Stainless Formal Verification

on the interdependency between mathematical foundagensantics, and proof score programming

Razvan Diaconescu

FSSV 2010, Kanazawa

Outline

Contents
1 Introduction 1
2 Mathematical foundations: many sorted algebra 3
2.1 Signatures, algebras, sentences, satisfaction 3
2.2 Equational prooftheory 5
2.3 Induction e e e e 6
3 Example: verification of termination of generic bubble soting 8
3.1 Formalspecification e e 8
3.1.1 Naturalnumbers e 8
3.1.2 Bubblesorting 8
3.2 Proof of termination of topological (generic) bubbletsa 9
3.2.1 Specification of auxiliary functions oo Lo 10
3.3 Proofmanagement e e e 10
3.4 Proofscoreprogramming e e e e e 11
3.5 Mindsemantics!. e 13

1 Introduction

Goal of lecture
Gain some understanding on what is a correct specificatidvarification process through clarification of

e mathematical foundations
e semantics

e specification

e proof score programming

and of the relationships between them.

Most of ‘formal verification’ practice, while assumed to bgarous by definition, in reality still confused wrt
some of above aspects, hence difficult to be trusted.

‘Stainless’ does not mean ‘perfectly formal’
But rather

e being clear about what are the formal and the informal praotsp
e justification of informal parts by solid clear mathematiaegjuments,
e proof scores for the formal proof parts strictly based up@athamatical foundations, and

e clean(!) mathematical foundations.

Specification and verification schema
Each level is defined and makes sense wrt the upper levels.

Mathematical
foundations

Formal specification

Proof management

\ Y

0O a d e d d .
ro0 Proof score programming

Mathematical foundations

e There is a formal logical system, including both model tlyeor semantics) and proof theory. Very
desirable that these constituteiaatitution

e The model theory is sufficiently developed in order to suppecessary specification properties.

e The eventual operational level of the proof theory (e.g.ritavg) is rigorously supported by mathematics.

Formal specification

e There is a formal specification language such that the laggoanstructs correspond exactly to mathemat-
ical entities in the underlying logic.

e A specification consists of

— a set ofaxiomsin the underlying logic (this includes the specification afaresponding signature),
and

— eventually, structuring constructs.
e Each such specification defines tlass of modelsatisfying its axioms.

— Inthe structured case, this is also determined by the stringtconstructs (requires a bit of mathemat-
ical sophistication).

The whole point of formal specification:
axiomatic definition of certain classes of models.

Role of semantics and foundations
Tendency to forget this sense of formal specification andigation by neglecting semantics.

No semantics = No meaning!

This implies incorrect non-sense specification and vetitioa

Proof management

¢ Introduce auxiliary entities (e.g. functions, predicateascessary for the proof; this means extension of the
original specification.

e Separate the formal from the informal parts of the proof.

— Informal parts get mathematical proofs.

— Formal parts are proved by proof score running. Much higherizontal’ complexity than the infor-
mal parts.

Proof score programming

e Specification of the proof structure, including lemmas,ditbans, proof tasks to be executed by the system,
etc.

e Should be rigorously, directly artdansparentlybased upon mathematical results lying foundations to cor-
responding proof methodologies.

— In particular, this means to avoid abuse or even any use td-¢pgical features of the language (such
as==, etc.)

2 Mathematical foundations: many sorted algebra

Many sorted algebra (MSA)
e Itis the most classical logical system of algebraic speatifin.

— Deeply rooted in conventional mathematics.

— Originating from early mathematical foundations of ser@nf programming languages and of ab-
stract data types.

e Has very convenient model theoretic and computationalgnt@s, supporting high integration between the
specification and the verification aspects.

e However, there are myriads of other logical systems usefbfaral specification, some of them just refine-
ments of MSA, others quite different (at least through a gpErspective).

2.1 Signatures, algebras, sentences, satisfaction

Signatures
S-sorted signaturéS, F)

e S—set of sort symbols,
e F={Rws|we S, se S} —indexed family of operation symbols.

Algebras
(S F)-algebra Aconsists of

e a setAsforeachse S and

o afunctionAsw—s: Ay — Asfor eacho € Ry_s (WhereAy =Ag x --- x Ag,, forw=1g;...5).

(S,F)-homomorphism h A — B consists of
e hs: As— Bsforeachse S,
such that the followindgnomomorphism condition
hs(As(a)) = Bo(hw(a)).
for eacha € Ay.

Sentences
The set of(S F)-sentencess the least set such that:

e Each(S F)-equatiort =1’ is an(S F)-sentence.
e If p; andp, are(S F)-sentences then

— p1A p2 (conjunctiorn),
— p1V p2 (disjunction,
— p1 = p2 (implication) and
— —p1 (negation
are alsd S F)-sentences.
e If Xis a set of variables fdiS F), then(vX)p and(3X)p are(S F)-sentences whenevgiis an(S F UX)-

sentence.

Satisfaction
Defined recursively on the structure of the sentences.

yeurs

Ak piApzifand only if A= p; andA = pa,

AkEpi1Vvpifandonly if A= pg or A= po,

Al p1= poifand only if At p or A= po,

A= —py ifand only if A~ p,

A= sr) (VX)p if and only if A = (sFux) p for each(SF UX)-expansior®’ of A, and

A= (3X)pif and only if A = (YX)—p.
Initial semantics

Initial algebra Ain class% of algebras: for eacB € ¥ there exists an unique: A — B.
Fact 1. Initial algebras are unique up to isomorphisms.

Theorem 2. Each set ofconditional equations.e. sentences of the forfdX)(ty =t}) A---A(th =t}) = (t =t'),
has an initial algebra.

Initial algebras are the models of tight denotation spedtifimis (rod! in CafeOBJf nod in Maude)

2.2 Equational proof theory

Entailment systems
Entailment relatior(for a signatur&) consists of a binary relatidns between sets df-sentences such that:

1. union:if T'Fs My andl s Mo thenl s T U,
2. monotonicity:if " D T thenl +s I, and
3. transitivity: if ' s Ty andlMy s To thenl s o,
An entailment systern consists of an entailment relatibr for each signatur.

Example: semantic entailment
=) IMifand only if Al=gp) I impliesA =g I for each(S F)-algebraA.

Modus Ponens (meta-rule)
Meta-rulesare properties of the entailment systems.

Mk (H=C) ifandonlyif FUH FsF) C.

The semantic entailmehrt has Modus-Ponens.

Universal Quantification (meta-rule)

MRy (WX)p ifand only if T Fgeux) p-

The semantic entailmekt has Universal Quantification.

Equational proof rules

Reflexivity: 0
t=t
__ ¢4/
Symmetry: {:,_:t !
L ft=t U =t"}
Transitivity: v
=t]| 1<i<
Congruence: {fti=t 1= I,_ n} -
o(ty,....th) = a(t],...,t))
o {(vX)H = C} 9
R SATAR St S P X =T .
Substitutivity: (BH =)} (SF)

The equational entailment system

Definition 3 (entailment system for conditional equatiph§). The least entailment system, containing the 5
proof rules and satisfying the 2 meta-rules above.

Unlike |=, K¢ is finitely defined. This makes® usable for formal proofs.

Soundness
An absolutely necessary property for any logical systemstitutes the basis for the correctness of formal
verification.

Not very hard to establish.

Theorem 4(Soundness of equational deducdion I—?SF) p impliesl” [=(gF) p-

Completeness
A very desirable property of logical systems, but not absbjunecessary.

In general, much harder to establish than soundness.

Theorem 5(Completeness of equational deduc)ioh |=gf) p impliesl” F‘(*SF) p.

Soundness and completeness means jthgfor conditional equations) and® are the same, hence, very
importantly, we have a finitary definition ¢f (for conditional equations).

Rewriting
The standard way to mechanize equational deduction, toihasea computation process.

AbandonsSymmetnand replaceSubstitutivityandCongruencey the following rule:

{(YX)H = (t=t)} U 6(H)
c[o(t)] =c[B(t')]

Rewriting:

In general completeness is lost, however under conditioals asconfluenceandtermination completeness
may be retained.

2.3 Induction

Inductive properties
These are the properties satisfied by the initial algebragdfen setf” of conditional equations, i.e.+0= p.

For example, for the specificatidhas follows:

0 -> Nat
s : Nat -> Nat
+ : Nat Nat -> Nat
(V. X) X+ 0 =X
(v ,)X+S(Y)=S(X+Y)
we have that P = (VX)0 + X=Xbutl j£ (VX)0 + X=X. Hence, direct ordinary (equational) deduction
not enough for proving inductive properties.

Constructors
A great device for reducing the complexity of proofs of inthue properties.

Sub-signature of constructors
Signaturg(S,F), I a set of conditional equations f08 F). (S, F°) is asub-signature of constructors férwhen
o RS o CFRy.s and

® OsFe) — Or [(sFe) surjective.
Example 0 ands form a sub-signature of constructors for the specificatlmova.

Sufficient completeness
The following equivalent characterization for sub-sigmatof constructors has two advantages:
1. does not depend on existence of initial algebras fdrence applicable within more general situations, and
2. it gives a method to actually prove the constructors pitgpe
Proposition 6. (S,F°) is a sub-signature of constructors fbrif and only if for each(S F)-term t there exists an
(SFC)-term t such that” =gp)t =t'.
Proving inductive properties
The following gives a sufficient condition for proving indive properties by amfinite set of ordinary proofs.
Theorem 7.

1. T set of conditional equations for a signatuig,F),

2. (S F°) sub-signature of constructors for, and

3. ('lemmas’) E set of any sentences such Gy E.

Then for any(S,F U X)-sentence

Or = (VX)p if TUE |=6(p) for all substitutions : X — Tgrc).

Structural induction
Theorem 8 (sufficienffinitary proof method for inductive propertigs

1. (S F°) sub-signature of constructors forany set of(S F)-sentences,
2. X finite set of variables fqiS,F),
3. p any (S F uUX)-sentence.

If for any sort preserving mapping QX — F¢
FU{W(p) | Y: X —Z=UxexZx With Y(X) € Ze} =spuz) @(p)
where
— Zy are strings of variables for the arguments of uch that £3 N Z,, = 0 for x1 # x2 € X, and
— Q'is the substitution X T(skeuz) defined by @x) = Qx(Zx),
thenl” =gF) 6(p) for all substitutions6 : X — T(gre).

The finitary character of structural induction
Finite number of proof goals always involving finite condits because:

o for anyQ, finite Z because finitX and finite arities of operations, hence finftg | ¢ : X — Z}, and
e if finite FC, then finite{Q | Q: X — F°} since finiteX .

— moreover smalleF ¢ implies fewer proof goals.

Generality of foundations

Many of MSA mathematical concepts and results above cantbgpirted in the same form in other logical
systems (such gsreordered algebrdior specification with transitions).

For example, the structural induction method above has gechral character.

This means foundations can be mathematically developéadevel of abstradhstitutions

3 Example: verification of termination of generic bubble soting

Example of ‘stainless’ formal verification
We illustrate

formal specification based rigorously upon mathematiaahétations,

proof management,

proof score building based rigorously upon equational ptieeory and the structural induction theorem
above,

the inter-dependency between semantic-oriented speificand proof score programming.

3.1 Formal specification
3.1.1 Natural numbers

The natural numbers with the usual zero and succesor opesatbnstitute the initial algebraBNAT=. Moreover
we have a specification of the equality of numbers

nod! PNAT= {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _=_: Nat Nat -> Bool {comi

vars M N : Nat

eq ((s M =0) =false.

eq (0 =0) =true .

eq [succ=] : (s M=s N = (M= N)

The following adds a specification of the ‘strictly less thiaaation on the naturals numbers.

nmod! PNAT< {
pr ot ecti ng(PNAT=)
op _<_: Nat Nat -> Bool
vars M N : Nat
eq [succ<] : (s M <(s N =M< N.
eq 0 < (s M =true .
eq M< 0 = fal se .
}

3.1.2 Bubble sorting
The strings of natural numbers with concatenation and estptyg constitute the initial algebra 8TRG PNAT.

nod! STRG PNAT {

[Nat < Strg]

op nil : -> Strg

op ;_: Strg Strg -> Strg {assoc id: nil}
}

Bubble sorting algorithm appears as an instance of rewritiodulo associativity (of concatenation). The
initial model is thepreordered algebrahat has strings of naturals as elements and the transijives by the
sorting algorithm as the preorder relation.

nod! SORTI NG STRG PNAT {

pr ot ecti ng(STRG PNAT))

ctrans EENat ; E:Nat => F ; E if (E < E)
}

We may use this specification as an actual sorting (very kagél) program by executing it by rewriting modulo
associativity.

exec s ss0; s0; 0; ssO.

However, if we look more carefully into the specification afbdible sorting, we note that it essentially requires
only a binary relation<, no commitement to any property of the naturals, not evehéonturals as elements
of the strings. This means bubble sorting is very general ggenericnature. Such kind of sorting over binary
relations is sometimes known tgpologicalsorting.

The following parameterized module specifies strings avsgrset El t) of elements.

nod! STRG (X :: TRIV) {

[EIt < Strg]

op nil : ->Strg

op ;_: Strg Strg -> Strg {assoc id: nil}
}

The following specifies a generic binary relation < on theredats, to be used for the sorting. We also specify a
loose negation of, namelynot <, mainly for operational reasons. Note that the sentencsfgpe not < is not

a conditional equation (although CafeOBJ notation ref@itds conditional equation); however this is OK since
this is loose semantics specification, which does not reauistence of initial algebras.

nod+x PSEUDO- ORDER {
[EIt]
op _<_: Et EIt -> Bool
op _not<_: EIt EIt -> Bool
vars E1 E2 E3 : Elt
cqg (E1 not< E2) = true if E2 < E1 or not(El < E2)

}

The following instantiate the above specified pseudo-arttethe standard ordering of the natural numbers. It
uses default mapping mechanism, hence only the mappingiof needs to be specified explicitly. The view
specification requires a proof that the initial algebr@bdiAT< satisfies the axiom dPSEUDO- ORDER through

the translation given by the view. This means an inductiwfrthat can be done by proof score programming
based upon the Structural Induction Theorem; we skip this.hiote that in this case we have that proof score
programming is involved at the stage of specification wgitin

vi ew PNAT<asPO from PSEUDO- ORDER t 0 PNAT<
{op (EEEIt not< E:Elt) -> ((EENat = E:Nat) or (E < E))}

The following is the specification of generic bubble sortigorithm.

mod! SORTI NG STRE Y :: PSEUDO- ORDER) {

protecti ng(STREY Y))
ctrans EEIt ; E:Et =>F ; E if (E < B

}
SORTI NG STRG- PNAT can be obtained as an instanc&GRTI NG STRGby the above defined vieRNAT<as PO.

sel ect SORTI NG STRGE PNAT<asPO)
exec (s sss0; sss0; sssss0; sssO0; sO0)

3.2 Proof of termination of topological (generic) bubble sding

For this we go back to the specification level and define afancli sorder : Strg -> Nat such that
(VS,S)[S=>S implies di sor der (S) < di sor der (S)].

(note this is a Horn clause in tHROA, the logical system of preordered algebra). Then the madtieatargument
of well-foundness of the natural numbers leads to the infdmmathematical proof of termination.

3.2.1 Specification of auxiliary functions
The definition of function ‘disorder’ requires specificatiof other auxiliary functions too:

nod! PNAT+ {
pr ot ecti ng(PNAT=)
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ+] : M+ (s N =s(M+ N
eq M+ 0 =M.

e E»Scomputes how many elements®ére less thait.
e di sor der (S) computes how many steps of the sorting algorithm are neextehd sorting ofS.

nod! SORTI NG DI SORDER (Y :: PSEUDO ORDER) {

protecti ng(SORTI NG STRE Y) + PNAT+)

op >> : EIt Strg -> Nat

op disorder : Strg -> Nat

vars EE : Elt

vars S S : Strg

eq E>> nil =0 .

cq E>F s 0if (E < E)

cqg E > F 0 if (E not< E)

e E> (S; §) =(E> 9 + (E>9)

eq disorder(E) =0 .

eq disorder(E; S) = disorder(S) + (E >> 9)
}

sel ect SORTI NG DI SORDER(PNAT<asPO) .
red disorder(s s s 0; s0; s s 0

The following specifies an equivalence relation on stringfingtd by
S<> g ifand onlyif (VE)E»S=E»S.

Although this is not required by the specificationddfsor der , it is used in the formal proofs below. As this is
beyond CafeOBJ logic, at this level we under-specify it, bear we will use its complete definition in the proof
scores.

nmod* SORTI NG<> (Y :: PSEUDO ORDER) {
pr ot ecti ng(SORTI NG DI SORDER(Y))
op <> : Strg Strg -> Bool
}
3.3 Proof management
The proof management of this problem means the following:

1. By an mathematical argument we have reduced the task wingrtermination to proving a Horn clause
sentence as inductive propertyROA

2. Extension of the original specification with new functon
3. Mathematical proof of the fact that
(VS,S,E1,E2)di sorder (SE1;E2;S) < di sorder (SE2;E1;S) if EL<E2
implies
(VS,S) [S=>S implies di sor der (S) < di sor der ()].
(This mathematical argument is related to the theory ofitewgrmodulo axioms.)
4. Formal proof (by proof score programming and running) of

(VS,S,EL,E2) [di sorder (SE1;E2;S) < di sorder (SE2;E1;S) if E1<EZ2]

This requires several lemmas and tranformation of the prasis by meta-rules such Bsiversal Quan-
tification or Modus-Ponens

5. Mathematical proofs for sub-signatures of constructors

10

3.4 Proof score programming

Formal proof of

(VS,S,E1,E2)di sor der (SE1;E2;S) < di sorder (SE2;E1;S) if EL<E2

open SORTI NG<> + PNAT< .
vars EE : Et
vars S S1 S2 : Strg
vars M N P : Nat

We use a couple of lemmas:

cq [Lemma-1] : disorder(S ; Sl1) < disorder(S; S2) = true
if S1 <> S2 and di sorder (S1) < disorder(S2)
eq [Lemmm-2] : (E; E ; S <> (E ; E; S) =true.

By Universal Quantificationve transform the theorem into a quantifier-free sentence.

ops el e2 : -> EIt
ops s s : =-> Strg .

By virtue of Modus Ponenwre introduce the condition of the theorem.
eq el < e2 = true .
We use another couple of lemmas for naturals.

-- [Lemma- 3]
op +_ : Nat Nat -> Nat {assoc conmni
eq [Lemma-4] : M< s M= true .

The theorem is now proved by equational deduction (revgjtin
red disorder(s ; el ; e2 ; s') < disorder(s ; e2 ; el ; s’)

cl ose

Formal proof of Lemma- 1.

(VS,S1,2)di sor der (S;S1) < di sorder (S2) if S1<>S2 and di sorder (S1) < di sor der ()

By direct application of the Structural Induction Theoretnere
e X={S},and
e pis(VSL,2)di sorder (S S1) < di sorder (S 2) if SL<>S2 anddi sor der (S1) < di sor der (S2).

The sub-signature of constructors consistaiof , all e: El t , and_; _, this being established by mathemati-
cal proof.
— Thecas®s=ni | :

open SORTI NG<> + PNAT< .

By Universal Quantificationve transform the theorem into a quantifier-free sentence.
ops sl s2: ->Strg .

By virtue of Modus Ponens we introduce the condition of theotiem.

eq disorder(sl) < disorder(s2) =true .
eq E>> sl = E >> s2 .

The proof of the conclusion.

11

red disorder(nil ; s1) < disorder(nil ; s2)
cl ose

— Thecas®s=-¢e: Elt :
open SORTI NG<> + PNAT< .

By Universal Quantificatiomve transform the theorem into a quantifier-free sentence.

ops s1 s2: -> Strg .
ope: ->Et
var E: Elt

vars M N P : Nat
By virtue of Modus Ponengre introduce the condition of the theorem.

eq disorder(sl) < disorder(s2) = true .
eq E>> sl1 = E >> s2 .

We use agaifiLemma- 3] :

op +_ : Nat Nat -> Nat {assoc conmni
And use another lemma for the naturals:

cq [Letma-5] : M+ N< P + N=trueif M<P.
The proof of the conclusion.

red disorder(e ; sl1) < disorder(e ; s2)
cl ose

— Thecas®Qs=_; :
We have thaZ = {x,y}.

open SORTI NG<> + PNAT< .
ops xy : ->Strg .
vars S S1 S2 . Strg

We introduce the hypotheses for the condition of the Strattaduction Theorem :

cq disorder(x ; Sl) < disorder(x ; S2) = true

if disorder(Sl) < disorder(S2) and S1 <> S2 .
cq disorder(y ; S1) < disorder(y ; S2) = true

i f disorder(Sl) < disorder(S2) and S1 <> S2 .

By Universal Quantificatiomve transform the theorem into a quantifier-free sentence.
ops s1 s2 : -> Strg .
By virtue of Modus Ponenwre introduce the condition of the theorem.

eq sl1 <> s2 = true .
eq disorder(sl) < disorder(s2) =true .

We use a new lemma:
cq [Lemma-6] : S; S1 <>S; S2 =trueif Sl <> S2 .
The proof of the conclusion.

red disorder(x ; y ; sl) < disorder(x ; y ; s2)
cl ose

12

Formal proof of Lemma- 2 :
(VE,E',S)(E;E’;S) <> (E;E;S) =t rue

which means
(VEL,E,E’,S) El» (E;E;S)=E1l» (E';E;S)
open SORTI NG<> + PNAT< .
By Universal Quantificationve transform the theorem into a quantifier-free sentence.

ops el ee : ->Et
ops: ->5Strg .

We use agaifiLemma- 3] :

op +_ : Nat Nat -> Nat {assoc conmni
And use a new lemma on naturals:

eq [Letma-7] @ (M Nat = M = true .
The proof of the conclusion:
redel >e ; e ; s=el>¢e ; e; s.

cl ose

Formal proof of Lenma- 6 :

(VS,S1,2) S;Sl<>SR=true if Sl<>X.

open SORTI NG<> + PNAT< .

By Universal Quantificationve transform the theorem into a quantifier-free sentence.

ops s sl s2: ->Strg .
ope: ->Et

We introduce the condition of the theorem:

var E: Elt
eq E>> sl1 = E >> s2 .

We use a new lemma on naturals:
eq [Letma-7] : (M Nat = M = true .
The proof of the conclusion:
red e > s ; sl =e > s ; s2.
cl ose
3.5 Mind semantics!

The relationa < b andb < a on {a,b} determines a model dP'SEUDO- ORDER, however the bubble sorting
algorithm for this instance is not terminatimgb=>b; a=>a; b=>... In spite of the fact that the proof is correctly
built. Is there a gap somewhere?

We have both thah < b anda not < b, which implies 0=s 0, hence the naturals are collapsed, and (by
PNAT=) the Booleans also, which means the specification is insterdi (it lacks models).

This situation is repaired by adding one more equation willy eemantic role, not used in the proofs.

13

nod* PSEUDO- ORDER {
[EIt]
op _<_ : EIt EIt -> Bool
op _not<_ : EIt EIt -> Bool
vars El1 E2 E3 : Elt
cqg (E1 not< E2) = true if E2 < E1 or not(El < E2)
eq (E1 < E2) and (E1 not< E2) = false .

Conclusion semantics of specifications comes first, correctness affoores depends on the semantic
correctness of the specifications. For this it may be nepgssavrite axioms with absolutely no operational
meaning, with only semantic meaning.

14

