Verification of NSLPK and Some Tips for Construction of Proof Score

Lecture Note 07 CafeOBJ Team for JAIST-FSSV2010

Topics

- Brushup of the previous lecture
- Verification that (an abstract model of) NSLPK enjoys Agreement property
- proof score templates
- Case analysis & lemma conjecture

Brushup (1)

- Agreement Property: Whenever a protocol run is successfully completed by p and q,
 - the principal with which p is communicating is really q, and
 - the principal with which q is communicating is really p.

Brushup (2)

- Nonces: n (p,q,r) denotes a nonce made by p for q, where r makes it unique and unguessable.
- Messages: mi (p?, p, q, e_i) (i = 1,2,3) denotes a message (an Init, Resp, or Ack message) that seems to have been sent by p to q but has been created by p?, which may not be p, where e_i is the message body (ciphertext).
- Networks: Formalized as soups of messages.
 - Sending a message is formalized as putting it in the soup.
 - If the soup contains $mi(p?, p, q, e_i)$, then q can receive it.
 - Then q believes that it originates in p, although it is not true.
 - Suppose that messages are never deleted from the soup.

Brushup (3)

Brushup (4)

Equations for sdm2:

```
ceq network(sdm2(S,Q?,P,Q,R,N))
= m2(P,P,Q,enc2(Q,N,n(P,Q,R),P)) network(S)if c-sdm2(S,Q?,P,Q,R,N)
ceq rands(sdm2(S,Q?,P,Q,R,N)) = R rands(S) if c-sdm1(S,P,O,R).
ceq nonces(sdm2(S,Q?,P,Q,R,N))
= (if Q = intruder then N n(P,Q,R) nonces(S) else nonces(S) fi)
if c-sdm2(S,Q?,P,Q,R,N).
ceq sdm2(S,Q?,P,Q,R,N) = S if not c-sdm2(S,Q?,P,Q,R,N).
where
eq c-sdm2(S,Q?,P,Q,R,N)
 = (m1(Q?,Q,P,enc1(P,N,Q)) \setminus in network(S) and not(R \setminus in rands(S)))
         m2(P, P, Q, enc2(Q, N, n(P, Q, R), P))
                                                             R
            m1(Q?,Q,P,enc1(P,N,Q))
                         n(P,Q,R)
    If O is intruder.
                                          Otherwise,
                     JAIST-FSSV2010, March 1-5, 2010, Kanazawa
```

Brushup (5)

◆ Equations for fkm22:

```
ceq network(fkm22(S,P,Q,N1,N2))
= m2(intruder,P,Q,enc2(Q,N1,N2,P)) network(S)
if c-fkm22(S,P,Q,N1,N2) .
eq rands(fkm22(S,P,Q,N1,N2)) = rands(S) .
eq nonces(fkm22(S,P,Q,N1,N2)) = nonces(S) .
ceq fkm22(S,P,Q,N1,N2)
```

```
= S if not c-fkm22(S,P,Q,N1,N2) .
```

where

```
eq c-fkm22(S,P,Q,N1,N2)
= N1 \in nonces(S) and N2 \in nonces(S) .
m2(intruder,P,Q,enc2(Q,N1,N2,P))
...
```

Brushup (6)

Formalization of Agreement Property:

```
eq inv1(S,P,Q,Q?,R,N)
```

= (not(P = intruder)) and

m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and m2(Q?,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S) implies

 $m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \land in network(S))$.

= (not(Q = intruder) and m2(Q,Q,P,enc2(P,N,n(Q,P,R),Q)) \in network(S) and m3(P?,P,Q,enc3(Q,n(Q,P,R))) \in network(S) implies

 $m3(P,P,Q,enc3(Q,n(Q,P,R))) \land in network(S))$.

Preparation for Verification (1)

Module PRED-NSLPK: Properties to verify are declared.

Preparation for Verification (2)

 Verification starts with use of simultaneous structural induction of System.

```
\begin{bmatrix} \text{NSLPK} \cup \{p_j(s) = \text{true for } j = 1, ..., n \} \\ \vdash_{\{s, p, q, r\}} p_i(\text{sdm1}(s, p, q, r)) \\ \bullet \bullet \bullet \end{bmatrix} \text{for } j = 1, ..., n
```

NSLPK $|-(\forall S: System)p_l(S)$ for any $l \in \{1,...,n\}$

Module BASE-NSLPK: Fresh constants used in proof scores are declared.

```
mod* BASE-NSLPK { inc(PRED-NSLPK)
  ops s s' : -> System
  op r : -> Random op n : -> Nonce
  ops p q p? q? : -> Principal
}
```

Preparation for Verification (3)

Module ISTEP-NSLPK: Basic formulas to prove in the induction case (step) and induction hypotheses are declared

Use of Simul Struct Ind of Sort System

- The following proof score can be systematically written:
 - I. Base case:

```
open BASE-NSLPK
-- check
  red inv1(init,p,q,q?,r,n) .
close
```

✓ Done

II. Induction case: For each transition operator t,

```
open ISTEP-NSLPK

-- fresh constants

op a_1: -> S_1 ....

-- assumptions

-- successor state

eq s' = t(s, a_1, ...) .

-- check

red istep1 .

close
```

Fragments enclosed with open & close in proof scores are called *proof passages*.

```
eq istep1 =
    inv1(s,p,q,q?,r,n)
    implies
    inv1(s',p,q,q?,r,n) .
```

Case Splitting on the Effective Condition

♦ If t has a non-trivial effective condition c-t, the case is split into two sub-cases based on c-t.

open ISTEP-NSLPK
-- fresh constants
op
$$x_1$$
: -> S_1
-- assumptions
eq c- $t(s, x_1, ...) = true$
-- successor state
eq s' = $t(s, x_1, ...)$.
-- check
red istep1 .
close

open ISTEP-NSLPK
-- fresh constants
op
$$x_1$$
: -> S_1
-- assumptions
eq c- $t(s, x_1, ...) = false$.
-- successor state
eq s' = $t(s, x_1, ...)$.
-- check
red istep1 .
close

Transformation of Equations

Use of "Introduction of not"

- Some more transformation (1):
 - ✓ In the induction case for sdm1 where c-sdm1(s,...) holds:

eq not(r10 $\langle in rands(s) \rangle = true$.


```
eq r10 \langle in rands(s) = false.
```

 $S \cup \{q = false\} \mid -p$ $S \cup \{not q = true\} \mid -p$

Use of "Elimination of Soup Constructor 1"

Some more transformation (2):

✓ In the induction case for sdm2 where c-sdm2(s,...) holds:

```
eq m1(q10?,q10,p10,enc1(p10,n10,q10))

\in network(s) = true .

derived by \uparrow \downarrow transform \downarrow not derived by

rewriting

op nw10 : -> Network .

eq network(s)

= m1(q10?,q10,p10,enc1(p10,n10,q10)) nw10 .

\underbrace{SU\{soup = elt s\} \vdash_{\{s\}} p}_{SU\{elt \setminus in soup = true\} \vdash p} if S includes SOUP
```

Use of "Elimination of Soup Constructor 2"

Some more transformation (3):

```
✓ In the induction case for fkm22 where c-fkm22(s,...) holds:
```


Replacement of Equation with Lemma

$$\frac{S \cup \{soup = elt \ s\} \mid_{\{s\}} p}{S \cup \{elt \setminus in \ soup = true\} \mid -p} \text{ if } S \text{ includes } SOUP$$

 \checkmark This is an instance of the following proof rule:

$$\frac{S \cup \{l_2[X \leftarrow a] = r_2[X \leftarrow a]\} \mid_{-\{a\}} p}{S \cup \{l_1 = r_1\} \mid_{-p}} \text{ if } S \mid_{-(\exists X)(l_2(X) = r_2(X)) \text{ if } l_1 = r_1\}}$$

Let $l_1 = r_1$ be $elt \setminus in \ soup = true$ and $l_2(X) = r_2(X)$ be $soup = elt \ s$.

$$S \models (\exists C)(soup = elt C) \text{ if } elt \setminus in soup$$

Preferable Equations

Assume that two sets *E*₁, *E*₂ of equations are equivalent in a proof passage. If each equation in *E*₂ can be derived from *E*₁ (together with the equations available in the proof passage) with rewriting, then *E*₁ is preferable to *E*₂.

If CafeOBJ does not return true for a proof passage, try to find a set of equations that is preferable to the set of equations used in the proof passage as assumptions and use it.

Proof Score Templates

- The proof score obtained so far is called a proof score template. (See file template.mod.)
- The proof score template can be used to verify any (invariant) properties of the specification of NSLPK.
- Proof scores templates can be systematically written for specifications of OTSs.

For verification that an OTS enjoys some properties, to begin with, write a proof score template!

Form of Effective Conditions

 Assumption on the form of effective conditions: Although any forms can be used, the recommended form is a conjunction of literals.

```
eq c-sdm2(S,Q?,P,Q,R,N)
= (m1(Q?,Q,P,enc1(P,N,Q)) \in network(S) and
not(R \in rands(S))) .
```

```
✓ If you want to use a different form such as

(C_1(S, X_1, ...) \text{ or } C_2(S, X_1, ...)) and C_3(S, X_1, ...),

then convert it into a disjunctive normal form (DNF) such as

(C_1(S, X_1, ...) \text{ and } C_3(S, X_1, ...)) \text{ or } (C_2(S, X_1, ...) \text{ and } C_3(S, X_1, ...))

and use the same number of transition operators as that of the
```

conjuncts in the DNF such as two.

Induction Case for fkm21 (1)

Let us consider the case where c-fkm21(s,...) holds.

```
✓ CafeOBJ does not return
any results.
```

```
\checkmark So, let us look at the formula to prove
```

```
inv1(s',p,q,q?,r,n)
which contains
```

not(P = intruder)
in the premise.

✓ Then, this is used to split the case into two sub-cases.

```
open ISTEP-NSLPK
-- fresh constants
  ops p10 q10 : -> Principal .
  op m20 : -> Message2 .
  op nw10 : -> Network .
-- assumptions
  -- eq c-fkm21(s,...) = true .
  eq network(s) = m20 nw10 .
  --
-- successor state
  eq s' = fkm21(s,p10,q10,m20) .
-- check
  red istep1 .
close
```

Induction Case for fkm21 (2)

	cases	results	
	p = intrude	true	
	(p = intruder) = false	neither true nor false	
<pre>open ISTEP-NSLPK fresh constants ops p10 q10 : -> Principal . op m20 : -> Message2 . op nw10 : -> Network . assumptions eq c-fkm21(s,) = true . eq network(s) = m20 nw10 . eq p = intruder . successor state eq s' = fkm21(s,p10,q10,m20) . check red istep1 .</pre>		<pre>open ISTEP-NSLPK fresh constants ops p10 q10 : -> Pri op m20 : -> Message2 op nw10 : -> Network assumptions eq c-fkm21(s,) = eq network(s) = m20 eq (p = intruder) = successor state eq s' = fkm21(s,p10, check red istep1 .</pre>	<pre>Incipal . 2 . 3 . 5 true . nw10 . false . 9 q10,m20) .</pre>
close		close	
	IAIST-ESSV2010 March	I-5 2010 Kanazawa	

Induction Case for fkm21 (3)

- The difference of s and s' that affects the property: network(s) and network(s'), whose diff. is m2(intruder,p10,q10,cipher2(m20)).
- So, the following formula is used to split the latter case
 ((p = intruder) = false) into two sub-cases:

 A_3

m2(intruder,p10,q10,cipher2(m20))
= m2(q?,q,p,enc2(p,n(p,q,r),n,q))

cases	results
A_3	neither true nor false
A_3 = false	true

Induction Case for fkm21 (4)

In the former case (A₃), instead of one equation, the following four equations are used:

```
eq q? = intruder .
eq p10 = q .
eq q10 = p .
eq cipher2(m20) = enc2(p,n(p,q,r),n,q) .
```

- CafeOBJ returns neither true nor false for the case.
- We notice that if "q = intruder", then "m2(q?,...)" in the premise of inv1(s',p,q,q?,r,n) equals "m2(q,...)" in the conclusion.
- So, "q = intruder" is used to split the case into two sub-cases.

Induction Case for fkm21 (5)

cases	results
q = intrude	true
(q = intruder) = false	neither true nor false

For the latter case ((q = intruder) = false), we
notice that if the formula

ml(p,p,q,encl(q,n(p,q,r),p)) \in nwl0 A_5

does not hold, the premise of inv1(s',p,q,q?,r,n) does not hold.

cases	results
A_5	neither true nor false
A_5 = false	true

Induction Case for fkm21 (6)

For the former case (A₅), we also notice that if the formula

m2(q,q,p,enc2(p,n(p,q,r),n,q)) $\langle n nw10 | A_6$

holds, the conclusion of inv1(s',p,q,q?,r,n)
holds.

cases	results
A ₆	true
A_6 = false	neither true nor false

Induction Case for fkm21 (7)

The remaining case is characterized by the following equations:

```
network(s) = m20 nw10,
(p = intruder) = false,
q? = intruder, p10 = q, q10 = p,
cipher2(m20) = enc2(p,n(p,q,r),n,q),
(q = intruder) = false,
m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10 = true,
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 = false
```

 We can do further case splitting, but our understanding of NSLPK tells us that there seems to be some contradiction in the set of equations.

Induction Case for fkm21 (8)

The assumptions say that

- There exists a valid Init message really sent by a non-intruder ${\rm p}$ to a non-intruder ${\rm q}.$

 $ml(p,p,q,encl(q,n(p,q,r),p)) \setminus in nw10 = true$

• There exists a Resp message m20 whose body (ciphertext) is valid as the reply to the Init message.

```
network(s) = m20 nw10
```

```
cipher2(m20) = enc2(p,n(p,q,r),n,q)
```

• But, q has not replied to the Init message.

 $m2(q,q,p,enc2(p,n(p,q,r),n,q)) \setminus in nw10 = false$

Induction Case for fkm21 (9)

- These must imply that m20 has been faked by the intruder.
- To this end, the intruder needs to get either enc2 (p,n(p,q,r),n,q) or n(p,q,r).
 - It seems impossible to get the former because ${\rm q}$ has not replied to the Init message.
 - It also seems impossible to get the latter because n (p,q,r) only appears in encl(q,n(p,q,r),p), which cannot be decrypted by the intruder.

Induction Case for fkm21 (10)

So, if there exist a valid Init message really sent by a nonintruder p to a non-intruder q and a Resp message m20 whose body (ciphertext) is valid as the reply to the Init message, then q must have replied to the Init message.

Induction Case for fkm21 (11)

- A lemma candidate: inv4(S,P,Q,N,R,M2) not(P = intruder) and not(Q = intruder) and m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and M2 \in network(S) and cipher2(M2) = enc2(P,n(P,Q,R),N,Q) implies m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)
- inv4(S,P,Q,N,R,M2) can be used to discharge the remaining case:

inv4(s,p,q,n,r,m20) implies istep1

Lemma Conjecture

- If you notice a contradiction in the set of equations used in a proof passage, then you can conjecture a lemma.
- How to notice a contradiction
 - If CafeOBJ returns false, it is most likely that there exists a contradiction.
 - If you understand your target system reasonably well, you can notice a contradiction.

Try to understand your target system as much as possible!

✓ A verification attempt lets you understand your target system better partly because you need to understand it better.

Lemmas for Verification of inv1

We need two more lemmas:

```
eq inv3(S,M2)
```

= (M2 \in network(S)

implies

```
random(nonce1(cipher2(M2))) \in rands(S) and
random(nonce2(cipher2(M2))) \in rands(S)) .
```

```
eq inv5(S,N)
```

```
= (N \in nonces(S)
```

implies creator(N) = intruder or

forwhom(N) = intruder).

• The latter is what is called (Nonce) Secrecy Property.

Verification of inv3

• We need two lemmas:

```
eq inv8(S,M1)
```

```
= (M1 \in network(S)
```

implies

```
random(nonce(cipher1(M1))) \langle in rands(S) \rangle.
```

```
eq inv9(S,N)
```

```
= (N \in nonces(S)
```

implies random(N) $\ \$ n rands(S)) .

Verification of Secrecy Property (inv5)

```
• We need two lemmas:
```

```
eq invl1(S,P,N,M1)
  = (M1 \setminus in network(S))
          and cipher1(M1) = enc1(P,N,intruder)
     implies
     creator(N) = intruder
          or forwhom(N) = intruder) .
eq inv12(S,P,N1,N2,M2)
  = (M2 \setminus in network(S))
          and cipher2(M2) = enc2(P,N1,N2,intruder)
     implies
     creator(N2) = intruder
          or forwhom (N2) = intruder).
```

Verification of inv2

- Inv1 is Agreement Property from the initiators' (p's) point of view, while inv2 from the responders' (q's) point of view.
- Although inv2 is not exactly symmetric to inv1 w.r.t. NSLPK, they have some similarities.
- Hence, inv2 can be proved in a similar way to prove inv1.
- The proof of inv2 uses three lemmas, one of which is Secrecy Property (inv5).
- To complete the verification, we need one more lemma.

Other Case Studies on Protocol Verification

- *i*KP (Internet Key Protocol) Electronic Payment Protocol
 K. Ogata, K. Futatsugi: Formal analysis of the *i*KP electronic payment protocols, 1st ISSS, LNCS 2609, Springer, pp.441-460 (2003).
- Horn-Preneel Micropayment Protocol
 K. Ogata, K. Futatsugi: Formal verification of the Horn-Preneel micropayment protocol, 4th VMCAI, LNCS 2575, Springer, pp.238-252 (2003).
- SET (Secure Electronic Transactions) Electronic Payment Protocol K. Ogata, K. Futatsugi: Equational Approach to Formal Verification of SET, 4th QSIC, IEEE CS Press, pp.50-59 (2004).
- NetBill Electronic Commerce Protocol
 K. Ogata, K. Futatsugi: Formal Analysis of the NetBill Electronic Commerce Protocol, 2nd ISSS, LNCS 3233, Springer, pp.45-64 (2004).
- TLS (Transaction Layer Security) Authentication Protocol
 K. Ogata, K. Futatsugi: Equational Approach to Formal Analysis of TLS, 25th ICDCS, IEEE CS Press, pp.795-804 (2005).
- Mondex Electronic Purse Protocol

W. Kong, K. Ogata, K. Futatsugi: Algebraic Approaches to Formal Analysis of the Mondex Electronic Purse System, 6th IFM, LNCS 4591, Springer, pp.393-412 (2007).

Summary

- Verification that NSLPK enjoys Agreement Property has been used as an example to discuss what to do for writing proof scores:
 - First write a proof score template, which can be used for any (invariant) properties.
 - Do case splitting and/or conjecture lemmas to complete a proof score of a property.
 - Use preferable equations in proof passages.
 - Try to understand your target system as much as possible to conjecture (good) lemmas.