Chapter 2

Data Type Specification

Specification of data types using many sorted equationa isghe most classical level
of algebraic specification. This constitutes the topic & thapter which is structured as
follows.

1.

We introduce the basic concepts of signature, axiomebadg and satisfaction both
as specification concepts and as mathematical ingrediémiguational logic. In
fact, conceptually these two sides are identical, the oiffgrénce being in the
notation used. Here we also develop the foundational re§@kistence of initial
algebras for conditional equational specifications.

. In the next section we discuss how to deal with some formgaofiality of the

operations, namely those handled by subsorting and by gostr@ints.

. Next we discuss equational deduction as a finitary prostesy for the semantic

consequence relation in equational logic. We introducectiteepts of proof rule
and entailment systems at a rather general level in ordeat@rtihem available for
other deduction systems later in our lecture notes. The litapbresults developed
here are the soundness and the completeness of equatidnatide.

. In order to mechanize equational deduction and make ipcdational, we intro-

duce the rewriting technique. Rewriting is the basic veaifitn mechanism and the
main execution engine for equational specifications. Wavdhat while as a log-
ical deduction system rewriting is sound, it is completeyamhder some special
conditions. We develop these results in a more abstract flam traditional term
rewriting, a fraemwork which covers also the important caseewriting modulo
axioms.

. An important aspect of the formal verifications of dataetygpecifications are the

induction proofs, meaning the proof of logical propertiegyations in our case)
holding in the initial algebras of the respective speciftat. These ‘inductive’

properties admit only infinitary complete proof systemst &ealing with this we

develop the finitary proof method of ‘structural induction’

10 Chapter 2. Data Type Specification

6. The final section of the chapter illustrates the materéaletbped so far through
a dedicated example, namely that of a specification of a siropinpiler. This is
based upon the so-called ‘initial algebra semantics’ ntethis correctness appears
as an inductive equational property, for which we give agatiimple proof score.

2.1 Basic Notions

Data type specification consists of axiomatic descriptaiisets of elements together with
certain relevant functions on these sets. The word ‘bas@dms that we do not consider
any structuring mechanism for the specifications. Strirguof specifications is the topic

of Chap. 6.

Basic Specification. Consider the following simple specification of natural nwars
with addition, written inCafeOBJ notation.

nod! SI MPLE- NAT {

[Nat]

op 0 : -> Nat

op s_ : Nat -> Nat

op _+_: Nat Nat -> Nat
vars M N : Nat

eq N+ (s M =s(N+ M
eq N+ 0 = N.

}

This specification consists of several distinct parts:

1. Header (i.e., the part befofe. . }) giving the name of the specificatio8I(MPLE- NAT)
and the kind of denotatiombd!).

2. The sort (type) declaratiofi Kat]), giving a name to the set of elements of the
specified sort (or "type”) (in this case the set of the natmahbers); while the
name "sort” is common in algebraic specification, the nargpét is more used in
programming.

3. The operations declarations, starting wah, denoting functions on the set(s) of
elements. In our case these Ares_and_+_, respectively, as expected denoting, the
zero element, the succesor function, and the addition ofralst respectively.

4. The variables declarations, starting witar s, (such asgviandN). (CafeOBJ sup-
ports the declarations of the variables on the spot, for g@am Nat .)

5. Axioms (the statements starting witly) defining the equality between elements.

2.1. Basic Notions 11

Signatures. The sort and the operation declarations formdigmatureof the specifica-
tion. Theoperation declarationsonsist of:

e The name of the operation. Some specification languages, inclu@ateOBJ,
support the so-callethix-fix syntax for the name of the operations, showing the
position of the arguments by”when writing an application of the operation. The
mix-fix syntax enhaces greatly the readability of the spegiions since it brings
them closer to the common mathematical notations with wherang familiar from
school or from our programming practice.

e Thearity of the operation, which is a string of (already declaredjsstivat corre-
spond to the sorts of the arguments for the operation. Ay afian operation may
thus consist of

— an empty string (like in the case 0§; such operations are callednstants
— only one sort (like Nat " in the case 06 _), or

— several sorts (likeNat Nat ' in the case of+.); in general these sorts may
also be different.

e Thesort of the operation, that is an already declared sort symbdk Mat all three
operations of our specification have the same sort, naNely

The following is the mathematical definition of the concefsignature.

Definition 2.1 (Signatures) We let S denote the set of all finite sequences of elements
from S, with[] the empty sequence. A(rsBrted signaturg S F) is an S x S-indexed set
F ={Rv—s|weS", sc S} of operation symbols

The setd,_s in the definition above stand for the sets of symbols withyaviand
sorts. Note that this definition permitsverloading in that the set$, .s neednot be
disjoint. We may denotg;_s simply asF_.

Graphical representation of the signature can be very Lgéfa graphical notation
for signatures that we are using here was first introducelddbDJ group as an extension
of the classical set theory graphical representation afaetl functions. In this notation
we represent

e sorts (types) by disks, and

e operations by multi-source arrows.

For example, the signatu& MPLE- NAT can be graphically represented as follows:

12 Chapter 2. Data Type Specification

\/

+

Formal variables. Given a signaturéS F), a variable declarationintroduces a new
constant symbol of a declared sort. The formal treatmentdbtles is not straightfor-
ward because it needs to avoid various clashes. The folgpaiiinition formalizes the
actual treatment of variables in specification languages) asCafeOBJ.

Definition 2.2 (Variable) Let (SF) be a signature. Avariable for(S,F) is a triple
(x,s,(S,F)) where x is thename of the variables € S is thesort of the variablgand
(S F) its signature

The sort and the signature are essential qualificationsafidalles, very much used in the
treatment of the variables by various implementations dfaspecification languages..
However, when these are clear, we may simply refer to a Variapits name only. For
example, ifX is a set of variables faiS,F), then(x,s, (S,F)) € X may be denoted simply
x € X. For this to make sense, but also in order to avoid other kifidiashes, we make
the basic assumption valid all over our material, that whamstering sets of variables,
any two different variables have different names

Notation 2.3. For any signaturdS F) and any set X of variables f§&, F), the signature
(S,FUX) denotes the extension(@, F) with X as (new) constants that respects the sorts
of the variables. This mear{§ U X)w_.s = Fw—s when w is not empty andF UX)_s =

FosU{(xs (SF))[(xs(SF)) € X}.

Due to set theoretic arguments (that we omit here) the latien is always a disjoint
one.

Terms. Terms are syntactic constructs which can be defined reelyshs operations
applied to arguments which are either complex terms, orifivieterms which are con-
stants. These constants can be either constants of théispasajnature or declared vari-
ables. If a term contains variables, then it is considerdgeiong to the corresponding
extended signature. The application of operations to tgaraents have to respect the
arity of the operation, i.e. the argument must have the sditated by the arity. This is
captured mathematically by the definition below.

Definition 2.4 (Terms) An(S F)-termt of sort s S, is a structure of the form(ty, ..., tn),
whereo € Fs, s, —sandt,....t, are (S F)-terms of sorts s, Sy, respectively.

2.1. Basic Notions 13

In CafeOBJ, as in other specification languages, by the comngpaards e we can check
the well-formedness of a term, i.e. that a certain expredsiodeed a term, :

S| MPLE- NAT> parse s 0 O .
[Error] no successful parse
or
SI MPLE- NAT> parse s 0 + O .
((s 0) + 0) : Nat
(HereSI MPLE- NAT> is a system prompt.)
The first term is ill-formed, hence the parsing error. Theoselderm is well-formed, and
the system parses the term as

/+\0
|

0

and tells the user that the sort of the ternNat .
Note that another possible parsing$r0 + 0iss(0 + 0) :

-+

|

s
a
However, the system does not choose this possibility becéydnternal convention, the
operatiors _ has higher precedence than the operatian

Equations. The axioms of equational specifications are cadigdationsThey are for-
mal equalities between (well formed) terms of the same sattdeenote actual equalities
between elements.

Definition 2.5 (Equations) Given a signaturgS F), a quantifier-free equatigroften
called simplyequationis a symbolic equality + t’ between F-terms t and of the same
sort.

The equations are the simplest sentences or axioms, ofégnatie calledatomic sen-
tences. From equations we can form more complex sentencappbigation of logical
connectives and quantifiers according to the followingsule

14 Chapter 2. Data Type Specification

Definition 2.6 (Sentence) For any signature(S,F), the set of(S F)-sentencess the
least set such that:

e Each(S F)-equation is an(S F)-sentence.

e If p; andp; are (S F)-sentences thep A p2 (conjunction, p1 V p2 (disjunction,
p1 = p2 (implication) and—p; (negation are also(S, F)-sentences.

e If X is a set of variables fo(S F), then (¥X)p and (3X)p are (S,F)-sentences
whenevep is an(S F UX)-sentence.

The sentences that do not involve any quantifications atecogiantifier-free sentences

Definition 2.7 (Conditional equations)A conditional equatioiis a sentence of the form
(VX)H = C where H is a finite conjunction of (atomic) equations and G isingle
(atomic) equation.

WhenH is empty the respective conditional equation is usuallytemisimply agvXx)C
and is calledunconditional equationThe CafeOBJ notation, as other specification lan-
guage notations, keep&7X)’ in the notation of the conditional or the unconditional equ
tions implicit by following the convention that each equoatis universally quantified by
exactly the variables that occur in its terms. For exampditat axiom ofSI MPLE- NAT,
namely

e N+ (s M =s(N+ M

isjustNM N + (s M =s(N+ M.

The equational specification paradigm, as its name suggestsiders only con-
ditional or unconditional equations as axioms for its sfieaiions. This is also true for
CafeOBJ. The main reason for such a restriction is the existenceeo$dihcalled ‘initial’
models or algebras for equational specifications. Thisgntgjis important because when
specifying data types, one often likes to specify a pardicsingular model or implemen-
tation, and the initiality property can characterize madaliquely (up to isomorphisms).
For example this is the case of the specifica@iPLE- NAT when one wants to spec-
ify the standard model of the natural numbers data type. eroteason in favour of
equational specifications are the existence of a relatsietple proof system with good
computational properties. We will see the precise meaniradl these things later in the
chapter.

Denotations and algebras. Specifications are formal descriptions of certain class of
possible implementations. In algebraic specificationglementation” is captured by the
concept oimodeland "possible implementations” by the conceptiehotation The mod-

els of data type specifications are calidgebras Algebras are ideal mathematical entities
interpreting the syntactic constituents of signaturebfefpecifications as ideal semantics
entities. Thus algebras interpret:

e sorts as sets, and

e operations as functions on these sets,

2.1. Basic Notions 15

such that the interpretation of the operations is compatibth the interpretation of the
sorts. Software and even hardware implementations of figet@ns can be mathemati-
cally regarded as algebras.

Definition 2.8 (Algebras) Given a set of sort symbols S, arirlexed(or sorted set
Ais a family{As}scs of sets indexed by the elements of S; in this contextAameans
that ae As for some s= S. Given an S-indexed set A and=g,;...s, € S*, we let Ay =
As X -+ X Ag,; in particular, we let A = {x}, some one point set.

Given a signaturéS F), a (S F)-algebraA consists of

e an S-indexed set A (the setié called thecarrierof A of sort s), and
e afunction A-w_s: Ay — Asfor eacho € Fy_s.

When there is no danger of ambiguity (because of overloaafimy we may simplify the
notationAg-w_.s to Ag. If 0 € F_ s thenAgs determines a point ihs which may also be
denotedd;.

For example, the natural numbers with succesor and addititions are an alge-
braA for the signature o8l MPLE- NAT as follows:

o Aat =w=1{0,1,2,...},

o Ag=0,

e As_(X) =x+ 1 for eachx € w, and
e A (xy)=x+yforall xy € w.

But there are myriads of other models for the signatur8Id¥PLE- NAT, most of them
very different from the intended moda&labove, such aB defined below:

Bnat = {0,1},
Bo =1,

Bs_(x) = 1—xfor eachx € w, and

B (x,y) =1forallx,y € w.

Although the algebr® may go against all our preconceptions regarding the ingaipr
tions of familiar symbols such and+, its definition respects Dfn. 2.8 which allows us to
interpret the syntactic symbols quite freely.

The satisfaction relation. The concept of satisfaction between models and sentences
is the crucial link between the semantics and the syntax iohdb specifications. This
tells us when a certain axiom holds in a certain model. Onlzags, from all models of
the signature of a given specification we may isolate the tsdtiat actually verify the
axioms of the specification.

The first step in defining the mathematical concept of satiefa is to see how each
term of a given signature gets evaluated as an element inlgagra of that signature.
This can be defined recursively on the structure of the term.

16 Chapter 2. Data Type Specification

Definition 2.9 (Interpretation of terms)Let (S F) be any signature. Any F-term=¢
o(ts,...,tn), whereo € Ry_s is an operation symbol and.t .. ,t, are F-(sub)terms cor-
responding to the arity w, gets interpreted as an elemerd As in a (S F)-algebra A
defined by

A =As(Ay-- - AG).

The base case in the above definition is corresponds to thetisits whem = 0, i.e,
wheno is a constant symbol.

The satisfaction betweef F)-algebras andS,F)-sentences, denoted sg) or
simply by = when there is no danger of confusion, is defined inductivalthe structure
of the sentences as follows.

Definition 2.10 (Satisfaction relation) Given a fixed arbitrary signaturéS F) and a
(S F)-algebra A,

e A=t =t'ifand only if A = Ay for equations,
e AEpiApzifandonly if AE p1 and A pa,
e Al=p1Vvpzifandonly if A= pyor A py,
e AEp1 = pzifandonly if Af= p1 or A= pa,
e A= —ps ifand only if Aj~ ps,

for all (S F)-sentenceps andp, and

o for any set of variables X for the signatuf® F), and for any(S F U X)-sentence
P, Al=sk) (VX)pifand only if A |=sFux) p for each(S F UX)-algebra A such
that A, = As for each s S and A = A, for each operation symbai of F.

o A= (3X)pif and only if Al (VX)—p.

The (S,F U X)-algebraA’ in the definition above is called th&, F U X)-expansiorof A
and it is justA plus a function that assigns a elemenfgto each variable symbol of sort
sin X. ThenAis called thg(S F)-reductof A’

WhenA = p we say thatA satisfiesp or thatp holdsin A. While the algebraA
introduced after Dfn. 2.8 satisfies both axiomsSMPLE- NAT, the other algebr®
does not satisfy any of them. We leave to the reader the taghettk the validity of these
two facts as applications of Dfn. 2.10.

The satisfaction relation between algebras and singleesees can be extended
easily to a relation between algebras @ets ofsentences: for an{s, F)-algebraA and
any sett of (S F)-sentences led |=(sr) E mean thal |=gr) p for all p € E.

Operation attributes. Many algebraic specification languages, especially tHusteare
directly executable, provide an alternative notation fmme specific equations such as
the commutativity or the associativity of operations. Thigation is called ‘operation
attribute’ and inCafeOBJ it looks like

2.1. Basic Notions 17

op _+_ : Nat Nat -> Nat {conm}

which is an alternative to
eq M+ N= N+ M.
or

op _+_: Nat Nat -> Nat {assoc}

which is an alternative to
eqg (M+ N + P=M+ (N+ P)

The only reason for providing operation attributes notatig an alternative to the ordi-
nary notation for equations has to do with the operationpéetsof the language, and
nothing to do with its specification aspect. From the semgmtint of view both nota-

tions have exactly the same meaning, however the operdtridrutes give a signal to the
system that the respective equations have to be used inialspayg in the computations.
This is necessary because the usual execution mechanisqguational specifications,
namely rewriting, may run into an infinite loop because of caumativity equations or

may get blocked because of associativity equations. Latén the chapter we will learn

more on this topic.

in

Booleans and predicates. There is a number of data types that are regularly used
specifications, such as numbers or truth values (also c&lmoleans’). In order to ease
the task of the users, often such data types come incorporathe specification sys-
tems as pre-defined, or system defined, types. Pre-definesd iygve at least two advan-
tages: they save the users from the trouble to have to speeifiy, and more importantly,
they may run more efficiently due to the fact that often the&aution is performed by
programs in some low level programming language used fomtipéementation of the
specification system.
As mentioned before, one of the most used pre-defined dagisythat of the

Boolean values. liCafeOBJ it is namedBOOL and unless specified it is automatically
made available for any specification. The essential patsaignature can be represented

as
true, ‘
fal se

wheret r ue, f al se, and, or, not have the standard well known meaning.

18 Chapter 2. Data Type Specification

As an exercise let us now use the Boolean data type for defthim¢gtrictly less
than’ relation between the natural numbers. This is donasteps. First we have to
specify the symbol for the relation, which is treated as al8awvalued function.

op _<_: Nat Nat -> Bool

Next we write the equations that define the relation.

eq 0 < (s M =true.
eq (s M < (s N =M<N.

However with only these two equations we may end up with soeve values of sort
Bool ,suchags s 0) < (s 0).Inorderto collapse these tal se we need one
more equation.

eq M< 0 = fal se .

Sometimes, in order to get the notation closer to the famil@ation for relations, in
CafeOBJ one may skip to write the soBool as the sort of th&ool -valued operation
that simulates the respective relation. The short handinatr this keep8ool implicit
and looks like

pred _< : Nat Nat

The keywordpr ed come from ‘predicate’ which in logic is another name for atgbn’.
However, always remember that this is only a short handradtefe and that itCafeOBJ
relations are treated as Boolean valued functions.

Conditions as Boolean terms. Some algebraic specification languages, especially those
of the OBJ family, such a€afeOBJ and Maude, have a specific way to write the con-
ditions of conditional equations, which is very good for murg or executing the spec-
ifications. Recall that (according to Dfn. 2.7) the condi8mf equations are just finite
conjunctions of equations. I6afeOBJ and Maude these may be encoded as Boolean
terms by encoding the conjunctionas the binary operatioand of the (pre-defined)
data typeBOOL and by encoding equations= t’ as termg ==t’ of sortBool . For this
CafeOBJ provides implicitly for each declared s@t Boolean valued operation

==¢ : ss-> Bool

For example inCafeOBJ we may define a maximum function on pairs of naturals as
follows:

op max : Nat Nat -> Nat { comm }
ceq max(M Nat, N:Nat) = Mif (N< M
ceq max(M Nat, N:Nat) = Mif (M==

Note that the two equations above have the same conclusidneach of them corre-
sponds to a different case for the condition. They can beemritnore compactly as one
sentence by using the operation on the sorBool as follows.

2.2. Initial Semantics 19

ceq max(M Nat, N:Nat) = Mif (N< M or (M==

Note that thisCafeOBJ code does not correspond anymore to a conditional equation
since its condition is a Boolean term corresponding to aidigjon of equations. Because
the pre-defined Boolean tyf@OCOL has operations such as andnot also, means that
we can write Boolean terms that correspond to any quanfigersentences. This goes
considerably beyond conditions as conjunctions of eqoatizvhich means that using
such Boolean terms as conditions places us beyond the légionalitional equations.
This may have a series of undesirable semantic consequenodsas inconsistency in
the form of absence of any models for our specification. Intslitds advisable to write
only conditions that correspond to finite conjunctions afi&tipns. However, one excep-
tion still works well, namely usingr . This is justified by the fact that any equation
conditioned by a quantifier-free sentence envolving onlyjwactions and disjunctions
is equivalent semantically to a finite set or conditionalaépnal. This means that what
exactly should be avoided is the use of the negatiart § operation in conditions.

Exercises.

2.1. For any signatur¢S F) and any setX andY of variables for(S F)vsuch thaiX NY = 0 show
that for any(S,F UX UY)-sentencep, the sentences’X)(VY)p, (VY)(VX)p, and(YXUY)p are
semantically equivalentmeaning that they are satisfied by the same algebras. Hemnoeaw not
discriminate between these sentences.

2.2. Prove that any sentence of the fofiiX)H = C whereH is a quantifier-free sentence formed
from equations and, v, andC is an atom, is semantically equivalent to a set of conditieqaa-
tions.

2.3. Write a CafeOBJ specification with equations conditioned by Boolean terhad toes not
have any models.

2.2 Initial Semantics

Tight versus loose denotations. There are two kinds of denotations for equational
specifications, the so-callaht, or initial, and the so-calletbosedenotations. The dif-
ference between them corresponds to different intentimns the side of the specifier.
Tight denotations are used when the intention is to speciBrein singular model, while
the loose denotations are used for specifying a class of imoee choice of the kind of
denotation is reflected by tl@afeOBJ notation in the header of the specifications by the
use of the keywordspd! andnmodx*, respectively.

We have already seen the exampleSbiMPLE- NAT which is specified with tight
denotation (hencepd!) since in this case the intention is to specify the model ef th
natural numbers. The following example shows clearly ttieidince between the tight
and the loose denotations. While the loose denotationfspe@nSEM GROUP specifies
all semigroups with two designated constaatandb, its tight denotation variarBTRG
specifies the semigroup consisting of all strings formedaay¢haracters andb.

20 Chapter 2. Data Type Specification

nmod! STRG { nod* SEM GROUP {

[S] [S]

ops ab: ->8S ops ab: ->S

op .- : S S->8S {assoc} op - : S S->S {assoc}
} }

While in the case 08EM GROUP the denotation may be obtained rather easily, as the
class of all algebras of the signature satisfying the ongcBed equation, namely the
associativity of the binary operation (specified as an djarattribute), to obtain the
denotation ofSTRG requires a more complex process. In general, this procesbea
informally explained as consisting of two main steps:

1. We construct all well-formed terms from the signaturehef $pecification, and
2. We identify the terms which are equal under the equatibtisecspecification.

For our current example the first step constructs the tercis asi

a, b,

ab, ba, aa, bb,

a(ab), a(ba), b(ab), b(ba), (ab)a, (ab)b, (ba)a, (ba)b,

(ab) (ab), (ab)(ba), (ba)(ab), (ba)(ba), ... etc,

and at the second step one identifies terms under the asgtcequation, which just get
rids of the brackets. Forexamfla(ab)) b, (aa) (bb), a(a(bb)), a((ab)b),
((aa) b) b are all identified as one element, which may be denotedhb®. This model
of the strings can be characterized among all other modelsedfignature satisfying the
respective associativity equation by a special propegied initiality. The rest of this
section is devoted to the mathematical explanation of timeept of initiality and of the
process of constructing initial algebras for specification

Algebra homomorphisms and initial algebras. The initiality property is about how
the respective algebra relates to other algebras. The matlual concept that relates
algebras between them is callednmfmomorphism of algebras

Definition 2.11(Homomorphism of algebraspn Sindexedor sorted functionf : A—
B is a family{fs: As — Bs|se S}. Also, for an S-sorted function:f A — B, we let
fw: Aw — By denote the function product mapping a tuple of elem@ats. . ,an) to the
tuple(fs, (a1),..., fs,(an)).

An (S F)-homomorphisnirom one(S, F)-algebra A to another B is an S-indexed
function h: A — B such that

hs(Ag(a)) = Bg(hw(a))
for eacho € Fy_sand ac Ay,.

Homomorphisms of algebras may also be called algebra hompinisms, and as Dfn. 2.2
suggests they are (families of) functions that preservaldpebraic structure. When there
is no danger of confusion we may simply wrhiga) instead ohg(a).

Like functions, homomorphisms of algebras compose.

2.2. Initial Semantics 21

Definition 2.12(Composition of algebra homomorphism§jiven(S, F)-homomorphisms
h: A— B andg: B— C, their composition }g is the algebra homomorphism-A C
defined by(h; g)s = gso hs for each sort symbol s sl

The reader may check by herself the correctness of the defimt composition of alge-
bra homomorphisms, namely thag of Dfn. 2.12 is an(S F)-homomorphism indeed.

The following special case of homomorphism captures thmsdn when algebras
are essentially the same, calisdmorphic algebrasn the sense that they differ only by
a renaming of their elements.

Definition 2.13 (Isomorphism of algebras)A (S F)-homomorphism h A — B is a
(S F)-isomorphismwhen there exists another homomorphisnt h B — A such that
h:h~1 =15 and i 1;h = 15, where byla: A— A andlg: B — B we denote the ‘iden-
tity’ homomorphisms that map each element to itself.

Note that Dfn. 2.13 characterizes isomorphisms by a cortipoaiity property rather
than by a direct property of the respective homomaorphismvasndn the following.

Fact2.14.A (S F)-homomorphism h A— B isisomorphism if and only if each function
hs: As — Bs is bijective (i.e., one-to-one and onto, in an older ternhagy).

The proof of Fact 2.14 is rather straightforward and is Isfegercise to the reader.

Definition 2.15 (Initial algebras) Given any clas€ of (S F)-algebras, an algebra A is
initial for C when Ae C and for each algebra B C there exists an unique homomorphism
A— B.

In our lecture notes we will be mainly interested in the aa§30f the algebras satisfying
certain fixed sets of conditional equations.

Initial algebras have the crucial property that they are@ueiup to isomorphisms,
as explained by the following simple result.

Proposition 2.16. If A and A are both initial algebras fo(C, then there exists an isomor-
phism A— A,

Proof. SinceA s initial andA’ € C there exists a homomorphidgm A — A'. SinceA’ is
initial andA € C there exists a homomorphigh: A’ — A. Thenh; ' is a homomorphism
A — A. But the identity i : A— Ais also a homomorphism, and since by initiality there
exists an unigue homomorphig— A, we have thal; Y = 1. Similarlyh;h=15. O

Because initial algebras are isomorphic, which means tigt are the same modulo
renaming of elements, we usually say ‘the initiddebrd of an equational specification
instead of the more correct terminology ‘the initial algetir This also explains why
we usually refer to the unique model or algebra of tight dations, when in fact tight
denotations mean a class of (mutually isomorphic) modetdgebras. For example, the
denotation ol MPLE- NAT consists of all representations of the natural numbersdtut
since all these representations are mutually isomorphispeak aboua standard model
of the natural numbers. To summarize, the initiality proypgives us a very general way
to capture single standard models that we intend to specify.

1This meangh; g)(a) = g(h(a)) for eacha € As.

22 Chapter 2. Data Type Specification

Congruences and quotients. The next goal for us is to show that each specification
with conditional equations admits initial algebras. THisws that such specifications that
are considered with the tight denotation aomsistenti.e. they have a model. Moreover,
this also shows that loose denotation equational speéifitaare consistent, since their
denotations would contain at least the initial algebra.

For showing that in general each specification with condéleequations admits
initial algebras, we need to introduce the conceptsonfgruenceandquotient algebra

Definition 2.17 (Congruence)A F-congruencen a(S F)-algebra A is an S-sorted fam-
ily of relations,=s on A;, each of which is an equivalence relation, and which alssgat
thecongruence properfyhat given any € Ry_s and any ac Ay, then As(a) =s Ag(d)
whenever a=, @2

For example the binary relatioa on the modelA of SI MPLE- NAT (introduced after
Dfn. 2.8) defined by = b if and only if the difference betweemandb is an even number,
is a congruence. Note that if we replaced ‘even’ by ‘odd’ ia tiefinition of=, it remains
an equivalence relation but not a congruuence anymore #iirgceongruence property
fails for +.

Definition 2.18(Quotient algebra) Each congruence on &i$, F)-algebra A determines
a quotientalgebra A/= such that

o (A/=)s=(As)/= foreachsort s S, i.e.(As)/=, = {a/= | a€ As} is the set of the
equivalence classes af;, and

o (A/=)s(ar/=...an/=) =Ag(ay,...,an)/= for each operation symbal € Fs, s, s
and each(ay,...,an) € Ag; X --- X Ag,.

The canonica(S, F)-homomorphism q A — A/ mapping each element a to its equiv-
alence class A= is called thequotient homomorphismassociated te=.

The second item of Dfn. 2.18 makes sense because of the eymgrproperty, in that
if we chose other representativ&s. .., a;, for the equivalence classes/—,...,an/= it
would be no trouble sinc&g(ay, ...,an) = Ag(ay, an).

The quotient algebra of the congruenreen the algebra of SI MPLE- NAT dis-
cussed above consists of only two elements, the sets of tthenaehbers (represented
and denoted by 1) and of the even numbers (represented aatedday 0), respectively,
and(A/=)o =0, (A/=)(0) = 1, (A/=)(1) =0, (A/=)(0,0) = (A/=);(1,1) = 0, and
(A/=)+(0,1) = (A/=)+(1,0) = 1.

Definition 2.19 (Kernel of homomorphism)For h: A — B any(S,F)-homomorphism
let its kernel=y be the S-sorted family of binary relations defined by@sb if and only
if hg(a) = hs(b).

Fact 2.20. For any (S,F)-homomorphism h, its kernely, is a F-congruence.

The following technical result will be used later in the pees of proving the exis-
tence of initial algebras of equational specifications.

°Meaninga; =5 g fori=1,....,n, wherew=s,...s, anda= (as,...,an).

2.2. Initial Semantics 23

Proposition 2.21. For any surjective (i.e. onto)S, F)-homomorphism q A — A" and
any(S,F)-homomorphism’h A— B, there exists an uniqu&, F)-homomorphismh A" —
B such that gh’ = h if and only if=q C =.

Proof. As the direct implication is almost trivial, we focus on tineérse implication. For
eacha € A’ let us definér'(a') = h(a) wherea' = q(a). Such elemenra exists because
is surjective. The definition df is also correct, in the sense of being independent of the
choice ofa such that’ = q(a), because=q C =

Now let us check the homomorphism condition iarConsider any operation sym-
bol o and any appropriate list of argumer#s, .. . ,a;,) for A;. Then we have the follow-

ing
W(AG(a,....a)) = (As(a(a),....q(an)) forac € Asuch thas = q(a)
N (g(As(ag,.--,an)) (because is homomorphism)
h Ac(al, ,an)) (becausdr = q; i)
Bs(h(a1),.. ., (an)) (becausén is homomorphism)
= Bc(h’(al) N (ay)) (by the definition ofh’)

O

Free algebras. We are now ready to take the most important step towards auerdu
goal, of showing the existence of initial algebras for equrat specifications.

Definition 2.22 (I'-congruence) For any conjunction H= (t1 =t)) At =t5) A--- A
(tn =1t5,) of (S F)-equations and anyS F)-algebra A, by 4 let us abbreviate the set
{(AA) 1< <n}.

GivenT a set of conditional equations in a signat{® F), a congruences on a
(S,F)-algebra A is d -congruencé for each conditional equatiofvX)H = CinT and
for any expansion 20f Ato(SFUX), A, C =implies 4 C =.

Proposition 2.23. For each(S,F)-homomorphism h A — B and each sef of condi-
tional equations foS F), if B = I then=y, is al'-congruence.

Proof. Let (vX)H = C in I and consider &S F U X)-expansionA’ of A such that
Al; C=p. Let us define S F U X)-expansiorB’ of B by B} = h(A}) for eachx € X.
Note thath becomes &S, F U X)-homomorphisnA” — B'. By induction on the structure
of terms it is easy to see thiatA]) = B{ for each(S,F U X)-termt. By using this property
we have thaf\; C = is equivalenttd’ = H. ThusB' = H. Becaus& |= (VX)H = C

it follows thatB’ |= C. But by the same propertyA{) = B; above Ax C =, is equivalent
to B’ |=C. HenceA, C =p. O

24 Chapter 2. Data Type Specification

Proposition 2.24. For each(S,F)-algebra A, any congruence on A, and any seft of
conditional equations ifS,F), A/= =T if and only if= is al-congruence.

Proof. The implication from the left to the right follows from Prop.23 by considering
the quotient homomorphisk— A/= in the role ofh.

For showing the implication from the right to the left let umsider(VX)H = Cin
I and any(S F UX)-expansiorA” of A/= such thal\” |=H. LetA’ be an expansion d§
such that for eack € X we haveA, € A;. By induction on the structure of ari§, F UX)-
termt, itis easy to see tha#y)/= = A/ ThereforeA” = H means thafy, C =. Because
= is al-congruence we obtaiy. € = which shows in turn mean&’ |= C, which shows
thatA/= = (VX)H = C. O

Note that given anyS, F)-algebraA and any seff of conditional equationsi(SF),
the intersection of any family df-congruences is still B-congruence. This implies that
there exists the leaBtcongruence oA obtained as the intersectionalf I'-congruences
onA.

Notation 2.25. Let=f denote the leadt-congruence on an algebra A an@t denote its
associated quotient homomorphism.

Corollary 2.26 (Free algebras)For any (S, F)-algebra A, A(:? is thefree algebra over
A satisfyingl,

A @ A/

RN

BET
in the sense that for any other algebra B satisfyln@nd any(S,F)-homomorphism
h: A— Bthere exists an uniqu&, F)-homomorphism: A/:?\ — B such that é; hr =
h. (This is called theiniversal propertpf the quotient homomorphisrf.g

Proof. N:’? E T by Prop. 2.24. The universal property of the quotient homguhism

gr follows directly from Prop. 2.21 by noting thaty, is al-congruence (cf. Prop. 2.23)
and because-f being the least-congruence is smaller thas,. O

Term algebras. For each signature, the terms can be organized as an algblmia s
initial.
Proposition 2.27(Initial term algebras) For any signaturgS,F), let Osg) be theterm
algebradefined as follows:

e (OrsF))sis the se(T(gf))s of all (S,F)-terms of sort s, and

° (0(3|:))a(t1, ...,tn) =0(t1,...,tn) for each operation symbal € FK,_.s and each list
of termsti,. ..ty corresponding to w.

2.2. Initial Semantics 25

ThenO(s, is initial in the class of al(S, F)-algebras.

Proof. By induction on the structure of a terwe can show that for an{g, F)-algebra
B the unique homomorphism: Oir) — B can be defined only al(t) = B. The
base of this induction just means the homomorphism propsrty for the constants
of the signature. For the induction step tet o(t,...,tn) whereo is an operation
symbol andt,...,t, are the immediate subterms of Thenh(t) = h(o(ty,...,tn)) =
h((OsF))s(ts,.--,tn)) = Bg(h(ta),...,h(th)) = Bs(By, ..., By,) (by induction hypothesis)
= Bo(y,...tn) = Br- =

Existence of initial algebras for conditional equational pecifications. That the class
of algebras satisfying any fixed set of conditional equatiadmits an initial algebra can
be obtained as an instance of the existence of free algeboesq.26).

Corollary 2.28. Each sef” of conditional equations admits an initial algebra denoted
Or and which isO(sF)/~, the free algebra over the term algetg;r) satisfyingr.

Proof. Let B be any algebra satisfying and according to Prop. 2.27 letbe the unique
(S F)-homomorphism) — B. Then by Cor. 2.26 there exists an unig6g-)-homomorphism
h": Ogr)/= — Bsuch thagr;i = h.

O(sF)

BET

Moreoverh' is unique simply as a homomorphisngf, /- — B because for any other
such homomorphisrh”, because there exists only one homomorphiggs 0— B we
have thatyr; ¥ = gr;h” = h. By the uniqueness property ldfwe obtain that/ =h". O

Let us now reflect on the general process underlying theendst of initial alge-
bras of conditional equational specifications we have josteted by looking back at
the example of the initial algebra &TRG. The first step, that above was informally de-
scribed as the construction of the terms of the signatun@sponds the existence of the
initial algebra in the class of all algebras of the signatilifee second step, described as
identifying the terms that are equal under the equationk@Epecification corresponds
to the construction of the free algebra over the term algedatésfying the equations of
the specification.

Exercises.

2.4. Do the proof of some facts about homomorphisms of algebnas ib@en skipped in the text.
1. The composition of homomorphisms (Dfn. 2.12) is a homgrhizm indeed.

2. The composition of homomorphisms is associative.

26 Chapter 2. Data Type Specification

3. An (S F)-homomorphisnh is isomorphism if and only if for each sort symk®E S, hs
is bijective.
2.5. Let (S F) be any signature argla conditional equation foiS, F).
1. For any(SF)-algebrasA andB let A x B be theirdirect productdefined by
e (AxB)s=AsxBs={(a b)|ac As,bec Bs} foreachsorsc S
e (AxB)g((ag, b1),...,{an, bn)) = (As(az,...,an), Bg(by,...,bn)) for each opera-
tion symbolo € Ry_;s.
Prove thaA x B |=p if A}|=p andB |~ p.
2. Leth: A— Bbe an injectivg S F)-homomorphism. Prove that|= p if B |= p. Extend
this result to the case wheris of the form(¥X)po wherepg is a quantifier-free sentence.

3. Leth: A — B be a surjective homomorphism. Prove tBa= p if A|=p andp is an
unconditional equation. Give a (counter)example showira in general this property
fails for conditional equations.

2.6. Consider a signature with one sort and constants, ¢, andd. Show that the sentence
(~(@a=b))=(c=d)
does not have initial algebras.

2.7. Show that the algebra introduced after Dfn. 2.8 and consisting of the natural nerab
with the common interpretation of the consténtof the successor functios., and of the addi-
tion operation+_, is a model ofSI MPLE- NAT, i.e. is the initial algebra satisfying the axioms of
SI MPLE- NAT.

2.8. Extend the specificatioBl MPLE- NAT with the specification of the multiplication function
on naturals* _and prove that the expansion of algebraf Ex. 2.7 with the common interpretation
of the multiplication symbol is indeed initial algebra ftietresulting specification.

2.9. Define an algebra satisfying the axiomsS)fMPLE- NAT that has strings of natural numbers
as elementq) is interpreted as the empty list antl is interpreted as string concatenation.

2.10. Consider the following specification.

nod! BASI G I NT {
[I'nt]
op 0 : ->1Int

op s_: Int ->Int
op -_: Int ->Int
var X : Int

eq - 0=0.

eq - - X=X.

eq s(-(s X)) = - X.

1. Show that the set of the integer numbers together withtétmelard interpretation @&f and
of - as zero and unary minus, respectively, and oés addition with 1, is the model of
BASI C- | NT.

2.3. Equational Deduction 27

2. Prove that for any non-trivial congrueneeon the algebra introduced at the item above
there exists a natural numbersuch that for any integer numbexsaandy we have that
x =y if and only if there exists an integer numbesuch thatk —y =nxz

2.3 Equational Deduction

We are all familiar from school algebra with the basic pneiof replacing equals by
equals when manipulating algebraic expressions. The dedwsystem of ordinary or of

general algebra is called ‘equational deduction’. Sinca dgpe specification is based
upon general algebra, its formal verification aspect is dhagmwn equational deduction.
This section is devoted to the formal introduction of the aépnal deduction and to its
most important aspects:

e soundnesameaning the validity of the deductions, and

e completenessneaning that the deduction system has the power to proveevdra
is valid semantically.

Group theory. Groups are perhaps the most fundamental structure of aydihgebra,
thus many ordinary arithmetical and algebraic calculatieing closely related to the
deduction system of group theory. The class of groups capéxdfed as follows:

nod* GROUP { +
[G]

op0: ->G

op +.: G G-> G {assoc}

op--: G->G

var X : G

eq 0 + X =X 0

eq (- X) + X=0.

} -

That the denotation dBROUP consists of all groups may not be obvious from the speci-
fication since the usual definition of groups contains twoeregfuations:

eq X+ 0 = X.

eq X+ (- X) =0 .
The point is that the above two equations cardbducedrom the three axioms of the
specification (two explicit equations plus the associptigitribute for_+_) just by ordi-
nary syntactic manipulation of the respective expressimthe following let us see the
details of these deductions.

Proving X + (- X) = 0. The second equation can be deduced by the following
sequence of replacements of subterms of expressions bgspomding terms that are
‘equal’ according to the axioms GROUP:

28 Chapter 2. Data Type Specification

(1) (—(—-a))+(—a)=0 by the 2nd axiom foiX substituted by—a),

(2) (—(-a))+(0+(—a))=0 by the 1staxiom foX substituted by—a),

(3) (—(-a))+(((—a)+a)+(—a))=0 by the 2nd axiom foX substituted by,
4) ((—(-a)+((—a)+a))+(—a)=0 by the associativity of + _,

(5) (((-(-a))+(—a))+a)+(—a)=0 by the associativity of+ _,

6) ((—(-a))+(—a))+(a+(—a))=0 by the associativity of+ _,

)
(7) 0+ (a+(—a))=0 by the 2nd axiom foX substituted by —a),
(8) a+

Proving X + 0 = X. Similarly, the first equation can be deduced from the axioms o
GROUP and from the second equation, that has been already dedooee.a

(1) 0+a=a bythe 1staxiom foX substituted by,

(2) (a+(—a))+a=a by the 2nd equation foX substituted by,
(3) a+((—a)+a)=a by the associativity of+ _, and

(4) a+0=a bythe 2nd axiom foX substituted by.

Substitutions. The deduction steps in the proofs presented above of the fasing
group theory equations consist of replacements in termsadfstanceof a side of a
specification axiom or of an already proved equation byateesponding instancef

the other side of the equation.

e An ‘instance’ of a term means the terms resulting from thdasgment of some
of its variables by terms of the same sort with the variabbebe replaced. Such
mapping of variables to terms is callsdbstitution(of variables).

e By ‘corresponding instance’ we mean that both the replacdédesm and the re-
placement term use the same substitution of the variables.

We now give the mathematical definition for the concept ofssitiition.

Definition 2.29 (Substitution) Given sets X and Y of variables for a signat(eF), an
(S F)-substitutiond from X to Y is is a functioB : X — Tgr y) that respects sorts, i.e.
if x has sort s the®(x) € (Tisruy))s-

The existence of substitutions frofito Y requires that whenever there is a variablXin
of sortsthen(T(sruy))s is non-empty. In general, this condition can be met if we assu
that the signatures contain at least one constant for eath so

Any substitution® : X — Tgruy) extends to a functio®® : TisFux) — T(sFuy)
defined by

ot~ O when t = x for xe X
0= o(8(t1),...,0(t))) whent=o0(ts,...,t;) with ceF.

2.3. Equational Deduction 29

When there is no danger of notational confusion we may ofhftom the notation and
write simply8(t) instead of*(t).

The application of substitutions may be extended3d- U X)-sentences. Infor-
mally this is just the replacement of variables in the secgelny their corresponding
terms. Formally this is defined as follows:

e O(t; =t,) stands fol*(t;) = 6%(t,),
e O(p1Ap2) stands foB(p1) AB(p1), and similarly forv, =, =, and

e 6((V2)p) stands for(VZ)B(p). In this case it is implicitly assumed that bothand
Y are disjoint fromZ.

Entailment systems. In order to formalize the deduction system for conditiorgi&
tions we need to understand the general properties of dedudthese are captured by
the mathematical concept of entailment system.

Definition 2.30(Entailment system)Given a signatur&, anentailment relatioiconsists
of a binary relation-s between sets df-sentences such that the following properties
hold:

1. union:if M's My andlM Fs Mo thenl s T U,
2. monotonicity:if ' D T thenl s I, and
3. transitivity:if ' s Ty andlMy Fs T thenl Fs o,
Anentailment systerit consists of an entailment relatiory for each signature.

As a matter of terminology, - I readd” entailsI” and each such pair of the entailment
relation is simply calleén entailment

Note the high abstraction level of this definition which natyallows a multitude
of entailment systems for conditional equations, considess the sentences, but can also
be applied to various other logical systems. The latter mfasien is based upon the fact
that the properties of entailment relations do not deperahuhpe specific concepts of
signature and sentence we have introduced, in fact they tddepend upoany specific
concepts of signature and sentence.

The following is an important example of entailment system.

Proposition 2.31(Semantic entailment)For any signature(S F), the relationf=gr,)
between finite sets of conditional equations defined by

E =(sr) E' ifand only if for any (S F)-algebra A Al=(sg) E implies A=) E'.
is an entailment relation.
Since the proof of this proposition is rather immediate wdtatrhere. The semantic
entailment system is denoted by, the same symbol as for the satisfaction relation.
The role of the general properties of entailment systemerbes transparent when

we try to make the proof ofvX)X + 0 = Xmore formal by expressing it as an entail-
mentGROUP I { (VX)X + 0 = X}, where herédsROUP also means the s¢f, Ay, Az}

30 Chapter 2. Data Type Specification

of the three axioms of the specificati@ROUP. For this purpose let us denote the equa-
tion (VX)X + (- X) = 0 by E; and write the fact thaE, was proved fronGROUP
(proof informally presented above) by

GROUP + {Ez}

—
N

1)

Also let us denote the four succesive equations that oceheiproof of(¥X)X + 0 = X
above byp1, p2, p3 andpa, respectively. Then the steps of the proofdék)X + 0 = X
(whose role is played by, under the above convention; we shall clarify later how a proo
of ps leads to a proof ofYX)X + 0 = X) correspond to the following sequence of four
entailments.

{A2} - {p1} (2.2)
{p1,E2} F {p2} (2.3)
{p2.A1} F {ps} (2.4)
{ps,As} = {pa} (2.5)

From these four entailments plus the entailment lemma £.&pplying the general prop-
erties of entailment relations we obtain the following dmants:

GROUPH {Ax} by ‘monotonicity’ (2.6)
GROUPH {p1} from 2.6 and 2.2 by ‘transitivity’ (2.7)
GROUPH {p1,Ez} from 2.1 and 2.7 by ‘union’ (2.8)
GROUPF {p2} from 2.8 and 2.3 by ‘transitivity’ (2.9)
GROUP - GROUP by ‘monotonicity’ (2.10)
GROUP - GROUPU {p2} from 2.9 and 2.10 by ‘union’ (2.11)
GROUPU {p2} - {p2,A1} by ‘monotonicity’ (2.12)
GROUPH+ {p3} from 2.11, 2.12 and 2.4 by ‘transitivity’ (2.13)
GROUP - GROUPU {p3} from 2.13 and 2.10 by ‘union’ (2.14)
GROUPU {p3} - {p3,As} by ‘monotonicity’ (2.15)
GROUPF {p4} from 2.14, 2.15 and 2.5 by ‘transitivity’ (2.16)

Proofrules. Itisvery usefulto be able to describe or present a certaailement system
in a finitary way. Note for example that Prop. 2.31 introduttess semantic entailment
system in an infinitary way because the respective definitidies on all algebras of
the signature, which are not only infinite in number, they smanany that do not even
constitute a set from the point of view of formal set theory.

A standard way to introduce entailment systems in a finitaay is to generate them
by a system oproof rulesthat can be presented finitely.

2.3. Equational Deduction 31

Definition 2.32(Proof rule) Given a signatur&, a proof ruleis pair (E,e) consisting of
a finite set E ok-sentences and &-sentence e.

Itis customary to denote proof rulég, e) by % Also note that the mathematical concept
of proof rule lives at the same abstraction level as that tdienent relation or system.

Any collection of proof rulef for a fixed signature generates an entailment relation
by considering the least entailment relation contaifnghis is obtained as the intersec-
tion of all entailment relations containiig) The existence of this intersection is given by
the following simple result.

Proposition 2.33. The intersection of any family of entailment relations issaailment
relation.

Proof. We have to check that the intersectiorof any family(ki)ig of entailment rela-
tions has the properties of ‘union’, ‘monotonicity’, andahsitivity’.

Let us consider ‘union’. If 'y andl I I, it means thaf ' 1 andl - I, for
eachi € |. By the ‘union’ property for each' we have thaf +' ' UT, for eachi € I,
which means that",[1UT,) €+ for eachi € I. Hence(T,T1UM,) € Nig F =F,
which meand™ + I'1 UT 2. This proof can be replicated for showing the ‘monotonicity
and the ‘transitivity’ fort- too. O

Soundness and completeness.These two concepts lies at the core of logical analysis
since they express the most important aspects of the netilp between the semantic
and the proof theoretic aspects of logical systems. On teéhand we have the semantic
entailment system= which defines entailment between (sets of) sentences bysm#an
the semantic level, that of the models (or algebras) andecgdtisfaction relation between
these and the sentences. This is the fundamental entaiysteim for any logic, corre-
sponding to the deepest concept of truth given by the respdogic, that of semantic
truth. The problem with the semantic entailment system as ithhas an infinitary na-
ture. On the other hand we may define entailment systems gntadically, completely
ignoring the semantics given by the models (or algebrasydmnerating them from sys-
tems of proof rules. Let us call thepeoof theoretic entailment systenfsheir point is to
approximate as exactly as possible the semantic entailgystem. The really valuable
proof theoretic entailment systems are those that are lfinjenerated. The word ‘ap-
proximate’ above means that we should not have proof thie@stailments that are not
semantic entailments too; this property is cabedndnesddeally the proof theoretic en-
tailments should coincide with the semantic ones; thisliedaompletenessrom these
two properties, which in a sense are dual to each other, tlsgatione is the soundness. In
its absence the respective proof theoretic entailmenésys& completely useless, some
of its entailments corresponding to incorrect deducti@mmpleteness is highly desir-
able especially when the proof theoretic entailment syssefinitely generated, since this
means a fully syntactic finite presentation of semanticibnént, a very good situation
for mechanising deduction. However one can live with itsemlce. In other words it is
crucial to perform correct deductions or proofs and onlyirdée to be able to prove
everything that is true.

32 Chapter 2. Data Type Specification

Definition 2.34(Soundness and completenessh entailment relatiofrs for a signature
b2

e is soundwhen for any sets d-sentencef andl”’, I s I’ impliesl” =5 I'',% and

e is completewhen for any set af-sentence§ and for anyz-sentence, I' =5 {p}
impliesl” 5 {p}.

An entailment system is sound, respectively complete, edemn of its entailment rela-
tions is sound, respectively complete.

In general soundness is much easier to establish than caness, which is a rather
fortunate situation if we take into account the fact thatfrthese two properties the
soundness is the crucial one. In the case of establishingptinedness property it is very
useful if the entailment system is generated by proof ridesye will see below, in this
situation it is simply enough to check soundness only forpite®f rules.

Definition 2.35(Sound proof rule) The proof ruIe% is soundif and only if E= e.

Proposition 2.36. The entailment relation generated by a set of sound proafsrig
sound too.

Proof. By the hypothesis each proof ru@ considered as the pdiE, {e}), belongs to
the semantic entailment relati¢a. Because the entailment relationgenerated by the
set proof rules is the smallest one containing the respeesgt of proof rules, we have
that+ C =. This means$- is sound. O

Proof rules for equational deduction. As an example let us check the soundness of
the following proof rules for conditional equations.

Definition 2.37 (Equational proof rules)Given a signaturéS, F), the following are the
equationaproof rules for(S F):

Reflexivity: % for all (S,F)-terms t.

—

Symmetry:

for all (S,F)-terms t and‘tof the same sort.

{t=t}
=t
{t=t, t' =t"}

Transitivity: —

for all (S F)-termst, t and t’ of the same sort.

{ti=t/ | 1<i<n} for each operation symbab € F, s, s
o(ty,...,tn) = o(t},...,t;) andanytermsft of sortgfor1<i<n.

Congruence:

{(vX)H =C} for any conditional equatiorivX)H = C for (SF)

Substitutivity: {6(H=0C)} and for each substitutioi: X — Tisf).

SRecall that” =5 I’ means that for any model/algebhdf A =T thenA =T".

2.3. Equational Deduction 33

Each of the items above defines an infinite set of proof ruleed aschemeof proof
rules. Since the equational proof rules consist of five s&@smwe can say that the pre-
sentation of the equational proof rules is finite.

Proposition 2.38. The equational proof rules given by Dfn. 2.37 are sound.

Proof. We check the soundness of each of the proof rules of Dfn. 2.87A be any
(S,F)-algebra.

Reflexivity:For any ternt, we have thaf, = A;, henceA =t =t.

SymmetryFor any terms andt’ of the same sort, i =t =t’ this meang\ = Ay.
By the symmetry of equality we havg = A, henceA =t/ =t.

Transitivity: For any termg, t’ andt” of the same sort, i =t =t andAE=t' =t"
this mean# = Ay andAy = Awr. By the transitivity of equality we havé = A hence
A=t=t".

CongruenceAssume thaf =t =t/ for 1 <i <n. This meangy, = At{ forl1<i<n
which impliesAg(Ay ..., A,) = As(Ay .- ., Ay) which by the definition of evaluation of

geeey seeeslp

Substitutivity:Let A be a(S,F)-algebra such tha = (VX)H = C for some condi-
tional equatior(vX)H =- C and for some substitutiof: X — Tsf). We have to prove
thatA|=8(H = C) =8(H) = 6(C). Let A’ be the(S F U X)-expansion ofA defined by
A = Ag(x) for each variable € X. We use the following lemma.

Lemma 2.39. A{ = Agy) for each(S,F U X)-term t.

By Lemma 2.39 we have th#y) = Ay andAgc) = Ac. But A =gy 8(H) means
Aoy € {(a,a) |ac A} whichimpliesAl; C {(a a)|ac A} which mean®\' = (gr)
H.Because\'is a(S,F UX)-expansion oAwe have that\' = H =-C, hence\' |= (s x)
C, which meand; C {(a,a)|ac A}. HenceAgc) C {(aa)|ac A} which means
AkEisr) 6(C).

We still owe the proof of Lemma 2.39, which completes the pofohe soundness
of Substitutivity.
Proof of Lemma 2.39ByY induction on the structure of Lett = o(ty,...,tn) whereo €
(FUX)w—s andty,...,ty are the immediate subtermstofVe distinguish two cases:

1. foeX thenAe(t) = Ae(x) = Ai(= A{
2. If o € F then

Agy = Ag(oty,..tn) = As(Pg(ty)---»Pey) =
= As(A,..,A,) (bythe induction hypothesis)

= AG(A, A, (sinceAs = Ap)

O

In some situations, including the case of the proof theomattailment system for
conditional equations studied here, it is not enough to geaehe respective entailment
system only from proof rules, another kind of rules beingdeek These other kind of

34 Chapter 2. Data Type Specification

rules are not proof rules in the sense of Dfn. 2.32, they dhergroperties of the respec-
tive entailment system. Hence we call them ‘meta-rules’. @oof theoretic entailment
system for conditional equations requires two such metsrnwhich we discuss in the
following.

The meta-rule of Implication. This meta-rule is better known in logic under the name
of ‘modus ponens’.

Definition 2.40(Implication meta-rule) Given a signaturéS, F), an entailment relation
(sF) for the conditional equations ifS, F) satisfies theneta-rule of Implicatiorwhen
for each sef” of conditional equations ifS,F) and for each quantifier-free conditional
equation H=C:

sk (H=C) ifandonlyif T UH -(gf) C.

An entailment system satisfies the meta-ruléngblicationwhen each of its entailment
relations satisfy it.

Proposition 2.41. The semantic entailment systéasatisfies thémplicationmeta-rule.
Proof. The Implication meta-rule fo= means that for each signatui® F)
= H=C ifandonlyif TUH =gF) C

for each set of conditional equationsnd each quantifier-free conditional equatib >
Cin (SF). ButT =) H = C means that for anyS F)-algebraM, if M |= T then
M = H = C, which means that iM =T andM |= H thenM |= C, which means that if
M =T UH thenM = C. O

The meta-rule of Universal Quantification. In logic one may find this meta-rule also
under the name of the rule of ‘generalization’.

Definition 2.42 (Universal Quantification meta-rulepn entailment syste for condi-
tional equations satisfies theeta-rule of Universal Quantificatiowhen for each sdt
of conditional equations in a signatu(&, F), for each set X of variables fdS,F), and
for each conditional equatiop in the signaturd S, F U X):

M) (VX)p ifand only if I =gpux) P

Proposition 2.43. The semantic entailment system satisfiedthizersal Quantification
meta-rule.

Proof. TheUniversal Quantificatiommeta-rule foi= means that for each signaty®&F)
and for each seX of variables for(S F)

I Esr) (WX)p ifand only if T =spux) P

for each sef” of conditional equations fofS F) and for each conditional equati@rfor
(SFUX). Let us assume =gr) (VX)p. For any(S F UX)-algebraM’ that satisfies’
we consider it§S, F)-reductM. We use the following lemma:

2.3. Equational Deduction 35

Lemma 2.44(Satisfaction condition) For each conditional equatiow for (S,F) and
each(S F U X)-algebra M we have that

M’ =srux) v ifand only if MI=sg)y
where M denotes theS, F)-reduct of M.

By Lemma 2.44 we have thafl =) I, henceM [=sf) (VX)p. BecauseM’ is an
(S FuX)-expansion oM we have thaM’ =(grux) p-

Now let us assume thatk spx) p and prove thal = sg) (VX)p. LetM be any(S F)-
algebra such tha¥l =) I and letM’ be any(S F U X)-expansion oM. By Lemma
2.44 we have tha¥l’ =gr x) P, henceM [= (VX)p becausd/’ was considered an arbi-
trary expansion oM. The following completes the proof of our proposition.

Proof of Lemma 2.441 etybe (VY)H =- C. In order to avoid an artificial clash of
variables we may assume théandy are disjointM’ |=(srx) ymeans thal = (sruxuy)
H = Cforany(S,FUXUY)-expansioM] of M’ while M |= sy ymeans tha; = sy
H = C for any (S F UY)-expansionM; of M. Note that anyM; determines arM;
by considering théS F UY)-reduct and any; determines aMj by considering the
(SFUXUY)-expansion defined byM7)x = My for eachx € X. The conclusion of our
lemma follows from the relation

M?I. ':(S,FUXUY) H=C ifand Only if M]_ ':(S,FUY) H=C.

That the above relation equivalence holds can be seen dasitythe fact that, because
M] is an(S,F UXUY)-expansion oMy, (M}): = (M1); for each(S,F UY)-termt (which
can be shown immediately by induction on the structurg.of O

Compactness. One of the most important properties of entailment systentisat any
set of finite conclusions can be derived from a finite set ofipses.

Definition 2.45(Compact entailment)An entailment systemis compactvhen for each
signatureX, for any El-s I with I finite there exists &C E finite such that E-T.

Proposition 2.46. Lett be an entailment system for conditional equations thatlgulfi
the meta-rules of Implication and Universal Quantificatidinen the system of relations
¢ on sets of sentences defined as follows

I =$ E if and only if for each finite EC E there exists a finitd" o C I such thatlg -5 Eg

is an entailment system that fulfills the meta-rulesmplicationand Universal Quantifi-
cationtoo.

Proof. We have to prove five properties fef as follows.

Union: We assumé ¢ E andl ¢ E’ and have to show thdt ¢ E UE’. Any finite
subset oE UE’ can be written afo U Ej with Eg C E andE(, C E’ both finite. Then there
existsl o andlg both finite subsets df such thal o - Eg andl - E{). By ‘Monotonicity’
and ‘Transitivity’ of - we have thaf oUT - Eg andloU g - Ej and by ‘Union’ of-
we further deduce thdito Uy - Eo U Ef,.

36 Chapter 2. Data Type Specification

Monotonicity:If " D I ¢ E andEg C E finite then letl o C I finite such thal o I Eo.
Sincelp C I'" we may deduce that’ ¢ E.

Transitivity: Assumel” ¢ E F° E’. For anyE(, C E’ finite there exist&o C E finite such
thatEp - E’. Now for Eg there exists o C I finite such thaf o - Eg. By ‘Transitivity’ for
+ we have thaf o - E,.

Implication: Assumel ¢ H = C. Then letl[C I finite such that'o - H = C. By
Implication of~ we have thaf o UH F C. SinceH is finite it follows thatr UH ¢ C. Now
we assume the opposite, tiat H F¢C. Then letr” C ' UH finite such thaf’ - C. Since
H is finite we may assume with any loss of generality tat o U H. By Implication
for - we obtain thaf g H = C, hencd F¢H = C.

Universal QuantificationOn the one hand we have tHéthSF) (VX)p if and only if
there existd g C I finite such thatl o FsF) (VX)p. On the other hand we have that
I FsFux) P if and only if there exist§ o C T finite such thalo -(sFux) p- By Universal

Quantification for- we deduce thdt I—CSF) (VX)pifand only if I - O

(s (sFux) P

The equational entailment system. Now we have everything necessary for defining a
sound and complete proof theoretic entailment system foditional equations.

Definition 2.47 (Proof theoretic equational entailment systemfieproof theoretic equa-
tional entailment systerfdenoted-°) is the least entailment system for conditional equa-
tions which contains the equational proof rules introdubgdfn. 2.37 and which satis-
fies the meta-rules dimplicationand of Universal Quantification

The proof theoretic equational entailment system is obthloy the intersection of
all entailment systems containing the equational pro&saind satisfying the meta-rules
of Implication and of Universal Quantification. That thigdérsection is an entailment
system follows by Prop. 2.33. It also satisfies the above imeed meta-rules because
both of these are preserved under arbitrary intersecti@mtfilment systems, a property
which can be easily checked in the manner of the proof of @3 (we therefore omit
here the details of this proof and leave it as an exercisehaVe the following important
consequence.

Corollary 2.48. The proof theoretic equational entailment systehis compact.

Proof. Because the equational proof rules of Dfn. 2.37 are finithgy are contained by
(F#)¢ which according to Prop. 2.46 is an entailment system gaigfimplicationand
Universal Quantificatiotthat is less thak® (since by ‘Transitivity’ always$ ~° E implies
I - E). Since-¢ is the least one with these properties, it follows that (H€)°. O

A more constructive description ¢f€ is given by adding iteratively to the proof
rules the general properties of entailment relations phesmeta-rules ofmplication
and ofUniversal Quantificatioras follows. For each signatu(g, F), each set o&-sorted
variablesX, any set$’, "1, of conditional equations fdiS, F), any conditional equation
H = Cfor (S,F), and any conditional equatignfor (S,F U X):

2.3. Equational Deduction 37

0. LetF?SF) be the set of pairs of sets of conditional equationg 8F) consisting of
the equational proof rules fdS,F) of Dfn. 2.37 and of all pairgl’,I'") for which
rcr.

For each natural numbé&mwe let:

I (e) UA{(T,rur) | rH‘k

4k
(SF) (SF M and I |— SF) rz}.

(SF)
2. H§E = (H§E) U AN, M) [T HEE M1 and Ty M“*l M2}

(sF) = V(sF SF)
3. Hge = (&) u {(T{H=C}H |TUHFEECH U {(TUH{C} T H$H
H = C}.
4. FiSE = (FSE) U AT A} [T HSE N, o}

5. HikE w = (F&E %) U LT, {p}) [T HEE (vX)p}.

Finally, we defmd—’fSF) = Uneo (SF)" Note that+® thus defined is indeed an entail-
ment system satisfying the two required meta-rules. Magedur any similar entailment
systent- it is easy to show by induction ame wthatl—E‘SF) C F(sF) hence we have that
FeC .

As an application of Dfn. 2.47 let us develop a fully formabpf of (VX)X+ 0= X
from GROUP. We have already gave a proof of this towards the beginningetection
that was presented in the manner of the usual mathematmwaigthus involving a high
degree of informality. Later on, after Prop. 2.31, we havelenamore formal by making
explicit use of the general properties of entailment systédow Dfn. 2.47 puts us in the
position to present this deduction in a fully formal way. Asyiously done, let us use the
fact that

GROUP -2 { (VX)X + (—X) = 0} (2.17)

Let us denote by the signature o6GROUP and and let + a denote its extension with a
constant. Let us also recall our previous notations:

— A for the associativity axion®vX,Y,Z)X+ (Y+2Z) = (X+Y)+ Z,
— A for (VX)0+ X=X,

— Ag for (VX)(—X)+X=0, and

— E, for (VX)X+ (—X) = 0.

Then our formal deduction goes as follows, first by applymgeéquational proof rules.
By Reflexivity

0+, {a=a} (2.18)
By Symmetry
{0+a=a} 5,5 {a=0+a} (2.19)

{a+(—a)=0} +§,, {0=a+(—a)} (2.20)

38 Chapter 2. Data Type Specification

{a=(a+(-a)+a} F5.a {(a+(-a)+a=a}
{a+((—a)+a)=a+0} F5,, {a+0=a+((—a)+a)}

By Transitivity.
{a=0+a 0+a=(a+(-a))+a} F5,, {a=(a+(-a))+a}

(2.21)
(2.22)

(2.23)

{a+((-a)+a)=(a+(-a)+a (a+(-a))+a=a} 5, {a+((-a)+a) =a}(2.24)

{a+0=a+((-a)+a),a+((—a)+a))=a} +5,, {a+0=a}
By Congruence
{0=a+(-a),a=a} F§,, {0+a=(a+(—a))+a}
{a=a (-a)+a=0} +§,, {a+((—a)+a)=a+0}
By Substitutivityfor X— a, Y — (—a), Z— a:
{A} 5.0 {at ((-8) +a) = (a+(—a)) +a}
{Ao} F§., {O+a=a}
{As} F8,a {(-2) +a=0}
{E2} FS., fat(-2)=0})
Now we apply the general properties of entailment systems.
{A} F3., {a=0+a} from 2.29 and 2.19 by ‘transitivity’
{Ex} F$,, {0=a+(—a)} from2.31and 2.20 by ‘transitivity’
{E2} F$.4 {0+a=(a+(-a))+a} from2.33,2.18and 2.26
{A2,Ex} 5., {a=(a a))+a} from2.32,2.34and2.23
{A2,E2} 5.4 {(a+(-2)
{A1,A0,Ez} 5., {a+((—a)+a)=a} from2.28,2.36 and 2.24
{As} F$., {a+((—a)+a)=a+0} from2.18,2.30 and 2.27

+(
+(
)

(2.25)

(2.26)
(2.27)

(2.28)
(2.29)
(2.30)
(2.31)

(2.32)
(2.33)
(2.34)
(2.35)

+a=a} from 2.35 and 2.21 by ‘transitivity’(2.36)

(2.37)
(2.38)

{As} F§,, {a+0=a+((—a)+a)} from 2.38 and 2.22 by ‘transitivity’(2.39)

{AL, A0, As, B2} FS , {a+0=a} from 2.39, 2.37 and 2.25
GROUP = {A1,A2,A3} 3., {a+0=a} from2.40and2.17

By applying the meta-rule dfiniversal Quantificationve further obtain that
GROUPHS {(Va)a+0=a}

By Substitutivityfor a+— X:
{(Va)a+0=a} 5 4y {X+0=X}

By 'transitivity’ and Universal Quantificatiorwe finally obtain that
GROUPFE {(VX)X+0=X}

(2.40)
(2.41)

(2.42)

(2.43)

(2.44)

Note how the size of this proof has increased dramaticalily thie increase in the degree

of formality.

2.3. Equational Deduction 39

Soundness of equational deduction. The precise mathematical formulation for the
general correctness of equational deduction is that thef pineoretic entailment system
of Dfn. 2.47 is sound, which at this stage is rather easy tbdish.

Proposition 2.49(Soundness of equational deductiofhe proof theoretic equational
entailment system is sound.

Proof. If the semantic entailment systeim satisfied the properties from Dfn. 2.47, then
sincek-¢ is theleastentailment system satisfying those properties we may colealvith
the soundness property for each signafree.+$ C |=s.

That |= contains the equational proof rules means precisely thadsmss of the
latter, which has been established by Prop. 2.36. Ehaétisfies the Implication and the
Universal Quantification meta-rules, respectively, hantestablished by Prop. 2.41 and
2.43, respectively. O

Completeness of equational deduction. Completeness of equational logic is originally
due, for the single sorted case, to a famous result by BiffRpfThis has been extended
to the many sorted case in [19]. Recently the essence of thatiegal completeness
phenomenon has been captured in [8] to a very general absatiicng based upon the
so-called ‘institution theory’ of [17]. This has lead to a riad of completeness results
for various logical systems, many of these results bein¢eqeimote in form from the
original equational completeness theorem.

Completeness of equational logic is a key to making rewgjtthe main execution
procedure for equational specifications, into a decisiat@dure.

Theorem 2.50(Completeness of equational deductioiihe proof theoretic equational
entailment system is complete.

Proof. We have to show that for any setof conditional equations for a signatui® F)
and for any conditional equatignfor (S;F), I = {p} impliesl" - {p}.
Let us consider the binary relatiea- on the term algebra §r) defined by:

t=rt’ ifandonlyif I +®{t=t}.
The relatior=r is

— reflexive because for ea¢, F)-termt we have succesively th@t-€ {t =t} by the
proof rule ofReflexivity I -€ 0 by the ‘monotonicity’ ofF?SF), andlr F& {t =t}

from these two entailments above and by the ‘transitivify’f%F),

— symmetric because whenever-* {t =t} for any(S,F)-termst andt’ of the same
sort, by the proof rule o8ymmetryve have thaft =t'} ¢ {t' =t}, which by the
‘transitivity’ property oﬂ—?SF) implies that” =€ {t’ =t}, and

— transitive because whenever-© {t =t'} andl ¢ {t' =t"} for any(S,F)-termst,
t’ andt” of the same sort, by the ‘union’ property}e?SF) we have Fe{t =t/ t' =
t”}, by the proof rule offransitivitywe have thaft =t’, t' =t"} ¢ {t =t"}, and

40 Chapter 2. Data Type Specification

from the last two entailments, by the ‘transitivity’ propeof F?SF), we obtain that
rEe{t=t"}.
Hence=r is an equivalence. Moreovetr is

— anF-congruence becauselif-¢ {ti = t/} for 1 <i < nando € Ry_s then by the
‘union’ property oﬂ—?SF) we have thaf ¢ {ti =t/ | 1 <i < n}, by the proof rule
of Congruenceve have thaft =t/ | 1 <i <n} ¢ {o(ty,...,ta) = o(t],....,tH) },
and from the last two entailments, by the ‘transitivity’ pesty ofF?SF), we obtain
thatl F€ {o(ty,...,tn) = O(t,....th)}.

Letus now prove thatr is al'-congruence. For this we consider any conditional equation
(VX)H = CfromT and any(S,F U X)-expansiorA’ of the term algebra@). We have

to show thatdl; C =r impliesAz C =r. Let0: X — Tr be the substitution defined by
8(x) = A for eachx € X. Then by induction on the structure of af§; F UX)-termt itis
easy to see th&(t) = Al. From this it follows tha#l; C =r means

r-¢6(H) (2.45)
We can establish the following sequence of entailments:
M= {(vX)H =C} by the ‘monotonicity’ property of (g, (2.46)

{(VX)H =C} -¢{B(H) = 6(C)} by the proof rule oSubstitutivity (2.47)
r°{8(H)=6(C)} from2.46and 2.47 by the ‘transitivity’ of-gr) (2.48)

ruB(H)~*6e(C) from 2.48 themplicationmeta-rule for I—?SF) (2.49)
I T by the ‘monotonicity’ property Oﬂ_?S,F) (2.50)
r=¢rue(H) from 2.50 and 2.45 by the ‘union’ property dF?SF) (2.51)

r~*6(C) from 2.51 and 2.49 by the ‘transitivity’ property OFF?SF) (2.52)

Since for eachS F UX)-termt we have tha#\y = 6(t), the entailment 2.52 just means
Ac C =r. We have thus proved thatr is al-congruence on@r). By Prop. 2.24 it
follows that Qsf) /=, =T .

Consider an equatidn=t’ such thaf” =t =t'. Because @f)/=; =l we have that
OsF)/=r Ft =1t which meang0r)/=-)t = (O(sF)/=r v Which meang/— =t'/-
which mean$ =r t’. Hencel” -t =t’. We have thus obtained the completeness for the
quantifier free equations. We now extend it to all conditi@rpationg VX)H =- C.

Assumd” |=(sf) (VX)H = C. Then byUniversal Quantificatiofor = (cf. Prop. 2.43)
we obtainl” |=srux) H = C and bylmplicationfor = (cf. Prop. 2.41) we further obtain
thatl UH =(srux) C. By the completeness for the quantifier free equations theibleen

established above in this proof, we have thatH I—?SFUX) C. And now we go the same

way opposite direction fdr€ instead of=. Becausé-€ satisfiedmplicationwe have that

r H(esFux) H =- C and because it satisfiemiversal Quantificationve finally obtain that

M Fge) (WXOH =C. 0

2.3. Equational Deduction 41

Completeness of equational deduction has many importaisiecuence, an imme-
diate one being the compactness of the semantic entailment.

Corollary 2.51. The semantic entailmekt for conditional equations is compact.

Proof. From the compactness 6 (Prop. 2.48) and from the completeness result of
Thm. 2.50. 0

The key to the proof of the completeness of equational déatuist that the relation
{(t,t") |T Fet =t'} is al-congruence on the initial (term) algebra. It can be eaibys
that in fact it is=r, the least -congruence. The following result, also a consequence of
the completeness Thm. 2.50, generalizes this importaigtins

Definition 2.52 (Reachable algebra)An (S,F)-algebra A is reachable when for each
element a of A there exists &8 F)-term t such that a= A;.

Corollary 2.53. For any sefl” of conditional(S, F)-equations, for any reachabl&, F)-
algebra A and for anyS, F)-terms t and tof the same sort

E(A)UT Fet=t' ifand only if A =P Ay

where by EA) we denotgt =t’ | A=t =t'} and where=" is the leasT -congruence on
A.

Proof. For the implication from the left to the right let us assuf@) Ul ¢t =t'.
By the soundness result of Prop. 2.49 it follows &) UT =t =t’. Since the quotient
A/:/I_x satisfies botli (cf. Prop. 2.24) an&(A) (becauseéA/:/rx)t = (A‘)/:’? for each term
t) it follows thatA/_ =t =t’ which meangy =AM

For the implication from the right to the left let us assumatth =2 Av. Let Oz (a)ur
denote the initial algebra satisfyir(A) UT (see Cor. 2.28). There exists a homomor-
phismh: A — Og(a)ur defined byh(A;) = (Og(a)ur)t for each ternt. This is defined on
each element oA becaus@\ is reachable and it is defined correctly becauggiit= Ai»
then (t1 = t2) € E(A) and thus @aur =t1 =12. It is also straightforward to check
thath is indeed a homomorphism. Sin@d:ig is the free algebra ovek satisfyingl
(see Cor. 2.26), there exists an unique homomorprhi’smA/:?\ — Og(ajur such that
h = gf;h'. Thus for any ternt we have thah(A;) = h’((A/:/r;)t) = (Og(ayur)t, hence
A =P Ay implies Q:(aur =t =t'. Now let us take any mod# such thaM = E(A)UT.
By considering the unique homomorphisgQ - — M we obtain thaM =t =t’, which
proves thaE(A) Ul =t =t". ThenE(A)UT ¢t =t’ by the completeness of equational
deduction (Thm. 2.50). O

Exercises.

2.11. Given substitution®: X — Tigruy) andW: Y — TsFuz), theircompositiond; 1 X —

TsFuz) is defined by(6; y)(x) = W#(8(x)). Show that the composition of substitutions is associa-
tive.

42 Chapter 2. Data Type Specification

2.12. Develop the detailed proof of the fact that the meta-ruletrgdlication and of Universal
Quantificationare preserved under arbitrary intersections of entailregstems.

2.13. Let X andY be disjoint sets of variables for a signat®F). Prove the following more
general form ofSubstitutivity namely that for any(S F U X)-sentencep and any substitution
0: X —Te(Y),

{(vX)p} F(sk) {(VY)8(P)}-

2.14. Show that the unconditional equations admit a sound and ledenproof theoretic entailment
system which is the least entailment system containingdhaténal proof rules of Dfn. 2.37 (with

the Substitutivityrule in the unconditional for Z(Xg)c) and satisfying the meta-rule of Universal
Quantification only.

2.15. Prove by equational deduction that any group satisfies thateom (vx) - (- x) = X.

2.16. A group hascharacteristic 2if and only if it satisfies the equatiofyx) x + x = 0. Prove
by equational deduction that any group of characterist& @mmutative, i.e. it satisfies the equa-
tion(Vx,y)x +y =y + Xx.

2.4 Rewriting

Inits standard form that was presented in the section aleoumtional deduction is rather
difficult to mechanize. This difficulty owes to the nature bétequational proof rules
leading to a lot choices to make about what rules to use andibase them. Without

the human mind making these choices, this means an expahexptiosion of the search
space of the deduction process. In this section we presemteh established method to
overcome this problem in mechanizing equational deduclitis method is known as
‘term rewriting’ or just ‘rewriting’ in more general contex

The term rewriting entailment system. An important step for giving direction to the
equational deduction process is to eliminate the rul8yohmetrywhich means that the
equations are used from the left to the right only.

Definition 2.54 (Rewriting entailment) The(term) rewriting entailment syste(denoted
F") is the least entailment system for conditional equatiargaining the proof rules of
Reflexivity, Transitivity, Congruencand Substitutivity(of Dfn. 2.37) and which satisfies
the meta-rules ofmplicationand of Universal Quantification

From this definition it is clear that the rewriting entailniegstem is less than the equa-
tional one, i.el—ESF) - I—‘(*SF) for each signatur€S F). An immediate consequence of this
observation is that the soundness of the equational ergaflsystem (Cor. 2.50) implies
the soundness of the rewriting entailment system.

Proposition 2.55(Soundness of rewriting)The rewriting entailment system is sound.

Below in the section we will see that although in general thwer of deduction without
the rule of Symmetryis less than the full equational deduction, this differenaa be

2.4. Rewriting 43

overcome by some other conditions which are fullfilled byrgdsspectrum of equational
specifications.

Now we consider a further step in mechanizing equationalidiéah, namely that
of the amalgamation of the rules 6bngruenceand Substitutivityas a single proof rule.
For this we need the following concept.

Definition 2.56 (Rewriting contexts) Given a signaturdS,F), an (S F U {z})-term ¢
over the signature extended with a new variable z (seavriting) (S, F)-context if

— C=2z0r

— c=o0(cy,...,Cn) such thato € Fy_sis an operation symbol and there exists exactly
one ke {1,...,n} such that g is context, with cbeing just(S F)-terms for i k.

Then g is called themmediate sub-contextf c. A term €is asub-contexof (a context)
c if it is either the immediate sub-context of c or else it izib-sontext of the immediate
sub-context of c.

More informally, an(S,F)-context is an(S F U {z})-term with exactly one oc-
curence ofz. Often, in order to emphasize the new variable may denote contexts
by c[Z. In that case, if is any term of the sort of, by c[t] we denote the term resulting
from the replacement afbyt in c[Z].

Proposition 2.57. The rewriting entailment system is the least entailmentegyson-
taining the proof rules oReflexivity, Transitivity, and

{(vX)H = (t=t")} U 6(H) for any substitutiond: X — Tsr), and

Rewriting: c[o(t)] = c[o(t)] each context c.

and which satisfies the meta-ruleslaiplicationand of Universal Quantification

Proof. Let us first show that the rules @ongruencendSubstitutivityare contained by
the entailment system defined in the statement of the proposi

For Substitutivity by taking the context as just the variable, by Rewritingwe
have that

{(YX)H= (t=t)}UB(H) F 6(t) =8(t")
which byImplicationimplies
{(VX)H = (t=t")} - B(H)=(6(t) = 0(t")).

For Congruencefor the sake of the simplicity of presentation of the argamket
us consider a binary operatianand adequate terntg t;, t, andt,.* We have to prove
that

{ti=t1,tb =t5} F o(ty,t2) = o(t],t5)

4The same argument can be easily extended to the caseanthenbigger arity.

44 Chapter 2. Data Type Specification

We have the following:
{tp=t,} F o(t1,t2) = o(t1,t5) by Rewritingfor the context|Z = o(t1,2) (2.53)
{t1 =t1} Fo(ty,t) = o(ty,t;) by Rewritingfor the context(z] = o(zt}) (2.54)
{o(t1,t2) = 0(t1,15), o(ts,t5) = o(t],t5) } F o(ty,t2) = O(t1,t5) by Transitivity (2.55)
From (2.53) and (2.54) by 'monotonicity’, 'transitivityral 'union’ properties of-:
{ti=1, b=t} F {o(t1,t2) = o(t1,t5), O(ts,t5) = o(t],t5)} (2.56)

The desired relation now follows from (2.56) and (2.55) by tinansitivity’ of |-.

We have thus showed that the rewriting entailment systeesgsthan the entailment
system defined by the statement of the proposition. For stthie other opposite inclu-
sion, we have to show that the ruleRéwritingis contained by the rewriting entailment
system. This means that for each substitulan X — Tsf) and for each appropriate
contextc[z] we have to show that

{(VX)H = (t =t")}UB(H) F' c[B(t)] = c[B(t)]
We have that

{(VX)H=(t=t)} F'8(H) = (8(t) =6(t')) by Substitutivity (2.57)
and from (2.57) by the meta-rule bfplicationthat

{(YX)H= (t=t)}UB(H) F" (B(t) = B()) (2.58)

Hence by the ‘transitivity’ property of entailment it woulle enough to show, for any
appropriate contextz], that

{B(t) =B(t")} " c[B(t)] = c[B(t')] (2.59)

For this we may think 08(t) and6(t’) as any two terms of the same sort, and therefore it
is enough to show the following simpler variant of (2.59):

{t=t'}F cft] = c[t'] (2.60)

We show (2.60) by induction on the structure, or on the degftthe context[Z.

The base case of this induction is represented by the situathenc(Z is just the
variablez. Then (2.60) follows directly from the ‘monotonicity’ prepy of entailment
systems.

For the step case, let us assume thato(cy, . .., ¢y). Without any loss of generality
we may assume; is the immediate sub-contextafThe induction hypothesis means that
the considered property holds for, i.e.

{t=t'}F] =calt]. (2.61)
For each X i < n, by Reflexivitywe have that
OF ¢ = ¢ (2.62)

2.4. Rewriting 45

and from (2.61) and (2.62) by ‘monotonicity’ and ‘union’ief we have that

{t=t'}F {c]tj = ci[t'],c2=c2,...,Cn=Cn}. (2.63)
We apply now the rule o€ongruencend obtain that

{aift] =cift'],ca=cz,...,cn=cn} Fr o(cy(t),Co,...Cn) = 0(c1(t'),Co,...Cn) (2.64)

Finally, (2.60) is obtained from (2.63) and (2.64) by thartsitivity’ of . O

The rewriting relation onterms. Given a sef” of conditional equations for a signature
(S,F) we may define the followingewriting relationon (S, F)-terms:

t ~rt ifandonlyif T t=t".

Becausé-" contains the rules dReflexivityand Transitivitywe have the following imme-
diate consequence:

Corollary 2.58. The rewriting relation——r is reflexive and transitive.

The description of the rewriting entailment relation giv®nProp. 2.57 shows that
t —r t’ means that there exists a sequence of térms, ty, . .. ,t, =t’ such that for each
ke {1,...,n— 1} the equalityty = tx,1 is obtained as a conclusion by applying (once)
the Rewritingrule for some conditional equatidiX)H =- C in I". For this we often use
terminology such as ‘performing one rewrite step’ and defitdby ty —r ty1.

The following simple result represents the standard proeetbr performing equa-
tional proofs by rewriting.

Proposition 2.59. If there exists aterm t such thatt*~r t and b —— t thenl" =t; =to.

Proof. Sincetj ——r t for each € {1,2}, by the definition of“~r we have thaf -"t; =t.
By the soundness df" (cf. Prop. 2.55) we have that =t =t for eachi € {1,2}. It
follows thatl" =t =to. O

Let us illustrate the applicability of the method suggedtedrop. 2.59 by a simple
example. Recall the following specification of natural nershthat has been introduced
above.

nod! S| MPLE- NAT {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ] : N+ (s M =s(N+ M
eq [zero] : N+ 0 = N.

46 Chapter 2. Data Type Specification

By using Prop. 2.59 let us show that
SIMPLE-NATE(s 0) + (s s 0) = (s s 0) + (s 0).

Inthe following letl” denote the two equations 8f MPLE- NAT. By the equationjucc]
for the substitutiolN,M— (s 0) and for the context[Z = z we have the following
rewriting step

(s 0) +(ss 0 —rs((s0) + (s 0)). (2.65)

By [succ] again for the substitutioM— (s 0) andN+— 0 and for the context|[Z] =
s (z) we have the following rewriting step

s((s 0) + (s 0) —r(ss ((s0) +0)). (2.66)

By [zer 0] for the substitutiorN— (s 0) and for the context[z = s(s(z)) we have
the following rewriting step

(s s ((s0 +0) —r (s s s 0). (2.67)
From (2.65), (2.66) and (2.67) we have that
(s 0) + (s s 0 —r(sss0). (2.68)

By [succ] for the substitutiorM— (s s 0) andN~— 0 and for the context[z] = zwe
have the following rewriting step

(s s0 + (s 0 —rs((ss0 +0). (2.69)

By [zer o] for the substitutiorN+— (s s 0) and for the context[Z] = s(z) we have
the following rewriting step

s((s s 0 +0) —r(sss0). (2.70)
From (2.69) and (2.70) we have that

(s s0) + (s 0 —r(sss0). (2.71)
From (2.68) and (2.71) by Prop. 2.59 we have that

SIMPLE-NAT[E=(s 0) + (s s 0) =(s s 0) + (s 0).
The rewriting algorithm. The derivation of terms$2 from a termt1 by virtue of the
rewriting relationt1 ——r t2 can be considered a computation process when the applica-

tion of theRewritingrule is presented as an algorithm as follows. We assume a géte
I" of conditional equations for a signatuig F).

2.4. Rewriting 47

0. LetT be the input term1.
1. Selec(VX)H = (t =t’) fromT.

2. Select a sub-ter of T such thaflp = 6(t) for some substitutiof : X —
TisF)-
3. Ifthe step 2. is succesful afd= 6(H)
then replace iffp in T by 6(t") and go to step 1.,

else select aew(VX)H = (t =t’) from " and go to step 2.

There are several aspects of this rewriting algorithm tkeatrspecial attention. Some of
these, such as termination and confluence, have led to edestadies by the research
community.

One aspect is how to deal with the conditibri= 6(H) from step 3. Of course,
this condition occurs only in the cases when the equatiod issaot unconditional. In
such cased, = 0(H) is usually proved by rewriting which implies performing astezl
proof process by rewriting inside of the actual rewritingaithm. Alternatively,8(H)
can be stored as a goal to be proved later, but in this casewr&ing algorithm can be
considered terminated only when the prooB@fl) is accomplished.

Another aspect is that unless the Xetoincides with the set of the variables ocur-
ring int, the process of finding a substitutién X — Tgr) such thaflo = 6(t) for To
sub-term ofT, process that is calleshatching may have an infinity of solutions since
there would be variables (not occuringtinthat could be mapped to any term of ap-
propriate sort. In order that for anly there exists at most one substitutiBrsuch that
To = (1), this condition is necessary. For this reason, in many fipaton languages,
including CafeOBJ the notation for the universal quantifier in conditional atjons is
missing since the set of the variables is implicitly assun@etle that of the variables
occuring int. In these situations, one needs to check that these vasiableer all the
variables occuring in botti and in the conditiotd. For exampleCafeOBJ silently does
not use for rewriting the equations that do not conform te twindition.

Termination. An important aspect of the rewriting algorithm, which is rewer of a
rather general nature, is that of the termination. Ternomais a crucial property of
any algorithm, its absence means that the algorithm rure/éorand we do not get
any result. It is easy to imagine situations when a rewriifgprithm does not termi-
nate, for example a very simple one being wlieoontains a commutativity equation
(YMN)M + N = N + M Then a term such as+ b may get rewritten td + a, then
toa+ b again and so on. Another non-termination situation, butdiffarent nature than
the one above, is when we have an equation sugkis(s M = (s s M. Inthis
section we will discuss more about termination and in Chawe3will discuss generic
techniques for proving algorithm termination.

48 Chapter 2. Data Type Specification

Confluence. The rewriting algorithm i:on-deterministiclue to the possibility to have
several choices for the selections of the equations (stegsdl3.) and for the selection
of the sub-ternTy (step 2.).

For example, within the context of the specificatBIinVPLE- NAT above, the term
(0 + (s 0)) + 0 may be rewritten in one step in two different ways:

1. To 0 + (s 0) by usingthe equatiorzfer o].
2. Tos(0 + 0) + 0 by usingthe equatiorsjucc].

Moreover, in the second case a further rewriting step maytsperformed in two differ-
ent ways by using the same equatiaef o] depending upon the choice of the sub-term
To which can be either the whole term or else the sub-@rm 0.

The confluence property means that the result will be the sag@rdless of the
choices we make. We will introduce confluence as a formalgntgelow in this section.
As an example, it is easy to see that firMPLE- NAT the confluence property holds
because each term gets eventually rewritten to a term obtine(ss ...s0).

Abstract termination and confluence. Termination and confluence are paramount prop-
erties of rewriting, with important implications. The studf these properties can be par-
tially done at the level of abstract sets (instead of seteiwhs) and of abstract binary
relations (instead of the rewriting relatiors-r). Doing such study abstractly is impor-
tant in two different ways. One is the simplicity, for somencepts and results we can
do without details that are redundant or irrelevant but makerthe understanding more
difficult. The other is the level of generality involved, seraoncepts and results maye
be used in other contexts, for other algorithms, includirayersophisticated versions of
rewriting. For example such an abstract approach can bédpplthe so-called ‘rewrit-
ing modulo axioms’ discussed below in this section or to thalygsis of algorithms in
Chap. 3.

Definition 2.60 (Terminating relation) A binary relation> on a set A igerminatingif
and only if

— itis antisymmetric, i.e. & b and b> a implies a= b, and
— for each a A the sef{b| a > b} is finite.

Definition 2.61 (Confluent relation) A binary relation> on a set A iconfluentif and
only if for each a> b and a> c there exists & A such that b>d and c> d.

a

Definition 2.62(Normal forms) An element & A is anormal formfor a binary relation
> on A when for each elementéA, n> x implies n=x. The element n is a normal form
of another element a with respecttowhen it is a normal form for- and a> n.

2.4. Rewriting 49

In the case of the rewriting relation on terms, from a funadilgprogramming per-
spective, normal forms can be regarded as results of ei@hsadf terms. The existence
of unique normal forms is crucial for the smooth applicapibf the proof method by
rewriting derived from the Prop. 2.59. As example, the réngirelation——r defined
by SI MPLE- NAT has normal forms of all terms, the normal forms being the serm
(ss...s0).

Proposition 2.63. Let > be a confluent and terminating preorder relation on a set A.
Then each element of A has a unique normal form with respest to

Proof. Let us first handle the uniqueness. Assume that an eleméas two normal
forms, namelyn; and n,. By confluence there exists such thatn; > n andnz > n.
Becausen; are both normal forms it follows that = n. Hencen; = ny.

For showing the existence of normal forms let usdig A and suppose that the set
{b| a> b} does not contain any normal form. Note that| a > b} is non-empty by the
reflexivity of >. Let us pick anybg € {b| a > b}. By induction onk € w we construct
a chain of elementgby)kew such thathy € {b| a > b}, bx > by,1 andby # bxq. At
the induction step, we use the fact thgtis not a normal form since € {b| a > b}
hence there existisg ;1 € A such thatby > by, 1 andby # bx,1. By the transitivity of
> we also obtain thaly;1 € {b| a > b}. By the termination hypothesis we have that
{b] a > b} is finite, hence there exisks< n such thato = b,. We have thaby > by 1
and by the transitivity of> we also havéo 1 > by,. Sinceb, = by this meandy > by, 1
andby, 1 > by. By the antisymmetry condition (since is terminating) it follows that
by = bx1. We have thus reached a contradiction wigh# by, 1. The conclusion is that
our assumption thgth | a > b} does not contain any normal form is false. O

The following result will be used below in this section.

Proposition 2.64. If > is a confluent preorder relation on a set A then the relatjon
defined by

b | ¢ if and only if there exists & A with b>d and c>d
is the least equivalence containing

Proof. The symmetry is immediate. For the transitivity assunje andc | e. Then there
existsd such thab > d andc > d and there exist$ such that > f ande> f.

b C e
N AN S
d f
N K
g

By confluence there existssuch thatd > g andf > g. By the transitivity of the preorder
we have thab > gande > g, henceb | e. O

50 Chapter 2. Data Type Specification

Newmann’s Lemma. There exists a body of rather elaborated techniques foripgov
the confluence of a rewriting relation determined by alsef equations, most of this

beyond the aims of this textbook. Here we restrict oursebelg to the presentation of

one basic result. This rather famous result is very usefihiérapplications since it reduces
the checking of confluence to the one step rewriting sitnatio

Definition 2.65 (Church-Rosser relation)A relation — is Church-Rossewhen its re-
flexive and transitive closure’ is confluent. It idocally Church-Rossewhen for any
t—tiandt—t

N
11 o
NS

there exists'tsuch thatt ——t’ and b ——t'.

Note that the relation- in the paragraph above corresponds{e of Dfn. 2.65,
i.e. the reflexive and transitive closure-ef>, rather than to—.

Definition 2.66 (Noetherian relation) A relation — is Noetherianwhen there are no
infinite chainsg —t; —t) —

It is immediate to see that if~ is terminating then— is Noetherian. The op-
posite does not hold in general, it is easy to find a Noethegkation— such that its
reflexive and transitive closuré> is not terminating. However in the case of the rewrit-
ing relations these two concepts coincide, i-e+r is Noetherian if and only if-r is
terminating (see Ex. 2.19).

Proposition 2.67(Newmann’s Lemma)A Noetherian relation— is Church-Rosser if
and only if it is locally Church-Rosser.

Proof. We focus on the non-trivial implication, from the right toetleft. Because the
relation — is Noetherian each element has at least one normal form w#hect to
. Let us say that an elementasnbiguousvhen it has at least two normal forms. The
conclusion of the proposition follows if we showed that thare no ambiguous elements.
If we showed that for each ambiguous elemettiere exists another ambiguous
element’ such that — t’, then the existence of at least one ambiguous element would
contradict the hypothesis that- is Noetherian.
Consider a ambiguous elemérdnd lett; andt, be two different normal forms of
t. We have — t; andt — t,. Each oft; andt, is also different front (otherwise we
would immediately have=t; = tp). Thus there exist§ andt} such that — t] — t; and
t — t, — tp. By the locally Church-Rosser hypothesis there existich that] —— t”

2.4. Rewriting 51

andt; X, 1", Letts be a normal form fot”.

t
VRN
t t
ANV AN
6] t t2
¢*
t3

Sincet; # tp there exists € {1,2} such thatz # t;. Thent' is ambiguous. O

The rewriting relation on arbitrary algebras. A setl" of conditional equations for a
signaturg(S, F) induces the following relation on an arbitrai$ F)-algebraA:

{(AA) [T H =t}
Note that whenrA is the initial term algebra @f) then the above relation is just the

rewriting relation——-r. However, in general the relatidiiA;, Av) | T F't =t} may lack
the basic properties of a rewriting relation such as reflgxand transitivity. Reflexivity
can achieved immediately by the assumptioreaichabilityof the algebra\ (we have just

to apply the rule oReflexivity whilst for the transitivity we have to do the corresponding
closure.

Notation 2.68. Let Lr,A denote the least transitive relation containifigh, Av) | I H'
t=t'}and—sra= LF’A U{(a,a) | a€ A} be its reflexive-transitive closure.
We have the following important characterizationéf»r,A.

Proposition 2.69. For any (S, F)-algebra A and for any sdt of conditional equations
for (S F)

A —ra Ay ifandonly if EA)UT ' t=t'

for any (S F)-termst and’tand where EA) = {t =t' | At =t'}.

Proof. E(A)UT "t =t is equivalent to the existence of a chain of one step rewstin
t=to —g@ur 1 —e@ur .- —g@ur th=t"

By grouping separately the rewriting steps using equafiams E(A) andl", respectively,
we obtain thaE(A)UT F"t =t’ is equivalent to the existence of a chain of tetmasTy,
T1, ..., T =t" such that

Toi 1 g T and To —r Toiqa.
The equivalence to be shown now follows by noticing that

1. Toi1 LE(A) T, is equivalent toAr, , = Ar,, because

52 Chapter 2. Data Type Specification

— on the one handy_1 LE(A) Toi meansE(A) ' T,_1 = Ty which by the
soundness of rewriting (Prop. 2.55) implEgA) = Toi—1 = Ty meaninglyi_1 =
T € E(A), and

— on the other handk, , = At, meansTy_1 = Ty € E(A) which by ‘mono-
tonicity’ of " impliesTy_1 —en) T2,

and
2. Ty Ln— T 1 meand ' Ty = Toi 1.
O

The following is obtained easily as a consequence of theabbaracterization of

*
—TA

Proposition 2.70. For any (S, F)-algebra A the reIationL»ryA is preserved by the oper-
ations of A.

Proof. Let o € Fs, _s,.s be an operation symbol of the signature and;lef be (SF)-
terms of sorg for 1 <i < nsuch thaty, ——r a Ay We have to show thatg (A, ..., Ar,) LA
APy, Ay).

By virtue of Prop. 2.69 we have th#% ——ra Ay meansE(A)UT 't = t..
By ’'union’, Congruenceand ‘transitivity’ it follows thétE(A) ur Fots,...,th) =
o(t],...,t}). By Prop. 2.69 this impliedg (A, ..., A,) ——r A As(Ay,-- - Ay)- O

Definition 2.71 (Preordered algebraspny (S,F)-algebra A endowed with a preorder
relation >5 on A; for each se S such that> is preserved by the interpretations of the
operations, in other words such thag & monotone with respect te for eacho € Ry,

is called apreordered algebra

Rewriting modulo axioms. An important instance of rewriting relations on algebras is
rewriting modulo axioms. We have seen above that some emsatn spite of the fact that
they need to be involved in the deduction process, are niattdaifor rewriting because of
various different reasons. For example, we have seen thatsih of commutativity for in
rewriting may lead to non-termination of the rewriting afigom. Also associativity is bad
to use in rewriting, but for a different reason: it may leadhtdeadlock of the rewriting
process due to accumulation of the bracketing to the lefodh¢ right (depending on
how we write the associativity equation). The solution test problems is to recognize
the ‘bad’ equations, separate them from the ones that at@biifor rewriting, and use
them for deduction in a rather implicit way. This idea is ditg supported by modern
specification languages through the so-called ‘operatimibates’ (in Sect. 2.1) we have
discussed commutativity and associativity@afeOBJ operation attributes). After the
separation of the equations according to their suitabibtyrewriting, the rewriting is
performed on the elements of the initial algebra of the sehefequations not suitable
for rewriting. As we may recall from Sect. 2.1, these elersemée congruence classes of

2.4. Rewriting 53

terms modulo these equations (recall from Sect. 2.1 thatl#ss of a ternh moduloE is
denoted/_.).

In other words, we separate the set of the equations of a gpecification into a
setl of equations to be used for rewriting and a set of equatibm®t to be used for
rewriting, and we consider the rewriting relatiofi-r o whereA is OsF)/=¢, the initial
algebra satisfying.

Notation 2.72. If I and E are sets ofS, F)-equations, then by"~r g we denote the
rewriting relation determined by on0Osf)/—, the initial algebra satisfying E.

Corollary 2.73. For any(S F)-terms t and‘twe have that
(t/—g) ——re (/=) ifandonlyif {4 =t |EEty =t} UM Ft=t".

Proof. From Prop. 2.69 wheA is Og, the initial algebra satisfying and by noting that
for each equatioty = t, we have thaE =t; =ty if and only if Og =t1 =to. O

From Cor. 2.73 and Prop. 2.55 we obtain immediately the folig soundness re-
sult.

Corollary 2.74 (Soundeness of rewriting modulo axiom$pr any (S F)-terms t andt
we have that

(t/—g) ——rEg ('/—c) impliesTUE =t =t

As a concrete example of equational deduction by rewritinglnto axioms let us
recall the specification of group theory of Sect. 2.3:

nod* GROUP {

[G]

op0: ->G

op +.: G G-> G {assoc}
op--: G->G

var X : G

eq [id] : 0+ X =X.
eq [inv] (- X) + X=0.
}

Since associativity is not suitable for rewriting, the asativity axiom for + is specified
as an operation attribute rather than an ordinary equakions only the equatiorfsi d]
and[i nv] are used for rewriting, which in this case takes place in il algebra
modulo, i.e. satisfying, the associativity axiom far

Let us do again (see Sect. 2.3) the proof of

(VX)X + (- X) =0

this time by rewriting modulo associativity. By the metderaf Universal Quantification
this would be equivalent to proving

a+(-a) =0 (2.72)

54 Chapter 2. Data Type Specification

in the signature oEEROUP extended with a new constaat By following the same con-
ventions like for theGROUP examples of Sect. 2.3, I&tdenote the signature GROUP
andX + a the extended signature mentioned above. Then the algelridh rewriting
is performed is the quotientQa/—. where @4 is the initial (term) algebra of +a, =g
is the leasE-congruence ons) 5, and wheree consists of the associativity equation for
+ only.

In the case of associativity the elements of the correspymliotient algebras have
a very intuitive representations, obtained by the elimarabf the brackets related to
from representations of the terms as mix-fix expressionsekample, in 8,5/~ the ex-
pressiora+ (- a) + astands for the equivalencecldda+ (- a)) +a, a+ ((- a) +a)}.
In fact this representation is used by many current implaéatems of rewriting modulo
associativity, including th€afeOBJ and Maude rewriting engines.

Coming back to the proof of (2.72), It denote the two equatiorjs nv] and
[1d] tobe used in rewriting. We have that:

((-—a)+(-a)+(a+(-a)) —r 0+ (a+(-a)) by [inv] (2.73)
(0+a)+(—a) —r a+(—a) by [id] (2.74)
(——a)+ (- +a)+(-a) —r (——a)+(0+(-a) by [inv] (2.75)
(——a)+(0+(-a)) —r (-—a)+(-a) by[id] (2.76)
(——a)+(—a) —r 0 by [inv] 2.77)

From (2.73) and (2.74) we have

(——a)+(-a)+a+(-a) —re a+(-a) (2.78)
and from (2.75), (2.76) and (2.77) we have

(——a)+(-a)+a+(-a) —>re 0 (2.79)

From (2.78) and (2.79) by Cor. 2.73 and Cor. 2.74 we have@R&UP =T UE 5.4
a+(—a)=0.

A CafeOBJ proof score. Let us now see how the proof above can be coded into an
actual language, namely i@afeOBJ. The first step, that consists of transforming the
problem into a quantifier-free problem by the applicatiotJofversal Quantificationis
coded as follows.

open GROUP .
opa: ->G.

Now comes the proof of (2.78) but considered in an opposiecton. Note that in this
case for each rewriting step we need to specify preciselyethation that is used, the
position in the term, and eventually the substitution to bedu The latter is necessary in
the case of the second rewrite since whémv] is considered from the right to the left
the variableX is not matched by anything.

2.4. Rewriting 55

start a + (- a)

apply -.[id] at (1) .
apply -.[inv] with X = (- a) at [1]

The partial result of executing this part of the proof scere-i —a) + (—a) + a+ (—a).
The final part of the proof score, corresponding to the pré¢2a9), consists of a sim-
ple rewriting command on this partial result that leads t@atomatic execution (in the
standard direction) of the steps (2.75), (2.76) and (2.77).

apply reduce at term.
cl ose

The resulting termis 0.

Automation of proofs by rewriting. The proofGROUP (VX)X + (- X) = 0 pre-
sented above is not automatic since one needs to ‘guesXhession— —a)+ (—a) +
a+ (—a) to be rewritten to both sides of the equation to be proveds Tburistic aspect
depends upon a certain insight into the problem, which isradrumind aspect. Insight
is beyond automation. The automation of rewriting is bagsmhia procedure related to
Prop. 2.59 thatis somehow contrary to the way the p8R&IUPH (VX)X + (- X) = 0
has been performed. Therefore, in order to provet; = tp, instead of finding a terrh
such that —>r t; andt ——r tp, we rather find such that; ——r t andt, —— t. The
latter method has a huge advantage towards the fotngcan be obtained automatically
as a normal form of rewriting. However this needs some cartitthat will be developed
in the following.

Recall from Prop. 2.64 that the relatigrof defined for any preordes on A by

(bl c) ifandonlyif b>d andc>d forsomed € A.

is the least equivalence @nithat contains>.

The typical application of the following technical resiudtby means of Prop. 2.70
when the role of> is played by the relation*—>r,A for Areachable algebra. This includes
the case of rewriting modulo axioms, wheris the initial algebra of a sdf of axioms.

In the particular case of plain rewriting, wh&nis empty, therA is just the initial term
algebra Qs).

Proposition 2.75. Given a preorderedS, F)-algebra(A, >), if > is a confluent theij is
an (S,F)-congruence.

Proof. By Prop. 2.64 we know thalt is equivalence. For showing the preservation of
by the operations let be any operation symbol i anday, . ..,a, anda;, ..., &}, strings
of arguments foA; such thatg; | & for eachi € {1,...,n}. For each there exists
such thatay > a’ andaj > a’. Because?; preserves> we have that#s(as,...,an) >
As(d],...,a) and As(a],....a,) > As(d],...,an) which shows thaiAs(as,...,an) |
As(ay,....ap). O

56 Chapter 2. Data Type Specification

Note that although Prop. 2.75 does not regiite be reachable, however its applications
for the rewriting reIationLr’A does require the reachability 8ffor the reflexivity of
i»r,A- Note also that in this case the preservation by operationdition of Prop. 2.75

is obtained from Prop. 2.70. These remarks are formallyuregdtby the following Corol-
lary.

Notation 2.76. For any reachabl€S F)-algebra A and any sdt of conditional(S F)-
equations lef r o denote the least equivalence contain'm*g»r,A (see Prop. 2.64).

Corollary 2.77. On any reachable algebra A, ifr 4 is confluent therjr A is a con-
gruence.

Proof. By Prop. 2.70 and Prop. 2.75. O

Generalized soundness of rewriting. The soundness result of Prop. 2.59 can be ex-
tended from the initial (term) algebra to arbitrary readbatigebras by comparing a
toa=~"a, the leasf -congruence oA. One of the benefits of this generalization consists
of applications to rewriting modulo axioms.

Proposition 2.78(General soundness of rewritingfor any reachabldS, F)-algebra A
and for any sef” of conditional equations,
alrad impliesa=ra.

Proof. If I 't =t’ then by the soundness result of Prop. 2.55 we havelthat = t’
which impIiesA/:,r; =t =t/ which meansd =P Ay. Since by definition—-r 4 is the
transitive closure of (A, Av) | T F't =t'} (see Dfn. 2.68) and by the transitivity eff
we have thatLr,A C =R, By the symmetry and the transitivity eff from this it follows
immediately thatr o C =p. O

The soundness of the equational proofs performed by regritiodulo a seE of
axioms to the same element is an instance of Prop. 2.78 wikaoliA is played by the
initial algebra ofE. However the same result can be obtained also from Prop.ehé7
Cor. 2.74. We leave the rather straightforward proofs aslattathe reader.

Corollary 2.79. For any set of equations E and any $ebf conditional equations we
have that

(t/=¢) lre (t'/=¢) impliesTUE =t =t".

Generalized completeness of rewriting. The completeness of the equational proof
method by rewriting both sides of an equation to the same ex¢morresponds to the
inclusion=p C |r a. This property is significantly harder than its dual, thersiness,
which means that it needs some special conditions.

Proposition 2.80. In a signature(S F) let us consider a sdt of conditional equations
of the form(VX)(H = true) = (t =t) with true a constant. On any reachab(& F)-

algebra A, if—>r a is confluent and 4. is normal form for—-r s then A/, =T

2.4. Rewriting 57

Proof. BecauseimA andA is reachable, cf. Cor. 2.77 the relatign A is indeed a
congruence, hence the statement of the proposition isattyrfermulated.

Now IetLryA be a conditional equation from LetB’ be any(S,F UX)-expansion
of A/|; , such thaBy, = Bi,,.. We consider anyS F UX)-expansion oA such thai\, €
B for eachx € X. Note thaB' = A’/ ,. We have thal\; /| , = Bl = B} ue = Alrue/ I a-

true
This impliesAl, |raAL_... SiNceA, . = Ay is normal form for—=r 4 it follows that
AL —>r a AL ... By Prop. 2.69 this implies

E(A)YUT l_ESFUX) (H = true). (2.80)
By ‘monotonicity’ andUniversal Quantificationwe have that

E(A)YUT l_ESFUX) (H =true) = (t=t'). (2.81)
From (2.80) and (2.81) by 'union’, ‘transitivity’ anlnplicationwe have that

E(A)UT Hgrux) t=t).

By Prop. 2.69 this implie®y ——r a A, which impliesA{ | a A, which meanss{ =
B,,. O
t,

This way to handle the hypotheses of the equations as a Boa$tan term as-
sumed by the conditions of Prop. 2.80 is rather common witenOBJ family of spec-
ification languages and has certain operational benefitsexample inCafeOBJ the
constanttrue is the corresponding constant of the built-in Boolean typeé tne condi-
tions of equations are encoded as Boolean terms by meane 8bitlean functiorr=g
as presented above in Sect. 2.1.

The following consequence of Prop. 2.80 can be regardedasea@ completeness
result for rewriting as a decision procedure for equations.

Theorem 2.81(Completeness of rewriting)Under the conditions of Prop. 2.80, we have
that [o = =P

Proof. By Prop 2.80 we have th&/| , = I" which by Prop. 2.24 implies thdg a is a

I"-congruence. Sinceﬁ‘ is theleastl'-congruence o\ it follows that:ﬁ‘ C lra. The
opposite inclusion is given by Prop. 2.78. O

The relation|r 4 is realized in the OBJ family of languages by the built-in seiic
equality predicate==, the same which is used for encoding conditions of equatiens
Boolean terms.

Exercises.
2.17. The rewriting relation defined bBASI C- | NT (see Ex. 2.10) is terminating and confluent.

2.18. Give an example of a partial order on a setA such that each element 8fhas a unique
normal form with respect to- but which isnotterminating.

58 Chapter 2. Data Type Specification

2.19. 1. Give an example of a relation— which is Noetherian but its reflexive and transitive
closure—= is not terminating.

2. If — is Noetherian and for each elemearthe set{b | a— b} is finite then—- is terminat-
ing. Apply this result to rewriting relations.

2.5 Induction

Inductive properties. When verifying properties of data types specified as inige-
bras of sets of conditional equations ordinary equatioedudtion may not be enough
because initial algebras may satisfy more sentences thahaah be deduced from the
sentences of the specification. A very simple example ispkeificationSI MPLE- NAT

of the natural numbers that we have already seen here séveeal

nod! SI MPLE- NAT {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_: Nat Nat -> Nat
vars M N : Nat
eq [succ] : N+ (s M =s(N+ M
eq [zero] N+0=N.

}

The denotation o8l MPLE- NAT, that consists of the initial algebra satisfying sticc]
and zer 0], is the algebrad of the natural numbers interpretingas addition of numbers
ands as the succesor function (adding 1 to a number). Since addifinumbers is com-
mutative we have thah = (Vm,n)m+ n = n+ m. However the commutativity property
is nota consequence of the two equationSbMPLE- NAT because there exists algebras
satisfying pucc] and [zer o] that donotsatisfy the commutativity property. The algebra
B defined below gives a very simple example of such a situation.

- BNat = {O; 1}1
- BO :01

Bs(x) = x for eachx € {0,1}, and

B, (0,x) = 0 andB. (1,x) = 1 for eachx € {0,1}.

The sentences satisfied by the initial algebras of spedditatre callednductive
properties A proof that a certain sentence is satisfied by an initiaklig of a set of
conditional equations is called anductive proof We have seen above that equational
deduction is not enough for proving inductive propertieserefore in this section we
focus on introducing a general method for inductive proofsap of ordinary equational
deduction.

2.5. Induction 59

Constructors. In may situations the elements of the initial algebras otHmations
are denoted by terms that are constructed from a subset op#ration symbols of the
signature. This is for example the case of our benchmark pbegi®l MPLE- NAT. The
elements of the initial algebraof SI MPLE- NAT are denoted only by terms formed from
0 ands, the operatior+ is not needed. Identifying a smallest possible such as sobse
operations, calledonstructorscan greatly reduce the complexity of inductive proofs.

Definition 2.82 (Sub-signature of constructorspiven a signaturéS F) andl™ a set of
conditional equations fofS,F), a sub-signaturéS F°) of (SF) (i.e. F5_s C Fy_s for
all arities w and sorts s) is aub-signature of constructors foiif and only if the unique
(S, F€)-homomorphism from the initial (terni, F©)-algebra0 sk to the(S, F)-reduct
of Or (the initial algebra satisfying) is surjective.

The following simple characterization for the sub-sigmes.of constructors, which
sometimes in the literature is calledfficient completenesonstitutes a basis for actually
proving the constructor property of Dfn. 2.82. Moreoveis ttharacterization can be used
as an alternative definition for sub-signature of constscthat can be used in more
general contexts wheh is any set of sentences (which mednsnay not have initial
models).

Proposition 2.83. (S, F°) is a sub-signature of constructors fbrif and only if for each
(S,F)-term t there exists afS,F¢)-term t such thal” =gp)t =t

Proof. The elements of @are equivalence classes @, F)-terms under=r, the least

I-congruence on@r). Hence the constructor property of Dfn. 2.82 means thatdohe
(S,F)-termt there exists anfS F¢)-termt’ that is interpreted in ©as the equivalence
class oft, namelyt/_.. This is the same as saying thaf—.) = (t'/—.) which means

t =r t’ which is equivalenttd =t=t'. O

The sufficient completeness property of Prop. 2.83 aboveeahown by induction
on the structure of the tertrby skipping the constructors as follows.

Proposition 2.84. (S,F°) is a sub-signature of constructors fbrif and only if for any
operation symbob € Fs;_ 5,5\ Fs s s and for any(S,F°)-terms §,...,ty of sorts
s1,...,S, respectively, there exists 48, F¢)-term t such that” = o(ty,...,t) =t

Proof. By Prop. 2.83 we have to show that ed&F)-termt there exists afS, F¢)-term

t' suchl" =t =t’. We show this by induction on the structuretotett = o(ty,...,tn)
whereao is an operation symbol iR andt;, for 1 <i < n, are sub-terms. We assume that
that for each K i < nthere exists afS, F°)-termt/ such thaf -¢t; =t/. By Congruence
(for the semantic entailment) it follows thet=t = o(t;,...,t}). There are two cases:

1. Wheno is a constructor thea(ts, .. . ,t) is already ar(S, F°)-term.

2. Wheno is nota constructor, letf be an(S, F¢)-term such thafl |=o(t],....t,) =t
By Transitivity (for the semantic entailment) it follows that=t =t'.

O

60 Chapter 2. Data Type Specification

Let us now apply the general method indicated by Prop. 2.84twally prove that
0 ands (of course together with the soat) constitute a signature of constructors
for SI MPLE- NAT. By the Soundness andf Completeness of equational deduictiour
proof below we may replade: by -€. According to Prop. 2.84 we have only to show that
for any termg 1 andt2 formed only from O and there exists a terrri formed only from
0 ands also such thaf F¢t1+t2 =t" wherel consists of the equationsiicc] and
[zer o] of SI MPLE- NAT. We can do this by induction on the structuret®f There are
two cases:

— t2is0. In this case byZer o] we havel' F¢t1+t2=11.

— t2is (s t'2) with t'2 term formed frons andO. In this case by§ucc] we have
M-etl14+t2=s(t1+t'2). (2.82)
By the induction hypothesis there exists a tefnfiormed froms and0 such that
r-t1+t'2=t". (2.83)

From (2.83) by theCongruenceand general entailment system properties we get
that

MHes(tl+t'2)=(st”). (2.84)

From (2.82) and (2.84) byransitivityand general entailment system properties we
get that

Fet1+t2=(st").

Sincet” is formed only fron0 ands, we have thats t”) is also formed only from
0 ands.

Reducing inductive proofs to ordinary equational proofs. The following fundamen-
tal result, which constitutes the basis for inductive pspaéduces the task of proving
inductive properties to a set of ordinary equational proofs

Proposition 2.85. LetT" be a set of conditional equations for a signaty&F) and let
(S,F°) be a sub-signature of constructors for Let Or denote the initial algebra of .
Let E be any set of sentences such Gyal= E. Then for anyS F U X)-sentence

Or = (VX)p if TUE = 8(p) for all substitutions8: X — Tigre).

Proof. We assume the hypothegis) E |= 6(p) for all substitution®: X — Tgrc). Let

A’ be any(S F U X)-expansion of p. Becaus€S, F°) is a sub-signature of constructors
for I" this yields a substitutiofl : X — Tigre) such tha®(x) € A, for eachx € X (recall
A, is a class of equivalent terms unde).

2.5. Induction 61

Since @ =T, Or = E andl' UE |= 6(p) we have that f = 8(p). The proof of the
proposition is completed if we proved that

Or = 8(p) ifandonly if A" = p. (2.85)
Let us do this by induction on the structuremf

1. Whenp ist1l=1t2 the property (2.85) holds by the observation that for eanht,
(Or)g(ty = Af (which can be shown by a simple induction on the structutg. of

2. Whenp = p1 xp2, with x € {A,V,=} or p = —p’ the induction step is rather
straightforward.

3. Whenp = (VY)p’ we have to show thatrO= 08((VY)p’) = (VY)6(p’) is equivalent
to A = (VY)p'. This follows from the induction hypothesis by noting thgebtive
correspondence between the {i%F UY)-expansion® of Or and the(S;F UXU
Y)-expansions8’ of A, correspondence determined By = B| for eachy € Y.
Here the induction hypothesis means the property (2.85idered foB instead of
Or, which works becausB is the initial algebra of” but considered a&S F UY)-
sentences.

O

In practice the seE of Prop. 2.85 above plays the role of ‘lemmas’, and need not
necessarily consist only of conditional equations, it camlset of any sentences.

Structural induction. The big problem raised by the result of Prop. 2.85 is that one
needs to perform infinitely many equational proofs corresfing to the substitution8.

In order to be able to actually perform inductive proofs imandatory to have a fini-
tary proof procedure for inductive properties. The stadaene is the so-callestructural
inductionmethod that can be presented as a property of semantic dmduemd when
dealing only with conditional equations, of the equaticaratailment systeri®.

Proposition 2.86(Structural induction) Let X be a finite set of variables for a signature
(S ,F) and letp be any(S F UX)-sentence. LetS F€) be a sub-signature of construc-
tors for a setl” of (S F)-sentences (in the sense of the alternative definition dgiyen
Prop. 2.83).

If for any sort preserving mapping QX — F€ (i.e. the sort of Qs the sort of x),

FU{W(P) [W: X —Z = UyexZy with Y(x) € Zy} = (sFuz) @ (p)
where

— Zx are strings of variables for the arguments of Such that 3 N Zs, = 0 for x1 #
X2 € X, and

— Q' is the substitution X Tgc z) defined by @x) = Qx(Zx),
then
I =(sF) B(p) for all substitutions®: X — Tigre).

62 Chapter 2. Data Type Specification

Proof. We prove the conclusion of the proposition by induction om itaximum depth
of the set of termg8(x) | x € X}. Note that this maximum exists as a consequencé of
being finite.

For eachx € X let Qx be the topmost operation symbol of the te@ix) and Ty
be the string of the immediate sub-terms9¢k). In other word(x) = Qx(Tx). By the
hypothesis we have that

FU{W(p) [W: X — Z=UxexZx with Y(X) € Z«} F(sFuz) Q(p).

BecauseX is finite we have that the séth: X — Z = UxexZx with W(x) € Zy} is finite
too. By Implicationit follows that

M =sruz) A{WP) Wi X — Z = UxexZy with Y(x) € Z,} = Q(p).

By Universal Quantificatiorit follows that

F e (V2) A{W(p) [W: X — Z=UxexZx with W(x) € Z = Q(p).
By Substitutivityfor the substitutiorZ — Tigre) mapping componentwise eazh to Ty
and by the ‘transitivity’ ofi=g, it follows that

M Esr) AP [y X = Tisee with v(X) € T} = 6(p).

By Implicationit follows that

FU{v(p) [y: X — Tisrey with y(x) € Ta} =(sF) 6(P). (2.86)

Because eacy(x) € Ty we have that for each substitutigias in the relation (2.86) above
the maximum depth of the term{g(x) | x € X} is strictly less than the maximum depth
of the terms{0(x) | x € X}, hence we can apply the induction hypothesis, meaning

T =(sF) Y(P)- (2.87)

Because the sdly: X — Tigre) | Y(X) € Tx} is finite, by the entailment system properties
of = from (2.86) and (2.87) it follows that

I EsrFuy) 8(p)-
O

In the proof of Prop. 2.86 above the meta-rulesoplicationandUniversal Quan-
tification, as well as the rule dubstitutivityhave been considered for the semantic entail-
mentj= in a slightly more general form than introduced in Sect. Re3for any sentences
instead of only for conditional equations. It is easy to &tbat the above mentioned rule
and meta-rules hold within this extended framework, thepbeing similar to the case
of conditional equations.

Corollary 2.87. If in Prop. 2.86 we consider to be a set of conditional equations and
p to be a conditional equation, then by the Soundness (Prai®) 2and Completeness
(Thm. 2.50) of equational deduction, in Prop. 2.86 we majaeg= by .

2.5. Induction 63

By noting thatl" in Prop. 2.86 plays the role df UE in Prop. 2.85, this means
that the hypothesis of the structural induction Prop. 2@tstitutes a sufficient condition
for the inductive property©=sr) (VX)p. The finitary character of proofs by structural
induction resides in the fact that if the sub-signature ofstauctoryS, F°) is finite then
because also of the finitenessXthere is only a finite number of equational proofs to
be performed, this number being equal to the number of theoingpQ : X — F¢ from
Prop. 2.86. Note that getting a sub-signature of constraet® small as possible reduces
the complexity of the structural induction proofs. Noteoalkat structural induction as
formalized by Prop. 2.86 is based upon the well known Peahaciton for natural num-
bers, which is the simplest and the most basic form of inda¢t@nd which is a proof
‘principle’ that is beyond formal provability and which iggerally assumed through all
bodies of mathematics from elementary school mathematitiset most advanced areas
of mathematical investigation.

An example of inductive proof by structural induction. Let us prove that the initial
algebra ofSI MPLE- NAT satisfies the commutativity of additioflym,n)m+n=n-+

m. Let > denote the signature ariddenote the two sentencesucc] and [zer o] of

S| MPLE- NAT. We have proved above in this section tBaands form a sub-signature
of constructors folr. We use the following two lemmas, both of them being proved by
the structural induction method of Prop. 2.86:

Or = (Vn)0+n=n. (2.88)
Or = (Ym,n)s(m) +n=s(m+n). (2.89)

The proof of lemma (2.88)ith the notations of Prop. 2.86, we let the sétof the
variables{n}. Becaus® ands form a sub-signature of constructors farwe have only
two possibilities for the mappin@: X — F¢:

1. Qn =0, in which case according to Prop. 2.86 we have to prove that
r-$04+0=0.
Its proof consists of one rewriting step, namély- 0 — 0.
2. Qn = s, in which case according to Prop. 2.86 we have to prove that
ru{0+z=2z}+5,,0+s(z) =s(2).

Its proof consists of two rewriting steps, namély-s(z) —r S(0 +2) —042-2
s(2).
Note that the seZ of the variables as in Prop. 2.86@or the first proof and z} for the
second proof.

The proof of lemma (2.89)\e let the parameters of Prop. 2.86, ¥e= {n} andp be
(Vm)s (m)+n=s(m+n). As in the proof of lemma (2.88) we have only two possibiitie
for the mappingQ: X — F¢

64 Chapter 2. Data Type Specification

1. Qn =0, in which case according to Prop. 2.86, by the meta-rulgérafersal Quan-
tification, we have to prove that

% ms(m)+0=s(m+0).
Its proof consists of the following two rewritings:
s(Mm)4+0 —rs(m) and s(m+0) —r s(m)

implying (s(m)+0) |r s(m+0).

2. Qn =s, in which case according to Prop. 2.86, by the meta-rulgérafersal Quan-
tification, we have to prove that

FTU{(YM)sM)+z=s(M+2)} 5, n.,S(M) +s(2) =s(m+s(2)).
Its proof consists of the following two rewritings:

s(M) +5(2) —r s(s(M) +2) — wm)s (M)+2z=s(M+2 S(S(M+2)) and

s(M+5(2)) —r s(s(m+2))

implying (s (M) +5(2)) Lrugwm)sM)+z=sM+2)} S(M+S(2)).

Note that the seZ of the variables as in Prop. 2.86 is the same as in the proefhoifia
(2.88), namelyd for the proof corresponding ©Q, = 0 and{z} for the proof correspond-
ingtoQy =s.

The proof of0r = (Ym,n)m+n = n+m: Now let E be the set consisting of the two
sentences of the lemmas (2.88) and (2.89). We apply PropwvdtB ' UE in the role of

I, with X = {n} and withp being(¥vm)m+ n = n+ m. Like in the proofs of the lemmas
(2.88) and (2.89), here we have two possibilities for the piragpQ : X — FC:

1. Qy =0, in which case according to Prop. 2.86, by the meta-rulgroversal Quan-
tification, we have to prove that

FTUEFS,mm+0=0+m
Its proof consists of the following two rewritings:
m+0 —rmandO0+m—gm

implying (m+0) |rug (0 +m).

2.5. Induction 65

2. Qn =s, in which case according to Prop. 2.86, by the meta-rulérafersal Quan-
tification, we have to prove that

FTUEU{("M)M+2z=2+M}F§, ., m+s(2) =s(z)+m.
Its proof consists of the following two rewritings:

M+S(2) —r S(M+2) —(yM)M+z—z+m} S(Z+m) and

s(z)+m—g s(z+m)

implying m+s(2) |rugufvmM+z—z+my S(2) +m.

Note that the sef of the variables as in Prop. 2.86 is the same as in the proehofilas
(2.88) and (2.89), nameliy for the proof corresponding 1Q, = 0 and{z} for the proof
corresponding t@, = s.

A CafeOBJ proof score. Now we present a translation of the structural inductioropro
of (V)m+n=n+mas an inductive property & MPLE- NAT that we developed above,
into a proof score coded iBafeOBJ. TheCafeOBJ system will perform the rewritings
automatically while we will specify thproof scorei.e. the sequence of proof tasks to be
executed by the system. Except the lemmas, the proof tasldeaived from Prop. 2.86,
which implies that in principle they can also be introducatbanatically by the system;
however the cor€€afeOBJ language does not have this facility. ODafeOBJ proof
score follows closely the proof df’fm,n)m+n = n+ m presented above, including the
two lemmas involved.

The relation| is denoted inCafeOBJ by the binary operation of Boolean sert,
which means that our proof tasks will be giventast’. WhenCafeOBJ runs the proof
score below these reductions will all produce the resu#,tmeaning the the respective
relationt | t’ holds, which implies that=t’ holds.

Proof score for lemma (2.88):

open S| MPLE- NAT

The casé, = 0:
red 0 + 0 ==
The cas€), =s:

op z : -> Nat
eq 0 +z =12z .
red O + (s z) ==s z .
cl ose
Proof score for lemma (2.89):

open S| MPLE- NAT

66 Chapter 2. Data Type Specification

The cas&), = 0:

op m: -> Nat .
red (sm + 0 ==s(m+ 0)

The cas&), = s:

op z : -> Nat

eq (s MNat) + z = s(M+ 2)

red (sm + (s z) ==s(m+ (s z))
cl ose

The proof score ofYm,n)m+n=n+m:
open S| MPLE- NAT
We introduce lemmas (2.88) and (2.89):

eq O + N:Nat = N Nat .
eq (s MNat) + NNNat = s (M+ N)

The casé, = 0:

op m: -> Nat

red m+ 0 ==0+ m.
The cas&), =s:

op z : -> Nat

eq MNat + z =z + M.

red m+ (s z) == (s z) + m.
cl ose

Another example. The following is an application of the structural inductiorethod
as given by Prop. 2.86 to a situation when induction is donauaneously on more
than one variable. Let us consider the following specifizatf natural numbers with a
semantic equality relation.

nmod! PNAT= {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _=_ : Nat Nat -> Bool {comm}

vars M N : Nat

eq ((s M =0) =false .
eq (0 =0) =true .
eq (s M=s N = (M=N)
}

The following defines a strict ‘less than’ relation on theurat numbers.

2.5. Induction 67

nod! PNAT< {

pr ot ecti ng(PNAT=)

op _<_: Nat Nat -> Bool
vars M N : Nat

eq 0 <s M= true .

eq M< 0 = fal se .

eq (s M<s N = M<N.

}
The proof score by structural induction (by Prop. 2.86) eftibtal order property
(VWMN(M< N or (N<M or (M=N

as an inductive property considédss, t r ue, andf al se as a sub-signature of con-
structors (we exile this fact to the exercise part of theisagtand considers four cases
for Q:

open PNAT< .
ops mn : -> Nat

The caseQy=0, Qn=0:

red (0 <0) or (0O <0) or (0 =0)

The casy=0,Qn=Ss:

red (0O <sn) or (s n<20) or (0O=sn)
The casy=s, Qn=0:

red (s m<0) or (O<sm or (sm
The cas®y=-5s,Qu=S=:

0)

eq (m<n) or (h<mM or (M=n) =true .
red (s m<sn) or (sn<sm or (S m=sn)
cl ose

Note that the only case that involves a premise is the foun this is because in all
other cases there is np: X — Z = UyexZx With Y(X) € Zx because eithefy or Zy is
empty since eithe@y or Qyis 0.

Exercises.

2.20. Prove a that Prop. 2.85 admits a reciprocal for the case yhiema finite conjunction of
equations.

2.21. For the specificatiorsl MPLE- NAT show that the associativity of the additienis not an
(ordinary) equational consequence of the two sentenceseasfiecification, but however it is an
inductive property of the specification. Build and rurCafeOBJ proof score of this inductive
property.

68 Chapter 2. Data Type Specification

2.22. For the specificatioPNAT< above:
1. Show thaD, s_, t r ue andf al se form a signature of constructors.

2. Formulate the transitivity property of_and show that it cannot be proved by equational
deduction from the axioms GNAT<.

3. Build and run a proof score for the transitivity &f_ as inductive property.

2.23. Consider the followingCafeOBJ specification:

nmod! PNAT- {
prot ecti ng(PNAT=)
op _-_ : Nat Nat -> Nat

vars M N : Nat
eg (sM - (s N =M- N.

eq M- 0 =M.
eq 0- M=0 .
nod! GCD {

protecti ng(PNAT- + PNAT<)
op gcd : Nat Nat -> Nat
vars M N : Nat

eq gcd(M0O) = M.
eq gcd(0,N = N .
eq gcd(MM =M.
cq gcd(MN =gcd(M- NNN if (0 <N and (N< M
cq gcd(MN =gcd(MN- M if (0 <M and (M< N)

}
Prove the inductive properfyMN)gcd(M N) =gcd(N, M as follows:
1. Extend the given specification with the specification afitidn + on Nat .
2. Prove thal, s, true andf al se is a subsignature of constructors for the extended
specification.
3. Build arun aproof score for the lemri@X,MN)gcd(M N) =gcd(N, M if M+ N < X
4. Build a run a proof score showing that the lemma of the ab@ra implies the goal
property.
2.24. Build a proof score for the associativity gt d of Ex. 2.23 by the following steps:
1. Add a specification for a binary ‘divides’ predicath v_.
2. Prove and use the following main lemmas:
- (VXMN)gcd(MN) divMif M+ N < X

- (VXY,MN)Ydivgcd(MN) if YdivMandYdivNandM+ N < X

2.6 Subsorts.

Partial versus total functions. In computing science we often encounter situations
when for certain arguments some operations do not returmesult. There can be dif-
ferent reasons for this such as non-termination or some ierthe computation process.

2.6. Subsorts. 69

These two situations are rather familiar to programmersusesay that an operation is
‘partial’ when it does not give a result for some of the argaitsgotherwise we say that
the operation is ‘total’.

Also partiality may occur naturally for some data types, édaample division of
numbers by 0 is not defined. The same happens with the headpty &sts. Thus division
and head should be thought as partial rather than total tpesa

It is useful to understand mathematically the concept ofigdeflunction. For this
we have to recall the mathematical definition of the concégtatal) function within
axiomatic set theory. Thus a function: A — B is a binary relationf C A x B that
satisfies the following two conditions:

1. For eaclx € A there existy € B such thatf (x,y).
2. If f(x,y) andf(x,y') theny=y.

The second condition allows us to use the functional natatigx) = y instead of the
relational notationf (x,y). Then the concept gdartial function is obtained by dropping
off the first condition above and keeping only the second itimmd The sef{x € A | there
existsy € B such thatf (x) =y} is called the domain of and is denoted bgton f).

Specifications with partial functions have the advantaggreater expressivity but
the disadvantages of weaker computational properties fintbe complex mathemati-
cal foundations. With respect to the latter issue, it is fidsgo refine the mathematics
of equational logic from total to partial functions; thisdalled partial algebratheory.
This refinement includes the concepts of signature, algeupaation, satisfaction, and
results such as the existence of initial algebra for a sebaoflitional equations and a
sound and complete proof calculus for conditional equatidimere are two schools of
thinking in algebraic specification: one advocates stayiith total functions while the
other favours the specifications with partial functions. &mample, among the modern al-
gebraic specification languag€afeOBJ and Maude belong to the former school, while
CASL belongs to the latter.

Our lecture notes are rooted within the trend of total fumtdi The readers inter-
ested to find more about partial algebra may look into classworks such as [25, 4] or
at the more recent CASL literature.

Order sorted algebra. The total functions approach has had to find various ways to
deal with cases of partiality. Although one can never redehexpressivity power of
partial algebra by means of total algebra, some speciabaafspartiality, that cover a
great deal of specification needs, can be handled by the ftotation approach. One
solution is to extend the data type with new elements forreroo undefinedness, which
may lead to the necessity to extend the definition of the arglidata type operations to
handle the new error values. On the other hand many paytstitations may be handled
directly by noticing that the domain of the respective @dniperations can be specified
by the use of the so-called ‘subsorts’. For example divissbmumbers by 0 falls in
this latter category, we have just to consider the subsdttehon-zero numbers for the
second argument of the division operation. The same may be fitw the head of lists

70 Chapter 2. Data Type Specification

(Li st with elements from a sofl t) by considering the subsort of the non-empty lists
(NLi st).

op head : NList -> Elt

Moreover, the concept of subsort may be used to handle extees through the so-called
‘error supersort’ approach.

op head : List -> ?Elt

In the former cas@lLi st is a subsort of.i st while in the latter cas€l t is a subsort
of ?El t .

The theory of many sorted algebra and many sorted equatimgial including all
the concepts and results developed until this point in tteptdr, has been extended to
the refined framework using subsorts in a way that parallesynsorted algebra; this
is calledorder sorted algebrar order sorted equational logidHowever this extension
has some very subtle points that have led to slightly diffefermalisms (a survey on
this matter is [18]). In this section we refrain from devetaporder sorted algebra in
detail, and instead we present its basic concepts by engifigisnethodologies of using
subsorts. This may be enough for our use of subsorts in teesa¢ notes.

An example. The following simple specification of natural numbers oniyhwzero and
succesor that uses subsorts realizes the idea that thessuoperation never gives zero
as result.

nod! BARE- NAT {
[NzNat Zero < Nat]
op 0 : -> Zero
op s- : Nat -> NzNat
}

In the specificatioBARE- NAT we have usetlizNat as a sort name for the subset of the
non-zero naturals ari€er o as a sort name for the subset containing only the element zero
(0). Because bothizNat andZer o are meant to name subsets of the natural numbers,
named by the soifiat), they are calledubsortsof Nat .

As the reader may guess by lookingB&RE- NAT, in CafeOBJ subsort relation-
ship is specified by using the ‘less than’ symkadhside a sort declaration. The graphical
representation of signatures with subsorts also upgrdsegraphical convention that
we have introduced for the signatures by representing stibgas disk inclusion. For
example the following is a graphical representation fordigaature 0BARE- NAT.

2.6. Subsorts. 71

Order sorted signatures. In general, ifsis a subsort of, thenAs C Ay for any algebra
Aof the respective signature. The fact that subset reldtipiis a partial order is reflected
in the fact that subsort relationship is considered to berégbarder too. Thus when
considering signatures with subsorts we have to upgradseahef sort symbol§to a
partial order(S, <) of sort symbols. Such signatures are calbeder sorted signatures
The following is the mathematical definition for this contep

Definition 2.88 (Order sorted signature)An order sorted signatuiis a triple (S, <,F)
such that{S F) is a many sorted signature, ari§, <) is a partially ordered set.

An order sorted signature imonotonéff for any non-empty arities ywand w and
any sortssand $

0 € Fy,—s, NFw,—s, and wi < w, (component-wise) imply < sp.

The following is an example of a monotone order sorted signeawith the operationt_
specified twice with different arities and sorts:

op _+_ : Nat Nat -> Nat
op _+_: NzNat Nat -> NzNat

Algebras of order sorted signatures. The coherence of the interpretations of the over-
loaded operation symbols is taken care by the monotonioitgition in the following
definition.

Definition 2.89. Given an order sorted signatu(8, <,F), an(S, <,F)-algebras just an
(S,F)-algebra Asuchthats s in Simplies AC Ay. An(S <, F)-algebra A ismonotone
when

0 € Fuy,—s; NFy,—s, andwi <wo and s < sp imply that Asw,—s; @ Aw, — As;
equals Aw,—s, © Aw, — As, ON Ay, .

For example, the standard algebra of the natural numbeesgieting+ as addition) is
an example of a monotone algebra for the order sorted signgiven above as example.

Weak versus strong overloading. Given an order sorted signatui® <, F), the inter-
pretations of an overloaded operation symbal Fy, s, N Fw, s, in an algebraA need
not necessarily agree on elements that belong to the iote&rseof carriers forw; and

72 Chapter 2. Data Type Specification

Wo; thus, a strong form of overloading is supported. For thésom, in the literature this
approach is calledverloaded order sorted algebra

It is useful to distinguish between two forms of overloadimgweak overloading
operation symbols may have more than one arity and sortassdime expressions can be
typed in more than one way, but a given (well formed) expogssan only have one value
in a given algebra; however, Btrong overloadingexpressions can have different values.
For example, weak overloading would allow the expressibn+ 5’ to be interpreted as
addition of naturals, integers, or rationals, each of wigitles the same valu®, but it
would not also allow addition of integers mod@pwhere the result would k& however,
strong overloading would allow both of these.

Strong overloading is important for ordinary mathematiwafation. For example,
the value of an expression liké ‘' + 1’ depends on how it is parsed. The result car2be
when it is parsed within natural numbers or it canCbehen it is parsed within integers
modulo2. Vector spaces provide a similar example. Thus, expressike‘'0 + 0’ are
ambiguous, becasug is used for both the zero vector and the réalHowever such
ambiguous expressions do not occur often in practice.

Non-monotonicities. Notice that in the monotone case, if we tak8, for the inte-
gers moduld, to be a subsort of the naturals, then : Z8 Z8 -> Z8 cannot be
interpreted as addition moduB® in an algebra where+_ : Nat Nat -> Nat is
addition of naturals, because it must agree with additionadfiral numbers o#8, and
natural number addition does not restrict48. But there is no such difficulty if we
remove the restriction of monotonicity. Alternatively, weuld retain monotonicity but
remove the subsort relaticfZ8 < Nat . Either way we get strong overloading, but the
non-monotonic approach provides a more faithful modelbhgnathematical practice,
because the subsort relation can ensure that the elemesdst@8 really are the usual
numberd,...,7.

On the other hand, non-monotonicities are rare enough itipesto be considered
exceptional, and we should not build a theory that fails tod@the most common case
in a smooth way. The solution to this dilemma is a mechanisndéezlaring which op-
eration declarations should be considered non-monot®his.leads to another level of
refinement of the mathematical concept of signature thainteeested reader can find
[18]. All standard concepts and results of many sorted atgéuch as congruence, term,
deduction, initial and free algebras, completeness, eacry through for signatures with
non-monotonicities but that respect the following coruditi

Definition 2.90 (Locally filtered signature) A partially ordered se{S <) is (upward)
filterediff for any two elements s’ € S there is an element & S such that s <s’. A
partially ordered set S itcally filterediff each of its connected componehisfiltered.
An order sorted signaturéS, <,F) is locally filterediff (S, <) is locally filtered.

5Given a posetS <), let = denote the transitive and symmetric closure<ofThen= is an equivalence
relation whose equivalence classes are calle¢dn@ected components (S, <).

2.6. Subsorts. 73

Dynamic type checking. One of the benefits of an accurate specification style making
use of subsorts is that it may give very precise informatiothe type of the elements by
computing their smallest sorts. TRafeOBJ commandoar se not only shows whether

a term is well formed, but it also gives its smallest sort agtically. For example

BARE- NAT> parse s s O .
gives the answer
(s (s 0)) : NzNat

However the syntactic information on the type of elementyg beless accurate than the
semantic one. Take the following case with rational numifeith Rat the sort of the
rationals and\z Rat the subsort of the non-zero rationals).

RAT> parse 2 /| 2 .

gives
(2 /7 2) : NzRat

but when evaluating this expression by tbafeOBJ command ed:
RAT> red 2 / 2 .

we get

-- reduce in RAT : 2/ 2
1 : NzNat

which means that one of the effects of the computation psisethat the system finds
a sort of the respective element which may be smaller thasdhteresulting from the
parsing process. This is callégnamic type checking

Error supersorts. When attempting to evaluate a partial function for valuethefargu-
ments not belonging to its domain, tBafeOBJ system indicates the error. For example

RAT> parse 2 / 0 .
gives
(2 / 0) : ?Rat
The error message comes aseaaror supersort ?Rat in this case. ‘Supersort’ means
just thatRAT < ?RAT. The main function of error supersorts is that they storeesl
corresponding to some of the ill-formed expressions oatsfdhe ordinary sorts. Which

are precisley these ill-formed expressions and why do we tieem? These are pseudo-
terms that are defined by the following rules:

— each constant symbol of s@is a pseudo-term of sorssand

— for each operation symbol € Fs, . s,—.s and any pseudo-terms tf,...t, of sorts
s, ...S,, respectivelyo(ts,...,tn) is a pseudo-term of so& when for eachk €
{1,...,n} the sortss, ands, have a common subsort.

74 Chapter 2. Data Type Specification

Some of the pseudo-terms, although they are ill-formedasyfitally, may still evaluate
to values corresponding to ordinary terrds/ ((3 / 2) + (1 / 2)) issuchan
example. This is the reason we should not discard them caemple

The error supersorts may sometimes be used for the purpageecification; we
will see such example below. lBafeOBJ the error supersorts are built into the system,
meaning that they are made automatically available to tee us

Retracts. The mechanism handling the pseudo-terms consists of inting a opera-
tionsry-s: S — sfor each subsort relationship< s which are subject to the following
equations:

o (VX:9)ryg-¢(X) =x, and

o (VX8)rgss(rgrsg (X)) = regr=s(X).
These operations are callegtractsand they are inserted in pseudo-terms in places where
the sorts of the subterms do not correspond to the arity ofebigective operation. Such
insertion transforms the pseudo-terms into proper terrttsaodignature extended with re-
tracts. For example the pseudo-te&2nY 0 is transformed into the ter@ / rgas>yzrat
(0).Theterm2 / 0 is an example of proper pseudo-term because the insertedtret
cannot be elimintated in a computation process.

A different situation is with2 / ((3 / 2) + (1 / 2)), in which the dy-

namic type checking shows its strength. The parsing givesran although semantically
it should not be the case.

RAT> parse 2/ ((3/ 2) + (1 / 2))
(27 ((3/ 2) +(1/ 2))) : ?Rat

The source of this error is due to the static aspect of thengapsocess, the sort ¢f3 /
2) + (1 / 2) beingcompute®Rat rather tharNzRat . In fact if we were to think of

27 ((31 2) + (11 2))

as a proper term we would have to consider the insertion odgts, in reality the term
being

2 [Traesnarae((3 1 2) + (11 2)).
During the evaluation of this term, using the followi@gfeOBJ command
RAT> red 2/ ((3/ 2) + (11 2))
at the stage when it becomes

2 /rRat>NzRat(1)

by applying the equatiofivx : NzRat)rras>nzrat (X) = X the retract operation gets elimi-
nated and the computation process continues for gettinfptiosving result

-- reduce in RAT : 2/ (3/ 2+ 1/ 2)
1 : NzNat

2.7. Example: compiler correctness 75

Thus retracts provide more strength to dynamic type checRetract operations are also
built into the CafeOBJ system, however they are not transparent to the user uthess t
user requires explicitly this.

The consistency of using retracts. Within the context of specifications with initial de-
notation, the use of retracts may pose the following coasist problem. Any retract
operationry-.s may introduce new (undesired) elements on the sdtowever this is a
problem only when this affects the ‘old’ elements, in thessethat different elements
may get identified by the use of retracts. This could happeaXample if the user wrote
an equation such a@gat>yzrat (1) = 2.

Definition 2.91 (Consistency of retracts) etl” be a set of conditional equations for an
order sorted signaturéS, <,F) and letl'® be an extension df to set of conditional
equations for the extensigis, <,F®) with retracts. We say thdf® is consistent with
respect to when the uniquéS, <,F)-homomorphism from (the initial(S, <,F),I)-
algebra)O(s <) r to the reduct of (the initial (S, <,F®),I*)-algebra)Os < re) re to
(S.<,F) is injective.

Adauga ceva despre sort constraints??

Exercises.

2.25. Specify a data type of lists of natural numbers with the Llikp-operationsar for the head
of alist,cdr for the tail of a list, anc&cons for adding an element as head to a list.

2.26. Specify a partial minus operation on natural numbers ugiagtror supersort. For this spec-
ification, first parse and then evaluate an expression su8h-42— 1).

2.27. Write a specification of the set of the positive rational nenstthat is a confluent and termi-
nating rewriting system.

2.7 Example: compiler correctness

In this section we develop an equational specification of iy gémple programming
language, of a compiler from this language to machine catkf@mulate its correctness
as an inductive property, and formally prove it by structimduction using rewriting. We
use theCafeOBJ both as specification and as execution language.

The programming language considered is that of arithmeficessions. However
the same method can be used for more complex programmingdgeg involving im-
perative constructs such as loop§; t hen- el se, etc.

Initial algebra semantics principle. This is a very classical principle for defining for-
mally the semantics of programming languages. Accordirthigorather elegant princi-
ple, the syntax of a programming language can be specified akyabraic signaturg
such that the programs are the precisely the terms overigimatsire. Then a semantics

76 Chapter 2. Data Type Specification

for this language is given byZ&-algebraA. Given any such semantics, each program can
be evaluated to a semantic value, which is the value of theegponding term through
the uniguez-algebra homomorphism from:(the Z-algebra of terms) té. This is based
upon the initiality property of the term algebra.0

For the compiler example, this principle is applied at twibedéent levels:

1. denotational semanticand
2. operational semantics

In the denotational semantics the algehia an algebra of the values which the programs
of the language are expected to compute. The unique homisor®: — A gives the
denotation of each (source program). In the operationabeéos the respective alge-
bra is an algebr® of programs in a target lower level language, such as madhuide.
The compiler appears as the unique homomorphigsm:@P. The running of compiled
programs appears as a homomorphisamp between the operational algebra and the
denotational algebra. The initiality property of Quarantees the commutativity of the
diagram below

03

A

e

P

which gives the correctness property for the compiler.

Summary of the arithmetic expression compiler specificatio and verification. The
steps of the process of the specification of the compiler dldecformal verification of
its correctness are as follows:

. We specify a data type of simple arithmetic expressiotis iwteger numbers.
. We specify the denotational semantics for the arithneqiressions.

. We specify a compiler from arithmetic expressions talaftmachine instructions.

A W N

. We specify a machine executing configurations formeddig bf machine instruc-
tions and value stacks storing intermediate computatisuli®e

5. Finally, we formulate the correctness of the compilemahictive property of our
specification and prove it by structural induction usingnigng.

Our specifications, although not really large, still quiigngicantly involves a structur-
ing mechanism. Therefore it would be useful if the readerdwmde familiarity with the
material of Chap. 6. However we will try to explain on the spia structuring involved
in a rather informal and elementary way in order to minimize dependence on a deep
understanding of the structuring concepts presented ip.Gha

2.7. Example: compiler correctness 77

The syntax for arithmetic expressions. We consider simple arithmetic expressions
formed only with three binary operation symbols represenéiddition, minus, and mul-
tiplication, and with integers as constants. The followieig specification of the set of
the binary operation symbols.

nod! OPsym {

[Opsym]

ops ++ -- x : -> Opsym
}

For the integers we use the built-in moduleT provided automatically by thEafeOBJ
system.

mod! EXP {
protecting(INT + OPsym
[Int < Exp]
} op (_ _) : Exp QpsymExp -> Exp

The second line of modulEXP means just thaEXP first puts together the specifica-
tionsOPsymand| NT and after adds something more. Two things are thus added: (1)
a subsorting relationship specifying the fact that in outhametic expressions language
the integers are (primitive) expressions, and (2) a mix-dimstructor specifying the fact
that the arithmetic expressions are built recursively fiemaller) arithmetic expressions
by using the binary operators. We could have done all the®owut any structuring by
writing together the specificatior@symand| NT plus (1) and (2) as a single speci-
fication module, but in that case we could not (re)udd (made already available by
the system) and also the specification would have been Islightder to read. At this
stage only slightly harder, but at a later stage, after moderaore accumulation of data
specifications, an eventually flat unstructured specfinatiay be pretty unreadable.

The denotation 0EXP, which is tight (initial) consists of the algebra of the hipa
trees with the inner nodes labeled by the three binary ojp@raymbols, and with the
leaves labeled by integers. As a set of elements, this isaime &1s the terms constructed
with the three binary operations and with the integers astemits, which is exactly the
set of the arithmetic expressions.

From the perspective of the principle of initial algebra satits we can consider
the syntax for our simple language of arithmetic expressésa signatur®= (S F) with
only one sort (namelfx p; the other sort®Psymandl nt playing just an auxiliary role)
and such that

— F_zxp Is the set of integer numbers, iz2={...,—2,-1,0,1,2,...},
- FEXPEXP*?EXP = {++,' - ,X}, and
— Fu—gxp = 0 Otherwise.

The term algebragis indeed the set of all programs, in this case of all aritherestpres-
sions formed from the integers with the three above intreduzinary operations.

78 Chapter 2. Data Type Specification

Denotational semantics for arithmetic expressions. We continue to realize the prin-
ciple of initial algebra semantics by specifying the detiotel semanticg-algebraA
which is as follows.

- Aeyp =7, i.e. the set of the integers,
and for all integersn, n

— Amn=m,

— As(mn) =m-+n,

- A.(mn)=m-n,and

— A¢(mn) =mxn.

The actual specification &is given by the mappingpp! y -t o__that specifies the inter-

pretations of the binary operations. For examfle(m,n) is just(appl y -- tomn).
nod! APP { protecting(EXP)

op apply_to_ _ : OpsymlInt Int -> Int

vars | J : Int

eq apply ++to Il J =1 +J .

eq apply -- tol J =1 - J.

eq apply x tol J =1 % J .

}

The unigquez-homomaorphism § — A, which gives the denotations to the individual ex-
presions, is specified below as the funct@ral _. Note that the equations &VAL just
give the homomorphism conditions feval .

nod! EVAL { protecting(APP)

op eval _ : Exp -> Int

vars E1 E2 : Exp

eq eval (V:Int) = V.

eq eval (E1l Op: Opsym E2) = apply Op to eval (E1l) eval (E2)
}

Testing of the arithmetic expressions. Now that we are done with the specification
of the denotational semantics for the arithmetic expressiand our specification has
grown to certain size, we may take a short break and perfoittteatésting. Such testings

during the building of specifications are important for salecasons. One is that it gives
us a feeling of how our data types work in a very concrete wawyady also happen that

we discover some bugs or things we want to adjust. Finalgfjrtg may give us some

confidence about the quality of our specification buildinggass. So, our little testing

goes as follows.

red eval (((2 -- 3) x 5) ++ (3 x 2))

This gives the expected result

2.7. Example: compiler correctness 79

Compiler: preliminary list data type. The second stage of our specification is devoted
to the specification of the operational semantics for théhauetic expressions. We first
need a ‘parameterized’ data type of lists. This means thatlata type is generic in the
sense that the set of the elements for the lists is abstrdataious list data types may be
obtained just by instantiating it to various concrete set® parametefRI Vis a built-in
module in theCafeOBJ system and consists of only one sBttt , specified with loose
semantics. This means its denotation consists of all shtsligts ovelEl t are specified

by a constructor operatia® adding an element to a list and an associative operation
standing for the appending of lists. We have also to consiseempty list, denotedi | .
The following is theCafeOBJ coding of these.

nod! LIST (ELT :: TRIV) {

[List]

op nil : -> List

op (_@) : EIt List -> List

op (_+_) : List List -> List { assoc }

vars | 1112 : List

eqnil +1 =1 .

eq (e:Elt @ll) +12=e @(11 +12)
}

Thus the denotation dfl ST consists of all algebras interpretirigy t as any set and

Li st (togetherwitni | and_@) as the lists constructed from the elements of the inter-
pretation ofEl t . Note that because we have specified only as identity to the left its
real functionality is as the end marker for lists.

Compiler: the target code. Now we are going to define the algelftaf the operational
semantics. This algebra consists of lists of machine cid@eiistructions (specified by
the sortl nst) and containing two kinds of instructions:

e loading an integer to the value stack, and

e applying an arithmetic operation.

mod! | NST {
protecti ng(OPsym + | NT)
[I'nst]
op Load_ : Int -> Inst

op Apply_ : Opsym-> Inst

The data type of lists of instructions is obtained by instdintg the set of the elements
El t of the generic list data typkl ST to the set of our instructions. For the sake of
expressivity, the soitti st is renamed td nst Li st andLi st tol nstLi st. These
are achieved by the followinGafeOBJ code.

make | NST-LI ST (LI ST(ELT <= view to INST {sort Elt -> Inst})
* {sort List -> InstList})

80 Chapter 2. Data Type Specification

Thus the denotation dfNST- LI ST consists of the algebra of lists of instructions.
TheX-algebraP of the operational semantics is defined as follows.

— Peyp is the set of lists of instructions, i.e. the interpretatainl nst Li st in the
denotation of NST- LI ST,

— Pm=(Load my@i | for each integem,
and for any listd; andly,

— Per(I,l2) =li+ 124+ (Appl y ++H)@ni |,
—P.(Ilo)=li+l24+(Apply --)@il,and
— B(l1,12) =11+ 12+ (Apply x)@i | .

Compiler: the compiler function. Let us denote the unigd@homomorphism 9 — P
by conpi | e. Its name suggests its functionality: it just compiles egsions to lists of
instructions. Its formal specification is given below.

nod! COWPI LER {
protecting (EXP + | NST-LI ST)
op conpile_ : Exp -> InstlList
eq conpile V:Int = (Load V) @nil
eq conpile (EL: Exp Op: OQpsym E2: Exp) =
compi l e(El) + compile(E2) + (Apply Op) @nil
}

Note thatconpi | e is nota surjective homomorphism, which means that there are ele-
ments ofP which are not the result @fonpi | e. Not all lists of instructions, or programs

in the machine code language, are compilations of arittmestiressions. Note also that
the execution aspect @@afeOBJ by rewriting gives it real programming capabilities
shown by the fact that we can program a compiler; moreoverishichieved in a highly
declarative way.

Testing the compiler. Now we may test our compiler. Let us do it on the same arith-
metic expression that we have used for our previous testing.

red compile (((2 -- 3) x 5) ++ (3 x 2))

This gets the following program.

Load 2 @Load 3 @Apply -- @Load 5 @Apply x @Load 3 @
Load 2 @Apply x @Apply ++ @nil : InstList

2.7. Example: compiler correctness 81

The execution machine. The next step is to define the mappingnp that takes ma-
chine code programs and runs them for getting an integersast.ré&or this relatively
complex task we have to define an execution machine that stensi configurations
formed by a list of instructions and value stacks for storimgrmediate computation
results. The following is a sample of the execution of som#decon the machine, which

corresponds to the compiled code for the arithmetic expme¢® -- 3) ++ 5:

Load 2
Load 3 Load 3
Apply - |—»| Apply -- —»| Apply -- |—» —> —>
Load 5 Load 5 Load 5 Load 5
Apply ++ Apply ++ Apply ++ Apply ++ Apply ++

[[[[[[

—> 2 —> 2 —> -1 —> _51 —> 4

A value stack for storing intermediate computation resiglspecified as an instance of
theLl ST data type by instantiating the elemeni) with integer valuesi(nt). For
the sake of expresivity we also rename the &0r$t to Val St ack. Note that this is a
second reuse of the parameterized data type of lists.

make VALUE- STACK (LI ST(ELT <= viewto INT { sort Elt -> Int })
* { sort List -> Val Stack })

Execution machine: the specification.

nod! EXEC- MACHI NE {
protecting (VALUE- STACK + APP + COWPI LER)

The operatiordo_on_od builds the configurations.

[Config]
op do_on _od : InstList Val Stack -> Config

One step execution of configurations are specifiegkgc_. To address the situations
when configurations cannot be executed, such as for exanipga e head of the list

of instructions is amAppl y and there are not at least two integers in the value stack,
the result sort okxec is specified to be the error supesort for configurations. Eoh s
situations weunder-specifythe functionality ofexec, which simply means that we do
not write any equations corresponding to the respectivescas

op exec_ : Config -> ?Config
vars Il : InstList
vars Vs : Val Stack
eq exec do ((Load E:Int) @Il) on Vs od = do Il on (E @Vs) od .
eq exec do ((Apply Op:Opsym) @11) on (l:Int @J:Int @Vs) od =
do Il on ((apply Op to J 1) @Vs) od .
The operatiom un_is meant for a complete execution of the configurations bygitie

auxiliary operatiorexec_. The normal form of terms withun_ on the top represent the
result of the complete execution of the corresponding cardigon.

82 Chapter 2. Data Type Specification

op run_ : Config -> ?Config
eq run do nil on Vs od = do nil on Vs od .
eq run do (l:Inst @Il) on Vs od =

run exec do (I @I1) on Vs od .

}

Note that the right hand side of the latter equation does ealtyr parse well because
the result sort oexec is ?Conf i g while the argument sort afun is Confi g. This
is silently solved by the system by introducing a corresjpogpdetract function (see
Sect. 2.6). Now we can peform some testing of the executiarhine:

red run do conpile(((2 -- 3) x 5) ++ (3 x 2)) on nil od .

This gets

(do nil on (1 @nil) od): Config.

The following is an example giving error value.

red run do Apply ++ @nil on 1 @nil od .

This gets

(run (retract (exec (do ((Apply ++) @nil) on (1 @nil) od)))):?Config

runp revisited. The operatiom un_ specified above determines immediately the map-
pingr unp from machine code programs to integer values. This takegranas and gives
the values resulting from their execution. However as ddfse far,r unp is a partial
function because as we have seen before not all machine cogeams run to produce
an integer value result. We solve this problem by considgion all machine code pro-
grams that are not compiled code of some arithmetic exesan error result value,
denotecer r . Thus

runp(IL) :{ i if run(do ILonnil od)=donil on(i@nil)od
err otherwise.

In order to have unp as a>-homomorphism from the operational semantics alg&bra
to the denotational semantics algebra we have to upgradettBeby extending it with
the error valuesr r . Let us denote this upgraded algebra®yand define it as follow.

- A, =2U{err}, and

Exp

As(xy) if xyeZ

— ++ - - / — 9 9 -

foranyo € {++,- - ,x} we letAg(x,y) { err otherwise.

The formulation of compiler correctness. The correctness of the compiler can be in-
formally stated as

The running of the compiled code for an arithmetic expresgiets the same
result as the (semantic) evaluation of the expression.

2.7. Example: compiler correctness 83

which may be formally expressed as
runp o conpile = eval .

If we proved that unp is aZ-homomorphisnP — A’ then the compiler correctness is
obtained directly from the initiality property ofsCas shown by the diagram below.

eval

O —— A
conpi& /Inp
P

The proof of the compiler correctness is thus reduced torthef jpf the>-homomorphism
property forr unp. However we prefer here to use a simpler proof alternatiamely to
prove directly

run do (conpile E) on nil od = do nil on eval (E) nil 0d.(2.90)

The proof of compiler correctness. It is actually more convenient to prove the follow-
ing generalized version of (2.90).

run do ((conpile E) + 11) on Vs od = run Il on (eval (E) @Vs) (2.91)

Since the denotation of our specification is initial, thisais inductive property and we
prove it by using the structural induction method of Prog52For our property the sit
of variables of Prop. 2.85 i§E: Exp}. Since there are only two constructors of $oxp,
namely the integer numbers aid) , we have only two cases f@g of Prop. 2.85.

The proof score. Now we are ready to write the proof score for our inductivepemy.
open (EXEC- MACHI NE + EVAL)
The casg =V forv € Z:

op il : -> InstList
op vs : -> Val Stack .
opv: ->1Int
red run do (conmpile v) + il on vs od ==
run do il on ((eval v) @vs) od .

Thecas®e=(__):

ops el e2 : -> Exp .
op op : -> Qpsym.
eq run do ((conpile el) + Il:InstList) on Vs:Val Stack od
run do Il on ((eval el) @Vs) od .
eq run do ((conpile e2) + Il:InstList) on Vs:Val Stack od
run do Il on ((eval e2) @Vs) od .
red run do (conmpile (el op e2)) + il on vs od ==
run do il on ((eval (el op e2)) @vs) od .
cl ose

84 Chapter 2. Data Type Specification

Exercises.

2.28. Specify thez-algebraP of the operational semantics for the arithmetic expressiSpecify
the Z-algebraA’ and theZ-homomorphisnr unp and prove that the latter is indeed a homomor-
phism.

Chapter 3

Specification with Transitions

This chapter is devoted to rewriting as a specification fdismarather as an execution
mechanism. The chapter is structured as follows.

1. We show how rewriting can be turned into a specificatiomfism, including the
definition of an underlying logic that extends the logic ofafmy sorted) algebras
developed in the previous chapter.

2. Next we develop a sound and complete calculus for this ngie las an extension
of the equational proof calculus.

3. The rest of the chapter is devoted to methodologies foritiegy as specification,
the most important being specification and verification gbathms.

3.1 The logic of transitions

An example: bubble sorting by rewriting Rewriting is a generic algorithm in the sense
that many algorithm can be coded as rewriting systems. Budairting is such an exam-
ple. Let the following be a specification of the data type dlina numbers with a strict
‘less than’ relation:

nod! PNAT= {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _=_: Nat Nat -> Bool {comm}

vars M N : Nat

eq ((s M =0) =false .
eq (0 =0) =true .
eq (s M=s N = (M=N)

86 Chapter 3. Specification with Transitions

nod! PNAT< {

pr ot ecti ng(PNAT=)

op _<_: Nat Nat -> Bool
vars M N : Nat

eq 0 <s M= true .

eq M< 0 = fal se .

eq (s M<s N = M<N.
}

The following is a specification of strings of natural nungeith concatenation:

nmod! STRG PNAT< {

pr ot ecti ng(PNAT<)

[Nat < Strg]

op _;_ : Strg Strg -> Strg {assoc}
¥

The bubble sorting may be specified by only one rewriting mitelulo the associativity
of the concatenation operation. The rather compact coditigedubble sorting algorithm
owes to the power of using operation attributes and of revgrinodulo axioms.

nod! SORTI NG NAT {

pr ot ecti ng(STRG PNAT<)

cq MNat ; NNNat = N; M if N< M.
}

The denotation 0SORTI NG- NAT consists of the sorted strings of natural numbers, i.e.
the results of the sorting computation. Thus, at the levalesfotational semantics the
whole process of sorting is collapsed to the final resultdcvimeans that in this case
equational logic is too gross for specifying the states efalyorithm. However the states
of the sorting algorithm are recovered at the level of theptered algebra of the rewrit-
ing relation modulo associativity. In more precise wordd iconsists of associativity
of concatenation (in addition to the equationsRNAT<) and[l" of sorting equation of
SORTI NG- NAT, then the elements of this preordered algebra are the stoifgaturals,
i.e. classes of terms modute:, and the preorder relation is*ar,E, the rewriting relation
moduloE. The following figure shows the fragment of this preordeatien on on strings
of naturals that corresponds to the sorting of the strthg (2 ; 1).

3.1. The logic of transitions 87
schimba . cu ; in figura de mai sus si in cele de mai jos

Transitions versus equations. In order to have the preorder algebraéf»r’E as the
denotation of the specification, we have to refine the logimahy sorted algebras of
Chap. 2 in a way that we distinguish between rewrite ruigsijat are used for comput-
ing equalities, and which collapse elements, and thbséh@at do not collapse elements
but are rather used for specifying transitions between etesn InCafeOBJ and Maude,
respectively, this is achieved by denoting transitiong bgns (or ct r ans in the con-
ditional case) and!| (orcr), respectively, rather than l®qg (or ceq).

This means a refinement of the logic of Chap. 2 to a logic thaisiclers pre-
ordered algebras rather than algebras as models and thathidads of atoms: equations
and transitions. This is called the logic of preorderedlaigs (abbreviatteBOA). Both
CafeOBJ and Maude support directlOA as a specification paradigm, although for
Maude this is the main focus and is treated at a more sopduistidevel than presented
here. Therefore th€afeOBJ code of thePOAspecification of bubble sorting is

nod! SORTI NG NAT {
pr ot ecti ng(STRG PNAT<)
ctrans MNat ; NoNat => N; M if N< M.

}

The formal definition of POA In the following we definl?OAformally as a logic by
extending the logic of (many sorted) algebras of Chap. 2eiLah we extend the logic
results of Chap. 2 tBOA including existence of initial models and a sound and cetepl
proof calculus for conditional sentences. These resuiistitate the foundations ftOA
specification with conditional sentences.

Definition 3.1 (POAsignatures) Thesignatures oPOA are just the algebraic signatures,
i.e. of the form(SF).

Definition 3.2 (POA models and homomorphismsEiven a signaturg S;F), a POA
(S F)-modelis just a preorderedS, F)-algebra. We may denote preordef@&JF)-algebras
by (A, <) where A is the underlying (discreté}, F)-algebra and< is the family of pre-
orders(<s)scs on the interpretations of the sorts.

A homomorphism of preordere(®, F)-algebrash: (A <) — (A, <) is just an
(S,F)-homomorphism A~ A’ that is monotone, i.e.sfa) <j hs(b) for any se S and any
a<gh.

The monotonicity of the interpretation of the operationpiaordered algebras can
be read as an extension of the interpretation of the opesatiom elements to transitions.
For example, in the preordered algebr&ARTI NG- NAT discussed above we may think
that transitions between strings concatenate like showthdfigure below.

[3.2.4] [2.1] [3.2.1.2.1]

tl t2 = t1.t2

[2.1.4] [1.2] [2.1.3.1.2

88 Chapter 3. Specification with Transitions

The concatenation of transitions represents the parafec of the bubble sorting, we
can sort independently in parallel different parts of angtrand then join the results and
eventually continue from there.

Definition 3.3 (POA sentences) The sentences of POA are constructed like in Dfn. 2.6
with the difference that we consider two kinds of atoms

1. equationsof the form t=t’ (like in Dfn. 2.6), and
2. transitions of the form t> t’ where t and tare terms of the same sort.

A Horn clausen POA is just a sentence of the foiviX)H = C where H is a finite con-
junction of atoms (either equations or transitions) and @ &ngle atom (either equation
or transition).

Definition 3.4 (POAsatisfaction) For a given signaturéS F), the satisfaction between
preordered algebras and POA sentences extends the defioftgatisfaction for algebras
(Dfn. 2.10) with the satisfaction of transitions:

(A <) gr) t=>1t ifandonly if A <A

Now it is the moment to note that the logic BIOA goes beyond rewriting mod-
ulo axioms since ilPOA the sentences may involve equations and transitions withou
restrictions; for example we may have equations conditidmetransitions, a situation
that cannot be captured by splitting the rewriting rules in(for transitions) ande (for
equations).

Initial semantics in POA It is rather easy to show (we leave this as exercise to the
reader) that the preordered algebra corresponding to thigldsorting algorithm on the
strings of naturals discussed above is the initial pre@dl@lgebra satisfying the sen-
tences ofSORTI NG- NAT. In fact, like for conditional equations, any set of Hornudas

in POAadmits an initial model. This result allows for initial sentias specifications with
Horn clauses ifPOA, which is an important specification methodology usinggigons.

In the rest of this section we develop the result on existerfdritial models for Horn
clauses irPOAby following the same proof pattern as for the existenceititiralgebras

for conditional equations.

Congruences and quotients irPOA First, we need to upgrade the notion of congru-
ence from algebras to preordered algebras.

Definition 3.5 (POA congruence) A POAcongruencen a preordered S F)-algebra
(A, <) is a pair(=,C) such that

— =isan(SF)-congruence on A,
— (A ,C) is a preordered algebra such thats C Cg for each sort & S, and

— foreachs= S, d=sa,alCsh,b=sb’ implies d Cs b’ for any elements,@’,b,b’ €
As.

3.1. The logic of transitions 89

Congruences form a partial order under inclusion, ie,C) C (=/,C) if and only if
= C =_andCs C C,foreach s S.

The following is an example d?OA-congruence. Let us consider a signature con-
sisting of one sors and a binary operationt_ and a preordered algebfa, <) for this
signature defined by

e Asis the set of strings of natural numbers,

e A, performs component-wise addition of naturals, for exanipl®) + (2;3;1) =
(3;5;1, and

e x1 < x2if and only ifx1 is a ‘lax prefix’ ofx2 in the sense that the lengthxi is
less than or equal to the lengthxéf and the elements afl. are less than or equal to
the elements af2 component-wise; for examp(#; 2) < (2;2;3).

Then(=,C) is aPOAcongruence ofA, <) where
e x1 =x2 if and only ifx1 andx2 have the same length, and
e x1C x2 if and only if the length okl is less than or equal to the lengthx@f

Proposition 3.6. Each POA-congruence=,C) on a preordered algebrgA, <) deter-
mines aguotientpreordered algebra homomorphism A, <) — (A/=,<’) where

— g: A— A/=is the quotient algebra homomorphism determined by thercemge
=asin Dfn. 2.18, and

— a/= <’ b/=zifand only if aC b.
The quotient preordered algebfd/—, <) may be also denoted BA, <)/ (=).

Proof. The definition of the preorder relatio®’ is correct since it is independent on the
choice ofa andb. Indeed, leta = & andb = b'. By the definition ofPOA-congruences
we have thaa C b if and only if & C b’. Moreover thak’ is a preorder follows from the
fact thatC is a preorder.

In order to complete the argument tliAy =, <’) is a preordered algebra we have to
show that the interpretations of the operationsAgn are monotone with respect to the
preorder<’. Let o be any operation symbol arféy, ...,an) and(a},...,a,) appropriate
lists of arguments foA;. We have to prove that

(A/E)U(al/za .- ’an/E) Sl (A/E)U(all/zv .o ’aa/E)
if ax/= <'a, /= for each 1< k < n. This is equivalent to

As(a,...,an)/= < As(dy,...,a,)/= and further toAg(ay,...,an) C As(a],...,a,).

The latter relation holds becauaeC & (sinceay/= <’ &, /=) for each 1< k < nand by
the definition of the®?OA-congruence which guarantees thgtis monotone with respect
to the preordeL.

The quotient homomorphism is monotone because & < b thena C b which
impliesa/= <'b/=. O

90 Chapter 3. Specification with Transitions

In the case of thé>’OA congruence presented above, the corresponding quotient
preordered algebrgd/=, <') has the natural numbers as its elements, interptetas
the maximum between two natural numbers, afids the ordinary ‘less than or equal’
relation between naturals.

The following is the refinement of the concept of kernel of lbonorphism of alge-
bras (Dfn. 2.19) to the situation of preordered algebras.

Definition 3.7 (Kernel of homomorphism if?OA). For any preordered algebra homo-
morphismh (A <) — (A, <) its kerne| denoted keih), is defined as the pair of fami-
lies of binary relationg =y, <y,) where

— =pis the kernel of h as algebra homomorphism-A4', and

— for each sort s of the signature and anypae As, a(<p)sb if and only if k(a) <s
hs(b).

Fact 3.8. ker(h) is a POA-congruence.
The following is aPOArefinement of Prop. 2.21 to preordered algebras.

Proposition 3.9. For any surjective POA homomorphism A, <) — (A',<’) and any
POA homomorphism'h (A, <) — (B,<"), there exists an uniqgue POA homomorphism
h: (A,<')— (B,<") such that g/ = h if and only if kefq) C ker(h).

(A<) ———

) ———= (K, <))
N
(B.<")

Proof. The direct implication is almost trivial, hence we focus ba inverse implication.
Recall thaker(q) C ker(h) means that=q C = and<q C <p. Because=q C =p we can
use Prop. 2.21 and obtain the existence and uniquenédssefalgebra homomorphism
A’ — B. It thus remains to show that is also monotone.

Letus assume] <5a, € AS. Then if we writeaj = gs(a1) anda,, = gs(az), we have
thatas (<q)sa2 which by hypothesis implies; (<n)sa> which meansi(a;) <t hs(az). By
definition we have that}(a,) = hs(ax), henceng(aj) <% h(a)). O

Free preordered algebras. The following extends the concept bfcongruence from
ordinary algebras (Dfn. 2.22) to preordered algebras.

Definition 3.10(I"-congruence iflPOA). For any finite conjunction H= (ty =t)) A--- A
(th =t) A (thr1>t 1) A--- A (k> t;) of POA(S,F)-atoms and any preordere@, F)-
algebra(A, <), by A4 we abbreviate the pair of set¢ (A, Ay) | 1 <i < n}, {(Ay,Ay) |
n+1<i<k}).

Givenl” a set of POA Horn clauses for a signat®F), a POA congruence=,C)
on a preordered S F)-algebra (A, <) is a '-congruencevhen for each Horn clause
(VX)H = C in T and for any expansion’/f A to (SFUX), A, C (=,C) implies
A C (=.0).

3.1. The logic of transitions 91

Fact 3.11. Thel-congruences on a preordered algehd, <) are closed under arbi-
(A=)

trary intersections. Let=; ,g(rA’S)) denote the leadi-congruence oifA, <), which
is the intersection of all-congruences ofA, <). Then by &’5) we denote the quotient
homomorphism that corresponds(t@(rA’S), g(rA’S)).

The following three results refine the corresponding resalttout algebras to pre-
order algebras. Since their proofs just mimic the proofsropP2.23, Prop. 2.24, and of
Cor. 2.26, respectively, we omit them here.

Proposition 3.12. For any set of POA Horn clausds for a signature(S F) and any
homomorphism of preorderd®, F)-algebras h (A, <) — (B, <), if (B,<') =T then
ker(h) is a POAI -congruence.

Proposition 3.13. For any set of POA Horn clausésfor a signature(S,F) and for any
POA congruencé=,C) on a preordered S F)-algebra(A, <)

(A,<)/(=zr) ET ifandonlyif (=,C) is a POAl-congruence.

The concept of free preordered algebras in the result beddike the concept of
free algebras of Cor. 2.26.

Corollary 3.14. For any set of POA Horn clausdsfor a signature(S,F) and for any
preordered S, F)-algebra(A, <), (A, <)/ (= <) is thefree preordered algebra ove, <
) satisfyingr.

(A;S) 4qr> (Aag)/(:r,ﬁr)

(B,<) T

Term preordered algebras. From Prop. 2.27 let us recall the initial term algebygg.

Proposition 3.15. For any signaturg(SF), (Osr),=) is the initial preordered S F)-
algebra.

Proof. We have just to note that for each preorde(8d-)-algebra(A, <), the unique
algebra homomorphisim: 0(gr) — Ads trivially monotone. O

Existence of initial preordered algebras for Horn clause spcifications. The follow-
ing is obtained as an instance of Cor. 3.14 for the initiabptlered algebra (of Prop. 3.15).

Corollary 3.16. For each sef of Horn clauses in POAQ(sF), =)/ <) is the initial
preordered algebra which satisfi€s

For example, the initial preordered algebre&5@RTI NG- NAT is the preordered al-
gebra discussed at the beginning of this section, havingtthmgs of naturals as elements
of sortSt r g, and the preorder relation on strings being generated bgt@peransitions
of the bubble sorting algorithm.

92 Chapter 3. Specification with Transitions

Exercises.

3.1. Show that bijective homomorphisms of preordered algelmasa@t necessarily isomorphisms.

3.2. LetT andE be two sets of S F)-equations. Show that the preordered algebra determined by
Lr,E, the rewriting relation byr moduloE, is the initial preordered algebra that satisfieas
transitions andE as equations.

3.2 Proof in preordered algebra.

Preordered algebra deduction.

Definition 3.17 (Proof theoretic entailment system fBIOA Horn clauses) The proof
theoretic entailment system fBOAHorn clausesdenoted-"POA is the least entailment
system which satisfies the meta-rulesraplicationand of Universal Quantificatiomnd
which contains the the equational proof rulBeflexivity, Symmetry Transitivity, and
Congruencef Dfn. 2.37, the following rules for transitions

Trans-Reflexivity: % for all (S F)-termst.

{t=>t, t'>1t"}

Trans-Transitivity: —

for all (S,F)-termst, t and t’ of the same sort.

{ti=t | 1<i<n} for each operation symbab € Fs 5, —s

Trans-Congruence: o(ty,....tn)=>0(t],.... 1) and any termsitt/ of sort g for 1 <i <n.

the following upgraded (from Dfn. 2.37) rule

{(vX)H =C} for any Horn clausgVX)H =- C for (S,F) and for

POA-Substitutivity: {6(H=C)} eachsubstitutio®: X — TgF).

and the following rule

{i=ty, >t t] =t)}
{ta>13}

Compatibility: forall (S F)-terms g,to,t7,t).

Soundness and completenessThe soundness dfHPOA is obtained in manner very

similar to the soundness of equational deduction (Pro®)2 checking the soundness
of each of the proof rules of Dfn. 3.17. For the equationabprales this has already

been done by Prop. 2.38,and for the rules for transitioraritte done like in Prop. 2.38,

therefore. we omit these details here.

Proposition 3.18(Soundness diPOAdeduction) The entailment systeiri’?©”is sound.

Thecompleteness 6fPAis obtained along the same lines as for the completeness
of equational deduction (Thm. 2.50), therefore here wegkstch its proof here leaving
the details to the reader.

3.2. Proofin preordered algebra. 93

Theorem 3.19Completeness d¢iPOAdeduction) The entailment systeiri’”"©”is com-
plete.

Proof. For any fixed sel’ of Horn clauses irPOA let us consider the following two
relations on the initial (term) preordered alget®gsr),=):

— =r={(t,t") | FHPOAt =1}, and
— Cr={(t,t") | T FHPOAt> '}

Then pair(=r,Cr) can be shown to be ROAT -congruence and by using the quotient
preordered algebra in the manner of the proof of Thm. 2.50 btaio that(0(gr), =
)/ (=r.cr) E T that leads for each equation or transit@to

I =C implies I F1POAC, (3.1)

The relation (3.1) then lifts to all Horn clauses by usingteta-rules ofmplicationand
Universal Quantificatiotike in the proof of Thm. 2.50. O

Induction in POA The issue of inductive properties and proof methods for tirem
POA s almost identical to that of induction for ordinary algasr This means that the
concepts and results of Sect. 2.5 carry to the framewoR@Awith almost no modifica-
tions, modulo the fact that fdPOAwe consider sentences constructed also from atomic
transitions besides equations, and also that the consdideydels are preordered algebras
rather than algebras. In particular, the statements angrtds of the crucial results of
Prop. 2.85 and Prop. 2.86 can be interpreted@Awithout any change in their original
form. Therefore the structural induction proof method iaikble forPOAIn the same
form as for ordinary algebra. In Sect. 3.4 we will develop gareple of induction proof
based upon the interpretationROA of Prop. 2.85 and Prop. 2.86.

Rewriting in POA The proof calculus foPOAHorn clauses given by the entailment
systent-HPOA can be mechanised by rewriting in a way very similar to equratireason-
ing. This means a rather straightforward extension of te@ilSect. 2.4 as follows.

Definition 3.20 (Rewriting entailment inrPOA). The POA(term) rewriting entailment
system(denoted-" like for ordinary algebras) is the least entailment systemRPOA
Horn clauses containing the proof rules of Dfn. 3.17 minus ithle of Symmetryand
which satisfies the meta-rules hplicationand of Universal Quantification

The following is a replica of Prop. 2.57 to tHeOA framework, its proof being
almost identical to the proof of Prop. 2.57.

Proposition 3.21. The POA rewriting entailment system is the least entailrsgatem
containing the proof rules oReflexivity, Transitivity, and

{(vX)H=C} UB(H) for any substitutiond: X — Tgr) and
c[6(C)] each context c.

POA-Rewriting:

94 Chapter 3. Specification with Transitions

(where by §(C))] we mean [B(t)] = c[8(t")] when C is t=1t" and and ¢8(t)] > c[0(t)]
when C is t t) and which satisfies the meta-rules whplication and of Universal
Quantification

For any sef” of POA Horn clauses we define the followingwriting relation on
(S F)-terms:

t —>rt’ ifandonlyif MHt>1'.
Sincet-" is less thar-"POA we have immediately the following soundness consequence
for POArewriting.
Corollary 3.22. Ift >t/ thenll =t>t.

Like in the case of rewriting for ordinary algebras, the riéwg relation——r can
be considered more generally on an arbitréyF)-algebraA:

—ra is the least reflexive-transitive closure ¢fA, Ay) | T F t>t'}.

Moreover Prop. 2.69 and Prop. 2.70 admit replicas simildhéir original form. As in
the ordinary algebraic framework, whéris the initial algebra for a sé of conditional
equations, the relatior™r 4 is denoted—~r ¢ and we havé®OAreplicas of Cor. 2.73
and Cor. 2.74, respectively, collected by the followingyééresult.

Corollary 3.23. For any(S F)-terms t and‘twe have that
(t/—g) ——re (/=) ifandonlyif {t§ =t |EEt1 =t} Ul Ft>t".
Consequently

(t/=g) ——rE (/=) impliesT UE =t>t'.

exec versusr ed. The computation of normal forms fer*—>r£ is supported irCafeOBJ
by the commandxec, the corresponding Maude command beimgw i t e. Thus,
while in CafeOBJ the command ed uses only the equations of the specification in
rewriting, the commaneéxec uses both equations and transitions in rewriting. In both
situations rewriting is performed modulo the declared apien attributes.

For example, the sorting of strings of naturals may be peréatin CafeOBJ as
follows:

SORTI NG NAT> exec (s s s 0; ssO0; s O0)
which gives the result
s0; ss0O0; sssO0: Strg

In this exampleE consists of the associativity of concatenation &naf the three equa-
tions of PNAT< plus the conditional transition declared BYRTI NG NAT. Thus the

rather compact specification of bubble sorting giversRTI NG NAT functions also as
a sorting program, a highlgeclarativeone based upon rewriting modulo associativity.

3.3. Algorithm specification and verification 95

3.3 Algorithm specification and verification

One of the most meaningful applicationsRDAIs for formal specification and verifica-
tion of algorithms. We have already seen the example of aat(d¢ableP OAspecification
of bubble sorting for strings of naturals. In this sectiondevelop a formal verification
for two of the important properties of this algorithm, nayn&rmination and confluence.
Moreover, in this section we consider the bubble sortingtigm in a more general form
than in the previous section.

Generic bubble sorting. Many algorithms have a certain degree of independence of the
actual data type, in the sense that they do not depend ontallgdef the data type, but
rather only on few of the properties of the data type. If weehacareful look at bubble
sorting then we see easily that this is the case of bubblegddo. Without any problem
we may replace iSORTI NG NAT the naturals by other number types such as integers,
reals, etc. What is important is to have an ordering, whicaksdmt even need to be total,
it can be partial. Moreover, bubble sorting would work alsbdome binary relations that
are not even orderings, but in those cases the confluence @lgorithm may be lost.
However we will see that termination always holds. Sortimgrasuch non-conventional
relations is sometimes referred totapological sorting While the properties of termina-
tion and confluence are quite obvious in the case of the ratunabers, they are less so
for other structures.

Our first step is to specify a data type of strings paramegetiy abstract binary re-
lations for the elements. Next we will specify bubble sagtior those strings and formally
verify the above mentioned properties.

Specifying generic bubble sorting. We first specify strings over any sets of elements
(specified here by¥RI V).

mod« TRIV { [EIt] }

nod! STRG (X :: TRIV) {
[Elt < Strg]
op nil : -> Strg
op ;_ : Strg Strg -> Strg assoc id: nil

}

Note that INSTRGthe fact thahi | is identity for the concatenation of strings is specified
as an operation attributed: ni).

Next we specify a class of binary relations, that includes flartial orders. The
additional predicatenot <_ stands for the negation of the main relatien.

nod+ PSEUDO- ORDER {
[Elt]
op < : Et EIt -> Bool
op _not<_: EIt EIt -> Bool

96 Chapter 3. Specification with Transitions

vars El1 E2 E3 : Elt
cqg (E1 not< E2) = true if E2 < E1 or not(El < E2)
eq (E1 < E2) and (El1 not< E2) = false .

}

For specifying the generic bubble sorting we just specift the parameter of the ele-
ments of the strings is model ®BSEUDO- ORDER and add the sorting transition.

nod! SORTI NG STRE Y :: PSEUDO ORDER) {
protecti ng(STREY Y))
ctrans EEIt ; E:Et =>F ; E if (E < E
}

From generic to concrete sorting. The sorting of naturals can be obtained from the
generic sorting specificatidORT| NG STRGby instantiating the parametgéito PNAT<,
the ordering of the naturals. This is done by the followinigiw’ which specifies the way
<_and_not <_ are interpreted ifPNAT<. The crucial point of this instantiation is that
the interpretations of<_ and_not <_ satisfy the axioms oPSEUDO- ORDER. This has

to be done formally through a proof score, however we omst ligire.

vi ew PNAT<asPO from PSEUDO- ORDER t 0 PNAT<
{op (EEt not< EE:Elt) -> ((EENat = E:Nat) or (E <E))} .

Then the modulSORTI NG STRG PNAT<asPO) is the same aSORTI NG- NAT.

Proving termination. Now we prove the termination ORTI NG STRG. This im-
plies that any of its instances is also terminating. Math@raby, the termination prop-
erty considered here is that the (sorting) preorder refaifdhe initial preordered algebra
of SORTI NG STRGis Noetherian. For this we use a rather common techniqueptha
defining a so-calledreight function won the states of the algorithm, with natural numbers
as values, such that

t=>t" implies w(t’) <w(t)

for any stringst andt’. Because the natural numbers are well-founded with regpect
<, the existence of a such weight functisnmeans that there are no infinite chains of
transitions between the states of the sorting algorithm.

The weight function. The weight functiorw is defined as a measure for the distance
from the states of the algorithm to the sorted state and isifsge below by the function
di sorder.

nod! PNAT+ {
pr ot ecti ng(PNAT=)
op _+_: Nat Nat -> Nat
vars M N : Nat
eq [succ+] : M+ (s N =s(M+ N

3.3. Algorithm specification and verification 97

eq M+ 0 =M.
}
nod! SORTI NG- DI SORDER (Y :: PSEUDO ORDER) {
protecti ng(SORTI NG STRE Y) + PNAT+)
op >> : EIt Strg -> Nat
op disorder : Strg -> Nat
vars EE : Elt
vars S S : Strg
eq E>>nil =0 .
cq E>F s 0if (E < E)
cq E > F 0 if (E not< E)
eq E> (S; §) =(E>9S) + (E>9)
eq disorder(E) =0 .
eq disorder(E; S) = disorder(S) + (E >> S)

}

The following shows some of the behaviourdifsor der for its instance to the natural
numbers.

We may test this with th€afeOBJ system by giving this instance a run as follows:

sel ect SORTI NG DI SORDER(PNAT<asPO)
red disorder(s s s 0; s 0; s s 0

Termination proof score. Our proof of termination may be classified as ‘semi-formal’
because we will build and run a proof score for the property

di sorder (SE1;E2;S) < di sorder (SE2;E1;S) if EL<E2. (3.2)
forall S,S: St rg andE;,E; : El t . From this we derive the desired property
di sorder (s) < di sorder () if s>¢& (for s#¥9)

by using the fact that any transiti®> s with s s is a finite composition of one-
step transitions like in (3.2). This latter rather obvioastffollows from the mathematical
theory (see the proof of Prop. 2.69), and constitutes thefaomal part of the termination
proof. However note that both this property and (3.2) areiatistle properties, they are
not general consequences of the axioms of the specifications

The proof score for (3.2) requires the following auxiliagfation on the strings:

S<>S ifandonlyif (YE:Elt)E>>S=E>>S.

98 Chapter 3. Specification with Transitions

Since conditional equations are not expressive enoughedoifgpthis relation, we only
introduce the notation and use the definitiorkefby hand in the proof score.

nmod+ SORTI NG<> (Y :: PSEUDO ORDER) {
protecti ng(SORTI NG DI SORDER(Y))
op <> : Strg Strg -> Bool

}

The proof score of (3.2) given below uses four lemmas, frortwvthe last two refer to
properties of the natural numbers.

open SORTI NG<> + PNAT< .
vars EE : Elt
vars S S1 S2 : Strg
vars M N P : Nat
cq [Lemma-1] : disorder(S ; Sl1) < disorder(S; S2) = true
if S1 <> S2 and di sorder(S1) < disorder(S2)
eq [Lemu-2] : (E; E ; S <> (E ; E; S) =true.
ops el e2 : -> EIt
ops s s’ : =->Strg .
-- [Lema- 3]
op _+_: Nat Nat -> Nat {assoc comm}
eq [Lemma-4] : M< s M= true .

We introduce the condition of (3.2):
eq el < e2 = true .
and proceed with the proof of the conclusion.
red disorder(s ; el ; e2 ; s’) < disorder(s ; e2; el ; s’)

cl ose

Proof score forLema- 1. The proof ofLemra- 1 is by induction onS and is based
upon the result of the structural induction Prop. 2.86, wher

— X={S}andY =0, and

— pis(VSL,2:Strg)(Sl<>S2) A di sorder (SL) <di sorder ()=true=
di sorder (S; Sl) < di sorder (S;)=true.

Thecasd)s=e:Elt:
open SORTI NG<> + PNAT< .

ops sl s2 : -> Strg .
ope: ->Et
var E : Et

vars M N P : Nat

3.3. Algorithm specification and verification 99

We introduce the condition of the property

eq disorder(sl) < disorder(s2) = true .
eq E>> s1 = E >> s2 .

and we use agaibenma- 3 and introduce a new lemma on natural numbers.

-- [Lema- 3]
op _+_: Nat Nat -> Nat {assoc comm}
cq [Lemma-5] : M+ N< P+ N=trueif M<P.

Now we execute the conclusion bémma- 1 for this case:

red disorder(e ; sl1) < disorder(e ; s2)

cl ose

The casd)s = _; _:

open SORTI NG<> + PNAT< .
ops x y sl s2: ->Strg .

vars S S1 S2 : Strg
This case involves the following induction hypothesis:

cq disorder(x ; Sl) < disorder(x ; S2) = true

i f disorder(Sl) < disorder(S2) and S1 <> S2 .
cq disorder(y ; S1) < disorder(y ; S2) = true

i f disorder(Sl) < disorder(S2) and S1 <> S2 .

Now we introduce the condition for this case

eq sl1 <> s2 = true .
eq disorder(sl) < disorder(s2) =true .

and a new lemma
cq [Lemma-6] : S; S1 <>S; S2 =trueif Sl <> S2 .
and proceed with the reduction of the conclusion for thigcas
red disorder(x ; y ; sl) < disorder(x ; y ; s2)
cl ose
Proof score forLenmma- 2.

open SORTI NG<> + PNAT< .
ops el ee : ->EHEt
ops: ->5Strg .

We usel.enma- 3 for the third time in our termination proof and introduce arlemma
on natural numbers:

100 Chapter 3. Specification with Transitions

-- [Lema- 3]
op _+_: Nat Nat -> Nat {assoc comm}
eq [Lemma-7] : (MNat = M = true .

and execute the conclusionloémma- 2

red el > e ; € ; s =el>¢e" ; e; s.
cl ose

Proof score forLenma- 6.
open SORTI NG<> + PNAT< .

ops s sl s2: -> Strg .
ope: ->Et
var E: Elt

This is the second place in our termination proof score threatige the definition of>,
which is required by the condition of the lemma:

eq E>> s1 = E >> s2 .
We also use againemma- 7:
eq [Lemma-7] : (MNat = M = true .
and we proceed with the execution of the conclusion of theriam

rede>s ; sl =e >s ; s2.
cl ose

This completes our termination proof. We have skipped tloofpscores of all lemmas
about natural numbers, and leave this task to the reader.

Mind semantic traps! The last equation dPSEUDO- ORDER, namely
eq (E1 < E2) and (El1 not< E2) = false .

has not been used in any of the computations of the termmptmof score, which means
that the proof score would run and give the desired resuttsowt it. Hence this equation
seems to be redundant. Apparently this implies termindtads for relations< that do
not necessarily satisfy the above mentioned equation. Memieis easy to have simple
counterexamples of relatiorsfor whicha < b andb < a for somea andb, which means
an infinite chain of sorting transitions

ab=>ba> ab...

hence non-termination! So, how do we explain this appararagox?

In the absence of the above mentioned equation there is gsihildy to have for
someg, € bothe>> € = 0 ande >> € = s 0 which implies 0= s 0. This means that the
natural numbers are collapsed which via the equatiof®NAT< leads to the collapse of
the Booleans too, hence our specifications become incensist

3.3. Algorithm specification and verification 101

The conclusion is very clear: the correctness of a proofesdepends intimately
upon the semantic correctness of the specification, prasescarenot mere proof the-
oretic entities. If the specification lack semantic comess, even if the proof score is
built correctly and its running gives the desired resutigntit is still possible that the
conclusion of the proof score may be wrong.

This means we have to take great responsability upon thergentarrectness of
our specifications which concretely may imply the necegsityrite axioms with seman-
tic meaning but that may have absolutely no operational ingan

The confluence of the sorting. It is rather easy to see that the preorder relation on
strings of naturals induced by the bubble sorting algoriipcified bySORTI NG NAT

is confluent since at the end each string gets rewritten goited form. This property is
less obvious when employ other binary relations insteatt@f&tandard ordering on the
naturals. In fact the confluence may even fail to hold as sHopnthe example below.

nod! CONF- CEX {

[Elt]

ops abc: ->Et

op < : EIt EIt -> Bool

op _not<_: EIt EIt -> Bool

eq ac<bhb true .

eq b <c =true .

eq a <c = false .

eq EEElt not< E:EIt = not(E < E)

}

Then we have thafc; b; a)= (b; c; a) and(c; b; a)=> (c; a; b) with both (b; ¢; a) and
(c; & b) being normal forms for the preorder induced by the sorting.

Checking confluence by the search commands.Under some conditions, confluence
of algorithms can be checked automatically by using spesgalching commands in
CafeOBJ or Maude associated OA specifications. In this area, Maude has a rather
special strength. From the set of Maude search commandsdbkeappropriate for this
task is=>!', which computes all normal forms of any term with respecti® tewriting
relation—r g for I a set ofPOAHorn clauses anf a set of operation attributes.

In generat ——r g t" impliesT UE =t t’ (cf. Cor. 3.23), while the reverse im-
plication does not hold in general. However in this case welaa equivalence, meaning
that%r’E coincides with the preorder induced by the sorting, henceder to establish
the non-confluence of this preorder we just need to have raredne normal form for
some term. Hence the non-confluence example above can lieazbitg using the Maude
search mechanism as follows.

sel ect SORTI NG STRG(CONF- CEX)
search (c ; b ; a) =>! s:Strg .

102 Chapter 3. Specification with Transitions

The Maude system gives the following result showing nonflocence.

Solution 1 (state 1)
states: 3 rewites: 5
s:Strg -->b ; c; a

Solution 2 (state 2)
states: 3 rewites: 6
s:Strg-->c; a; b

No nmore sol utions.
states: 3 rewites: 6

Proving confluence. However confluence of bubble sorting holds when the relation
is transitive. While for establishing non-confluence a demexample was enough, the
confluence need a proof. The character of this proof woulthdgasemi-formal because
like in the proof of termination we will use the fact that anyrting transitions—> ¢
with s# ¢ is a finite composition of one-step sorting transitisre; e;s—> s;€,€;5 with

e < €. But the crucial aspect of our confluence proof is the usadéesfman’s Lemma
2.67 which together with the termination property provedwbreduces the confluence
property to the local Church-Rosser property of the onp-steting transition relation.
This can be established through a formal proof score.

Proof score for local Church-Rosser of one-step sorting trasition relation. Our
proof score distinguished between two cases:
1. The two initial swaps do not overlap:

open SORTI NG STRG .
ops e e el el : ->Elt
ops s s s’ ->Strg .

We introduce the hypothesis:

eqe <e =true.
eq el’ < el =true .

The proof of local Church-Rosser for this case consists ofdearch evaluations, both of
them giving the same result. Since, as we have seen aboVds in general included in
the preorder of the initial preordered algebra of the c@weasing specification (moreover
in this particular example they are equal, but this not neaxgshere), this is enough for
establishing the confluence of the algorithm.

search (s ; e ; e; s ; el ; el ; s’) => x:Strg .

search (s ; e; e ; s ; el ; el ; s'') => x:Strg .

2. The two initial swaps do overlap.

3.3. Algorithm specification and verification 103

open SORTI NG STRG .
ops e e e’ : ->Et
ops s s : =-> Strg .

We introduce the hypothesis.

eq e <e =true.
eq e’ < e =true .

At this point our proof needs a transitivity hypothesiscowhich is introduced as follows:
eq [transitivity] : e’ < e =true .

Like in previous case, the proof of local Church-Rossertigr tase consists of two search
evaluations, both of them giving the same result.

search (s ; e ; e; e’ ; s) => x:Strg .
search (s ; e ; e ' ; e ; s') => x:Strg .
Exercises.

3.3. Build and run a proof score for showing that the viBMAT<as PO satisfies the axioms of
PSEUDO- ORDER.

3.4. Consider the following algorithm on strings of natural nuerg

vars N M: Nat

trans 0 ; M=> M.

trans M; 0 => M.

ctrans M; N=> (M- N ; N if N< M.
ctrans M; N=>M; (N- M if M<N.
trans M; M=> M.

What does this algorithm compute? Is this algorithm tertiigaand/or confluent? Justify your
answer by proof scores.

3.5. Consider the following problem of simplification of a systefrdebts between financial agents.

1. Specify a system of debts as a finite multiset of atomicadefat atomic debt is a triple
(A n B) consisting of two agents andB and a natural numberrepresenting the fact that
the first agent4) owesn currency units to the second ageBj.(

2. Specify an algorithm for reducing systems of debts thes tise following transition:

(AmQBn-mC) if m<n

(AmB(BnC) > { (Am—nB)(AnC) otherwise.

3. Is the reducing debts algorithm confluent?

4. Prove that the reducing debts algorithm is terminatiriint Define a ‘weight’ function
which gives the total amount of debt in the system.)

5. Define a function that for each agent gives its balance reitpect to a given system of
debts. Prove that this is an invariant with respect to rédoaiperations on the systems
of debts.

104 Chapter 3. Specification with Transitions

3.4 Example: non-deterministic automata

Non-determinism is a natural aspectRfDAspecifications that, is associated to the situa-
tions when the preorders of the denotations of the spedditaare not confluent. In algo-
rithmic terms we may say that non-confluent algorithms @poad to non-deterministic
computations. We have already met this situation in Settfd.the bubble sorting over
non-transitive binary relations. In this section we giv@padaal focus td®OAspecification
and formal verification of non-determinism. This includgsraof by structural induction

of an inductive property if?OA

Non-deterministic automata. Automata provides one of the best known examples of
non-determinism. The following is an example of non-defarstic automata with three
states and two letters or buttons.

The non-deterministic character of this automaton has speets. One is that there are
states that do not admit transitions (to other states) byesointhe letters, e.gs0 does
not admit a transition by. The second non-deterministic aspect of this automatdrais t
some states admit transitions to several different statethd same letter, e.@1 has
transitions byb to boths0 ands?2.

Specification of non-deterministic automata. The following is a generic specification
of words with concatenation operation over arbitrary vadaty.

nmod! WORDS (L :: TRIV) {
[Elt < Word]
op nil : -> Word
op __ : Wird Wrd -> Wrd {assoc}
var W: Wrd
eq nil W= W.
}

Our specification of automata consists of a specificatiomasfsitions between config-
urations of states and words. These configurations can alspécified generically as
follows.

mod! ND-AUT-GEN (L :: TRIV, S:: TRIV) {
protecti ng(WORDS(L))
[Config]
op (_*_) : EIt.S Wrd -> Config

}

3.4. Example: non-deterministic automata 105

The rest of the specification of our automaton has a partichlaracter. We first specify
the concrete set of states and the concrete vocabulary used.

nod! LETTERS { nod! STATES {

[Letter] [State]

ops a b : -> Letter ops sO s1 s2 : -> State
} }

Finally, we instantiate the vocabulary and the set of statesspecify the transitions of
our automaton.

nmod! ND- AUT {
protecting(ND- AUT-GEN(L <= view to LETTERS {sort Elt -> Letter},
S <= view to STATES {sort Elt -> State}))

var W: Wrd

trans sO » a W=> sl » W,
trans sO » a W=> s0 » W.
trans s1 » a W=> sl » W.
trans s1 * b W=> s0 = W,
trans s1 » b W=> s2 » W,
trans s2 x a W=> sl1 » W.
trans s2 * b W=> s2 = W,

Running the automata. A word is ‘accepted’ by an automaton when there exists a
chain of transitions from an ‘initial’ state to a ‘final’ seatln the case of our automaton let
us fix the initial state tg 0 and the final state t92. We may use the search commarek
of Maude for establishing whether a certain concrete woadégpted or not by automata.
The command=>* represents an implementation of the rewriting relatie*ﬁr,E for
I the set of Horn clauses of tHeOA specification, used as rewrite rule, aBdset of
operation attributes. According to Cor. 3.23, this mears ith general ift =>« t’ then
I UE Et—=t'. discuta si commanda Mauder ewr i t e cu diferite strategii (depth-
first, fair, etc.)

We may use this argumentto validate the fact{tata b a b nil) isaccepted
by the automaton by getting a positive answer to the follgWitaude search query.

search sO » aa b abn!l =>x s2 x nil

Since for this particular example we have tlatonsists of the monoid equations for
words specified as operation attributes, &ncbnsists of a set of (unconditional) transi-
tions, it is easy to see that>* t’ if and only if T UE =t t’. We may use this remark
for establishing thafa b b a nil) is notaccepted by the automaton by getting a
negative answer to the following Maude search query.

search sO » a b b anil =>+ s2 % nil

106 Chapter 3. Specification with Transitions

An inductive property of the automaton specification. Let us consider the property
that(a Wb nil) is accepted by our automaton for any waktMathematically this
can be written as

(YW sOx(@ Wb nil)=> s2«nil. (3.3)

This is an inductive property that does hold in the initiz¢@dered algebra d™D- AUT
that has pairs formed from the stag, s 1, ors2 and words over the vocabulafg,b}.
Its proof is based upon the following lemma:

(VW (s1l« (Wb nil)—=> s2«nil)A(s2x(Wb nil)—=> s2xnil). (3.4)
Therefore the proof score of (3.3) goes as follows:

open ND- AUT .
op w: ->Wrd.
var W: Wrd
var S : State

We introduce the lemma (3.4):
ctrans S * Wb nil =>s2 % nil if (S == sl) or (S == s2)
The proof of (3.3) can be now performed by the following searxemmand

search sO » a wb nil =>+ s2 » nil
cl ose

The proof of lemma (3.4). This proof is done by structural induction &by using the
POAinterpretation of Prop. 2.86. We consider a sub-signatficewstructors formed by
s0,s1,s2,nil ,a_, andb_, where bya_andb_, respectively, we mean the concatenation
to the front of the words with andb, respectively. We leave to the reader the task to prove
this rather obvious fact. The proof score for our lemma gadskows.

open ND- AUT .
op w: ->Wrd.
var W: Wrd
var S : State

The proof for cas®w=ni | :

search s1 » nil b nil =>+ s2 * nil
search s2 » nil b nil =>x s2 * nil

The following induction hypothesisis common to both ca@gs=a_andQw=b_.
ctrans S * wb nil => 82 % nil if (S ==sl) or (S == s2)
The proof for cas®w=a_:

search s1 » a wb nil =>+ s2 * nil
search s2 * a wb nil =>+ s2 * nil

3.5. Linear case analysis generation 107

The proof for cas®w=b_:

search s1 » b wb nil =>* s2 * nil
search s2 * b wb nil =>* s2 » nil
cl ose

All search commands of our proof score (including both th@opof the main property
(3.3) and of lemma (3.4)) give a positive answer, and theigasn such proof scores is
justified by the fact that in general=>«+ t’ implies thatt— t’ is a consequence of the
corresponding®?OA axioms.

