Verification of NSLPK and Some Tips for Construction of Proof Score

Lecture Note 07
CafeOBJ Team for JAIST-FSSV2010

Topics

- Brushup of the previous lecture
- Verification that (an abstract model of) NSLPK enjoys Agreement property
- proof score templates
- Case analysis \& lemma conjecture

Brushup (1)

- NSLPK:

- Agreement Property: Whenever a protocol run is successfully completed by p and q,
- the principal with which p is communicating is really q, and
- the principal with which q is communicating is really p.

Brushup (2)

- Nonces: $\mathrm{n}(p, q, r)$ denotes a nonce made by p for q, where r makes it unique and unguessable.
- Messages: mi $\left(p\right.$? $\left., p, q, e_{i}\right)(i=1,2,3)$ denotes a message (an Init, Resp, or Ack message) that seems to have been sent by p to q but has been created by p ?, which may not be p, where e_{i} is the message body (ciphertext).
- Networks: Formalized as soups of messages.
- Sending a message is formalized as putting it in the soup.
- If the soup contains $\mathrm{mi}\left(p\right.$? $\left., p, q, e_{i}\right)$, then q can receive it.
- Then q believes that it originates in p, although it is not true.
- Suppose that messages are never deleted from the soup.

Brushup (3)

- Three observable values:

```
op network : System -> Network
op rands : System -> RandSoup
op nonces : System -> NonceSoup
```


op nonces : system -> NonceSoup

```
ages:
```

op sdm1 : System Principal Principal Random -> System {constr}
op sdm2 : System Principal Principal Principal
Random Nonce -> System {constr}
op sdm3 : System Principal Principal Principal
Nonce Nonce -> System {constr}

- Formalization of faking messages:

```


\section*{Brushup (4)}

\section*{- Equations for sdm2:}
ceq network(sdm2 (S,Q?,P,Q,R,N))
\(=m 2(P, P, Q, e n c 2(Q, N, n(P, Q, R), P))\) network(S)if \(C-s d m 2(S, Q ?, P, Q, R, N)\). ceq rands (sdm2 \((S, Q\) ?, \(P, Q, R, N))=R \operatorname{rands}(S)\) if \(c-s d m 1(S, P, Q, R)\).
ceq nonces (sdm2 (S,Q?,P,Q,R,N))
\(=\) (if \(Q=\) intruder then \(N(P, Q, R)\) nonces \((S)\) else nonces (S) fi)
if \(C-s d m 2(S, Q ?, P, Q, R, N)\).
ceq \(\operatorname{sdm} 2(S, Q ?, P, Q, R, N)=S\) if not \(C-s d m 2(S, Q ?, P, Q, R, N)\).
where
```

eq c-sdm2(S,Q?,P,Q,R,N)
= (m1(Q?,Q,P,encl(P,N,Q)) \in network(S) and not(R \in rands(S))) .

```


\section*{Brushup (5)}
- Equations for fkm 22 :
```

ceq network(fkm22(S,P,Q,N1,N2))
= m2(intruder,P,Q,enc2(Q,N1,N2,P)) network(S)
if C-fkm22(S,P,Q,N1,N2) .
eq rands(fkm22(S,P,Q,N1,N2)) = rands(S) .
eq nonces(fkm22(S,P,Q,N1,N2)) = nonces(S) .
ceq fkm22(S,P,Q,N1,N2)
= S if not c-fkm22(S,P,Q,N1,N2) .
where

```
```

eq c-fkm22(S,P,Q,N1,N2)
= N1 \in nonces(S) and N2 \in nonces(S) .

```


\section*{Brushup (6)}

\section*{- Formalization of Agreement Property:}
```

eq inv1(S,P,Q,Q?,R,N)
= (not(P = intruder) and
m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and
m2(Q?,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)
implies
m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)) .
eq inv2(S,P,Q,P?,R,N)
= (not(Q = intruder) and
m2(Q,Q,P,enc2(P,N,n(Q,P,R),Q)) \in network(S) and
m3(P?,P,Q,enc3(Q,n(Q,P,R))) \in network(S)
implies
m3(P,P,Q,enc3(Q,n(Q,P,R))) \in network(S)) .

```


\section*{Preparation for Verification (1)}
- Module PRED-NSLPK: Properties to verify are declared.
```

mod* PRED-NSLPK {
inc(NSLPK)
op inv1 : System Principal Principal Principal
Random Nonce -> Bool
op inv2 : System Principal Principal Principal
Random Nonce -> Bool
eq invl(S,P,Q,Q?,R,N)=···..
eq inv2(S,P,Q,P?,R,N) =
}

```

\section*{Preparation for Verification (2)}
- Verification starts with use of simultaneous structural induction of System.

- Module BASE-NSLPK: Fresh constants used in proof scores are declared.
```

mod* BASE-NSLPK { inc(PRED-NSLPK)
ops s s' : -> System
op r : -> Random op n : -> Nonce
ops p q p? q? : -> Principal
}

```

\section*{Preparation for Verification (3)}
- Module ISTEP-NSLPK: Basic formulas to prove in the induction case (step) and induction hypotheses are declared
```

mod* ISTEP-NSLPK { inc(BASE-NSLPK)
op istep1 : -> Bool
op istep2 : -> Bool
An instance of the I.H. The formula to prove
eq istep1 = inv1 (s,p,q,q?,r,n) implies inv1(s',p,q,q?,r,n).
eq istep2 =
inv2(s,p,q,p?,r,n) implies inv2(s',p,q,p?,r,n) .
"
eq inv1(S,P,Q,Q?,R,N) = true.
"eq inv2(s,P,Q,P?,R,N) = true. Induction hypothese

```

\section*{Use of Simul Struct Ind of Sort System}
- The following proof score can be systematically written:
I. Base case:
```

open BASE-NSLPK
-- check
red inv1(init,p,q,q?,r,n) .

```
\(\checkmark\) Done
II. Induction case: For each transition operator \(t\),
```

open ISTEP-NSLPK

```
-- fresh constants
op \(a_{1}:->S_{1}\). ...
-- assumptions
-- successor state eq \(s^{\prime}=t\left(s, a_{1}, \ldots\right)\).
-- check red istepl. close

Fragments enclosed with open \& close in proof scores are called proof passages.
```

eq istep1 =
inv1(s,p,q,q?,r,n)
implies
inv1(s',p,q,q?,r,n)

```

\section*{Case Splitting on the Effective Condition}
- If \(t\) has a non-trivial effective condition \(c-t\), the case is split into two sub-cases based on \(c-t\).
```

open ISTEP-NSLPK
-- fresh constants
op }\mp@subsup{x}{1}{}: -> S S
-- assumptions
eq c-t(s, \mp@subsup{x}{1}{},···) = true.
-- successor state
eq s' = t(s, 的,···) .
-- check
red istep1.
close

```
```

open ISTEP-NSLPK
-- fresh constants
op }\mp@subsup{x}{1}{}: -> S S
-- assumptions
eq c-t(s, x , ...) = false.
-- successor state
eq s' = t(s, 的,···) .
-- check
red istep1.
close

```
\(\checkmark\) Done

\section*{Transformation of Equations}
\[
\text { eq c- } t\left(\mathrm{~S}, X_{1}, \ldots\right)=C_{1}\left(\mathrm{~S}, X_{1}, \ldots\right) \text { and } \ldots \text { and } C_{n}\left(\mathrm{~S}, X_{1}, \ldots\right) \text {. }
\]

\section*{\(C\left(\mathrm{~S}, X_{1}, \ldots\right)\)}
\(\checkmark C\left(S, x_{1}, \ldots\right)\) may not be derived from \(\mathrm{c}-t\left(\mathrm{~S}, x_{1}, \ldots\right)=\) true with rewriting.
\(\checkmark\) Moreover, each \(C_{i}\left(S, x_{1}, \ldots\right)\) may not be derived from \(C\left(S, x_{1}, \ldots\right)=\) true with rewriting.
\(\checkmark\) The left proof passage on the previous page is transformed into:
```

open ISTEP-NSLPK
-- fresh constants
op }\mp@subsup{x}{1}{}: -> S S . ..
-- assumptions
-- eq c-t(s, x , ..) = true .
eq C}\mp@subsup{C}{1}{(s,}\mp@subsup{x}{1}{},···)=\mathrm{ true.
eq C}\mp@subsup{C}{n}{(s,}\mp@subsup{x}{1}{},···)=true
-- successor state
eq s' = t(s, 的,···) .
-- check
red istep1.
close

```

\section*{Use of "Introduction of not"}
- Some more transformation (1):
\(\checkmark\) In the induction case for sdm1 where \(c-s d m 1(s, \ldots)\) holds:
```

eq not(rl0 \in rands(s)) = true .

```
derived by \(\uparrow\)
rewriting
```

eq r10 \in rands(s) = false .

```
\[
\frac{\mathrm{S} \cup\{\mathrm{q}=\mathrm{false}\} \mid-p}{\mathrm{~S} \cup\{\text { not } \mathrm{q}=\mathrm{true}\} \mid-p}
\]

\section*{Use of "Elimination of Soup Constructor 1"}
- Some more transformation (2):
\(\checkmark\) In the induction case for sdm2 where c-sdm2 ( \(s, \ldots\) ) holds:
\[
\begin{aligned}
& \text { eq m1 (q10?,q10,p10, enc1 }(p 10, n 10, q 10)) \\
& \text { \in network(s) = true. }
\end{aligned}
\]
derived by rewriting
```

op nw10 : -> Network .
eq network(s)
= m1(q10?,q10,p10,enc1(p10,n10,q10)) nw10.

```
\[
\frac{\left.\mathrm{S} \cup\{\text { soup }=\text { elt } s\}\right|_{\{s\}} p}{\mathrm{~S} \cup\{\text { elt } \backslash \text { in soup }=\text { true }\} \mid-p} \text { if } \mathrm{S} \text { includes SOUP }
\]

\section*{Use of "Elimination of Soup Constructor 2"}
- Some more transformation (3):
\(\checkmark\) In the induction case for \(£ k m 22\) where \(c-f k m 22(s, \ldots)\) holds:
\[
\begin{aligned}
& \text { eq n10 \in nonces }(s)=\text { true } \\
& \text { eq n20 \in nonces }(s)=\text { true } \\
& \text { eq }(\mathrm{n} 10=\mathrm{n} 20)=\text { false }
\end{aligned}
\]
derived by rewriting
```

 {transform not derived by
 transform rewriting
op nsl0 : -> NonceSoup .
eq nonces(s) $=$ n10 n20 ns10 .
eq (n10 = n20) = false .

```
\[
\begin{aligned}
& \left.\mathrm{SU}\left\{\text { soup }=e l t_{1} e l t_{2} s,\left(e l t_{1}=e l t_{2}\right)=\text { false }\right\}\right|_{\{\mathrm{s}\}} p \text { if } \mathrm{S} \text { includes SOUP } \\
& \mathrm{S} \cup \text { \{elt }_{1} \backslash \text { in soup }=\text { true, } \\
& \left.e l t_{2} \backslash \text { in } \operatorname{soup}=\text { true, }\left(e l t_{1}=e l t_{2}\right)=\text { false }\right\} \mid-p
\end{aligned}
\]

\section*{Replacement of Equation with Lemma}
\[
\frac{\left.\mathrm{S} \cup\{\text { soup }=\text { elt } s\}\right|_{-s\}} p}{\mathrm{~S} \cup\{\text { elt } \backslash \text { in soup }=\text { true }\} \mid-p} \text { if } \mathrm{S} \text { includes SOUP }
\]
\(\checkmark\) This is an instance of the following proof rule:
\[
\left.\frac{\left.\mathrm{S} \cup\left\{l_{2}[X \leftarrow a]=r_{2}[X \leftarrow a]\right\}\right|_{\{a\}} p}{\mathrm{~S} \cup\left\{l_{1}=r_{1}\right\} \mid-p} \text { if } \mathrm{S} \mid-(\exists X)\left(l_{2}(X)=r_{2}(X)\right) \text { if } l_{1}=r_{1}\right)
\]

Let \(l_{1}=r_{1}\) be elt \(\backslash\) in soup \(=\) true and \(l_{2}(X)=r_{2}(X)\) be soup \(=\) elt \(s\).
\(\mathrm{S} \mid-(\exists C)(\) soup \(=\) elt \(C)\) if elt \(\backslash\) in \(\operatorname{soup}\)

\section*{Preferable Equations}
- Assume that two sets \(\boldsymbol{E}_{1}, \boldsymbol{E}_{2}\) of equations are equivalent in a proof passage. If each equation in \(\boldsymbol{E}_{2}\) can be derived from \(\boldsymbol{E}_{1}\) (together with the equations available in the proof passage) with rewriting, then \(\boldsymbol{E}_{1}\) is preferable to \(\boldsymbol{E}_{2}\).

If CafeOBJ does not return true for a proof passage, try to find a set of equations that is preferable to the set of equations used in the proof passage as assumptions and use it.

\section*{Proof Score Templates}
- The proof score obtained so far is called a proof score template. (See file template.mod.)
- The proof score template can be used to verify any (invariant) properties of the specification of NSLPK.
- Proof scores templates can be systematically written for specifications of OTSs.

For verification that an OTS enjoys some properties, to begin with, write a proof score template!

\section*{Form of Effective Conditions}
- Assumption on the form of effective conditions: Although any forms can be used, the recommended form is a conjunction of literals.
```

eq c-sdm2(S,Q?, P,Q,R,N)
=(m1(Q?,Q,P, encl(P,N,Q)) \in network(S) and
not(R \in rands(S))) .

```
\(\checkmark\) If you want to use a different form such as
\[
\left(C_{1}\left(\mathrm{~S}, X_{1}, \ldots\right) \text { or } C_{2}\left(\mathrm{~S}, X_{1}, \ldots\right)\right) \text { and } C_{3}\left(\mathrm{~S}, X_{1}, \ldots\right)
\]
then convert it into a disjunctive normal form (DNF) such as
( \(C_{1}\left(\mathrm{~S}, X_{1}, \ldots\right)\) and \(\left.C_{3}\left(\mathrm{~S}, X_{1}, \ldots\right)\right)\) or \(\left(C_{2}\left(\mathrm{~S}, X_{1}, \ldots\right)\right.\) and \(\left.C_{3}\left(\mathrm{~S}, X_{1}, \ldots\right)\right)\)
and use the same number of transition operators as that of the conjuncts in the DNF such as two.

\section*{Induction Case for fkm21 (1)}
- Let us consider the case where \(c-f k m 21(s, \ldots)\) holds.
\(\checkmark\) CafeOBJ does not return any results.
\(\checkmark\) So, let us look at the formula to prove
inv1 (s', p, q, q?,r,n)
which contains
\[
\text { not( } \mathrm{P}=\text { intruder })
\]
in the premise.
\(\checkmark\) Then, this is used to split the case into two sub-cases.
```

open ISTEP-NSLPK
-- fresh constants
ops pl0 q10 : -> Principal .
op m20 : -> Message2 .
op nw10 : -> Network .
-- assumptions
-- eq c-fkm21(s,...) = true .
eq network(s) = m20 nw10 .
-- successor state
eq s' = fkm21(s,p10,q10,m20) .
-- check
red istep1.
close

```

\section*{Induction Case for fkm21 (2)}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ cases } & \multicolumn{1}{c|}{ results } \\
\hline\(p=\) intrude & true \\
\hline\((p=\) intruder \()=\) false & neither true nor false \\
\hline
\end{tabular}
```

open ISTEP-NSLPK
-- fresh constants
ops p10 q10 : -> Principal .
op m20 : -> Message2 .
op nw10 : -> Network .
-- assumptions
-- eq c-fkm21(s,...) = true .
eq network(s) = m20 nw10 .
eq p = intruder .
-- successor state
eq s' = fkm21(s,p10,q10,m20) .
-- check
red istep1 .
close

```
```

open ISTEP-NSLPK

```
open ISTEP-NSLPK
-- fresh constants
ops p10 q10 : -> Principal .
op m20 : -> Message2 .
op nw10 : -> Network .
-- assumptions
    -- eq c-fkm21(s,...) = true .
    eq network(s) = m20 nw10 .
    eq (p = intruder) = false .
    -- successor state
    eq s' = fkm21(s,p10,q10,m20).
    -- check
    red istep1 .
    close
```


Induction Case for fkm21 (3)

- The difference of s and s^{\prime} that affects the property: network(s) and network (s^{\prime}), whose diff. is m2(intruder, p10, q10, cipher2 (m20)).
- So, the following formula is used to split the latter case ($(\mathrm{p}=$ intruder) $=$ false) into two sub-cases:

```
m2(intruder,p10,q10,cipher2(m20))
=m2(q?,q,p,enc2(p,n(p,q,r),n,q))
```

cases	results
A_{3}	neither true nor false
$\mathrm{A}_{3}=$ false	true

Induction Case for fkm21 (4)

- In the former case $\left(\mathrm{A}_{3}\right)$, instead of one equation, the following four equations are used:

```
eq q? = intruder .
eq p10 = q .
eq q10 = p .
eq cipher2(m20) = enc2(p,n(p,q,r),n,q) .
```

- CafeOBJ returns neither true nor false for the case.
- We notice that if " $q=$ intruder", then "m2 (q?,...)" in the premise of inv1 (s^{\prime}, p, q, q ? , r, n) equals "m2 (q, \ldots) " in the conclusion.
- So, " $q=$ intruder" is used to split the case into two sub-cases.

Induction Case for fkm21 (5)

cases	results
$q=$ intrude	true
$(q=$ intruder $)=$ false	neither true nor false

- For the latter case ($(q=$ intruder) = false), we notice that if the formula

$$
\mathrm{ml}(\mathrm{p}, \mathrm{p}, \mathrm{q}, \operatorname{encl}(\mathrm{q}, \mathrm{n}(\mathrm{p}, \mathrm{q}, \mathrm{r}), \mathrm{p})) \text { \in nw10 } \mathrm{A}_{5}
$$

does not hold, the premise of inv1 (s^{\prime}, p, q, q ?, r, n) does not hold.

cases	results
A_{5}	neither true nor false
$A_{5}=$ false	true

Induction Case for fkm21 (6)

- For the former case $\left(\mathrm{A}_{5}\right)$, we also notice that if the formula

$$
(m 2(q, q, p, \operatorname{enc} 2(p, n(p, q, r), n, q)) \quad \text { in } n w 10) A_{6}
$$

holds, the conclusion of inv1 (s^{\prime}, p, q, q ? , r, n) holds.

cases	results
A_{6}	true
$\mathrm{A}_{6}=$ false	neither true nor false

Induction Case for fkm21 (7)

- The remaining case is characterized by the following equations:

```
network(s) = m20 nw10,
(p = intruder) = false,
q? = intruder, p10 = q, q10 = p,
cipher2(m20) = enc2(p,n(p,q,r),n,q),
(q = intruder) = false,
m1(p,p,q,encl(q,n(p,q,r),p)) \in nw10 = true,
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 = false
```

- We can do further case splitting, but our understanding of NSLPK tells us that there seems to be some contradiction in the set of equations.

Induction Case for fkm21 (8)

- The assumptions say that
- There exists a valid Init message really sent by a nonintruder p to a non-intruder q.

```
m1(p,p,q, encl(q,n(p,q,r),p)) \in nw10 = true
```

- There exists a Resp message m20 whose body (ciphertext) is valid as the reply to the Init message.

```
network(s) = m20 nw10
cipher2(m20) = enc2(p,n(p,q,r),n,q)
```

- But, q has not replied to the Init message.

Induction Case for fkm21 (9)

- These must imply that m20 has been faked by the intruder.
- To this end, the intruder needs to get either enc2 ($p, n(p, q, r), n, q)$ or $n(p, q, r)$.
- It seems impossible to get the former because q has not replied to the Init message.
- It also seems impossible to get the latter because n (p, q, r) only appears in enc1 ($q, n(p, q, r), p$), which cannot be decrypted by the intruder.

Induction Case for fkm21 (10)

- So, if there exist a valid Init message really sent by a nonintruder p to a non-intruder q and a Resp message m20 whose body (ciphertext) is valid as the reply to the Init message, then q must have replied to the Init message.

implies

Induction Case for fkm21 (11)

- A lemma candidate: inv4 (S, P, Q, N, R, M2)

```
not(P = intruder) and not(Q = intruder) and
m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and
M2 \in network(S) and
cipher2(M2) = enc2(P,n(P,Q,R),N,Q)
implies
m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)
```

- inv4 (S, P, Q, N, R, M2) can be used to discharge the remaining case:

```
inv4(s,p,q,n,r,m20) implies istep1
```


Lemma Conjecture

- If you notice a contradiction in the set of equations used in a proof passage, then you can conjecture a lemma.
- How to notice a contradiction
- If CafeOBJ returns false, it is most likely that there exists a contradiction.
- If you understand your target system reasonably well, you can notice a contradiction.

Try to understand your target system as much as possible!
\checkmark A verification attempt lets you understand your target system better partly because you need to understand it better.

Lemmas for Verification of inv1

- We need two more lemmas:

```
eq inv3(S,M2)
    =(M2 \in network(S)
        implies
        random(noncel(cipher2(M2))) \in rands(S) and
        random(nonce2(cipher2(M2))) \in rands(S)) .
eq inv5(S,N)
    =(N \in nonces(S)
        implies creator(N) = intruder or
        forwhom(N) = intruder) .
```

- The latter is what is called (Nonce) Secrecy Property.

Verification of inv3

- We need two lemmas:

```
eq inv8(S,M1)
            =(M1 \in network(S)
            implies
            random(nonce(cipher1(M1))) \in rands(S)) .
eq inv9(S,N)
    =(N \in nonces(S)
        implies random(N) \in rands(S)) .
```


Verification of Secrecy Property (inv5)

- We need two lemmas:

```
eq inv11(S,P,N,M1)
    = (M1 \in network(S)
            and cipherl(M1) = encl(P,N,intruder)
        implies
        creator(N) = intruder
            Or forwhom(N) = intruder) .
eq inv12(S,P,N1,N2,M2)
    =(M2 \in network(S)
            and cipher2(M2) = enc2(P,N1,N2,intruder)
        implies
        creator(N2) = intruder
            or forwhom(N2) = intruder) .
```


Verification of inv2

- inv1 is Agreement Property from the initiators' (p 's) point of view, while inv2 from the responders' (q 's) point of view.
- Although inv2 is not exactly symmetric to inv1 w.r.t. NSLPK, they have some similarities.
- Hence, inv2 can be proved in a similar way to prove inv1.
- The proof of inv2 uses three lemmas, one of which is Secrecy Property (inv5).
- To complete the verification, we need one more lemma.

Other Case Studies on Protocol Verification

- iKP (Internet Key Protocol) Electronic Payment Protocol
K. Ogata, K. Futatsugi: Formal analysis of the iKP electronic payment protocols, 1st ISSS, LNCS 2609, Springer, pp.441-460 (2003).
- Horn-Preneel Micropayment Protocol
K. Ogata, K. Futatsugi: Formal verification of the Horn-Preneel micropayment protocol, 4th VMCAI, LNCS 2575, Springer, pp.238-252 (2003).
- SET (Secure Electronic Transactions) Electronic Payment Protocol K. Ogata, K. Futatsugi: Equational Approach to Formal Verification of SET, 4th QSIC, IEEE CS Press, pp.50-59 (2004).
- NetBill Electronic Commerce Protocol
K. Ogata, K. Futatsugi: Formal Analysis of the NetBill Electronic Commerce Protocol, 2nd ISSS, LNCS 3233, Springer, pp.45-64 (2004).
- TLS (Transaction Layer Security) Authentication Protocol K. Ogata, K. Futatsugi: Equational Approach to Formal Analysis of TLS, 25th ICDCS, IEEE CS Press, pp.795-804 (2005).
- Mondex Electronic Purse Protocol
W. Kong, K. Ogata, K. Futatsugi: Algebraic Approaches to Formal Analysis of the Mondex Electronic Purse System, 6th IFM, LNCS 4591, Springer, pp.393-412 (2007).

Summary

- Verification that NSLPK enjoys Agreement Property has been used as an example to discuss what to do for writing proof scores:
- First write a proof score template, which can be used for any (invariant) properties.
- Do case splitting and/or conjecture lemmas to complete a proof score of a property.
- Use preferable equations in proof passages.
- Try to understand your target system as much as possible to conjecture (good) lemmas.

