Modeling and Specification of Authentication Protocol (NSLPK) in OTS/CafeOBJ

Lecture Note 06
CafeOBJ Team for JAIST-FSSV2010
Topics

♦ NSLPK, an authentication protocol, and Agreement Property that NSLPK should enjoy.

♦ A specification of NSLPK.

♦ Formalization of Agreement Property.
An authentication protocol that is a revised version (by Gavin Lowe in 1995) of NSPK published by Roger Needham and Michael Schroeder in 1978.

- n_x: a nonce (an unguessable random number) made by a principal x.
- $\{m\}_{k(x)}$: a ciphertext obtained by encrypting a message (tuple) m with the principal x’s public key.
Agreement Property

Whenever a protocol run is successfully completed by p and q,
- the principal with which p is communicating is really q, and
- the principal with which q is communicating is really p
even if there are malicious principals.

For verification of the property,
- the assumptions used are made clear,
- a transition system (an OTS) of NSLPK is made, and
- the property is formalized.
Lowe’s Attack on NSPK

- 17 years passed since it was created till an attack was found by Lowe on NSPK whose difference from NSLPK is only that a Resp message is \(\{ n_p, n_q \}_k(p) \) but not \(\{ n_p, n_q, q \}_k(p) \).

\[
\begin{align*}
p & \rightarrow i \\
\{ n_p, p \}_k(i) & \\
\{ n_p, n_q \}_k(p) & \leftarrow i \\
\{ n_q \}_k(i) & \\
q & \rightarrow i \\
\{ n_p, p \}_k(q) & \\
\{ n_p, n_q \}_k(p) & \\
\{ n_q \}_k(q) & \\
\{ n_q \}_k(q) & \leftarrow i \\
\{ n_p, n_q \}_k(p) & \\
\end{align*}
\]
Assumptions (1)

- There are an arbitrary number of principals, all of which except for one are trustable.

- Each principal is given a pair of public & private keys; the public key is known by all principals, while the private key only by the principal.

- The cryptosystem used is perfect:
 - Ciphertexts can only be decrypted with the corresponding private keys.
 - Nonces (and private keys and the plaintexts of ciphertexts) cannot be guessed.
The behaviors of malicious principals are formalized as the *intruder* proposed by Dolev&Yao; the intruder does the following:

- to glean as much information as possible from the network,
- to fake messages based on the gleaned information, and
- to imitate a trustable principal.
Making an OTS of NSLPK

♦ Formalization of data such as nonces, ciphertexts, etc.

♦ Formalization of the behaviors of NSLPK.
 • To determine what values are observed.
 • Formalization of sending messages exactly obeying the protocol.
 • Formalization of faking messages based on the gleaned information from the network.
Principals & Random Numbers

♦ Module PRINCIPAL:

mod* PRINCIPAL principal-sort Principal {
 [Principal]
 op intruder : -> Principal
 op _=_ : Principal Principal -> Bool {comm}
 eq (P:Principal = P) = true .
 ceq P1:Principal = P2:Principal if P1 = P2 .
}

♦ Module RANDOM:

mod* RANDOM principal-sort Random {
 [Random]
 op _=_ : Random Random -> Bool {comm}
 eq (R:Random = R) = true .
 ceq R1:Random = R2:Random if R1 = R2 .
}
Nonces

♦ Module NONCE: One constructor is declared.

\[
\text{op n : Principal Principal Random } \to \text{ Nonce } \{ \text{constr} \}
\]

✓ \(n(p, q, r) \) denotes a nonce made by \(p \) for \(q \), where \(r \) makes the nonce unique and unguessable.

 - \(n_p \) in \(\{ n_p, p \} \) is denoted by \(n(p, q, r_1) \).
 - \(n_q \) in \(\{ n_p, n_q, q \} \) is denoted by \(n(q, p, r_2) \).

✓ \(p, q, r \) in \(n(p, q, r) \) are meta-information.

✓ The following operators are prepared:

\[
\begin{align*}
\text{eq creator}(n(C, W, R)) &= C . \\
\text{eq forwhom}(n(C, W, R)) &= W . \\
\text{eq random}(n(C, W, R)) &= R . \\
\text{eq } (N1 = N2) &= (\text{creator}(N1) = \text{creator}(N2) \text{ and } \text{forwhom}(N1) = \text{forwhom}(N2) \text{ and } \text{random}(N1) = \text{random}(N2)) .
\end{align*}
\]

Init: \(p \rightarrow q \{ n_p, p \}_{k(q)} \)
Resp: \(q \rightarrow p \{ n_p, n_q, q \}_{k(p)} \)
Ack: \(p \rightarrow q \{ n_q \}_{k(q)} \)
Module **CIPHER1**: One constructor is declared.

\[
\text{op enc1 : Principal Nonce Principal} \\
\qquad \rightarrow \text{Cipher1 \{constr\}}
\]

✓ \(\text{enc1}(p, n, q)\) denotes a ciphertext \(\{n, q\}_{k(p)}\).

✓ The following operators are provided:

\[
\begin{align*}
\text{eq key}(\text{enc1}(K,N,P)) & = K . \\
\text{eq nonce}(\text{enc1}(K,N,P)) & = N . \\
\text{eq principal}(\text{enc1}(K,N,P)) & = P . \\
\text{eq (E11 = E12)} & = (\text{key}(E11) = \text{key}(E12) \text{ and} \\
& \quad \text{nonce}(E11) = \text{nonce}(E12) \text{ and} \\
& \quad \text{principal}(E11) = \text{principal}(E12)) .
\end{align*}
\]

\[
\begin{array}{|c|c|}
\hline
\text{Init:} & p \rightarrow q \quad \{n_p,p\}_{k(q)} \\
\text{Resp:} & q \rightarrow p \quad \{n_p,n_q,q\}_{k(p)} \\
\text{Ack:} & p \rightarrow q \quad \{n_q\}_{k(q)} \\
\hline
\end{array}
\]
Ciphertexts in Resp Messages

♦ Module CIPHER2: One constructor is declared.

\[\text{op enc2 : Principal Nonce Nonce Principal } \rightarrow \text{Cipher2 } \{\text{constr}\} \]

✓ \(\text{enc2}(p, n_1, n_2, q) \) denotes a ciphertext \(\{n_1, n_2, q\}_{k(p)} \).

✓ The following operators are provided:

\[
\begin{align*}
\text{eq key(enc2(K,N1,N2,P)) = K } . \\
\text{eq nonce1(enc2(K,N1,N2,P)) = N1 .} \\
\text{eq nonce2(enc2(K,N1,N2,P)) = N2 .} \\
\text{eq principal(enc2(K,N1,N2,P)) = P .} \\
\text{eq (E21 = E22) = (key(E21) = key(E22) and} \\
\text{ nonce1(E21) = nonce1(E22) and} \\
\text{ nonce2(E21) = nonce2(E22) and} \\
\text{ principal(E21) = principal(E22)) .}
\end{align*}
\]

Init: \[p \rightarrow q \quad \{n_p,p\}_{k(q)} \]

Resp: \[q \rightarrow p \quad \{n_p,n_q,q\}_{k(p)} \]

Ack: \[p \rightarrow q \quad \{n_q\}_{k(q)} \]
Ciphertexts in Ack Messages

♦ Module **CIPHER3**: One constructor is declared.

\[
\text{op enc3 : Principal Nonce \rightarrow Cipher3 \{constr\}}
\]

\[\text{enc3}(p, n) \text{ denotes a ciphertext } \{n\}_{k(p)}.\]

✓ The following operators are provided:

\[
\begin{align*}
\text{eq } \text{key}(\text{enc3}(K,N)) &= K. \\
\text{eq } \text{nonce}(\text{enc3}(K,N)) &= N. \\
\text{eq } (E31 = E32) &= (\text{key}(E31) = \text{key}(E32) \text{ and } \\
&\quad \quad \quad \text{nonce}(E31) = \text{nonce}(E32)).
\end{align*}
\]

<table>
<thead>
<tr>
<th>Init: (p \rightarrow q)</th>
<th>({n_p,p}_{k(q)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp: (q \rightarrow p)</td>
<td>({n_p,n_q,q}_{k(p)})</td>
</tr>
<tr>
<td>Ack: (p \rightarrow q)</td>
<td>({n_q}_{k(q)})</td>
</tr>
</tbody>
</table>
Messages (1)

♦ A term denoting a message contains
 • the (seeming) source (sender),
 • the destination (receiver), and
 • the body (ciphertext).

♦ In addition to those data, it also has
 • the actual source (creator).

because messages may be faked by the intruder.

This is meta-information.

♦ Such a term is in the form
 • $m(creator, sender, receiver, ciphertext)$
Module MESSAGE: Three constructors are declared.

[Message1 Message2 Message3 < Message]

- \(m1(p?, p, q, \text{enc1}(...)) \) denotes an Init message.
- \(m2(p?, p, q, \text{enc2}(...)) \) denotes a Resp message.
- \(m3(p?, p, q, \text{enc3}(...)) \) denotes an Ack message.

\[
\begin{array}{l}
\text{Init: } p \rightarrow q \ \{n_p,p\}_{k(q)} \\
\text{Resp: } q \rightarrow p \ \{n_p,n_q,q\}_{k(p)} \\
\text{Ack: } p \rightarrow q \ \{n_q\}_{k(q)}
\end{array}
\]
Messages (3)

✓ The following operators are provided:

\[
\begin{align*}
\text{eq creator}(\text{m1}(C,S,R,E1)) &= C . \\
\text{eq creator}(\text{m2}(C,S,R,E2)) &= C . \\
\text{eq creator}(\text{m3}(C,S,R,E3)) &= C . \\
\text{eq sender}(\text{m1}(C,S,R,E1)) &= S . \\
\text{eq sender}(\text{m2}(C,S,R,E2)) &= S . \\
\text{eq sender}(\text{m3}(C,S,R,E3)) &= S . \\
\text{eq receiver}(\text{m1}(C,S,R,E1)) &= R . \\
\text{eq receiver}(\text{m2}(C,S,R,E2)) &= R . \\
\text{eq receiver}(\text{m3}(C,S,R,E3)) &= R . \\
\text{eq cipher1}(\text{m1}(C,S,R,E1)) &= E1 . \\
\text{eq cipher2}(\text{m2}(C,S,R,E2)) &= E2 . \\
\text{eq cipher3}(\text{m3}(C,S,R,E3)) &= E3 .
\end{align*}
\]

✓ Note that cipher_i (i = 1,2,3) is declared as follows:

\[
\text{op cipher}_i : \text{Message}_i \to \text{Cipher}_i
\]
The following operators are provided (cont.):

\[
\begin{align*}
\text{eq } (M = M) &= \text{true} \ . \\
\text{eq } (M_{11} = M_{12}) &= (\text{creator}(M_{11}) = \text{creator}(M_{12}) \text{ and } \\
&\quad \text{sender}(M_{11}) = \text{sender}(M_{12}) \text{ and } \\
&\quad \text{receiver}(M_{11}) = \text{receiver}(M_{12}) \text{ and } \\
&\quad \text{cipher1}(M_{11}) = \text{cipher1}(M_{12})) \ . \\
\text{eq } (M_{21} = M_{22}) &= (\text{creator}(M_{21}) = \text{creator}(M_{22}) \text{ and } \\
&\quad \text{sender}(M_{21}) = \text{sender}(M_{22}) \text{ and } \\
&\quad \text{receiver}(M_{21}) = \text{receiver}(M_{22}) \text{ and } \\
&\quad \text{cipher2}(M_{21}) = \text{cipher2}(M_{22})) \ . \\
\text{eq } (M_{31} = M_{32}) &= (\text{creator}(M_{31}) = \text{creator}(M_{32}) \text{ and } \\
&\quad \text{sender}(M_{31}) = \text{sender}(M_{32}) \text{ and } \\
&\quad \text{receiver}(M_{31}) = \text{receiver}(M_{32}) \text{ and } \\
&\quad \text{cipher3}(M_{31}) = \text{cipher3}(M_{32})) \ . \\
\text{eq } (M_{11} = M_{21}) &= \text{false} \ . \\
\text{eq } (M_{11} = M_{31}) &= \text{false} \ . \\
\text{eq } (M_{21} = M_{31}) &= \text{false} \ .
\end{align*}
\]
Module SOUP:

```plaintext
mod* SOUP (D :: EQTRIV) principal-sort Soup {
  [Elt.D < Soup]
  op empty : -> Soup {constr}
  op _ _ : Soup Soup -> Soup
    {constr assoc comm id: empty}
  op _\in_ : Elt.D Soup -> Bool
  var S : Soup vars E1 E2 : Elt.D
  eq E1 \in empty = false .
  eq E1 \in (E2 S) = (E1 = E2) or E1 \in S .
}
where EQTRIV is as follows:

mod* EQTRIV principal-sort Elt {
  [Elt]
  op _=_ : Elt Elt -> Bool {comm}
  eq (E:Elt = E) = true .
  eq E1:Elt = E2:Elt if E1 = E2 .
}
```

Soups (Associative & Commutative Collections)
Networks

♦ Formalized as soups of messages.

\[\text{SOUP(MESSAGE)} \ast \{\text{sort Soup} \rightarrow \text{Network}\} \]

✓ Sending a message is formalized as putting it in the soup.
✓ If the soup contains \(mi(p?, p, q, e_i) \), then \(q \) can receive it.
✓ \(q \) may believe that it originates in \(p \), but it may not be true.
✓ Suppose that messages are never deleted from the soup.
✓ This assumption may make it possible to do something that can never happen in the real world, but covers all possible cases.
Soups of Nonces & Soups of Random Numbers

♦ Soups of nonces:

\[
\text{SOUP(NONCE) * \{sort Soup -> NonceSoup\}}
\]

\[
\{n_p, p\}_{k(i)} \quad \{n_q\}_{k(i)}
\]

Gleaned nonces

♦ Soups of random numbers:

\[
\text{SOUP(RANDOM) * \{sort Soup -> RandSoup\}}
\]

\[
\ldots \, n(p, q, r_1) \, \ldots \\
\ldots \, n(q, p, r_2) \, \ldots \\
\]

Used random numbers

JAIST-FSSV2010, March 1-5, 2010, Kanazawa
Observable Values

♦ The three values are made observable:
 • the network (a soup of messages),
 • a soup of random numbers that have been used, and
 • a soup of nonces that have been gleaned by the intruder from the network.

♦ The corresponding operators (called observation or observer operators or functions) are as follows:

 \[
 \begin{align*}
 \text{op network} & : \text{System} \to \text{Network} \\
 \text{op rands} & : \text{System} \to \text{RandSoup} \\
 \text{op nonces} & : \text{System} \to \text{NonceSoup}
 \end{align*}
 \]

where \text{System} is the sort for the set of states, i.e. the state space.
An arbitrary initial state is denoted by the operator:

\[
\text{op init : } \rightarrow \text{ System } \{\text{constr}\}
\]

such that

\[
\begin{align*}
\text{eq network(init)} & = \text{ empty } . \\
\text{eq rands(init)} & = \text{ empty } . \\
\text{eq nonces(init)} & = \text{ empty } .
\end{align*}
\]
Formalization of Sending Messages

Sending Init, Resp and Ack messages according to the protocol is formalized as the operators (called transition operators or functions):

\[
\begin{align*}
\text{op sdm1} & : \text{System Principal Principal Random} \\
& \rightarrow \text{System \{constr\}} \\
\text{op sdm2} & : \text{System Principal Principal Principal} \\
& \text{Random Nonce} \rightarrow \text{System \{constr\}} \\
\text{op sdm3} & : \text{System Principal Principal Principal} \\
& \text{Nonce Nonce} \rightarrow \text{System \{constr\}}
\end{align*}
\]

\(\text{sdm1}(s, p, q, r) \) denotes the successor state of \(s \) when \(p \) sends an Init message to \(q \) in \(s \).

\(\text{sdm2}(s, q^?, p, q, r, n) \) denotes the successor state of \(s \) when \(p \) sends a Resp message to \(q \) in \(s \).

\(\text{sdm3}(s, q^?, p, q, n_1, n_2) \) denotes the successor state of \(s \) when \(p \) sends an Ack message to \(p \) in \(s \).
Sending Init Messages (1)

♦ The effective condition of sdm_1 is that a random number is fresh.

$$eq \; c-sdm_1(S,P,Q,R) = not(R \in \text{rands}(S)).$$

♦ When $c-sdm_1(S,P,Q,R)$ holds, in the successor state $sdm_1(S,P,Q,R)$,

\[
m_1(P,P,Q,\text{enc}_1(Q,n(P,Q,R),P))
\]

If Q is intruder,

\[
n(P,Q,R)
\]

Otherwise,

\[
\ldots
\]
Sending Init Messages (2)

The equations for \(sdm1 \):

\[
\text{ceq network}(sdm1(S,P,Q,R)) = m1(P,P,Q,\text{enc1}(Q,n(P,Q,R),P)) \text{ network}(S)\
\text{if c-sdm1}(S,P,Q,R) .
\]

\[
\text{ceq rands}(sdm1(S,P,Q,R)) = R \text{ rands}(S) \text{ if c-sdm1}(S,P,Q,R) .
\]

\[
\text{ceq nonces}(sdm1(S,P,Q,R)) = (\text{if } Q = \text{intruder} \text{ then } n(P,Q,R) \text{ nonces}(S) \text{ else nonces}(S) \text{ fi})
\text{if c-sdm1}(S,P,Q,R) .
\]

\[
\text{ceq sdm1}(S,P,Q,R) = S \text{ if not c-sdm1}(S,P,Q,R) .
\]

Note that we need to have the last one because we have to explicitly declare that nothing changes if \(c-sdm1(S,P,Q,R) \) does not hold.
Sending Resp Messages (1)

- The effective condition of sdm2 is that there exists an Init message in the network and a random number is fresh.

\[eq \ c-sdm2(S,Q?,P,Q,R,N) \]
\[= (m1(Q?,Q,P,enc1(P,N,Q)) \in \text{network}(S) \text{ and } \not(R \in \text{rands}(S))) . \]

When \(c-sdm2(S,Q?,P,Q,RN) \) holds, in the successor state \(sdm2(S,Q?,P,Q,R,N) \),

\[m2(P,P,Q,enc2(Q,N,n(P,Q,R),P)) \]
\[m1(Q?,Q,P,enc1(P,N,Q)) \]

If \(Q \) is intruder,

\[n(P,Q,R) \]
\[\text{N} \]

Otherwise,

\[\text{...} \]
Sending Resp Messages (2)

♦ The equations for $sdm2$:

\[
\begin{align*}
ceq \quad & \text{network}(sdm2(S,Q?,P,Q,R,N)) \\
& = m2(P,P,Q,enc2(Q,N,n(P,Q,R),P)) \text{ network}(S) \\
& \quad \text{if } c-sdm2(S,Q?,P,Q,R,N) . \\
ceq \quad & \text{rands}(sdm2(S,Q?,P,Q,R,N)) \\
& = R \text{ rands}(S) \text{ if } c-sdm1(S,P,Q,R) . \\
ceq \quad & \text{nonces}(sdm2(S,Q?,P,Q,R,N)) \\
& = (\text{if } Q = \text{intruder then } N \ n(P,Q,R) \ \text{nonces}(S) \\
& \quad \text{else } \text{nonces}(S) \ \text{fi}) \\
& \quad \text{if } c-sdm2(S,Q?,P,Q,R,N) . \\
ceq \quad & \text{sdm2}(S,Q?,P,Q,R,N) \\
& = S \text{ if not } c-sdm2(S,Q?,P,Q,R,N) .
\end{align*}
\]

Init: $p \rightarrow q \ {n_p,p}_{k(q)}$

Resp: $q \rightarrow p \ {n_p,n_q,q}_{k(p)}$

Ack: $p \rightarrow q \ {n_q}_{k(q)}$
Sending Ack Messages (1)

- The effective condition of sdm3 is that there exist an Init message and a Resp message in the network.

$$\text{eq } c-\text{sdm3}(S,Q?,P,Q,N1,N2)$$

$$= m1(P,P,Q,\text{enc1}(Q,N1,P)) \in \text{network}(S) \text{ and }$$

$$m2(Q?,Q,P,\text{enc2}(P,N1,N2,Q)) \in \text{network}(S) .$$

- When $c-\text{sdm3}(S,Q?,P,Q,N1,N2)$ holds, in the successor state $\text{sdm3}(S,Q?,P,Q,N1,N2)$,

$$m3(P,P,Q,\text{enc3}(Q,N2))$$

$$m1(P,P,Q,\text{enc1}(Q,N1,P))$$

$$m2(Q?,Q,P,\text{enc2}(P,N1,N2,Q))$$

... If Q is intruder,

N2

Otherwise,

...
Sending Ack Messages (2)

◆ The equations for $sdm3$:

$$ceq \text{ network}(sdm3(S,Q?,P,Q,N1,N2))$$
$$= m3(P,P,Q,\text{enc3}(Q,N2)) \text{ network}(S)$$
if $c-sdm3(S,Q?,P,Q,N1,N2)$.

$$eq \text{ rands}(sdm3(S,Q?,P,Q,N1,N2)) = \text{ rands}(S) \ .$$

$$ceq \text{ nonces}(sdm3(S,Q?,P,Q,N1,N2))$$
$$= (\text{ if } Q = \text{ intruder} \text{ then } N2 \ \text{ nonces}(S)$$
$$\text{ else } \text{ nonces}(S) \ \text{ fi})$$
if $c-sdm3(S,Q?,P,Q,N1,N2)$.

$$ceq \text{ sdm3}(S,Q?,P,Q,N1,N2)$$
$$= S \text{ if not } c-sdm3(S,Q?,P,Q,N1,N2) \ .$$
The intruder may fake messages based on the nonces and ciphertexts gleaned from the network, which is formalized as the transition operators:

\[
\begin{align*}
\text{op } \text{fkm11} &: \text{System Principal Principal Message1} \\
&\rightarrow \text{System } \{\text{constr}\} \\
\text{op } \text{fkm12} &: \text{System Principal Principal Nonce} \\
&\rightarrow \text{System } \{\text{constr}\} \\
\text{op } \text{fkm21} &: \text{System Principal Principal Message2} \\
&\rightarrow \text{System } \{\text{constr}\} \\
\text{op } \text{fkm22} &: \text{System Principal Principal Nonce Nonce} \\
&\rightarrow \text{System } \{\text{constr}\} \\
\text{op } \text{fkm31} &: \text{System Principal Principal Message3} \\
&\rightarrow \text{System } \{\text{constr}\} \\
\text{op } \text{fkm32} &: \text{System Principal Principal Nonce} \\
&\rightarrow \text{System } \{\text{constr}\}
\end{align*}
\]

\(\text{fkm11}(s, p, q, m_1)\) denotes the successor state of \(s\) when the intruder fakes based on \(m_1\) an Init message, which seems to have been sent by \(p\) to \(q\), in \(s\).

\(\text{...}\)
The effective condition of fkm11 is that there exists an Init message in the network.

$$eq \ c\-\text{fkm11}(S,P,Q,M1) = M1 \ \text{in network}(S) .$$

The equations for fkm11:

$$ceq \ \text{network}(\text{fkm11}(S,P,Q,M1)) = m1(\text{intruder},P,Q,\text{cipher1}(M1)) \ \text{network}(S) \ \text{if} \ c-\text{fkm11}(S,P,Q,M1) .$$
$$eq \ \text{rands}(\text{fkm11}(S,P,Q,M1)) = \text{rands}(S) .$$
$$eq \ \text{nonces}(\text{fkm11}(S,P,Q,M1)) = \text{nonces}(S) .$$
$$ceq \ \text{fkm11}(S,P,Q,M1) = S \ \text{if not} \ c-\text{fkm11}(S,P,Q,M1) .$$
Faking Init Messages (2)

- The effective condition of \texttt{fkm12} is that a nonce is available to the intruder.
 \[
 \text{eq } c\text{-fkm12}(S,P,Q,N) = N \in \text{nonces}(S) .
 \]

- The equations for \texttt{fkm12}:
 \[
 \begin{align*}
 \text{ceq } \text{network}(\text{fkm12}(S,P,Q,N)) &= \text{ml(intruder},P,Q,\text{enc1}(Q,N,P)) \ \text{network}(S) \\
 &\quad \text{if } c\text{-fkm12}(S,P,Q,N) . \\
 \text{eq } \text{rands}(\text{fkm12}(S,P,Q,N)) &= \text{rands}(S) . \\
 \text{eq } \text{nonces}(\text{fkm12}(S,P,Q,N)) &= \text{nonces}(S) . \\
 \text{ceq } \text{fkm12}(S,P,Q,N) &= S \ \text{if not } c\text{-fkm12}(S,P,Q,N) .
 \end{align*}
 \]

\[
\text{ml(intruder},P,Q,\text{enc1}(Q,N,P))
\]

\[
\cdots
\]
Faking Resp Messages (1)

♦ The effective condition of $fkm21$ is that there exists a Resp message in the network.

\[
eq c-fkm21(S,P,Q,M2) = M2 \in \text{network}(S) .
\]

♦ The equations for $fkm21$:

\[
\begin{align*}
\text{ceq network}(fkm21(S,P,Q,M2)) &= m2(\text{intruder},P,Q,\text{cipher2}(M2)) \ \text{network}(S) \\
\text{if c-fkm21}(S,P,Q,M2) . \\
\text{eq rands}(fkm21(S,P,Q,M2)) &= \text{rands}(S) . \\
\text{eq nonces}(fkm21(S,P,Q,M2)) &= \text{nonces}(S) . \\
\text{ceq fkm21}(S,P,Q,M2) &= S \ \text{if not c-fkm21}(S,P,Q,M2) .
\end{align*}
\]
Faking Resp Messages (2)

♦ The effective condition of fkm22 is that two different nonces are available to the intruder.

\[
\text{eq } c-\text{fkm22}(S,P,Q,N_1,N_2) = N_1 \in \text{nonces}(S) \text{ and } N_2 \in \text{nonces}(S) \text{ and not}(N_1 = N_2).
\]

♦ The equations for fkm22:

\[
\begin{align*}
\text{ceq } \text{network}(\text{fkm22}(S,P,Q,N_1,N_2)) &= \text{m2(intruder,P,Q,enc2(Q,N_1,N_2,P)) network}(S) \text{ if } c-\text{fkm22}(S,P,Q,N_1,N_2). \\
\text{eq } \text{rands}(\text{fkm22}(S,P,Q,N_1,N_2)) &= \text{rands}(S). \\
\text{eq } \text{nonces}(\text{fkm22}(S,P,Q,N_1,N_2)) &= \text{nonces}(S). \\
\text{ceq } \text{fkm22}(S,P,Q,N_1,N_2) &= S \text{ if not } c-\text{fkm22}(S,P,Q,N_1,N_2).
\end{align*}
\]
Faking Ack Messages (1)

- The effective condition of fkm_{31} is that there exists an Ack message in the network.
 \[eq \ c-fkm_{31}(S,P,Q,M3) = M3 \in \text{network}(S) .\]

- The equations for fkm_{31}:
 \[ceq \ \text{network}(fkm_{31}(S,P,Q,M3))\]
 \[= m3(\text{intruder},P,Q,\text{cipher3}(M3)) \ \text{network}(S)\]
 \[if \ c-fkm_{31}(S,P,Q,M3) .\]
 \[eq \ rands(fkm_{31}(S,P,Q,M3)) = rands(S) .\]
 \[eq \ nonces(fkm_{31}(S,P,Q,M3)) = nonces(S) .\]
 \[ceq fkm_{31}(S,P,Q,M3) = S \ if \ not \ c-fkm_{31}(S,P,Q,M3) .\]

\[m3(\text{intruder},P,Q,\text{cipher3}(M3))\]

\[M2\]

\[\cdots\]
The effective condition of $fkm32$ is that a nonce is available to the intruder.

\[eq \ c-fkm32(S,P,Q,N) = N \ \text{in} \ \text{nonces}(S) . \]

The equations for $fkm32$:

\begin{align*}
& \text{ceq} \ \text{network}(fkm32(S,P,Q,N)) = m3(\text{intruder}, P, Q, \text{enc3}(Q,N)) \ \text{network}(S) \\
& \text{if} \ c-fkm32(S,P,Q,N) . \\
& \text{eq} \ \text{rands}(fkm32(S,P,Q,N)) = \text{rands}(S) . \\
& \text{eq} \ \text{nonces}(fkm32(S,P,Q,N)) = \text{nonces}(S) . \\
& \text{ceq} \ fkm32(S,P,Q,N) = S \ \text{if} \ \text{not} \ c-fkm32(S,P,Q,N) . \\
\end{align*}
Constructors of State Space

♦ The (reachable) state space (System) is constructed from the constructors init, sdm1, sdm2, sdm3, fkm11, fkm12, fkm21, fkm22, fkm31 and fkm32.

♦ Theorems on System (or invariant properties of the OTS of NSLPK) can be proved by simultaneous structural induction of the reachable state space (System).

\[
\text{NSLPK} \models p_i(\text{init}) \quad \begin{array}{cccc}
\text{NSLPK} \cup \{p_j(s) = \text{true for } j = 1,\ldots,n\} \\
\models \{s, p, q, r\} p_i(\text{sdm1}(s, p, q, r)) \\
\cdots \\
\text{NSLPK} \models (\forall S:\text{System}) p_i(S) \text{ for any } l \in \{1,\ldots,n\}
\end{array}
\]
Formalization of Agreement Property (1)

♦ Whenever a protocol run is successfully completed by p and q,
 • the principal with which p is communicating is really q, and
 • the principal with which q is communicating is really p.

♦ The property can be rephrased based on the specification of NSLPK as follows:
 • Whenever p receives a Resp message that is what p really expects, the Resp message originates in q, and
 • whenever q receives an Ack message that is what q really expects, the Ack message originates in p.
Precisely the property is described as follows:

- If p is not the intruder, then whenever p has sent an Init message to q and receives a valid Resp message, which seems to have been sent by q, the Resp message originates in q, and
- If q is not the intruder, then whenever q has sent a Resp message to p and receives a valid Ack message, which seems to have been sent by p, the Ack message originates in p.

Note that if p (or q) is the intruder, then the intruder can fake a valid Resp (or Ack) message, which does not originate in q (or p).

If two nonces n, n' are available to the intruder, then the intruder can fake the messages:

$$m_1(\text{intruder}, \text{intruder}, q, \text{enc}_1(q, n, \text{intruder}))$$

$$m_2(\text{intruder}, q, \text{intruder}, \text{enc}_2(\text{intruder}, n, n', q))$$
Formalization of Agreement Property (3)

♦ That there exists a message in the network means that it has been sent by (or originates in) the creator, and any messages in the network whose receivers are \(p \) can be received by \(p \). So, the property is formalized:

\[
eq \text{inv}_1(S,P,Q,Q?,R,N) = (\neg(P = \text{intruder}) \quad \text{and} \quad \\
 m_1(P,P,Q,\text{enc}_1(Q,n(P,Q,R),P)) \in \text{network}(S) \quad \text{and} \quad \\
m_2(Q?,Q,P,\text{enc}_2(P,n(P,Q,R),N,Q)) \in \text{network}(S) \quad \text{implies} \quad \\
m_2(Q,Q,P,\text{enc}_2(P,n(P,Q,R),N,Q)) \in \text{network}(S)) .
\]

\[
eq \text{inv}_2(S,P,Q,P?,R,N) = (\neg(Q = \text{intruder}) \quad \text{and} \quad \\
m_2(Q,Q,P,\text{enc}_2(P,N,n(Q,P,R),Q)) \in \text{network}(S) \quad \text{and} \quad \\
m_3(P?,P,Q,\text{enc}_3(Q,n(Q,P,R))) \in \text{network}(S) \quad \text{implies} \quad \\
m_3(P,P,Q,\text{enc}_3(Q,n(Q,P,R))) \in \text{network}(S)) .
\]
NSLPK has been used as an example to discuss what to prepare for verification that a system enjoys a property:

• Make the assumptions clear.
• Create a transition system (an OTS) of the system.
 ✓ Formalize data used.
 ✓ Determine what values are observed.
 ✓ Determine what actions of the system are formalized as transitions.

You may want to take into account the property.
• Formalize the property based on the specification of the OTS.