
Verification of NSLPK and Some Tips 
for Construction of Proof Score 

Lecture Note 07 
CafeOBJ Team for JAIST-FSSV2010 



JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

Topics 

♦  Brushup of the previous lecture 

♦  Verification that (an abstract model of) NSLPK enjoys 
Agreement property 

♦  proof score templates 

♦  Case analysis & lemma conjecture 



Brushup (1) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  NSLPK: 

♦  Agreement Property: Whenever a protocol run is 
successfully completed by p and q, 
•  the principal with which p is communicating is really q, and 
•  the principal with which q is communicating is really p. 

Principal p 

Initiator Responder 

Init: { np, p }k(q) 

Resp: { np, nq, q }k(p) 

Ack: { nq }k(q) 

Principal q 

p 

q 

q talking p q talking 

p 



Brushup (2) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Nonces: n(p,q,r) denotes a nonce made by p for 
q, where r makes it unique and unguessable. 

♦ Messages: mi(p?,p,q,ei) (i = 1,2,3) denotes a 
message (an Init, Resp, or Ack message) that seems 
to have been sent by p to q but has been created by 
p?, which may not be p, where ei is the message 
body (ciphertext). 

♦ Networks: Formalized as soups of messages. 
•  Sending a message is formalized as putting it in the soup. 
•  If the soup contains mi(p?,p,q,ei), then q can receive it. 
•  Then q believes that it originates in p, although it is not true. 
•  Suppose that messages are never deleted from the soup. 



Brushup (3) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Three observable values: 
op network : System -> Network 
op rands   : System -> RandSoup 
op nonces  : System -> NonceSoup 

♦  Formalization of sending messages: 
op sdm1 : System Principal Principal Random -> System {constr} 
op sdm2 : System Principal Principal Principal 
                               Random Nonce -> System {constr} 
op sdm3 : System Principal Principal Principal 
                                Nonce Nonce -> System {constr} 

♦  Formalization of faking messages: 
op fkm11 : System Principal Principal Message1    -> System {constr} 
op fkm12 : System Principal Principal Nonce       -> System {constr} 
op fkm21 : System Principal Principal Message2    -> System {constr} 
op fkm22 : System Principal Principal Nonce Nonce -> System {constr} 
op fkm31 : System Principal Principal Message3    -> System {constr} 
op fkm32 : System Principal Principal Nonce       -> System {constr} 

{np,p}k(i) 

{nq}k(i) 

r1 
r2 

np 
nq 



Brushup (4) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Equations for sdm2: 
ceq network(sdm2(S,Q?,P,Q,R,N))   
 = m2(P,P,Q,enc2(Q,N,n(P,Q,R),P)) network(S)if c-sdm2(S,Q?,P,Q,R,N) . 
ceq rands(sdm2(S,Q?,P,Q,R,N)) = R rands(S) if c-sdm1(S,P,Q,R) . 
ceq nonces(sdm2(S,Q?,P,Q,R,N)) 
 = (if Q = intruder then N n(P,Q,R) nonces(S) else nonces(S) fi) 
 if c-sdm2(S,Q?,P,Q,R,N) . 
ceq sdm2(S,Q?,P,Q,R,N) = S if not c-sdm2(S,Q?,P,Q,R,N) . 

where 
eq c-sdm2(S,Q?,P,Q,R,N)  
 = (m1(Q?,Q,P,enc1(P,N,Q)) \in network(S) and not(R \in rands(S))) . 

m1(Q?,Q,P,enc1(P,N,Q)) 
m2(P,P,Q,enc2(Q,N,n(P,Q,R),P)) R 

If Q is intruder, 

n(P,Q,R) 

Otherwise, 
N 



Brushup (5) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Equations for fkm22: 
ceq network(fkm22(S,P,Q,N1,N2))   
 = m2(intruder,P,Q,enc2(Q,N1,N2,P)) network(S) 
 if c-fkm22(S,P,Q,N1,N2) . 
 eq rands(fkm22(S,P,Q,N1,N2)) = rands(S) . 
 eq nonces(fkm22(S,P,Q,N1,N2)) = nonces(S) . 
ceq fkm22(S,P,Q,N1,N2)  
 = S if not c-fkm22(S,P,Q,N1,N2) . 

where 
eq c-fkm22(S,P,Q,N1,N2)  
 = N1 \in nonces(S) and N2 \in nonces(S) . 

m2(intruder,P,Q,enc2(Q,N1,N2,P)) 



Brushup (6) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Formalization of Agreement Property: 
eq inv1(S,P,Q,Q?,R,N) 
 = (not(P = intruder) and 
    m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and 
    m2(Q?,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S) 
    implies 
    m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S)) . 
eq inv2(S,P,Q,P?,R,N) 
 = (not(Q = intruder) and 
    m2(Q,Q,P,enc2(P,N,n(Q,P,R),Q)) \in network(S) and 
    m3(P?,P,Q,enc3(Q,n(Q,P,R))) \in network(S) 
    implies 
    m3(P,P,Q,enc3(Q,n(Q,P,R))) \in network(S)) . 

p q i 

j 



Preparation for Verification (1) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Module PRED-NSLPK: Properties to verify are 
declared. 
mod* PRED-NSLPK { 
  inc(NSLPK) 
  op inv1 : System Principal Principal Principal  
                                Random Nonce -> Bool 
  op inv2 : System Principal Principal Principal  
                                Random Nonce -> Bool 
  … 
  eq inv1(S,P,Q,Q?,R,N) = … . 
  eq inv2(S,P,Q,P?,R,N) = … . 
} 



Preparation for Verification (2) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Verification starts with use of simultaneous structural 
induction of System.  

mod* BASE-NSLPK {  inc(PRED-NSLPK) 
  ops s s' : -> System 
  op r : -> Random    op n : -> Nonce 
  ops p q p? q? : -> Principal 
} 

♦  Module BASE-NSLPK: Fresh constants used in proof 
scores are declared. 

NSLPK |– (∀S:System)pl(S)  for any l ∈ {1,…,n} 

NSLPK |– pi(init) 

NSLPK∪{pj(s) = true  for j = 1,…,n}  
|–{s,p,q,r} pi(sdm1(s,p,q,r)) for j = 1,…,n 



Preparation for Verification (3) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Module ISTEP-NSLPK: Basic formulas to prove in the 
induction case (step) and induction hypotheses are 
declared 
mod* ISTEP-NSLPK {  inc(BASE-NSLPK) 
  op istep1 : -> Bool 
  op istep2 : -> Bool 

  eq istep1 =  
    inv1(s,p,q,q?,r,n) implies inv1(s',p,q,q?,r,n) . 

  eq istep2 =  
    inv2(s,p,q,p?,r,n) implies inv2(s',p,q,p?,r,n) . 
  “ 
  eq inv1(s,P,Q,Q?,R,N) = true . 
  eq inv2(s,P,Q,P?,R,N) = true . 
  “ 
} 

An instance of the I.H. The formula to prove 

Induction hypothese 



Use of Simul Struct Ind of Sort System 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  The following proof score can be systematically written: 

open BASE-NSLPK 
-- check 
  red inv1(init,p,q,q?,r,n) . 
close 

open ISTEP-NSLPK 
-- fresh constants 
  op a1 : -> S1 . … 
-- assumptions 
-- successor state 
  eq s’ = t(s,a1,…) . 
-- check 
  red istep1 . 
close 

I.  Base case: 

II.  Induction case: For each transition operator t, 

eq istep1 = 
   inv1(s,p,q,q?,r,n) 
   implies  
   inv1(s',p,q,q?,r,n) . 

Fragments enclosed with open & 
close in proof scores are called 
proof passages. 

  Done 



Case Splitting on the Effective Condition 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  If t has a non-trivial effective condition c-t, the case 
is split into two sub-cases based on c-t. 

open ISTEP-NSLPK 
-- fresh constants 
  op x1 : -> S1 . … 
-- assumptions 
  eq c-t(s,x1,…) = true . 
-- successor state 
  eq s’ = t(s,x1,…) . 
-- check 
  red istep1 . 
close 

open ISTEP-NSLPK 
-- fresh constants 
  op x1 : -> S1 . … 
-- assumptions 
  eq c-t(s,x1,…) = false . 
-- successor state 
  eq s’ = t(s,x1,…) . 
-- check 
  red istep1 . 
close 

  Done 



Transformation of Equations 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

eq c-t(S,X1,…) = C1(S,X1,…) and … and Cn(S,X1,…). 

  C(S,x1,…) may not be derived 
from c-t(S,x1,…) = true with 
rewriting. 

  Moreover, each Ci(S,x1,…) may 
not be derived from C(S,x1,…) = 
true  with rewriting. 

  The left proof passage on the 
previous page is transformed into: 

open ISTEP-NSLPK 
-- fresh constants 
  op x1 : -> S1 . … 
-- assumptions 
  -- eq c-t(s,x1,…) = true . 
  eq C1(s,x1,…) = true . 
  … 
  eq Cn(s,x1,…) = true . 
  -- 
-- successor state 
  eq s’ = t(s,x1,…) . 
-- check 
  red istep1 . 
close 

C(S,X1,…) 



Use of “Introduction of not” 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Some more transformation (1): 

  In the induction case for sdm1 where c-sdm1(s,…) holds: 

eq not(r10 \in rands(s)) = true . 

eq r10 \in rands(s) = false . 

derived by 
rewriting transform not derived by 

rewriting 

S∪{not q = true} |– p 

S∪{q = false} |– p 



Use of “Elimination of Soup Constructor 1” 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Some more transformation (2): 

eq m1(q10?,q10,p10,enc1(p10,n10,q10))  
   \in network(s) = true . 

  In the induction case for sdm2 where c-sdm2(s,…) holds: 

op nw10 : -> Network . 
eq network(s)  
   = m1(q10?,q10,p10,enc1(p10,n10,q10)) nw10 . 

derived by 
rewriting transform 

not derived by 
rewriting 

S∪{elt \in soup = true} |– p 

S∪{soup = elt s} |–{s} p 
if S includes SOUP 



Use of “Elimination of Soup Constructor 2” 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Some more transformation (3): 

S∪{elt1 \in soup = true, 
      elt2 \in soup = true,(elt1 = elt2) = false} |– p 

S∪{soup = elt1 elt2 s ,(elt1 = elt2) = false} |–{s} p 
if S includes SOUP 

eq n10 \in nonces(s) = true . 
eq n20 \in nonces(s) = true . 
eq (n10 = n20) = false . 

op ns10 : -> NonceSoup . 
eq nonces(s) = n10 n20 ns10 . 
eq (n10 = n20) = false . 

derived by 
rewriting transform not derived by 

rewriting 

  In the induction case for fkm22 where c-fkm22(s,…) holds: 



Replacement of Equation with Lemma 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 18 

S∪{l1 = r1} |– p 
if S |– (∃X)(l2(X) = r2(X)) if l1 = r1 

S∪{l2[X  a] = r2[X  a]} |–{a} p 

  This is an instance of the following proof rule: 

Let l1 = r1 be elt \in soup = true and l2(X) = r2(X) be soup = elt s. 

S |– (∃C)(soup = elt C) if elt \in soup 

S∪{elt \in soup = true} |– p 

S∪{soup = elt s} |–{s} p 
if S includes SOUP 



Preferable Equations 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Assume that two sets E1, E2 of equations are equivalent 
in a proof passage. If each equation in E2 can be derived 
from E1 (together with the equations available in the proof 
passage) with rewriting, then E1 is preferable to E2.  

If CafeOBJ does not return true for a proof passage, try 
to find a set of equations that is preferable to the set of 
equations used in the proof passage as assumptions 
and use it. 



Proof Score Templates 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ The proof score obtained so far is called a proof 
score template. (See file template.mod.) 

♦ The proof score template can be used to verify any 
(invariant) properties of the specification of NSLPK. 

♦ Proof scores templates can be systematically written 
for specifications of OTSs. 

For verification that an OTS enjoys some properties, to 
begin with, write a proof score template! 



Form of Effective Conditions 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Assumption on the form of effective conditions: 
Although any forms can be used, the recommended 
form is a conjunction of literals. 
eq c-sdm2(S,Q?,P,Q,R,N)  
 = (m1(Q?,Q,P,enc1(P,N,Q)) \in network(S) and  
   not(R \in rands(S))) . 

  If you want to use a different form such as  
    (C1(S,X1,…) or C2(S,X1,…)) and C3(S,X1,…),  
then convert it into a disjunctive normal form (DNF) such as  
    (C1(S,X1,…) and C3(S,X1,…)) or (C2(S,X1,…) and C3(S,X1,…))  
and use the same number of transition operators as that of the 
conjuncts in the DNF such as two. 



Induction Case for fkm21 (1) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Let us consider the case where c-fkm21(s,…) holds. 

open ISTEP-NSLPK 
-- fresh constants 
  ops p10 q10 : -> Principal . 
  op m20 : -> Message2 . 
  op nw10 : -> Network . 
-- assumptions 
  -- eq c-fkm21(s,…) = true . 
  eq network(s) = m20 nw10 . 
  -- 
-- successor state 
  eq s' = fkm21(s,p10,q10,m20) . 
-- check  
  red istep1 . 
close 

  CafeOBJ does not return 
any results. 

  So, let us look at the formula 
to prove 
    inv1(s',p,q,q?,r,n) 
which contains 
    not(P = intruder) 
in the premise. 

  Then, this is used to split the 
case into two sub-cases. 



Induction Case for fkm21 (2) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

cases results 
p = intrude true 

(p = intruder) = false neither true nor false 

open ISTEP-NSLPK 
-- fresh constants 
  ops p10 q10 : -> Principal . 
  op m20 : -> Message2 . 
  op nw10 : -> Network . 
-- assumptions 
  -- eq c-fkm21(s,…) = true . 
  eq network(s) = m20 nw10 . 
  -- 
  eq p = intruder . 
-- successor state 
  eq s' = fkm21(s,p10,q10,m20) . 
-- check  
  red istep1 . 
close 

open ISTEP-NSLPK 
-- fresh constants 
  ops p10 q10 : -> Principal . 
  op m20 : -> Message2 . 
  op nw10 : -> Network . 
-- assumptions 
  -- eq c-fkm21(s,…) = true . 
  eq network(s) = m20 nw10 . 
  -- 
  eq (p = intruder) = false . 
-- successor state 
  eq s' = fkm21(s,p10,q10,m20) . 
-- check  
  red istep1 . 
close 



Induction Case for fkm21 (3) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  The difference of s and s’ that affects the property: 
network(s) and network(s’), whose diff. is 
m2(intruder,p10,q10,cipher2(m20)). 

♦  So, the following formula is used to split the latter case 
((p = intruder) = false) into two sub-cases: 

m2(intruder,p10,q10,cipher2(m20))  
= m2(q?,q,p,enc2(p,n(p,q,r),n,q)) A3 

cases results 
A3 neither true nor false 
A3 = false true  



Induction Case for fkm21 (4) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  In the former case (A3), instead of one equation, the 
following four equations are used: 
eq q? = intruder . 
eq p10 = q . 
eq q10 = p . 
eq cipher2(m20) = enc2(p,n(p,q,r),n,q) . 

♦ CafeOBJ returns neither true nor false for the 
case.  

♦ We notice that if “q = intruder”, then “m2(q?,…)” 
in the premise of inv1(s',p,q,q?,r,n) equals 
“m2(q,…)” in the conclusion. 

♦ So, “q = intruder” is used to split the case into 
two sub-cases. 



Induction Case for fkm21 (5) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  For the latter case ((q = intruder) = false), we 
notice that if the formula 
m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10 

 does not hold, the premise of inv1(s',p,q,q?,r,n)  
 does not hold.   

A5 

cases results 
q = intrude true 

(q = intruder) = false neither true nor false 

cases results 
A5 neither true nor false 
A5 = false true  



Induction Case for fkm21 (6) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ For the former case (A5), we also notice that if the 
formula 
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 

 holds, the conclusion of inv1(s',p,q,q?,r,n) 
holds. 

A6 

cases results 
A6 true  
A6 = false neither true nor false 



Induction Case for fkm21 (7) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ The remaining case is characterized by the following 
equations: 
network(s) = m20 nw10, 
(p = intruder) = false , 
q? = intruder ,  p10 = q ,  q10 = p , 
cipher2(m20) = enc2(p,n(p,q,r),n,q) , 
(q = intruder) = false , 
m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10 = true, 
m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 = false 

♦ We can do further case splitting, but our 
understanding of NSLPK tells us that there seems to 
be some contradiction in the set of equations. 



Induction Case for fkm21 (8) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ The assumptions say that 
•  There exists a valid Init message really sent by a non-

intruder p to a non-intruder q. 
 m1(p,p,q,enc1(q,n(p,q,r),p)) \in nw10 = true 

•  There exists a Resp message m20 whose body (ciphertext) 
is valid as the reply to the Init message. 

 network(s) = m20 nw10 
 cipher2(m20) = enc2(p,n(p,q,r),n,q) 
•  But, q has not replied to the Init message. 

 m2(q,q,p,enc2(p,n(p,q,r),n,q)) \in nw10 = false 

m1(p,p,q,enc1(q,n(p,q,r),p)) 
m20 

m2(q,q,p,enc2(p,n(p,q,r),n,q)) 



Induction Case for fkm21 (9) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ These must imply that m20 has been faked by 
the intruder. 

♦ To this end, the intruder needs to get either enc2
(p,n(p,q,r),n,q) or n(p,q,r). 
•  It seems impossible to get the former because q has 

not replied to the Init message. 
•  It also seems impossible to get the latter because n
(p,q,r) only appears in enc1(q,n(p,q,r),p), 
which cannot be decrypted by the intruder. 



Induction Case for fkm21 (10) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  So, if there exist a valid Init message really sent by a non-
intruder p to a non-intruder q and a Resp message m20 
whose body (ciphertext) is valid as the reply to the Init 
message, then q must have replied to the Init message. 

m1(p,p,q,enc1(q,n(p,q,r),p)) 
m20 

m2(q,q,p,enc2(p,n(p,q,r),n,q)) 

m1(p,p,q,enc1(q,n(p,q,r),p)) 
m20 

implies 



Induction Case for fkm21 (11) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  A lemma candidate: 
not(P = intruder) and not(Q = intruder) and 
m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and 
M2 \in network(S) and  
cipher2(M2) = enc2(P,n(P,Q,R),N,Q) 
implies 
m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in network(S) 

♦  inv4(S,P,Q,N,R,M2) can be used to discharge the 
remaining case: 
inv4(s,p,q,n,r,m20) implies istep1 

inv4(S,P,Q,N,R,M2) 



Lemma Conjecture 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  If you notice a contradiction in the set of equations 
used in a proof passage, then you can conjecture a 
lemma. 

♦ How to notice a contradiction 
•  If CafeOBJ returns false, it is most likely that there exists a 

contradiction. 
•  If you understand your target system reasonably well, you 

can notice a contradiction. 

Try to understand your target system as much as possible! 

  A verification attempt lets you understand your target 
system better partly because you need to understand it 
better. 



Lemmas for Verification of inv1 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ We need two more lemmas: 
eq inv3(S,M2) 
   = (M2 \in network(S) 

      implies 

      random(nonce1(cipher2(M2))) \in rands(S) and 

      random(nonce2(cipher2(M2))) \in rands(S)) . 

eq inv5(S,N) 
   = (N \in nonces(S) 

      implies creator(N) = intruder or  

              forwhom(N) = intruder) . 

•  The latter is what is called (Nonce) Secrecy Property. 



Verification of inv3 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ We need two lemmas: 
eq inv8(S,M1) 
   = (M1 \in network(S) 

      implies  

      random(nonce(cipher1(M1))) \in rands(S)) . 

eq inv9(S,N) 

   = (N \in nonces(S)  
      implies random(N) \in rands(S)) . 



Verification of Secrecy Property (inv5) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ We need two lemmas: 
eq inv11(S,P,N,M1) 
  = (M1 \in network(S)  

         and cipher1(M1) = enc1(P,N,intruder) 

     implies 

     creator(N) = intruder  

         or forwhom(N) = intruder) . 
eq inv12(S,P,N1,N2,M2) 

  = (M2 \in network(S)  

         and cipher2(M2) = enc2(P,N1,N2,intruder) 

     implies 

     creator(N2) = intruder  
         or forwhom(N2) = intruder) . 



Verification of inv2 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ inv1 is Agreement Property from the 
initiators’ (p’s) point of view, while inv2 from the 
responders’ (q’s) point of view. 

♦ Although inv2 is not exactly symmetric to inv1 
w.r.t. NSLPK, they have some similarities. 

♦ Hence, inv2 can be proved in a similar way to 
prove inv1. 

♦ The proof of inv2 uses three lemmas, one of 
which is Secrecy Property (inv5). 

♦ To complete the verification, we need one more 
lemma. 



Other Case Studies on Protocol Verification 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  iKP (Internet Key Protocol) Electronic Payment Protocol 
 K. Ogata, K. Futatsugi: Formal analysis of the iKP electronic payment protocols, 
1st ISSS, LNCS 2609, Springer, pp.441-460 (2003). 

♦  Horn-Preneel Micropayment Protocol 
 K. Ogata, K. Futatsugi: Formal verification of the Horn-Preneel micropayment 
protocol, 4th VMCAI, LNCS 2575, Springer, pp.238-252 (2003). 

♦  SET (Secure Electronic Transactions) Electronic Payment Protocol 
 K. Ogata, K. Futatsugi: Equational Approach to Formal Verification of SET, 4th 
QSIC, IEEE CS Press, pp.50-59 (2004). 

♦  NetBill Electronic Commerce Protocol 
 K. Ogata, K. Futatsugi: Formal Analysis of the NetBill Electronic Commerce 
Protocol, 2nd ISSS, LNCS 3233, Springer, pp.45-64 (2004). 

♦  TLS (Transaction Layer Security) Authentication Protocol 
 K. Ogata, K. Futatsugi: Equational Approach to Formal Analysis of TLS, 25th 
ICDCS, IEEE CS Press, pp.795-804 (2005). 

♦  Mondex Electronic Purse Protocol 
 W. Kong, K. Ogata, K. Futatsugi: Algebraic Approaches to Formal Analysis of the 
Mondex Electronic Purse System, 6th IFM, LNCS 4591, Springer, pp.393-412 
(2007). 



Summary 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Verification that NSLPK enjoys Agreement 
Property has been used as an example to 
discuss what to do for writing proof scores: 
•  First write a proof score template, which can be used 

for any (invariant) properties. 
•  Do case splitting and/or conjecture lemmas to 

complete a proof score of a property. 
•  Use preferable equations in proof passages. 
•  Try to understand your target system as much as 

possible to conjecture (good) lemmas. 


