
Modeling and Specification of QLOCK
in OTS/CafeOBJ

Lecture Note 05a
CafeOBJ Team for JAIST-FSSV2010

LectureNote05, JAIST-FSSV2010, 100301-05
 2

Topics

  What is QLOCK?

  Modeling and Description of QLOCK in OTS

  Formal specification of QLOCK in CafeOBJ

  Formal specification of mutual exclusion property
of QLOCK

LectureNote05, JAIST-FSSV2010, 100301-05
 3

Modeling, Specifying, and Verifying (MSV)
in CafeOBJ

1.  By understanding a problem to be modeled/
specified, determine several sorts of objects
(entities, data, agents, states) and operations
(functions, actions, events) over them for
describing the problem

2.  Define the meanings/functions of the
operations by declaring equations over
expressions/terms composed of the operations

3.  Write proof scores for properties to be verified

LectureNote05, JAIST-FSSV2010, 100301-05
 4

MSV with proof scores in CafeOBJ

Understand problem
and construct model

Write system spec SPsys and
Write property spec SPprop

Construct proof score of
SPprop w.r.t. SPsys

LectureNote05, JAIST-FSSV2010, 100301-05
 5

An example: mutual exclusion protocol

Assume that many agents (or processes) are
competing for a common equipment, but at
any moment of time only one agent can use
the equipment. That is, the agents are
mutually excluded in using the equipment. A
protocol (mechanism or algorithm) which can
achieve the mutual exclusion is called “mutual
exclusion protocol”.

LectureNote05, JAIST-FSSV2010, 100301-05
 6

QLOCK (locking with queue):
a mutual exclusion protocol

Remainder Section

Critical Section

Is i at the top
of the queue?

cs

Put its name i into the
bottom of the queue

Remove/get the
top of the queue

wt

rm

true

false

Each agent i is executing: : atomic action

Some Scenario of Qlock

LectureNote05, JAIST-FSSV2010, 100301-05
7

1

3

2

rm wt

cs

want

try exit

1

3

2

2

rm wt

cs

want

try exit

want2

1
3

3

2

2

rm wt

cs

want

try exit

want3

1
3

3

2

2

rm wt

cs

want

try exit

try2

1

1

3

3

2

2

rm wt

cs

want

try exit

want1

1

1

3

3

2

rm wt

cs

want

try exit

exit2

LectureNote05, JAIST-FSSV2010, 100301-05
 8

QLOCK: basic assumptions/characteristics

  There is only one queue and all agents/processes
share the queue.

  Any basic action on the queue is inseparable (or
atomic). That is, when any action is executed on the
queue, no other action can be executed until the
current action is finished.

  There may be unbounded number of agents.
  In the initial state, every agents are in the remainder

section (or at the label rm), and the queue is empty.

The property to be shown is that at most one agent
is in the critical section (or at the label cs) at any
moment.

LectureNote05, JAIST-FSSV2010, 100301-05
 9

Global (or macro) view of QLOCK

… k j i

i

k

j

is i?

is j?
put

get

get

…

 : queue

 : agents
put

LectureNote05, JAIST-FSSV2010, 100301-05
 10

Modeling QLOCK (via Signature Diagram)
with OTS (Observational Transition System)

…
k j i

i

k

j

is i?

is j?
put

get

get

…

put

Queue

Label

Pid

Sys

want

try

pc

queue

exit

init

LectureNote05, JAIST-FSSV2010, 100301-05
 11

Schematic signature diagram for OTS

Hidden Sort	
(State Space)	

Visible Sort	
(Data)	

．．．	

．．．	

Action	
(method)	

Action	
(method)	

Observation	
(attribute)	

Observation	
(attribute)	

Visible Sorts	
(Data)	

Visible Sorts	
(Data)	

Visible Sort	
(Data)	

．．．	

VSs

HSs
Coherent

LectureNote05, JAIST-FSSV2010, 100301-05
 12

Signature for QLOCKwithOTS
  Sys is the sort for representing the state space of the

system.
  Pid is the sort for the set of agent/process names.
  Label is the sort for the set of labels; i.e. {rm, wt, cs}.
  Queue is the sort for the queues of Pid
  pc (program counter) is an observer returning a label where

each agent resides.
  queue is an observer returning the current value of the

waiting queue of Pid.
  want is an action for agent i of putting its name/id into the

queue.
  try is an action for agent i of checking whether its name/id

is at the top of the queue.
  exit is an action for agent i of removing/getting its name/id

from the top of the queue.

observation declaration

action declaration

visible sort declaration

system sort declaration

CafeOBJ signature for QLOCKwithOTS

-- state space of the system
[Sys]

-- visible sorts for observation
[Queue Pid Label]

-- observations
op pc : Sys Pid -> Label
op queue : Sys -> Queue

-- any initial state
op init : -> Sys (constr)
-- actions
op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}

 13
LectureNote05, JAIST-FSSV2010, 100301-05

LectureNote05, JAIST-FSSV2010, 100301-05
 14

CafeOBJ Code in the file qlock.mod (1)

mod! LABELconst
mod* LABLE
mod* PID*
mod* TRIV=
mod! QUEUE	

LectureNote05, JAIST-FSSV2010, 100301-05
 15

QLOCK using operators
in the CafeOBJ module QUEUE

Remainder Section

Critical Section

top(queue)=i

cs

put(queue,i)

get(queue)

wt

rm
true

false

Each agent i is executing: : atomic action

want

try

exit

LectureNote05, JAIST-FSSV2010, 100301-05
 16

CafeOBJ Code in the file qlock.mod (2)

mod* QLOCK

LectureNote05, JAIST-FSSV2010, 100301-05
 17

(_ =*= _) is congruent for OTS

The binary relation (S1:Sys =*= S2:Sys) is defined to
be true iff S1 and S2 have the same observation values.

OTS style of defining the possible changes of the values of
obervations is characterized by the equations of the form:
 o(a(s,d),d’) = ...o1(s,d1)...o2(s,d2)...on
(s,dn)...
for appropriate data values of d,d’,d1,d2,...,dn .

It can be shown that OTS style guarantees
that (_ =*= _) is congruent with respect
to all actions.

LectureNote05, JAIST-FSSV2010, 100301-05
 18

RQLOCK (set of reachable states) of
OTSQLOCK (OTS defined by the module QLOCK)

-- initial state
 op init : -> Sys {constr}
-- actions
 bop want : Sys Pid -> Sys {constr}
 bop try : Sys Pid -> Sys {constr}
 bop exit : Sys Pid -> Sys {constr}

Signature determining RQLOCK = Sys!

RQLOCK = Sys = {init} ∪
 {want(s,i)|s∈Sys,i∈Pid} ∪
 {try(s,i) |s∈Sys,i∈Pid} ∪
 {exit(s,i)|s∈Sys,i∈Pid}

Recursive definition of RQLOCK = Sys

LectureNote05, JAIST-FSSV2010, 100301-05
 19

Mutual exclusion property
as an invariant on RQLOCK	 =	 Sys

mod* QLOCK-MEX {
 pr(QLOCK)
-- declare a predicate to verify to be an invariant
 pred mex : Sys Pid Pid
-- variables
 var S : Sys .
 vars I J : Pid .
-- define mex to be the mutual exclusion property
 eq mex(S,I,J)
 = (((pc(S,I) = cs) and (pc(S,J) = cs)) implies I = J) .
}

QLOCK-MEX |= ∀s∈Sys∀i,j∈Pid.mex(s,i,j)
Formulation of proof goal for mutual exclusion property

