_n)$
 - - 2 full sentences: $(\neg, \lor, false, \exists)$ atoms.
- The usual Tarskian satisfaction based on the interpretation of terms.

Horn clause logic (HCL)

Universal Horn sentence $(\forall X) \land H \Rightarrow C$

- X finite set of variables
- H finite set of (equational or relational) atoms
- C an atom

HCL is the restriction of FOL to universal Horn sentences.

Constructor-based Horn clause logic (CHCL) I

- Sign. (S, F, F^c, P) with constructors $F^c \subseteq F$
 - constrained sorts $S^c \subseteq S$, $(s \in S^c)$ iff (there is $\sigma \in F^c_{W \to s}$)
 - **2** loose sorts $S^{l} = S S^{c}$.

• (S, F, F^c, P) -models M: there exists $f : Y \to M$ (vars Y are of loose sort) s.t. $(s \in S^c) f_s^{\#} : (T_{F^c}(Y))_s \to M_s$ is a surjection

 $f^{\#}: T_{F^c}(Y) \to M$ is the unique extension of f to a (S, F^c, P) -morphism.

The models M are reachable (through constructors and loose elements Y).

Constructor-based Horn clause logic (CHCL) II

• Universal Horn sentences $(\forall X)(\forall Y) \land H \Rightarrow C$:

- X finite set of vars. of constrained sort
- Y finite set of vars of loose sort
- H finite set of atoms, and
- C an atom
- Sign. morphisms $\varphi : (S, F, F^c, P) \rightarrow (S_1, F_1, F_1^c, P_1)$
 - **1** if $\sigma \in F^c$ then $\varphi(\sigma) \in F_1^c$, and
 - 2 if $\sigma_1 \in (F_1^c)_{w_1 \to s_1}$, $s_1 \in \varphi(S^c)$ then $\exists \sigma \in F^c$ s. t. $\varphi(\sigma) = \sigma_1$.
- The satisfaction relation is inherited from FOL.

Introduction	Framework ○○○○ ●○	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Entailment Sys	stems					

Entailment systems (The syntactic part)

An entailment system $\mathcal{E} = (\mathbb{S}ig, \mathbb{S}en, \vdash)$

$$\begin{array}{l} \textit{(Monotonicity)} \ \overline{E_1 \vdash E_2} \ \text{whenever} \ E_2 \subseteq E_1 \\ \\ \textit{(Transitivity)} \ \overline{\frac{E_1 \vdash E_2, E_2 \vdash E_3}{E_1 \vdash E_3}} \\ \textit{(Unions)} \ \overline{\frac{E_1 \vdash E_2, E_1 \vdash E_3}{E_1 \vdash E_2 \cup E_3}} \\ \\ \textit{(Translation)} \ \overline{\frac{E \vdash_{\Sigma} E'}{\varphi(E) \vdash_{\Sigma'} \varphi(E')}} \ \text{for all signature morphisms } \varphi: \Sigma \to \Sigma' \end{array}$$

Definition (compactness)

 \mathcal{E} is compact whenever $\Gamma \vdash \rho$ there exists a finite $\Gamma_f \subseteq \Gamma$ such that $\Gamma_f \vdash \rho$.

Soundness and Completeness

Logic = $(Sig, Sen, Mod, \models, \vdash)$ Correctness of proof rules is justified by model theoretic means.

1 sound:
$$\Gamma \vdash \rho$$
 implies $\Gamma \models \rho$.

2) complete:
$$\Gamma \models \rho$$
 implies $\Gamma \vdash \rho$.

Entailment System of CHCL I

	(Reflexivity) $\overline{\emptyset \vdash t = t}$	
	(Symmetry) $\frac{1}{t=t'\vdash t'=t}$	
AES	(Transitivity) $\frac{1}{\{t=t',t'=t''\} \vdash t=t''}$	
	(Congruence) $\frac{1}{\{t_i = t'_i i = \overline{1, n}\} \vdash \sigma(t_1,, t_n) = \sigma(t'_1,, t'_n)}$	
	(P-Congruence) $\frac{1}{\{t_i = t'_i i = \overline{1, n}\} \cup \{\pi(t_1,, t_n)\} \vdash \pi(t'_1,, t'_n)}$	
IES	(Implications) $\frac{\Gamma \vdash \bigwedge H \Rightarrow C}{\Gamma \cup H \vdash C}$ and $\frac{\Gamma \cup H \vdash C}{\Gamma \vdash \bigwedge H \Rightarrow C}$	
	(Substitutivity) $\frac{1}{(\forall x)\rho \vdash (\forall Y)\rho(x \leftarrow t)}$	
GUES	(Generalization) $\frac{\Gamma \vdash_{\Sigma} (\forall Z)\rho}{\Gamma \vdash_{\Sigma(Z)} \rho}$ and $\frac{\Gamma \vdash_{\Sigma(Z)} \rho}{\Gamma \vdash_{\Sigma} (\forall Z)\rho}$	

Entailment System of CHCL II

Theorem (Soundness + Completeness)

The restriction of **CHCL** to the sentences of the form $(\forall Y) \land H \Rightarrow C$, with Y vars. of loose sort, is sound and complete.

Notation

Let $\Sigma = (S, F, F^c, P)$ be a signature.

- *t* is a $(F \cup Y)$ -term, or for short Y-term, where Y is a set of vars, if $t \in T_F(Y)$;
- *t* is a constructor term if $t \in T_{F^c}(Y)$ and Y are vars of loose sort;

We need rules to deal with universal quantification over variables of constrained sort.

RUES	$(C_{\text{Abstraction}}) \left\{ \Gamma \vdash_{\Sigma} (\forall Y) \rho(x \leftarrow t) \mid Y \text{ are loose vars, } t \text{ is constructor } Y \text{-term} \right\}$					
	$\Gamma \vdash_{\Sigma} (\forall x) \rho$					
In many cases the premises of the above infinitary rule can be checked using inductive						
arguments.						

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work

Sufficient completeness

Let (S, F, F^c, P) be a signature; F^{S^c} denotes the set of op. of constrained sort.

Definition

$$\begin{split} &\Gamma \subseteq \mathbb{S}en(S,F,F^c,P) \text{ is sufficient-complete if } \forall t \in T_{F^{S^c}}(Y), \text{ (}Y \text{ consists of vars. of loose sort),} \\ &\exists t' \in T_{F^c}(Y) \text{ s.t. } \Gamma \vdash (\forall Y)t = t' \end{split}$$

Example

```
mod* SP {
[Nat]
op 0 : -> Nat {constr}
op s_ : Nat -> Nat {constr}
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [lid] : 0 + N = N .
eq [ladd] : s M + N = s (M + N) . }
```

Layered Completeness

Practical Issues

Contradiction

Results Future Work

Soundness, Completeness and Initiality

Theorem (Soundness+ quasi-Completeness)

- The entailment system of CHCL is sound
- **2** $\Gamma \vdash_{\Sigma} \rho$ if $\Gamma \models_{\Sigma} \rho$ when Γ is sufficient-complete.

Theorem (Initiality)

Every sufficient complete set of sentences Γ has an initial model, ($\exists M_{\Gamma} \text{ s.t. for all } M \models \Gamma$ there exists an unique morphism $M_{\Gamma} \rightarrow M$).

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work

Sufficient completeness assumption

Example

```
mod* SPEC {
[S]
- constructors
op a : -> S {constr}
- operators
op b : -> S }
```


Initiality:

- N is initial model of SP.
- SP without ladd does not have initial model.

Initiality(Sufficient completeness) is not needed to reason about inductive properties.

Lecture Note 03b, JAIST-FSSV2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Induct	ion Scł	neme I				
We w	ant SP ⊢ (∀:	x) (∀y) x + s y = s	s(x + y). By (C-Abstraction w	e need	
1	SP⊢(∀y)0	+ s y = s (0 + y	7)			
2	SP⊢(∀y) s	0 + s y = s (s 0) + y)			
3	SP⊢(∀y) s	s 0 + s y = s (s	s s 0 + y)			
÷						
It is re	equired an in	ductive argument:				
IB	SP⊢(∀y)0	+ s y = s (0 + y	7)			

 $\label{eq:spectrum} \mathsf{IS} \ \mathsf{SPU} \big\{ \, (\forall \mathtt{y}) \, \mathtt{a} \ + \ \mathtt{s} \ \mathtt{y} \ = \ \mathtt{s} \, (\mathtt{a} + \mathtt{y}) \, \big\} \vdash \ (\forall \mathtt{y}) \, \mathtt{s} \ \mathtt{a} \ + \ \mathtt{s} \ \mathtt{y} \ = \ \mathtt{s} \, (\mathtt{s} \ \mathtt{a} \ + \ \mathtt{y})$

CafeOBJ code	CafeOBJ code			
SP⊢(∀y)0+sy=s(0+y)	$SPU\{(\forall y) a+sy=s(a+y)\} \vdash (\forall y) sa+sy=s(sa+y)$			
SP⊢ (∀y) 0+sy=s(0+y), SP⊢ (∀y) s0+sy=s(s0+y),				
SPH (V	$x) (\forall y) x + s y = s(x + y)$			

Lecture Note 03b, JAIST-FSSV2010

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work

Induction Scheme II

CafeOBJ code:

IB open SP
red 0 + s Y = s(0 + Y) .
close
IS open SP

op a : -> Nat . eq [IH] : a + s Y = s(a + Y) . red s a + s Y = s(s a + Y) . close

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work

Equality _=_

```
mod* SPEC {
  [Elt]
  op _=_ : Elt Elt -> Bool
  vars X Y : Elt
  eq [equal] : (X = X) = true .
  ceq [cequal] : X = Y if (X = Y) . }
```

Lemma (Equality)

● {equal, cequal,
$$a=b$$
} $\vdash_{SPEC(a,b)}$ (a=b)=true

2 {equal, cequal,
$$(a=b)=true$$
} $\vdash_{SPEC(a,b)} a=b$

$$\bigcirc$$
 {equal, cequal, true=false} \vdash_{SPEC} (\forall x)(\forall y)x=y

Case Analysis I

•
$$(\Sigma, E)$$
, specification with $\Sigma = (S, F, F^c)$.

•
$$\sigma \in (F_{s_1...s_n \to s} - F_{s_1...s_n \to s}^c)$$
 operation of constrained sort s

- t_1, \ldots, t_n constructor terms
- $\sigma(t_1, \ldots, t_n)$ is "not defined", i.e. (β) constructor term t such that $E \vdash_{\Sigma(Y)} \sigma(t_1, \ldots, t_n) = t$, where Y are all the variables in t and $\sigma(t_1, \ldots, t_n)$

(Case Analysis)
$$\frac{\{\Gamma \cup \{\sigma(t_1, \dots, t_n) = t\} \vdash_{\Sigma(Y)} e \mid Y \text{ are loose vars, } t \text{ is constructor } Y \text{-term}\}}{\Gamma \vdash_{\Sigma} e}$$

To prove SPECHa=b by Case Analysis we need SPECU{a=b}Ha=b which is obvious

Introduction Framework Layere

Layered Completeness

Practical Issues

Contradictio

Results Future Work

Case Analysis II

Remark

The set of terms *t* above may be infinite and therefore premises of *Case Analysis* may be infinite too. But the sort *s* may have

- one constructor such as the sort S of SPEC (there is one constructor a), or

- two constructors such as the sort Bool (there are two constructors true and false, and the premises of *Case Analysis* are finite.

The cases to analyze, after applying *Case Analysis* rule, are sufficient complete; therefore for any sematic consequence $\Gamma \models \rho$ there is a an entailment $\Gamma \vdash \rho$.

Entailment System of CHCL I

$$(Reflexivity) \frac{\overline{\emptyset \vdash t = t}}{\overline{\emptyset \vdash t = t}}$$

$$(Symmetry) \frac{\overline{t = t' \vdash t' = t}}{\overline{t = t', t' = t''}}$$

$$(Transitivity) \frac{\overline{t = t', t' = t''} \vdash t = t''}{\overline{t_i = t'_i \mid i = \overline{1, n}} \vdash \sigma(t_1, ..., t_n) = \sigma(t'_1, ..., t'_n)}$$

$$(P-Congruence) \frac{\overline{t_i = t'_i \mid i = \overline{1, n}} \cup \overline{\tau_i = \overline{t_i \mid i = \overline{1, n}}} \cup \overline{\tau_i = \overline{t_i \mid i = \overline{1, n}}} \cup \overline{\tau_i = \overline{t_i \mid i = \overline{1, n}}}$$

$$(Implications) \frac{\Gamma \vdash \land H \Rightarrow C}{\Gamma \cup H \vdash C} \text{ and } \frac{\Gamma \cup H \vdash C}{\Gamma \vdash \land H \Rightarrow C}$$

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work

Entailment System of CHCL II

GUES	(Substitutivity) $\overline{(\forall x) ho \vdash (\forall Y) ho(x \leftarrow t)}$
	(Generalization) $\frac{\Gamma \vdash_{\Sigma} (\forall Z)\rho}{\Gamma \vdash_{\Sigma(Z)} \rho}$ and $\frac{\Gamma \vdash_{\Sigma(Z)} \rho}{\Gamma \vdash_{\Sigma} (\forall Z)\rho}$
RUES	(C-Abstraction) $\frac{\{\Gamma \vdash_{\Sigma} (\forall Y)\rho(x \leftarrow t) \mid Y \text{ are loose vars, } t \text{ is constructor } Y \text{-term}\}}{\Gamma \vdash_{\Sigma} (\forall x)\rho}$
	(Case Analysis) $\frac{\{\Gamma \cup \{\sigma(t_1, \ldots, t_n) = t\} \vdash_{\Sigma(Y)} e \mid Y \text{ are loose vars, } t \text{ is constructor } Y \text{-term}\}}{\Gamma \vdash_{\Sigma} e}$

Theorem (Soundness+quasi-Completeness)

- The entailment system of CHCL is sound
- **2** $\Gamma \vdash_{\Sigma} \rho$ if $\Gamma \models_{\Sigma} \rho$ when Γ is sufficient-complete.

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work

Gödel Incompleteness

- $\Sigma = (S, F, F^c, P)$ and $F = F^c (S' = \emptyset)$
- $S' = \emptyset$ implies all Σ -models consist of interpretations of terms
- Γ an arbitrary set of Σ-sentences
- $O_{\Gamma} \rightarrow M$ is a surjection for all Σ -models M
- surjective morphisms preserve satisfaction of equations:

$$\Gamma \models (\forall X)t = t' \text{ iff } O_{\Gamma} \models (\forall X)t = t'$$

- we obtained complete entailment relations to reason about logical consequences of initial models
- Gödel incompleteness theorem: the semantic consequences of specifications in CHCL are not recursively enumerable

Introduction	Framework 0000 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Summ	nary					

Constructor-based institutions = base institution + restriction to reachable models

Abstract characterization of the concept of reachable model + application to concrete institutions.

- institution-dependent:
 - proof rules for the atomic sentences of each institution
 - soundness and completeness
- institution-independent:
 - assume an entailment system for the 'atomic' part of the institution
 - define the entailment systems in the above figure, abstractly.
 - soundness and the completeness + instantiating the results to CHCL, CHOSA, CHPOA, CHPA.

Introduction	Framework 000 0 00	Layered Completeness	Practical Issues	Contradiction?	Results	Future Work
Future	Mork					

- we are planning to apply the present results to other institutions such as higher-order logic, and to extend the framework possible to modal logics
- extend the framework by adding also observations (behavioral)
- investigate the properties needed to reason about the logical consequences of structured specifications such as amalgamation and interpolation
- specify and verify software system using the developed theoretical framework.