
Stainless Formal Verification
on the interdependency between mathematical foundations,semantics, and proof score programming

Răzvan Diaconescu

FSSV 2010, Kanazawa

1

Outline

Contents

1 Introduction 1

2 Mathematical foundations: many sorted algebra 3
2.1 Signatures, algebras, sentences, satisfaction 3
2.2 Equational proof theory 5
2.3 Induction 6

3 Example: verification of termination of generic bubble sorting 8
3.1 Formal specification 8

3.1.1 Natural numbers 8
3.1.2 Bubble sorting 8

3.2 Proof of termination of topological (generic) bubble sorting . 9
3.2.1 Specification of auxiliary functions 10

3.3 Proof management 10
3.4 Proof score programming 11
3.5 Mind semantics! 13

1 Introduction

Goal of lecture
Gain some understanding on what is a correct specification and verification process through clarification of

• mathematical foundations

• semantics

• specification

• proof score programming

and of the relationships between them.

Most of ‘formal verification’ practice, while assumed to be rigorous by definition, in reality still confused wrt
some of above aspects, hence difficult to be trusted.

‘Stainless’ does not mean ‘perfectly formal’
But rather

• being clear about what are the formal and the informal proof parts,

• justification of informal parts by solid clear mathematicalarguments,

• proof scores for the formal proof parts strictly based upon mathematical foundations, and

• clean(!) mathematical foundations.

Specification and verification schema
Each level is defined and makes sense wrt the upper levels.

Mathematical foundations

• There is a formal logical system, including both model theory (for semantics) and proof theory. Very
desirable that these constitute aninstitution.

• The model theory is sufficiently developed in order to support necessary specification properties.

• The eventual operational level of the proof theory (e.g. rewriting) is rigorously supported by mathematics.

Formal specification

• There is a formal specification language such that the language constructs correspond exactly to mathemat-
ical entities in the underlying logic.

• A specification consists of

– a set ofaxiomsin the underlying logic (this includes the specification of acorresponding signature),
and

– eventually, structuring constructs.

• Each such specification defines theclass of modelssatisfying its axioms.

– In the structured case, this is also determined by the structuring constructs (requires a bit of mathemat-
ical sophistication).

The whole point of formal specification:
axiomatic definition of certain classes of models.

Role of semantics and foundations
Tendency to forget this sense of formal specification and verification by neglecting semantics.

No semantics = No meaning!

This implies incorrect non-sense specification and verification.

2

Proof management

• Introduce auxiliary entities (e.g. functions, predicates) necessary for the proof; this means extension of the
original specification.

• Separate the formal from the informal parts of the proof.

– Informal parts get mathematical proofs.

– Formal parts are proved by proof score running. Much higher ‘horizontal’ complexity than the infor-
mal parts.

Proof score programming

• Specification of the proof structure, including lemmas, conditions, proof tasks to be executed by the system,
etc.

• Should be rigorously, directly andtransparentlybased upon mathematical results lying foundations to cor-
responding proof methodologies.

– In particular, this means to avoid abuse or even any use of extra-logical features of the language (such
as==, etc.)

2 Mathematical foundations: many sorted algebra

Many sorted algebra (MSA)

• It is the most classical logical system of algebraic specification.

– Deeply rooted in conventional mathematics.

– Originating from early mathematical foundations of semantics of programming languages and of ab-
stract data types.

• Has very convenient model theoretic and computational properties, supporting high integration between the
specification and the verification aspects.

• However, there are myriads of other logical systems used forformal specification, some of them just refine-
ments of MSA, others quite different (at least through a gross perspective).

2.1 Signatures, algebras, sentences, satisfaction

Signatures
S-sorted signature(S,F)

• S– set of sort symbols,

• F = {Fw→s | w∈ S∗, s∈ S} – indexed family of operation symbols.

Algebras
(S,F)-algebra Aconsists of

• a setAs for eachs∈ S, and

• a functionAσ :w→s : Aw → As for eachσ ∈ Fw→s (whereAw = As1 ×·· ·×Asn, for w = s1 . . .sn).

(S,F)-homomorphism h: A→ B consists of

• hs : As → Bs for eachs∈ S,

such that the followinghomomorphism condition

hs(Aσ (a)) = Bσ (hw(a)).

for eacha∈ Aw.

3

Sentences
The set of(S,F)-sentencesis the least set such that:

• Each(S,F)-equationt = t ′ is an(S,F)-sentence.

• If ρ1 andρ2 are(S,F)-sentences then

– ρ1∧ρ2 (conjunction),

– ρ1∨ρ2 (disjunction),

– ρ1 ⇒ ρ2 (implication) and

– ¬ρ1 (negation)

are also(S,F)-sentences.

• If X is a set of variables for(S,F), then(∀X)ρ and(∃X)ρ are(S,F)-sentences wheneverρ is an(S,F ∪X)-
sentence.

Satisfaction
Defined recursively on the structure of the sentences.

• A |= t = t ′ if and only if At = At′ (whereAσ(t1,...,tn) = Aσ (At1, . . . ,Atn)),

• A |= ρ1∧ρ2 if and only if A |= ρ1 andA |= ρ2,

• A |= ρ1∨ρ2 if and only if A |= ρ1 or A |= ρ2,

• A |= ρ1 ⇒ ρ2 if and only if A 6|= ρ1 or A |= ρ2,

• A |= ¬ρ1 if and only if A 6|= ρ1,

• A |=(S,F) (∀X)ρ if and only if A′ |=(S,F∪X) ρ for each(S,F ∪X)-expansionA′ of A, and

• A |= (∃X)ρ if and only if A 6|= (∀X)¬ρ .

Initial semantics
Initial algebra A in classC of algebras: for eachB∈ C there exists an uniqueh : A→ B.

Fact 1. Initial algebras are unique up to isomorphisms.

Theorem 2. Each set ofconditional equations, i.e. sentences of the form(∀X)(t1 = t ′1)∧·· ·∧(tn = t ′n)⇒ (t = t ′),
has an initial algebra.

Initial algebras are the models of tight denotation specifications (mod! in CafeOBJ,fmod in Maude)

2.2 Equational proof theory

Entailment systems
Entailment relation(for a signatureΣ) consists of a binary relation⊢Σ between sets ofΣ-sentences such that:

1. union: if Γ ⊢Σ Γ1 andΓ ⊢Σ Γ2 thenΓ ⊢Σ Γ1∪Γ2,

2. monotonicity:if Γ′ ⊇ Γ thenΓ′ ⊢Σ Γ, and

3. transitivity: if Γ ⊢Σ Γ1 andΓ1 ⊢Σ Γ2 thenΓ ⊢Σ Γ2.

An entailment system⊢ consists of an entailment relation⊢Σ for each signatureΣ.

Example: semantic entailment
Γ |=(S,F) Γ′ if and only if A |=(S,F) Γ impliesA |=(S,F) Γ′ for each(S,F)-algebraA.

4

Modus Ponens (meta-rule)
Meta-rulesare properties of the entailment systems.

Γ ⊢(S,F) (H ⇒C) if and only if Γ∪H ⊢(S,F) C.

The semantic entailment|= has Modus-Ponens.

Universal Quantification (meta-rule)

Γ ⊢(S,F) (∀X)ρ if and only if Γ ⊢(S,F∪X) ρ .

The semantic entailment|= has Universal Quantification.

Equational proof rules

Reflexivity:
/0

t = t

Symmetry:
{t = t ′}
t ′ = t

Transitivity:
{t = t ′, t ′ = t ′′}

t = t ′′

Congruence:
{ti = t ′i | 1≤ i ≤ n}

σ(t1, . . . ,tn) = σ(t ′1, . . . ,t
′
n)

Substitutivity:
{(∀X)H ⇒C}
{θ (H ⇒C)}

θ : X → T(S,F).

The equational entailment system

Definition 3 (entailment system for conditional equations, ⊢e). The least entailment system, containing the 5
proof rules and satisfying the 2 meta-rules above.

Unlike |=, ⊢e is finitely defined. This makes⊢e usable for formal proofs.

Soundness
An absolutely necessary property for any logical system, constitutes the basis for the correctness of formal

verification.

Not very hard to establish.

Theorem 4(Soundness of equational deduction). Γ ⊢e
(S,F) ρ impliesΓ |=(S,F) ρ .

Completeness
A very desirable property of logical systems, but not absolutely necessary.

In general, much harder to establish than soundness.

Theorem 5(Completeness of equational deduction). Γ |=(S,F) ρ impliesΓ ⊢e
(S,F) ρ .

Soundness and completeness means that|= (for conditional equations) and⊢e are the same, hence, very
importantly, we have a finitary definition of|= (for conditional equations).

5

Rewriting
The standard way to mechanize equational deduction, to haveit as a computation process.

AbandonsSymmetryand replacesSubstitutivityandCongruenceby the following rule:

Rewriting:
{(∀X)H ⇒ (t = t ′)} ∪ θ (H)

c[θ (t)] = c[θ (t ′)]

In general completeness is lost, however under conditions such asconfluenceandtermination, completeness
may be retained.

2.3 Induction

Inductive properties
These are the properties satisfied by the initial algebra of agiven setΓ of conditional equations, i.e. 0Γ |= ρ .

For example, for the specificationΓ as follows:

0 : -> Nat
s : Nat -> Nat
+ : Nat Nat -> Nat
(∀ X) X + 0 = X
(∀ X,Y) X + s(Y) = s(X + Y)

we have that 0Γ |= (∀X)0 + X= X but Γ 6|= (∀X)0 + X= X. Hence, direct ordinary (equational) deduction
not enough for proving inductive properties.

Constructors
A great device for reducing the complexity of proofs of inductive properties.

Sub-signature of constructors
Signature(S,F), Γ a set of conditional equations for(S,F). (S,Fc) is asub-signature of constructors forΓ when

• Fc
w→s ⊆ Fw→s, and

• 0(S,Fc) → 0Γ↾(S,Fc) surjective.

Example: 0 ands form a sub-signature of constructors for the specification above.

Sufficient completeness
The following equivalent characterization for sub-signature of constructors has two advantages:

1. does not depend on existence of initial algebras forΓ, hence applicable within more general situations, and

2. it gives a method to actually prove the constructors property.

Proposition 6. (S,Fc) is a sub-signature of constructors forΓ if and only if for each(S,F)-term t there exists an
(S,Fc)-term t′ such thatΓ |=(S,F) t = t ′.

Proving inductive properties
The following gives a sufficient condition for proving inductive properties by aninfiniteset of ordinary proofs.

Theorem 7.

1. Γ set of conditional equations for a signature(S,F),

2. (S,Fc) sub-signature of constructors forΓ, and

6

3. (‘lemmas’:) E set of any sentences such that0Γ |= E.

Then for any(S,F ∪X)-sentenceρ

0Γ |= (∀X)ρ if Γ∪E |= θ (ρ) for all substitutionsθ : X → T(S,Fc).

Structural induction

Theorem 8(sufficientfinitary proof method for inductive properties).

1. (S,Fc) sub-signature of constructors forΓ any set of(S,F)-sentences,

2. X finite set of variables for(S,F),

3. ρ any (S,F ∪X)-sentence.

If for any sort preserving mapping Q: X → Fc

Γ∪{ψ(ρ) | ψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx} |=(S,F∪Z) Q♯(ρ)

where

– Zx are strings of variables for the arguments of Qx such that Zx1∩Zx2 = /0 for x1 6= x2∈ X, and

– Q♯ is the substitution X→ T(S,Fc∪Z) defined by Q♯(x) = Qx(Zx),

thenΓ |=(S,F) θ (ρ) for all substitutionsθ : X → T(S,Fc).

The finitary character of structural induction
Finite number of proof goals always involving finite conditions because:

• for anyQ, finite Z because finiteX and finite arities of operations, hence finite{ψ | ψ : X → Z}, and

• if finite Fc, then finite{Q | Q : X → Fc} since finiteX .

– moreover smallerFc implies fewer proof goals.

Generality of foundations
Many of MSA mathematical concepts and results above can be interpreted in the same form in other logical

systems (such aspreordered algebrafor specification with transitions).

For example, the structural induction method above has suchgeneral character.

This means foundations can be mathematically developed at the level of abstractinstitutions.

3 Example: verification of termination of generic bubble sorting

Example of ‘stainless’ formal verification
We illustrate

• formal specification based rigorously upon mathematical foundations,

• proof management,

• proof score building based rigorously upon equational proof theory and the structural induction theorem
above,

• the inter-dependency between semantic-oriented specification and proof score programming.

7

3.1 Formal specification

3.1.1 Natural numbers

The natural numbers with the usual zero and succesor operations constitute the initial algebra ofPNAT=. Moreover
we have a specification of the equality of numbers

mod! PNAT= {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _=_ : Nat Nat -> Bool {comm}
vars M N : Nat
eq ((s M) = 0) = false .
eq (0 = 0) = true .
eq [succ=] : (s M = s N) = (M = N) .

}

The following adds a specification of the ‘strictly less than’ relation on the naturals numbers.

mod! PNAT< {
protecting(PNAT=)
op _<_ : Nat Nat -> Bool
vars M N : Nat
eq [succ<] : (s M) < (s N) = M < N .
eq 0 < (s M) = true .
eq M < 0 = false .

}

3.1.2 Bubble sorting

The strings of natural numbers with concatenation and emptystring constitute the initial algebra ofSTRG-PNAT.

mod! STRG-PNAT {
[Nat < Strg]
op nil : -> Strg
op _;_ : Strg Strg -> Strg {assoc id: nil}

}

Bubble sorting algorithm appears as an instance of rewriting modulo associativity (of concatenation). The
initial model is thepreordered algebrathat has strings of naturals as elements and the transitionsgiven by the
sorting algorithm as the preorder relation.

mod! SORTING-STRG-PNAT {
protecting(STRG-PNAT))
ctrans E:Nat ; E’:Nat => E’ ; E if (E’ < E) .

}

We may use this specification as an actual sorting (very high level) program by executing it by rewriting modulo
associativity.

exec s s s 0 ; s 0 ; 0 ; s s 0 .

However, if we look more carefully into the specification of bubble sorting, we note that it essentially requires
only a binary relation<, no commitement to any property of the naturals, not even to the naturals as elements
of the strings. This means bubble sorting is very general, has agenericnature. Such kind of sorting over binary
relations is sometimes known astopologicalsorting.

The following parameterized module specifies strings overanyset (Elt) of elements.

8

mod! STRG (X :: TRIV) {
[Elt < Strg]
op nil : -> Strg
op _;_ : Strg Strg -> Strg {assoc id: nil}

}

The following specifies a generic binary relation < on the elements, to be used for the sorting. We also specify a
loose negation of<, namelynot<, mainly for operational reasons. Note that the sentence specifying not< is not
a conditional equation (although CafeOBJ notation refers to it as conditional equation); however this is OK since
this is loose semantics specification, which does not require existence of initial algebras.

mod* PSEUDO-ORDER {
[Elt]
op _<_ : Elt Elt -> Bool
op _not<_ : Elt Elt -> Bool
vars E1 E2 E3 : Elt
cq (E1 not< E2) = true if E2 < E1 or not(E1 < E2) .

}

The following instantiate the above specified pseudo-orders to the standard ordering of the natural numbers. It
uses default mapping mechanism, hence only the mapping ofnot< needs to be specified explicitly. The view
specification requires a proof that the initial algebra ofPNAT< satisfies the axiom ofPSEUDO-ORDER through
the translation given by the view. This means an inductive proof, that can be done by proof score programming
based upon the Structural Induction Theorem; we skip this here. Note that in this case we have that proof score
programming is involved at the stage of specification writing.

view PNAT<asPO from PSEUDO-ORDER to PNAT<
{op (E:Elt not< E’:Elt) -> ((E:Nat = E’:Nat) or (E’ < E))} .

The following is the specification of generic bubble sortingalgorithm.

mod! SORTING-STRG(Y :: PSEUDO-ORDER) {
protecting(STRG(Y))
ctrans E:Elt ; E’:Elt => E’ ; E if (E’ < E) .

}

SORTING-STRG-PNAT can be obtained as an instance ofSORTING-STRG by the above defined viewPNAT<asPO.

select SORTING-STRG(PNAT<asPO) .
exec (s s s s 0 ; s s s 0 ; s s s s s 0 ; s s s 0 ; s 0) .

3.2 Proof of termination of topological (generic) bubble sorting

For this we go back to the specification level and define a functiondisorder : Strg -> Nat such that

(∀S,S′)[S=>S′ implies disorder(S′) < disorder(S)].

(note this is a Horn clause in thePOA, the logical system of preordered algebra). Then the mathematical argument
of well-foundness of the natural numbers leads to the informal mathematical proof of termination.

3.2.1 Specification of auxiliary functions

The definition of function ‘disorder’ requires specification of other auxiliary functions too:

mod! PNAT+ {
protecting(PNAT=)
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ+] : M + (s N) = s(M + N) .
eq M + 0 = M .

}

9

• E»Scomputes how many elements ofSare less thanE.

• disorder(S) computes how many steps of the sorting algorithm are needed for the sorting ofS.

mod! SORTING-DISORDER (Y :: PSEUDO-ORDER) {
protecting(SORTING-STRG(Y) + PNAT+)
op _>>_ : Elt Strg -> Nat
op disorder : Strg -> Nat
vars E E’ : Elt
vars S S’ : Strg
eq E >> nil = 0 .
cq E >> E’ = s 0 if (E’ < E) .
cq E >> E’ = 0 if (E’ not< E) .
eq E >> (S ; S’) = (E >> S) + (E >> S’) .
eq disorder(E) = 0 .
eq disorder(E ; S) = disorder(S) + (E >> S) .

}

select SORTING-DISORDER(PNAT<asPO) .
red disorder(s s s 0 ; s 0 ; s s 0) .

The following specifies an equivalence relation on strings defined by

S<> S′ if and only if (∀E)E»S= E»S′.

Although this is not required by the specification ofdisorder, it is used in the formal proofs below. As this is
beyond CafeOBJ logic, at this level we under-specify it, however we will use its complete definition in the proof
scores.

mod* SORTING<> (Y :: PSEUDO-ORDER) {
protecting(SORTING-DISORDER(Y))
op _<>_ : Strg Strg -> Bool

}

3.3 Proof management

The proof management of this problem means the following:

1. By an mathematical argument we have reduced the task of proving termination to proving a Horn clause
sentence as inductive property inPOA.

2. Extension of the original specification with new functions.

3. Mathematical proof of the fact that

(∀S,S′,E1,E2)disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′) if E1 < E2

implies
(∀S,S′) [S=>S′ implies disorder(S′) < disorder(S)].

(This mathematical argument is related to the theory of rewriting modulo axioms.)

4. Formal proof (by proof score programming and running) of

(∀S,S′,E1,E2) [disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′) if E1 < E2]

This requires several lemmas and tranformation of the prooftasks by meta-rules such asUniversal Quan-
tificationor Modus-Ponens.

5. Mathematical proofs for sub-signatures of constructors.

10

3.4 Proof score programming

Formal proof of

(∀S,S′,E1,E2)disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′) if E1 < E2

open SORTING<> + PNAT< .
vars E E’ : Elt
vars S S1 S2 : Strg
vars M N P : Nat

We use a couple of lemmas:

cq [Lemma-1] : disorder(S ; S1) < disorder(S ; S2) = true
if S1 <> S2 and disorder(S1) < disorder(S2) .

eq [Lemma-2] : (E ; E’ ; S) <> (E’ ; E ; S) = true .

By Universal Quantificationwe transform the theorem into a quantifier-free sentence.

ops e1 e2 : -> Elt .
ops s s’ : -> Strg .

By virtue ofModus Ponenswe introduce the condition of the theorem.

eq e1 < e2 = true .

We use another couple of lemmas for naturals.

-- [Lemma-3] :
op _+_ : Nat Nat -> Nat {assoc comm}
eq [Lemma-4] : M < s M = true .

The theorem is now proved by equational deduction (rewriting).

red disorder(s ; e1 ; e2 ; s’) < disorder(s ; e2 ; e1 ; s’) .
close

Formal proof of Lemma-1.

(∀S,S1,S2)disorder(S;S1) < disorder(S;S2) if S1 <> S2 and disorder(S1) < disorder(S2)

By direct application of the Structural Induction Theorem where

• X = {S}, and

• ρ is (∀S1,S2)disorder(S;S1) < disorder(S;S2) if S1<> S2 anddisorder(S1) < disorder(S2).

The sub-signature of constructors consists ofnil, all e:Elt, and_;_, this being established by mathemati-
cal proof.
— The caseQS = nil :

open SORTING<> + PNAT< .

By Universal Quantificationwe transform the theorem into a quantifier-free sentence.

ops s1 s2 : -> Strg .

By virtue of Modus Ponens we introduce the condition of the theorem.

eq disorder(s1) < disorder(s2) = true .
eq E >> s1 = E >> s2 .

The proof of the conclusion.

11

red disorder(nil ; s1) < disorder(nil ; s2) .
close

— The caseQS = e:Elt :

open SORTING<> + PNAT< .

By Universal Quantificationwe transform the theorem into a quantifier-free sentence.

ops s1 s2 : -> Strg .
op e : -> Elt .
var E : Elt
vars M N P : Nat

By virtue ofModus Ponenswe introduce the condition of the theorem.

eq disorder(s1) < disorder(s2) = true .
eq E >> s1 = E >> s2 .

We use again[Lemma-3] :

op _+_ : Nat Nat -> Nat {assoc comm}

And use another lemma for the naturals:

cq [Lemma-5] : M + N < P + N = true if M < P .

The proof of the conclusion.

red disorder(e ; s1) < disorder(e ; s2) .
close

— The caseQS = _;_ :
We have thatZ = {x,y}.

open SORTING<> + PNAT< .
ops x y : -> Strg .
vars S S1 S2 : Strg

We introduce the hypotheses for the condition of the Structural Induction Theorem :

cq disorder(x ; S1) < disorder(x ; S2) = true
if disorder(S1) < disorder(S2) and S1 <> S2 .

cq disorder(y ; S1) < disorder(y ; S2) = true
if disorder(S1) < disorder(S2) and S1 <> S2 .

By Universal Quantificationwe transform the theorem into a quantifier-free sentence.

ops s1 s2 : -> Strg .

By virtue ofModus Ponenswe introduce the condition of the theorem.

eq s1 <> s2 = true .
eq disorder(s1) < disorder(s2) = true .

We use a new lemma:

cq [Lemma-6] : S ; S1 <> S ; S2 = true if S1 <> S2 .

The proof of the conclusion.

red disorder(x ; y ; s1) < disorder(x ; y ; s2) .
close

12

Formal proof of Lemma-2 :
(∀E,E′,S)(E;E′;S) <> (E′;E;S) = true

which means
(∀E1,E,E′,S) E1 » (E;E′;S) = E1 » (E′;E;S)

open SORTING<> + PNAT< .

By Universal Quantificationwe transform the theorem into a quantifier-free sentence.

ops e1 e e’ : -> Elt .
op s : -> Strg .

We use again[Lemma-3] :

op _+_ : Nat Nat -> Nat {assoc comm}

And use a new lemma on naturals:

eq [Lemma-7] : (M:Nat = M) = true .

The proof of the conclusion:

red e1 >> e ; e’ ; s = e1 >> e’ ; e ; s .
close

Formal proof of Lemma-6 :

(∀S,S1,S2) S;S1<> S;S2= true if S1 <> S2.

open SORTING<> + PNAT< .

By Universal Quantificationwe transform the theorem into a quantifier-free sentence.

ops s s1 s2 : -> Strg .
op e : -> Elt .

We introduce the condition of the theorem:

var E : Elt
eq E >> s1 = E >> s2 .

We use a new lemma on naturals:

eq [Lemma-7] : (M:Nat = M) = true .

The proof of the conclusion:

red e >> s ; s1 = e >> s ; s2 .
close

3.5 Mind semantics!

The relationa < b and b < a on {a,b} determines a model ofPSEUDO-ORDER, however the bubble sorting
algorithm for this instance is not terminatinga;b=>b;a=>a;b=>... In spite of the fact that the proof is correctly
built. Is there a gap somewhere?

We have both thata < b anda not< b, which implies 0= s 0, hence the naturals are collapsed, and (by
PNAT=) the Booleans also, which means the specification is inconsistent (it lacks models).

This situation is repaired by adding one more equation with only semantic role, not used in the proofs.

13

mod* PSEUDO-ORDER {
[Elt]
op _<_ : Elt Elt -> Bool
op _not<_ : Elt Elt -> Bool
vars E1 E2 E3 : Elt
cq (E1 not< E2) = true if E2 < E1 or not(E1 < E2) .
eq (E1 < E2) and (E1 not< E2) = false .

}

Conclusion: semantics of specifications comes first, correctness of proof scores depends on the semantic
correctness of the specifications. For this it may be necessary to write axioms with absolutely no operational
meaning, with only semantic meaning.

14

