An Overview of Models and Proof Rules for CafeOBJ Proof Scores

Lecture Note 03a
CafeOBJ Team for JAIST-FSSV2010

Topics

- Specification/Descriptions, Models, and Realities
- Constructor-based Order Sorted Algebra
- Satisfaction of a Property by a Specification
- SPEC |= prop
- Proof rules for SPEC |= prop and SPEC |- prop

Specifications, Models, Realities

Specification

An constructor-based equational specification SPEC in CafeOBJ (a text in the CafeOBJ notation with only equational axioms) is defined as a pair (Sig,E) of ordersorted constructor-based signature Sig and a set E of conditional equations over Sig. A signature Sig is defined as a triple (S,F,Fi) of an partially ordered set \mathbf{S} of sorts, an indexed family \mathbf{F} of sets of \mathbf{S}-sorted functions/ operations, and a set F^{c} of constructors. F^{c} is a family of subsets of F, i.e. $F^{c} \subseteq F$.

$$
\text { SPEC = ((S,F, } \left.\left.\mathrm{F}^{\mathrm{c}}\right), \mathrm{E}\right)
$$

Model: (S,F)-Algebra

A formal/mathematical model of a specification SPEC = ($\left.\left(\mathbf{S}, \mathrm{F}, \mathrm{F}^{\mathrm{c}}\right), \mathrm{E}\right)$ is an reachable order-sorted algebra A which has the signature (\mathbf{S}, F) and satisfies all equations in \mathbf{E}.

An order-sorted algebra which has a signature (S, F) is called an (S,F)-algebra. An (S,F)-algebra A interprets a sort symbol s in \mathbf{S} as a (non empty) set $\mathbf{A}_{\mathbf{s}}$ and an operation (function) symbol f:s1 s2 ...sn->s(n+1) in F as a function $\mathbf{A}_{f}: \mathbf{A}_{\mathbf{s} 1}, \mathbf{A}_{\mathbf{s} 2}, . ., \mathbf{A}_{\mathbf{s n}}->\mathbf{A}_{\mathbf{s}(\mathrm{n}+1)}$. The interpretation respects the order-sort constrains.

Model: (S,F,FC)-Algebra

If a sort $s \in S$ is the co-arity of some operator $f \in$ F^{C}, the sort s is called a constrained sort. A sort which is not constrained is called a loose sort.

An (S,F)-algebra A is called (S,F,FC)-algebra if any value $v \in A_{s}$ for any constrained sort $s \in S$ is expressible only using
(1) function A_{f} for $f \in F^{C}$
and
(2) function A_{g} for $g \in F$ whose co-arity is loose sort .
(S,F,FC)-algebra can also be called F^{C}-reachable algebra

An example of Signature and its Algebra

```
-- Let (PNAT+)-sig be
-- the signature of PNAT+
-- sort
[ Zero NzNat < Nat ]
-- operators
op 0 : -> Nat {constr}
op s_ : Nat -> NzNat {constr}
op _+_ : Nat Nat -> Nat
```


A (PNAT+)-sig-algebra

```
Order-Sorted Algebra with Signature (PNAT+)-sig:
```

```
<Nat, NzNat, Zero; 0, s_, _+_>
```

```
<Nat, NzNat, Zero; 0, s_, _+_>
```


Valuation, evaluation

A valuation (or an assignment) is a sort preserving map from the (order-sorted) set of variables of a specification to an order-sorted algebra (a model), and assigns values to all variables.

Given a model \mathbf{A} and a valuation \mathbf{v}, a term \mathbf{t} of sort \mathbf{s}, which may contain variables, is evaluated to a value $\mathbf{A}_{\mathbf{v}}(\mathrm{t})$ in $\mathbf{A}_{\mathbf{s}}$

Equation

Given terms $\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t} 1, \mathrm{t} 1^{\prime}, \mathrm{t} 2, \mathrm{t} 2^{\prime} . . . \mathrm{tn}, \mathrm{tn}$, a conditional equation is a sentence of the form:

$$
\text { t = t' if (t1 = t1') } \wedge\left(\mathbf{t} 2=\mathbf{t} \mathbf{2}^{\prime}\right) \wedge \ldots \Lambda\left(\mathbf{t n}=\mathbf{t n}^{\prime}\right)
$$

An ordinary equation is a sentence of the form:

$$
t=t^{\prime}
$$

that is $\mathrm{n}=0$.

A conditional equation in CafeOBJ notation:

$$
\left(t=t^{\prime} \text { if } c\right)
$$

where t, t^{\prime} are any terms and c is a Boolean term is an abbreviation of
($\mathrm{t}=\mathrm{t}^{\prime}$ if $\mathrm{c}=$ true)

Satisfiability of equation

An ordered-sorted algebra A satisfies a conditional equation:

$$
\mathbf{t}=\mathbf{t}^{\prime} \text { if }\left(\mathrm{t} 1=\mathrm{t} 1^{\prime}\right) /\left(\mathrm{t} 2=\mathrm{t} 2^{\prime}\right) \wedge . . . \Lambda(\mathrm{tn}=\mathrm{tn})
$$

iff
$A_{v}(t 1)=A_{v}\left(t 1^{\prime}\right)$ and $A_{v}(t 2)=A_{v}\left(t 2^{\prime}\right)$ and... and $A_{v}(t n)=A_{v}\left(t n^{\prime}\right)$ implies $A_{v}(t)=A_{v}\left(t^{\prime}\right)$
for any valuation \mathbf{v}.

The satisfaction of an equation by a model \mathbf{A} is denoted by $\mathrm{A} \mid=\left(\mathrm{t}=\mathrm{t}^{\prime}\right.$ if $\left.\left(\mathrm{t} 1=\mathrm{t} 1^{\prime}\right) \wedge\left(\mathrm{t} 2=\mathrm{t} \mathbf{2}^{\prime}\right) \Lambda . . . \Lambda\left(\mathrm{tn}=\mathrm{tn}{ }^{\prime}\right)\right)$

CafeOBJ _=_ (meta-level equality) and Boolean _=_ (object level equality)

```
If a specification SP includes,
    op _=_: S S -> Bool.
    eq \((X=X)=\) true .
    ceq \((X=Y)\) if \((X=Y)\).
then
    SP |= t=t' if (t1=t1')/\\(t2=t2')/...\(/\left(t n=t n^{\prime}\right)\)
iff
    SP |= (t1=t1' and t2=t2' and ...and tn=tn'
        implies \(\mathbf{t = t}\) ') \(=\) true .
```

1. Object-level equality can be substitutes for meta-level equality
2. Every sentence can be written as Boolean term.

SPEC-algebra

For a specification SPEC = ((S,F,F'), E), a SPEC-algebra is a (S,F,FC)-algebra which satisfies all equations in E.

Satisfiability of property by specification: SPEC |= prop

> A specification SPEC = $\left(\left(S, F, F^{c}\right), E\right)$ is defined to satisfy a property $\mathbf{p}(a$ term of sort Bool) iff $\mathbf{A} \mid=(\mathbf{p}=$ true $)$ holes for any SPEC-algebra \mathbf{A}.

The satisfaction of a predicate prop by a specification SPEC $=\left(\left(S, F, F^{c}\right), E\right)$ is denoted by: SPEC $\mid=p$ or $E=p$

A most important purpose of developing a specification SPEC = ((S,F, $\left.\left.\mathbf{F}^{c}\right), E\right)$ in CafeOBJ is to check whether
SPEC |= prop
holds for a predicate prop which describes some important property of the system which SPEC specifies.

Proof rules for SPEC |= prop (semantic entailment)

For doing formal verification, it is common to think of syntactic proof theoretic entailment: SPEC |- prop
which corresponds to semantic entailment: SPEC |= prop .

We have a sound and quasi complete set of proof rules for |- (see Lecture Note 3b for details) which satisfies: SPEC |- prop iff SPEC |= prop
for unstructured specifications and constitutes a theoretical foundation for proof score construction.

