
Chapter 2

Data Type Specification

Specification of data types using many sorted equational logic is the most classical level
of algebraic specification. This constitutes the topic of this chapter which is structured as
follows.

1. We introduce the basic concepts of signature, axioms, algebra, and satisfaction both
as specification concepts and as mathematical ingredients of equational logic. In
fact, conceptually these two sides are identical, the only difference being in the
notation used. Here we also develop the foundational resultof existence of initial
algebras for conditional equational specifications.

2. In the next section we discuss how to deal with some forms ofpartiality of the
operations, namely those handled by subsorting and by sort constraints.

3. Next we discuss equational deduction as a finitary proof system for the semantic
consequence relation in equational logic. We introduce theconcepts of proof rule
and entailment systems at a rather general level in order to make them available for
other deduction systems later in our lecture notes. The important results developed
here are the soundness and the completeness of equational deduction.

4. In order to mechanize equational deduction and make it computational, we intro-
duce the rewriting technique. Rewriting is the basic verification mechanism and the
main execution engine for equational specifications. We show that while as a log-
ical deduction system rewriting is sound, it is complete only under some special
conditions. We develop these results in a more abstract formthan traditional term
rewriting, a fraemwork which covers also the important caseof rewriting modulo
axioms.

5. An important aspect of the formal verifications of data type specifications are the
induction proofs, meaning the proof of logical properties (equations in our case)
holding in the initial algebras of the respective specifications. These ‘inductive’
properties admit only infinitary complete proof systems. For dealing with this we
develop the finitary proof method of ‘structural induction’.

10 Chapter 2. Data Type Specification

6. The final section of the chapter illustrates the material developed so far through
a dedicated example, namely that of a specification of a simple compiler. This is
based upon the so-called ‘initial algebra semantics’ method. Its correctness appears
as an inductive equational property, for which we give a rather simple proof score.

2.1 Basic Notions

Data type specification consists of axiomatic descriptionsof sets of elements together with
certain relevant functions on these sets. The word ‘basic’ means that we do not consider
any structuring mechanism for the specifications. Structuring of specifications is the topic
of Chap. 6.

Basic Specification. Consider the following simple specification of natural numbers
with addition, written inCafeOBJ notation.

mod! SIMPLE-NAT {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq N + (s M) = s(N + M) .
eq N + 0 = N .

}

This specification consists of several distinct parts:

1. Header (i.e., the part before{...}) giving the name of the specification (SIMPLE-NAT)
and the kind of denotation (mod!).

2. The sort (type) declaration ([Nat]), giving a name to the set of elements of the
specified sort (or ”type”) (in this case the set of the naturalnumbers); while the
name ”sort” is common in algebraic specification, the name ”type” is more used in
programming.

3. The operations declarations, starting withop, denoting functions on the set(s) of
elements. In our case these are0, s and + , respectively, as expected denoting, the
zero element, the succesor function, and the addition of naturals, respectively.

4. The variables declarations, starting withvars, (such asM andN). (CafeOBJ sup-
ports the declarations of the variables on the spot, for exampleM:Nat.)

5. Axioms (the statements starting witheq) defining the equality between elements.

2.1. Basic Notions 11

Signatures. The sort and the operation declarations form thesignatureof the specifica-
tion. Theoperation declarationsconsist of:

• The name of the operation. Some specification languages, includingCafeOBJ,
support the so-calledmix-fix syntax for the name of the operations, showing the
position of the arguments by ”” when writing an application of the operation. The
mix-fix syntax enhaces greatly the readability of the specifications since it brings
them closer to the common mathematical notations with whom we are familiar from
school or from our programming practice.

• Thearity of the operation, which is a string of (already declared) sorts that corre-
spond to the sorts of the arguments for the operation. An arity of an operation may
thus consist of

– an empty string (like in the case of0); such operations are calledconstants,

– only one sort (like ‘Nat’ in the case ofs), or

– several sorts (like ‘Nat Nat’ in the case of +); in general these sorts may
also be different.

• Thesort of the operation, that is an already declared sort symbol. Note that all three
operations of our specification have the same sort, namelyNat.

The following is the mathematical definition of the concept of signature.

Definition 2.1 (Signatures). We let S∗ denote the set of all finite sequences of elements
from S, with[] the empty sequence. A(n S-sorted) signature(S,F) is an S∗×S-indexed set
F = {Fw→s | w∈ S∗, s∈ S} of operation symbols.

The setsFw→s in the definition above stand for the sets of symbols with arity w and
sort s. Note that this definition permitsoverloading, in that the setsFw→s neednot be
disjoint. We may denoteF[]→s simply asF→s.

Graphical representation of the signature can be very useful. The graphical notation
for signatures that we are using here was first introduced by the ADJ group as an extension
of the classical set theory graphical representation of sets and functions. In this notation
we represent

• sorts (types) by disks, and

• operations by multi-source arrows.

For example, the signatureSIMPLE-NAT can be graphically represented as follows:

12 Chapter 2. Data Type Specification

Nat

0
s

+

Formal variables. Given a signature(S,F), a variable declarationintroduces a new
constant symbol of a declared sort. The formal treatment of variables is not straightfor-
ward because it needs to avoid various clashes. The following definition formalizes the
actual treatment of variables in specification languages, such asCafeOBJ.

Definition 2.2 (Variable). Let (S,F) be a signature. Avariable for (S,F) is a triple
(x,s,(S,F)) where x is thename of the variable, s∈ S is thesort of the variable, and
(S,F) its signature.

The sort and the signature are essential qualifications for variables, very much used in the
treatment of the variables by various implementations of actual specification languages..
However, when these are clear, we may simply refer to a variable by its name only. For
example, ifX is a set of variables for(S,F), then(x,s,(S,F))∈ X may be denoted simply
x∈ X. For this to make sense, but also in order to avoid other kindsof clashes, we make
the basic assumption valid all over our material, that when considering sets of variables,
any two different variables have different names.

Notation 2.3. For any signature(S,F) and any set X of variables for(S,F), the signature
(S,F∪X) denotes the extension of(S,F) with X as (new) constants that respects the sorts
of the variables. This means(F ∪X)w→s = Fw→s when w is not empty and(F ∪X)→s =
F→s∪{(x,s,(S,F)) | (x,s,(S,F)) ∈ X}.

Due to set theoretic arguments (that we omit here) the latterunion is always a disjoint
one.

Terms. Terms are syntactic constructs which can be defined recursively as operations
applied to arguments which are either complex terms, or primitive terms which are con-
stants. These constants can be either constants of the specified signature or declared vari-
ables. If a term contains variables, then it is considered tobelong to the corresponding
extended signature. The application of operations to the arguments have to respect the
arity of the operation, i.e. the argument must have the sort indicated by the arity. This is
captured mathematically by the definition below.

Definition 2.4(Terms). An(S,F)-term t of sort s∈S, is a structure of the formσ(t1, . . . ,tn),
whereσ ∈ Fs1...sn→s and t1, . . . ,tn are (S,F)-terms of sorts s1, . . . ,sn, respectively.

2.1. Basic Notions 13

In CafeOBJ, as in other specification languages, by the commandparse we can check
the well-formedness of a term, i.e. that a certain expression is indeed a term, :

SIMPLE-NAT> parse s 0 0 .
[Error] no successful parse

or
SIMPLE-NAT> parse s 0 + 0 .
((s 0) + 0) : Nat

(HereSIMPLE-NAT> is a system prompt.)
The first term is ill-formed, hence the parsing error. The second term is well-formed, and
the system parses the term as

+

s 0

0

and tells the user that the sort of the term isNat.
Note that another possible parsing fors 0 + 0 is s(0 + 0) :

+

s

00

However, the system does not choose this possibility because, by internal convention, the
operations has higher precedence than the operation+ .

Equations. The axioms of equational specifications are calledequations. They are for-
mal equalities between (well formed) terms of the same sort and denote actual equalities
between elements.

Definition 2.5 (Equations). Given a signature(S,F), a quantifier-free equation, often
called simplyequation, is a symbolic equality t= t ′ between F-terms t and t′ of the same
sort.

The equations are the simplest sentences or axioms, often they are calledatomicsen-
tences. From equations we can form more complex sentences byapplication of logical
connectives and quantifiers according to the following rules:

14 Chapter 2. Data Type Specification

Definition 2.6 (Sentence). For any signature(S,F), the set of(S,F)-sentencesis the
least set such that:

• Each(S,F)-equation is an(S,F)-sentence.

• If ρ1 andρ2 are (S,F)-sentences thenρ1∧ρ2 (conjunction), ρ1∨ρ2 (disjunction),
ρ1 ⇒ ρ2 (implication) and¬ρ1 (negation) are also(S,F)-sentences.

• If X is a set of variables for(S,F), then(∀X)ρ and (∃X)ρ are (S,F)-sentences
wheneverρ is an(S,F ∪X)-sentence.

The sentences that do not involve any quantifications are calledquantifier-free sentences.

Definition 2.7 (Conditional equations). A conditional equationis a sentence of the form
(∀X)H ⇒ C where H is a finite conjunction of (atomic) equations and C isa single
(atomic) equation.

WhenH is empty the respective conditional equation is usually written simply as(∀X)C
and is calledunconditional equation. TheCafeOBJ notation, as other specification lan-
guage notations, keeps ‘(∀X)’ in the notation of the conditional or the unconditional equa-
tions implicit by following the convention that each equation is universally quantified by
exactly the variables that occur in its terms. For example the first axiom ofSIMPLE-NAT,
namely

eq N + (s M) = s(N + M) .

is just(∀N,M) N + (s M)= s(N + M).
The equational specification paradigm, as its name suggests, considers only con-

ditional or unconditional equations as axioms for its specifications. This is also true for
CafeOBJ. The main reason for such a restriction is the existence of the so-called ‘initial’
models or algebras for equational specifications. This property is important because when
specifying data types, one often likes to specify a particular singular model or implemen-
tation, and the initiality property can characterize models uniquely (up to isomorphisms).
For example this is the case of the specificationSIMPLE-NAT when one wants to spec-
ify the standard model of the natural numbers data type. Another reason in favour of
equational specifications are the existence of a relativelysimple proof system with good
computational properties. We will see the precise meaning of all these things later in the
chapter.

Denotations and algebras. Specifications are formal descriptions of certain class of
possible implementations. In algebraic specification, ”implementation” is captured by the
concept ofmodeland ”possible implementations” by the concept ofdenotation. The mod-
els of data type specifications are calledalgebras. Algebras are ideal mathematical entities
interpreting the syntactic constituents of signatures of the specifications as ideal semantics
entities. Thus algebras interpret:

• sorts as sets, and

• operations as functions on these sets,

2.1. Basic Notions 15

such that the interpretation of the operations is compatible with the interpretation of the
sorts. Software and even hardware implementations of specifications can be mathemati-
cally regarded as algebras.

Definition 2.8 (Algebras). Given a set of sort symbols S, an S-indexed(or sorted) set
A is a family{As}s∈S of sets indexed by the elements of S; in this context, a∈ A means
that a∈ As for some s∈ S. Given an S-indexed set A and w= s1...sn ∈ S∗, we let Aw =
As1 ×·· ·×Asn; in particular, we let A[] = {⋆}, some one point set.

Given a signature(S,F), a (S,F)-algebraA consists of

• an S-indexed set A (the set As is called thecarrierof A of sort s), and

• a function Aσ:w→s : Aw → As for eachσ ∈ Fw→s.

When there is no danger of ambiguity (because of overloadingof σ) we may simplify the
notationAσ:w→s to Aσ. If σ ∈ F→s thenAσ determines a point inAs which may also be
denotedAσ.

For example, the natural numbers with succesor and additionfunctions are an alge-
braA for the signature ofSIMPLE-NAT as follows:

• ANat = ω = {0,1,2, . . .},

• A0 = 0,

• As (x) = x+1 for eachx∈ ω, and

• A + (x,y) = x+y for all x,y∈ ω.

But there are myriads of other models for the signature ofSIMPLE-NAT, most of them
very different from the intended modelA above, such asB defined below:

• BNat = {0,1},

• B0 = 1,

• Bs (x) = 1−x for eachx∈ ω, and

• B + (x,y) = 1 for all x,y∈ ω.

Although the algebraB may go against all our preconceptions regarding the interpreta-
tions of familiar symbols such0 and+, its definition respects Dfn. 2.8 which allows us to
interpret the syntactic symbols quite freely.

The satisfaction relation. The concept of satisfaction between models and sentences
is the crucial link between the semantics and the syntax of formal specifications. This
tells us when a certain axiom holds in a certain model. On thisbasis, from all models of
the signature of a given specification we may isolate the models that actually verify the
axioms of the specification.

The first step in defining the mathematical concept of satisfaction is to see how each
term of a given signature gets evaluated as an element in any algebra of that signature.
This can be defined recursively on the structure of the term.

16 Chapter 2. Data Type Specification

Definition 2.9 (Interpretation of terms). Let (S,F) be any signature. Any F-term t=
σ(t1, . . . ,tn), whereσ ∈ Fw→s is an operation symbol and t1, . . . ,tn are F-(sub)terms cor-
responding to the arity w, gets interpreted as an element At ∈ As in a (S,F)-algebra A
defined by

At = Aσ(At1, . . . ,Atn).

The base case in the above definition is corresponds to the situations whenn = 0, i.e,
whenσ is a constant symbol.

The satisfaction between(S,F)-algebras and(S,F)-sentences, denoted|=(S,F) or
simply by|= when there is no danger of confusion, is defined inductively on the structure
of the sentences as follows.

Definition 2.10 (Satisfaction relation). Given a fixed arbitrary signature(S,F) and a
(S,F)-algebra A,

• A |= t = t ′ if and only if At = At′ for equations,

• A |= ρ1∧ρ2 if and only if A|= ρ1 and A|= ρ2,

• A |= ρ1∨ρ2 if and only if A|= ρ1 or A |= ρ2,

• A |= ρ1 ⇒ ρ2 if and only if A6|= ρ1 or A |= ρ2,

• A |= ¬ρ1 if and only if A6|= ρ1,

for all (S,F)-sentencesρ1 andρ2, and

• for any set of variables X for the signature(S,F), and for any(S,F ∪X)-sentence
ρ′, A |=(S,F) (∀X)ρ if and only if A′ |=(S,F∪X) ρ for each(S,F ∪X)-algebra A′ such
that A′s = As for each s∈ S and A′σ = Aσ for each operation symbolσ of F.

• A |= (∃X)ρ if and only if A6|= (∀X)¬ρ.

The(S,F ∪X)-algebraA′ in the definition above is called the(S,F ∪X)-expansionof A
and it is justA plus a function that assigns a element ofAs to each variable symbol of sort
s in X. ThenA is called the(S,F)-reductof A′.

WhenA |= ρ we say thatA satisfiesρ or thatρ holds in A. While the algebraA
introduced after Dfn. 2.8 satisfies both axioms ofSIMPLE-NAT, the other algebraB
does not satisfy any of them. We leave to the reader the task tocheck the validity of these
two facts as applications of Dfn. 2.10.

The satisfaction relation between algebras and single sentences can be extended
easily to a relation between algebras andsets ofsentences: for any(S,F)-algebraA and
any setE of (S,F)-sentences letA |=(S,F) E mean thatA |=(S,F) ρ for all ρ ∈ E.

Operation attributes. Many algebraic specification languages, especially those that are
directly executable, provide an alternative notation for some specific equations such as
the commutativity or the associativity of operations. Thisnotation is called ‘operation
attribute’ and inCafeOBJ it looks like

2.1. Basic Notions 17

op _+_ : Nat Nat -> Nat {comm}

which is an alternative to

eq M + N = N + M .

or

op _+_ : Nat Nat -> Nat {assoc}

which is an alternative to

eq (M + N) + P = M + (N + P) .

The only reason for providing operation attributes notation as an alternative to the ordi-
nary notation for equations has to do with the operational aspect of the language, and
nothing to do with its specification aspect. From the semantic point of view both nota-
tions have exactly the same meaning, however the operation attributes give a signal to the
system that the respective equations have to be used in a special way in the computations.
This is necessary because the usual execution mechanism forequational specifications,
namely rewriting, may run into an infinite loop because of commutativity equations or
may get blocked because of associativity equations. Later on in the chapter we will learn
more on this topic.

Booleans and predicates. There is a number of data types that are regularly used in
specifications, such as numbers or truth values (also called‘Booleans’). In order to ease
the task of the users, often such data types come incorporated in the specification sys-
tems as pre-defined, or system defined, types. Pre-defined types have at least two advan-
tages: they save the users from the trouble to have to specifythem, and more importantly,
they may run more efficiently due to the fact that often their execution is performed by
programs in some low level programming language used for theimplementation of the
specification system.

As mentioned before, one of the most used pre-defined data type is that of the
Boolean values. InCafeOBJ it is namedBOOL and unless specified it is automatically
made available for any specification. The essential part of its signature can be represented
as

Bool

and,or

not

true,
false

wheretrue, false, and, or, not have the standard well known meaning.

18 Chapter 2. Data Type Specification

As an exercise let us now use the Boolean data type for definingthe ‘strictly less
than’ relation between the natural numbers. This is done in two steps. First we have to
specify the symbol for the relation, which is treated as a Boolean valued function.

op _<_ : Nat Nat -> Bool

Next we write the equations that define the relation.

eq 0 < (s M) = true .
eq (s M) < (s N) = M < N .

However with only these two equations we may end up with some new values of sort
Bool, such as(s s 0) < (s 0). In order to collapse these tofalse we need one
more equation.

eq M < 0 = false .

Sometimes, in order to get the notation closer to the familiar notation for relations, in
CafeOBJ one may skip to write the sortBool as the sort of theBool-valued operation
that simulates the respective relation. The short hand notation for this keepsBool implicit
and looks like

pred _<_ : Nat Nat

The keywordpred come from ‘predicate’ which in logic is another name for ‘relation’.
However, always remember that this is only a short hand alternative and that inCafeOBJ
relations are treated as Boolean valued functions.

Conditions as Boolean terms. Some algebraic specification languages, especially those
of the OBJ family, such asCafeOBJ and Maude, have a specific way to write the con-
ditions of conditional equations, which is very good for running or executing the spec-
ifications. Recall that (according to Dfn. 2.7) the conditions of equations are just finite
conjunctions of equations. InCafeOBJ and Maude these may be encoded as Boolean
terms by encoding the conjunction∧ as the binary operationand of the (pre-defined)
data typeBOOL and by encoding equationst = t ′ as termst == t ′ of sortBool. For this
CafeOBJ provides implicitly for each declared sortsa Boolean valued operation

==s : s s -> Bool

For example inCafeOBJ we may define a maximum function on pairs of naturals as
follows:

op max : Nat Nat -> Nat { comm }
ceq max(M:Nat, N:Nat) = M if (N < M) .
ceq max(M:Nat, N:Nat) = M if (M == N) .

Note that the two equations above have the same conclusion, and each of them corre-
sponds to a different case for the condition. They can be written more compactly as one
sentence by using the operationor on the sortBool as follows.

2.2. Initial Semantics 19

ceq max(M:Nat, N:Nat) = M if (N < M) or (M == N) .

Note that thisCafeOBJ code does not correspond anymore to a conditional equation
since its condition is a Boolean term corresponding to a disjunction of equations. Because
the pre-defined Boolean typeBOOL has operations such asor andnot also, means that
we can write Boolean terms that correspond to any quantifier-free sentences. This goes
considerably beyond conditions as conjunctions of equations, which means that using
such Boolean terms as conditions places us beyond the logic of conditional equations.
This may have a series of undesirable semantic consequences, such as inconsistency in
the form of absence of any models for our specification. In short, it is advisable to write
only conditions that correspond to finite conjunctions of equations. However, one excep-
tion still works well, namely usingor. This is justified by the fact that any equation
conditioned by a quantifier-free sentence envolving only conjunctions and disjunctions
is equivalent semantically to a finite set or conditional equational. This means that what
exactly should be avoided is the use of the negation (not) operation in conditions.

Exercises.

2.1. For any signature(S,F) and any setsX andY of variables for(S,F)vsuch thatX∩Y = /0 show
that for any(S,F ∪X ∪Y)-sentenceρ, the sentences(∀X)(∀Y)ρ, (∀Y)(∀X)ρ, and(∀X∪Y)ρ are
semantically equivalent, meaning that they are satisfied by the same algebras. Hence we may not
discriminate between these sentences.

2.2. Prove that any sentence of the form(∀X)H ⇒C whereH is a quantifier-free sentence formed
from equations and∧, ∨, andC is an atom, is semantically equivalent to a set of conditional equa-
tions.

2.3. Write a CafeOBJ specification with equations conditioned by Boolean terms that does not
have any models.

2.2 Initial Semantics

Tight versus loose denotations. There are two kinds of denotations for equational
specifications, the so-calledtight, or initial, and the so-calledloosedenotations. The dif-
ference between them corresponds to different intentions from the side of the specifier.
Tight denotations are used when the intention is to specify acertain singular model, while
the loose denotations are used for specifying a class of models. The choice of the kind of
denotation is reflected by theCafeOBJ notation in the header of the specifications by the
use of the keywordsmod! andmod*, respectively.

We have already seen the example ofSIMPLE-NAT which is specified with tight
denotation (hencemod!) since in this case the intention is to specify the model of the
natural numbers. The following example shows clearly the difference between the tight
and the loose denotations. While the loose denotation specificationSEMIGROUP specifies
all semigroups with two designated constants,a andb, its tight denotation variantSTRG
specifies the semigroup consisting of all strings formed by two charactersa andb.

20 Chapter 2. Data Type Specification

mod! STRG {
[S]
ops a b : -> S
op : S S -> S {assoc}

}

mod* SEMIGROUP {
[S]
ops a b : -> S
op : S S -> S {assoc}

}

While in the case ofSEMIGROUP the denotation may be obtained rather easily, as the
class of all algebras of the signature satisfying the only specified equation, namely the
associativity of the binary operation (specified as an operation attribute), to obtain the
denotation ofSTRG requires a more complex process. In general, this process can be
informally explained as consisting of two main steps:

1. We construct all well-formed terms from the signature of the specification, and

2. We identify the terms which are equal under the equations of the specification.

For our current example the first step constructs the terms such as
a, b,
ab, ba, aa, bb,
a(ab), a(ba), b(ab), b(ba), (ab)a, (ab)b, (ba)a, (ba)b,
(ab)(ab), (ab)(ba), (ba)(ab), (ba)(ba), ... etc.,
and at the second step one identifies terms under the associativity equation, which just get
rids of the brackets. For example(a(ab))b, (aa)(bb), a(a(bb)), a((ab)b),
((aa)b)b are all identified as one element, which may be denoted asaabb. This model
of the strings can be characterized among all other models ofthe signature satisfying the
respective associativity equation by a special property, called initiality . The rest of this
section is devoted to the mathematical explanation of the concept of initiality and of the
process of constructing initial algebras for specifications.

Algebra homomorphisms and initial algebras. The initiality property is about how
the respective algebra relates to other algebras. The mathematical concept that relates
algebras between them is called ofhomomorphism of algebras.

Definition 2.11(Homomorphism of algebras). An S-indexed(or sorted) function f : A→
B is a family{ fs : As → Bs | s∈ S}. Also, for an S-sorted function f: A → B, we let
fw : Aw → Bw denote the function product mapping a tuple of elements(a1, . . . ,an) to the
tuple(fs1(a1), . . . , fsn(an)).

An (S,F)-homomorphismfrom one(S,F)-algebra A to another B is an S-indexed
function h: A→ B such that

hs(Aσ(a)) = Bσ(hw(a))

for eachσ ∈ Fw→s and a∈ Aw.

Homomorphisms of algebras may also be called algebra homomorphisms, and as Dfn. 2.2
suggests they are (families of) functions that preserve thealgebraic structure. When there
is no danger of confusion we may simply writeh(a) instead ofhs(a).

Like functions, homomorphisms of algebras compose.

2.2. Initial Semantics 21

Definition 2.12(Composition of algebra homomorphisms). Given(S,F)-homomorphisms
h : A → B and g: B→ C, their composition h;g is the algebra homomorphism A→ C
defined by(h;g)s = gs◦hs for each sort symbol s∈ S.1

The reader may check by herself the correctness of the definition of composition of alge-
bra homomorphisms, namely thath;g of Dfn. 2.12 is an(S,F)-homomorphism indeed.

The following special case of homomorphism captures the situation when algebras
are essentially the same, calledisomorphic algebras, in the sense that they differ only by
a renaming of their elements.

Definition 2.13 (Isomorphism of algebras). A (S,F)-homomorphism h: A → B is a
(S,F)-isomorphismwhen there exists another homomorphism h−1 : B → A such that
h;h−1 = 1A and h−1;h = 1B, where by1A : A→ A and1B : B→ B we denote the ‘iden-
tity’ homomorphisms that map each element to itself.

Note that Dfn. 2.13 characterizes isomorphisms by a compositionality property rather
than by a direct property of the respective homomorphism as given in the following.

Fact 2.14.A (S,F)-homomorphism h: A→B is isomorphism if and only if each function
hs : As → Bs is bijective (i.e., one-to-one and onto, in an older terminology).

The proof of Fact 2.14 is rather straightforward and is left as exercise to the reader.

Definition 2.15 (Initial algebras). Given any classC of (S,F)-algebras, an algebra A is
initial for C when A∈C and for each algebra B∈C there exists an unique homomorphism
A→ B.

In our lecture notes we will be mainly interested in the classesC of the algebras satisfying
certain fixed sets of conditional equations.

Initial algebras have the crucial property that they are unique up to isomorphisms,
as explained by the following simple result.

Proposition 2.16. If A and A′ are both initial algebras forC, then there exists an isomor-
phism A→ A′.

Proof. SinceA is initial andA′ ∈ C there exists a homomorphismh : A→ A′. SinceA′ is
initial andA∈C there exists a homomorphismh′ : A′ →A. Thenh;h′ is a homomorphism
A→ A. But the identity 1A : A→ A is also a homomorphism, and since by initiality there
exists an unique homomorphismA→A, we have thath;h′ = 1A. Similarlyh′;h= 1A′ . �

Because initial algebras are isomorphic, which means that they are the same modulo
renaming of elements, we usually say ‘the initialalgebra’ of an equational specification
instead of the more correct terminology ‘the initial algebras’. This also explains why
we usually refer to the unique model or algebra of tight denotations, when in fact tight
denotations mean a class of (mutually isomorphic) models oralgebras. For example, the
denotation ofSIMPLE-NAT consists of all representations of the natural numbers, butyet
since all these representations are mutually isomorphic wespeak abouta standard model
of the natural numbers. To summarize, the initiality property gives us a very general way
to capture single standard models that we intend to specify.

1This means(h;g)(a) = g(h(a)) for eacha∈ As.

22 Chapter 2. Data Type Specification

Congruences and quotients. The next goal for us is to show that each specification
with conditional equations admits initial algebras. This shows that such specifications that
are considered with the tight denotation areconsistent, i.e. they have a model. Moreover,
this also shows that loose denotation equational specifications are consistent, since their
denotations would contain at least the initial algebra.

For showing that in general each specification with conditional equations admits
initial algebras, we need to introduce the concepts ofcongruenceandquotient algebra.

Definition 2.17(Congruence). A F-congruenceon a(S,F)-algebra A is an S-sorted fam-
ily of relations,≡s on As, each of which is an equivalence relation, and which also satisfy
thecongruence property, that given anyσ ∈ Fw→s and any a∈ Aw, then Aσ(a) ≡s Aσ(a′)
whenever a≡w a′.2

For example the binary relation≡ on the modelA of SIMPLE-NAT (introduced after
Dfn. 2.8) defined bya≡ b if and only if the difference betweena andb is an even number,
is a congruence. Note that if we replaced ‘even’ by ‘odd’ in the definition of≡, it remains
an equivalence relation but not a congruuence anymore sincethe congruence property
fails for +.

Definition 2.18(Quotient algebra). Each congruence on an(S,F)-algebra A determines
a quotientalgebra A/≡ such that

• (A/≡)s = (As)/≡s for each sort s∈ S, i.e.(As)/≡s = {a/≡ | a∈ As} is the set of the
equivalence classes of≡s, and

• (A/≡)σ(a1/≡ . . .an/≡) = Aσ(a1, . . . ,an)/≡ for each operation symbolσ ∈ Fs1...sn→s

and each(a1, . . . ,an) ∈ As1 ×·· ·×Asn.

The canonical(S,F)-homomorphism q: A→ A/≡ mapping each element a to its equiv-
alence class a/≡ is called thequotient homomorphismassociated to≡.

The second item of Dfn. 2.18 makes sense because of the congruence property, in that
if we chose other representativesa′1, . . . ,a

′
n for the equivalence classesa1/≡, . . . ,an/≡ it

would be no trouble sinceAσ(a1, . . . ,an) ≡ Aσ(a′1, . . . ,a
′
n).

The quotient algebra of the congruence≡ on the algebraA of SIMPLE-NAT dis-
cussed above consists of only two elements, the sets of the odd numbers (represented
and denoted by 1) and of the even numbers (represented and denoted by 0), respectively,
and(A/≡)0 = 0, (A/≡)s(0) = 1, (A/≡)s(1) = 0, (A/≡)+(0,0) = (A/≡)+(1,1) = 0, and
(A/≡)+(0,1) = (A/≡)+(1,0) = 1.

Definition 2.19 (Kernel of homomorphism). For h : A→ B any(S,F)-homomorphism
let its kernel=h be the S-sorted family of binary relations defined by a(=h)sb if and only
if hs(a) = hs(b).

Fact 2.20. For any(S,F)-homomorphism h, its kernel=h is a F-congruence.

The following technical result will be used later in the process of proving the exis-
tence of initial algebras of equational specifications.

2Meaningai ≡si a′i for i = 1, . . . ,n, wherew = s1 . . .sn anda = (a1, . . . ,an).

2.2. Initial Semantics 23

Proposition 2.21. For any surjective (i.e. onto)(S,F)-homomorphism q: A → A′ and
any(S,F)-homomorphism h′ : A→B, there exists an unique(S,F)-homomorphism h′ : A′ →
B such that q;h′ = h if and only if=q ⊆ =h.

A
q

//

h
��>

>>
>>

>>
A′

h′����
��

��
�

B

Proof. As the direct implication is almost trivial, we focus on the inverse implication. For
eacha′ ∈ A′ let us defineh′(a′) = h(a) wherea′ = q(a). Such elementa exists becauseq
is surjective. The definition ofh′ is also correct, in the sense of being independent of the
choice ofa such thata′ = q(a), because=q ⊆ =h.

Now let us check the homomorphism condition forh′. Consider any operation sym-
bol σ and any appropriate list of arguments(a′1, . . . ,a

′
n) for A′

σ. Then we have the follow-
ing

h′(A′
σ(a′1, . . . ,a

′
n)) = (A′

σ(q(a1), . . . ,q(an)) for ak ∈ A such thata′k = q(ak)
= h′(q(Aσ(a1, . . . ,an)) (becauseq is homomorphism)
= h(Aσ(a1, . . . ,an)) (becauseh = q;h′)
= Bσ(h(a1), . . . ,h(an)) (becauseh is homomorphism)
= Bσ(h′(a′1), . . . ,h

′(a′n)) (by the definition ofh′)

�

Free algebras. We are now ready to take the most important step towards our current
goal, of showing the existence of initial algebras for equational specifications.

Definition 2.22 (Γ-congruence). For any conjunction H= (t1 = t ′1)∧ (t2 = t ′2)∧ ·· · ∧
(tn = t ′n) of (S,F)-equations and any(S,F)-algebra A, by AH let us abbreviate the set
{(Ati ,At′i

) | 1≤ i ≤ n}.
GivenΓ a set of conditional equations in a signature(S,F), a congruence≡ on a

(S,F)-algebra A is aΓ-congruenceif for each conditional equation(∀X)H ⇒C in Γ and
for any expansion A′ of A to(S,F ∪X), A′

H ⊆ ≡ implies A′C ⊆ ≡.

Proposition 2.23. For each(S,F)-homomorphism h: A → B and each setΓ of condi-
tional equations for(S,F), if B |= Γ then=h is a Γ-congruence.

Proof. Let (∀X)H ⇒ C in Γ and consider a(S,F ∪ X)-expansionA′ of A such that
A′

H ⊆=h. Let us define a(S,F ∪X)-expansionB′ of B by B′
x = h(A′

x) for eachx ∈ X.
Note thath becomes a(S,F ∪X)-homomorphismA′ → B′. By induction on the structure
of terms it is easy to see thath(A′

t) = B′
t for each(S,F ∪X)-termt. By using this property

we have thatA′
H ⊆ =h is equivalent toB′ |= H. ThusB′ |= H. BecauseB |= (∀X)H ⇒C

it follows thatB′ |=C. But by the same propertyh(A′
t) = B′

t above,A′
C ⊆ =h is equivalent

to B′ |= C. HenceA′
C ⊆ =h. �

24 Chapter 2. Data Type Specification

Proposition 2.24. For each(S,F)-algebra A, any congruence≡ on A, and any setΓ of
conditional equations in(S,F), A/≡ |= Γ if and only if≡ is a Γ-congruence.

Proof. The implication from the left to the right follows from Prop.2.23 by considering
the quotient homomorphismA→ A/≡ in the role ofh.

For showing the implication from the right to the left let us consider(∀X)H ⇒C in
Γ and any(S,F ∪X)-expansionA′′ of A/≡ such thatA′′ |= H. LetA′ be an expansion ofA
such that for eachx∈X we haveA′

x ∈A′′
x . By induction on the structure of any(S,F ∪X)-

termt, it is easy to see that(A′
t)/≡ = A′′

t . ThereforeA′′ |= H means thatA′
H ⊆≡. Because

≡ is aΓ-congruence we obtainA′
C ∈ ≡ which shows in turn meansA′′ |=C, which shows

thatA/≡ |= (∀X)H ⇒C. �

Note that given any(S,F)-algebraA and any setΓ of conditional equations in(S,F),
the intersection of any family ofΓ-congruences is still aΓ-congruence. This implies that
there exists the leastΓ-congruence onA obtained as the intersection ofall Γ-congruences
onA.

Notation 2.25. Let=A
Γ denote the leastΓ-congruence on an algebra A and qA

Γ denote its
associated quotient homomorphism.

Corollary 2.26 (Free algebras). For any(S,F)-algebra A, A/=A
Γ

is thefree algebra over
A satisfyingΓ,

A
qA

Γ //

∀h
 B

BB
BB

BB
BB

A/=A
Γ

∃!hΓ{{xxxxxxxx

B |= Γ

in the sense that for any other algebra B satisfyingΓ and any(S,F)-homomorphism
h : A→B there exists an unique(S,F)-homomorphism hΓ : A/=A

Γ
→B such that qAΓ;hΓ =

h. (This is called theuniversal propertyof the quotient homomorphism qA
Γ.)

Proof. A/=A
Γ
|= Γ by Prop. 2.24. The universal property of the quotient homomorphism

qA
Γ follows directly from Prop. 2.21 by noting that=h is aΓ-congruence (cf. Prop. 2.23)

and because=A
Γ being the leastΓ-congruence is smaller than=h. �

Term algebras. For each signature, the terms can be organized as an algebra which is
initial.

Proposition 2.27(Initial term algebras). For any signature(S,F), let 0(S,F) be theterm
algebradefined as follows:

• (0(S,F))s is the set(T(S,F))s of all (S,F)-terms of sort s, and

• (0(S,F))σ(t1, . . . ,tn) = σ(t1, . . . ,tn) for each operation symbolσ ∈ Fw→s and each list
of terms t1, . . . ,tn corresponding to w.

2.2. Initial Semantics 25

Then0(S,F) is initial in the class of all(S,F)-algebras.

Proof. By induction on the structure of a termt we can show that for any(S,F)-algebra
B the unique homomorphismh : 0(S,F) → B can be defined only ash(t) = Bt . The
base of this induction just means the homomorphism propertyof h for the constants
of the signature. For the induction step lett = σ(t1, . . . ,tn) where σ is an operation
symbol andt1, . . . ,tn are the immediate subterms oft. Then h(t) = h(σ(t1, . . . ,tn)) =
h((0(S,F))σ(t1, . . . ,tn)) = Bσ(h(t1), . . . ,h(tn)) = Bσ(Bt1, . . . ,Btn) (by induction hypothesis)
= Bσ(t1,...,tn) = Bt . �

Existence of initial algebras for conditional equational specifications. That the class
of algebras satisfying any fixed set of conditional equations admits an initial algebra can
be obtained as an instance of the existence of free algebras (Cor. 2.26).

Corollary 2.28. Each setΓ of conditional equations admits an initial algebra denoted
0Γ and which is0(S,F)/=Γ , the free algebra over the term algebra0(S,F) satisfyingΓ.

Proof. Let B be any algebra satisfyingΓ and according to Prop. 2.27 leth be the unique
(S,F)-homomorphism0(S,F) →B. Then by Cor. 2.26 there exists an unique(S,F)-homomorphism
h′ : 0(S,F)/=Γ → B such thatqΓ;h′ = h.

0(S,F)
qΓ //

h
##G

GG
GG

GG
GG

0(S,F)/=Γ

h′zzttttttttt

B |= Γ

Moreoverh′ is unique simply as a homomorphism 0(S,F)/=Γ → B because for any other
such homomorphismh′′, because there exists only one homomorphism 0(S,F) → B we
have thatqΓ;h′ = qΓ;h′′ = h. By the uniqueness property ofh′ we obtain thath′ = h′′. �

Let us now reflect on the general process underlying the existence of initial alge-
bras of conditional equational specifications we have just completed by looking back at
the example of the initial algebra ofSTRG. The first step, that above was informally de-
scribed as the construction of the terms of the signature corresponds the existence of the
initial algebra in the class of all algebras of the signature. The second step, described as
identifying the terms that are equal under the equations of the specification corresponds
to the construction of the free algebra over the term algebra, satisfying the equations of
the specification.

Exercises.

2.4. Do the proof of some facts about homomorphisms of algebras have been skipped in the text.

1. The composition of homomorphisms (Dfn. 2.12) is a homomorphism indeed.

2. The composition of homomorphisms is associative.

26 Chapter 2. Data Type Specification

3. An (S,F)-homomorphismh is isomorphism if and only if for each sort symbols∈ S, hs

is bijective.

2.5. Let (S,F) be any signature andρ a conditional equation for(S,F).

1. For any(S,F)-algebrasA andB let A×B be theirdirect productdefined by

• (A×B)s = As×Bs = {〈a, b〉 | a∈ As,b∈ Bs} for each sorts∈ S,

• (A×B)σ(〈a1, b1〉, . . . ,〈an, bn〉) = 〈Aσ(a1, . . . ,an), Bσ(b1, . . . ,bn)〉 for each opera-
tion symbolσ ∈ Fw→s.

Prove thatA×B |= ρ if A |= ρ andB |= ρ.

2. Leth : A→ B be an injective(S,F)-homomorphism. Prove thatA |= ρ if B |= ρ. Extend
this result to the case whenρ is of the form(∀X)ρ0 whereρ0 is a quantifier-free sentence.

3. Let h : A → B be a surjective homomorphism. Prove thatB |= ρ if A |= ρ and ρ is an
unconditional equation. Give a (counter)example showing that in general this property
fails for conditional equations.

2.6. Consider a signature with one sort and constantsa, b, c, andd. Show that the sentence

(¬(a= b)) ⇒ (c= d)

does not have initial algebras.

2.7. Show that the algebraA introduced after Dfn. 2.8 and consisting of the natural numbers
with the common interpretation of the constant0, of the successor functions , and of the addi-
tion operation + , is a model ofSIMPLE-NAT, i.e. is the initial algebra satisfying the axioms of
SIMPLE-NAT.

2.8. Extend the specificationSIMPLE-NAT with the specification of the multiplication function
on naturals* and prove that the expansion of algebraA of Ex. 2.7 with the common interpretation
of the multiplication symbol is indeed initial algebra for the resulting specification.

2.9. Define an algebra satisfying the axioms ofSIMPLE-NAT that has strings of natural numbers
as elements,0 is interpreted as the empty list and+ is interpreted as string concatenation.

2.10. Consider the following specification.

mod! BASIC-INT {
[Int]
op 0 : -> Int
op s : Int -> Int
op - : Int -> Int
var X : Int
eq - 0 = 0 .
eq - - X = X .
eq s(-(s X)) = - X .

}

1. Show that the set of the integer numbers together with the standard interpretation of0 and
of - as zero and unary minus, respectively, and ofs as addition with 1, is the model of
BASIC-INT.

2.3. Equational Deduction 27

2. Prove that for any non-trivial congruence≡ on the algebra introduced at the item above
there exists a natural numbern such that for any integer numbersx andy we have that
x≡ y if and only if there exists an integer numberzsuch thatx−y = n∗z.

2.3 Equational Deduction

We are all familiar from school algebra with the basic principle of replacing equals by
equals when manipulating algebraic expressions. The deduction system of ordinary or of
general algebra is called ‘equational deduction’. Since data type specification is based
upon general algebra, its formal verification aspect is based upon equational deduction.
This section is devoted to the formal introduction of the equational deduction and to its
most important aspects:

• soundness, meaning the validity of the deductions, and

• completeness, meaning that the deduction system has the power to prove whatever
is valid semantically.

Group theory. Groups are perhaps the most fundamental structure of ordinary algebra,
thus many ordinary arithmetical and algebraic calculationbeing closely related to the
deduction system of group theory. The class of groups can be specified as follows:

mod* GROUP {
[G]
op 0 : -> G
op + : G G -> G {assoc}
op - : G -> G
var X : G
eq 0 + X = X .
eq (- X) + X = 0 .

}

+

0

-_

G

That the denotation ofGROUP consists of all groups may not be obvious from the speci-
fication since the usual definition of groups contains two more equations:

eq X + 0 = X .
eq X + (- X) = 0 .

The point is that the above two equations can bededucedfrom the three axioms of the
specification (two explicit equations plus the associativity attribute for +) just by ordi-
nary syntactic manipulation of the respective expressions. In the following let us see the
details of these deductions.

Proving X + (- X) = 0. The second equation can be deduced by the following
sequence of replacements of subterms of expressions by corresponding terms that are
‘equal’ according to the axioms ofGROUP:

28 Chapter 2. Data Type Specification

(1) (−(−a))+ (−a) = 0 by the 2nd axiom forX substituted by(−a),

(2) (−(−a))+ (0+(−a)) = 0 by the 1st axiom forX substituted by(−a),

(3) (−(−a))+ (((−a)+a)+ (−a))= 0 by the 2nd axiom forX substituted bya,

(4) ((−(−a))+ ((−a)+a))+ (−a)= 0 by the associativity of+ ,

(5) (((−(−a))+ (−a))+a)+ (−a)= 0 by the associativity of+ ,

(6) ((−(−a))+ (−a))+ (a+(−a))= 0 by the associativity of+ ,

(7) 0+(a+(−a)) = 0 by the 2nd axiom forX substituted by(−a),

(8) a+(−a) = 0 by the 1st axiom forX substituted bya+(−a).

Proving X + 0 = X. Similarly, the first equation can be deduced from the axioms of
GROUP and from the second equation, that has been already deduced above.

(1) 0+a= a by the 1st axiom forX substituted bya,

(2) (a+(−a))+a= a by the 2nd equation forX substituted bya,

(3) a+((−a)+a) = a by the associativity of+ , and

(4) a+0= a by the 2nd axiom forX substituted bya.

Substitutions. The deduction steps in the proofs presented above of the two missing
group theory equations consist of replacements in terms of an instanceof a side of a
specification axiom or of an already proved equation by thecorresponding instanceof
the other side of the equation.

• An ‘instance’ of a term means the terms resulting from the replacement of some
of its variables by terms of the same sort with the variables to be replaced. Such
mapping of variables to terms is calledsubstitution(of variables).

• By ‘corresponding instance’ we mean that both the replaced subterm and the re-
placement term use the same substitution of the variables.

We now give the mathematical definition for the concept of substitution.

Definition 2.29(Substitution). Given sets X and Y of variables for a signature(S,F), an
(S,F)-substitutionθ from X to Y is is a functionθ : X → T(S,F∪Y) that respects sorts, i.e.
if x has sort s thenθ(x) ∈ (T(S,F∪Y))s.

The existence of substitutions fromX to Y requires that whenever there is a variable inX
of sorts then(T(S,F∪Y))s is non-empty. In general, this condition can be met if we assume
that the signatures contain at least one constant for each sort.

Any substitutionθ : X → T(S,F∪Y) extends to a functionθ♯ : T(S,F∪X) → T(S,F∪Y)

defined by

θ♯(t) =

{

θ(x) when t = x for x∈ X
σ(θ♯(t1), . . . ,θ♯(tn)) when t = σ(t1, . . . ,tn) with σ ∈ F.

2.3. Equational Deduction 29

When there is no danger of notational confusion we may omit ‘♯’ from the notation and
write simplyθ(t) instead ofθ♯(t).

The application of substitutions may be extended to(S,F ∪X)-sentences. Infor-
mally this is just the replacement of variables in the sentence by their corresponding
terms. Formally this is defined as follows:

• θ(t1 = t2) stands forθ♯(t1) = θ♯(t2),

• θ(ρ1∧ρ2) stands forθ(ρ1)∧θ(ρ1), and similarly for∨, ⇒, ¬, and

• θ((∀Z)ρ) stands for(∀Z)θ(ρ). In this case it is implicitly assumed that bothX and
Y are disjoint fromZ.

Entailment systems. In order to formalize the deduction system for conditional equa-
tions we need to understand the general properties of deduction. These are captured by
the mathematical concept of entailment system.

Definition 2.30(Entailment system). Given a signatureΣ, anentailment relationconsists
of a binary relation⊢Σ between sets ofΣ-sentences such that the following properties
hold:

1. union:if Γ ⊢Σ Γ1 andΓ ⊢Σ Γ2 thenΓ ⊢Σ Γ1∪Γ2,

2. monotonicity:if Γ′ ⊇ Γ thenΓ′ ⊢Σ Γ, and

3. transitivity: if Γ ⊢Σ Γ1 andΓ1 ⊢Σ Γ2 thenΓ ⊢Σ Γ2.

Anentailment system⊢ consists of an entailment relation⊢Σ for each signatureΣ.

As a matter of terminology,Γ ⊢ Γ′ readsΓ entailsΓ′ and each such pair of the entailment
relation is simply calledan entailment.

Note the high abstraction level of this definition which not only allows a multitude
of entailment systems for conditional equations, considered as the sentences, but can also
be applied to various other logical systems. The latter observation is based upon the fact
that the properties of entailment relations do not depend upon the specific concepts of
signature and sentence we have introduced, in fact they do not depend uponanyspecific
concepts of signature and sentence.

The following is an important example of entailment system.

Proposition 2.31 (Semantic entailment). For any signature(S,F), the relation|=(S,F)

between finite sets of conditional equations defined by

E |=(S,F) E′ if and only if for any (S,F)-algebra A, A |=(S,F) E implies A|=(S,F) E′.

is an entailment relation.

Since the proof of this proposition is rather immediate we omit it here. The semantic
entailment system is denoted by|=, the same symbol as for the satisfaction relation.

The role of the general properties of entailment systems becomes transparent when
we try to make the proof of(∀X)X + 0 = X more formal by expressing it as an entail-
mentGROUP ⊢ {(∀X)X + 0 = X}, where hereGROUP also means the set{A1,A2,A3}

30 Chapter 2. Data Type Specification

of the three axioms of the specificationGROUP. For this purpose let us denote the equa-
tion (∀X)X + (- X) = 0 by E2 and write the fact thatE2 was proved fromGROUP
(proof informally presented above) by

GROUP ⊢ {E2} (2.1)

Also let us denote the four succesive equations that occur inthe proof of(∀X)X + 0 = X
above byρ1, ρ2, ρ3 andρ4, respectively. Then the steps of the proof of(∀X)X + 0 = X
(whose role is played byρ4 under the above convention; we shall clarify later how a proof
of ρ4 leads to a proof of(∀X)X + 0 = X) correspond to the following sequence of four
entailments.

{A2} ⊢ {ρ1} (2.2)

{ρ1,E2} ⊢ {ρ2} (2.3)

{ρ2,A1} ⊢ {ρ3} (2.4)

{ρ3,A3} ⊢ {ρ4} (2.5)

From these four entailments plus the entailment lemma 2.1, by applying the general prop-
erties of entailment relations we obtain the following entailments:

GROUP ⊢ {A2} by ‘monotonicity’ (2.6)

GROUP ⊢ {ρ1} from 2.6 and 2.2 by ‘transitivity’ (2.7)

GROUP ⊢ {ρ1,E2} from 2.1 and 2.7 by ‘union’ (2.8)

GROUP ⊢ {ρ2} from 2.8 and 2.3 by ‘transitivity’ (2.9)

GROUP ⊢ GROUP by ‘monotonicity’ (2.10)

GROUP ⊢ GROUP∪{ρ2} from 2.9 and 2.10 by ‘union’ (2.11)

GROUP∪{ρ2} ⊢ {ρ2,A1} by ‘monotonicity’ (2.12)

GROUP ⊢ {ρ3} from 2.11, 2.12 and 2.4 by ‘transitivity’ (2.13)

GROUP ⊢ GROUP∪{ρ3} from 2.13 and 2.10 by ‘union’ (2.14)

GROUP∪{ρ3} ⊢ {ρ3,A3} by ‘monotonicity’ (2.15)

GROUP ⊢ {ρ4} from 2.14, 2.15 and 2.5 by ‘transitivity’ (2.16)

Proof rules. It is very useful to be able to describe or present a certain entailment system
in a finitary way. Note for example that Prop. 2.31 introducesthe semantic entailment
system in an infinitary way because the respective definitionrelies on all algebras of
the signature, which are not only infinite in number, they areso many that do not even
constitute a set from the point of view of formal set theory.

A standard way to introduce entailment systems in a finitary way is to generate them
by a system ofproof rulesthat can be presented finitely.

2.3. Equational Deduction 31

Definition 2.32(Proof rule). Given a signatureΣ, a proof ruleis pair (E,e) consisting of
a finite set E ofΣ-sentences and aΣ-sentence e.

It is customary to denote proof rules(E,e) by E
e . Also note that the mathematical concept

of proof rule lives at the same abstraction level as that of entailment relation or system.
Any collection of proof rulesR for a fixed signature generates an entailment relation

by considering the least entailment relation containingR. This is obtained as the intersec-
tion of all entailment relations containingR. The existence of this intersection is given by
the following simple result.

Proposition 2.33. The intersection of any family of entailment relations is anentailment
relation.

Proof. We have to check that the intersection⊢ of any family(⊢i)i∈I of entailment rela-
tions has the properties of ‘union’, ‘monotonicity’, and ‘transitivity’.

Let us consider ‘union’. IfΓ ⊢ Γ1 andΓ ⊢ Γ2 it means thatΓ ⊢i Γ1 andΓ ⊢i Γ2 for
eachi ∈ I . By the ‘union’ property for each⊢i we have thatΓ ⊢i Γ1∪Γ2 for eachi ∈ I ,
which means that(Γ,Γ1∪Γ2) ∈ ⊢i for eachi ∈ I . Hence(Γ,Γ1∪Γ2) ∈

T

i∈I ⊢
i = ⊢,

which meansΓ ⊢ Γ1 ∪Γ2. This proof can be replicated for showing the ‘monotonicity’
and the ‘transitivity’ for⊢ too. �

Soundness and completeness.These two concepts lies at the core of logical analysis
since they express the most important aspects of the relationship between the semantic
and the proof theoretic aspects of logical systems. On the one hand we have the semantic
entailment system|= which defines entailment between (sets of) sentences by means of
the semantic level, that of the models (or algebras) and of the satisfaction relation between
these and the sentences. This is the fundamental entailmentsystem for any logic, corre-
sponding to the deepest concept of truth given by the respective logic, that of semantic
truth. The problem with the semantic entailment system is that it has an infinitary na-
ture. On the other hand we may define entailment systems only syntactically, completely
ignoring the semantics given by the models (or algebras), bygenerating them from sys-
tems of proof rules. Let us call theseproof theoretic entailment systems. Their point is to
approximate as exactly as possible the semantic entailmentsystem. The really valuable
proof theoretic entailment systems are those that are finitely generated. The word ‘ap-
proximate’ above means that we should not have proof theoretic entailments that are not
semantic entailments too; this property is calledsoundness. Ideally the proof theoretic en-
tailments should coincide with the semantic ones; this is called completeness. From these
two properties, which in a sense are dual to each other, the crucial one is the soundness. In
its absence the respective proof theoretic entailment system is completely useless, some
of its entailments corresponding to incorrect deductions.Completeness is highly desir-
able especially when the proof theoretic entailment systemis finitely generated, since this
means a fully syntactic finite presentation of semantic entailment, a very good situation
for mechanising deduction. However one can live with its absence. In other words it is
crucial to perform correct deductions or proofs and only desirable to be able to prove
everything that is true.

32 Chapter 2. Data Type Specification

Definition 2.34(Soundness and completeness). An entailment relation⊢Σ for a signature
Σ

• is soundwhen for any sets ofΣ-sentencesΓ andΓ′, Γ ⊢Σ Γ′ impliesΓ |=Σ Γ′,3 and

• is completewhen for any set ofΣ-sentencesΓ and for anyΣ-sentenceρ, Γ |=Σ {ρ}
impliesΓ ⊢Σ {ρ}.

An entailment system is sound, respectively complete, wheneach of its entailment rela-
tions is sound, respectively complete.

In general soundness is much easier to establish than completeness, which is a rather
fortunate situation if we take into account the fact that from these two properties the
soundness is the crucial one. In the case of establishing thesoundness property it is very
useful if the entailment system is generated by proof rules;as we will see below, in this
situation it is simply enough to check soundness only for theproof rules.

Definition 2.35(Sound proof rule). The proof ruleE
e is soundif and only if E|= e.

Proposition 2.36. The entailment relation generated by a set of sound proof rules is
sound too.

Proof. By the hypothesis each proof ruleEe , considered as the pair(E,{e}), belongs to
the semantic entailment relation|=. Because the entailment relation⊢ generated by the
set proof rules is the smallest one containing the respective set of proof rules, we have
that⊢ ⊆ |=. This means⊢ is sound. �

Proof rules for equational deduction. As an example let us check the soundness of
the following proof rules for conditional equations.

Definition 2.37 (Equational proof rules). Given a signature(S,F), the following are the
equationalproof rules for(S,F):

Reflexivity:
/0

t = t
for all (S,F)-terms t.

Symmetry:
{t = t ′}
t ′ = t

for all (S,F)-terms t and t′ of the same sort.

Transitivity:
{t = t ′, t ′ = t ′′}

t = t ′′
for all (S,F)-terms t, t′ and t′′ of the same sort.

Congruence:
{ti = t ′i | 1≤ i ≤ n}

σ(t1, . . . ,tn) = σ(t ′1, . . . ,t
′
n)

for each operation symbolσ ∈ Fs1...sn→s

and any terms ti , t′i of sort si for 1≤ i ≤ n.

Substitutivity:
{(∀X)H ⇒C}
{θ(H ⇒C)}

for any conditional equation(∀X)H ⇒ C for (S,F)
and for each substitutionθ : X → T(S,F).

3Recall thatΓ |=Σ Γ′ means that for any model/algebraA if A |= Γ thenA |= Γ′.

2.3. Equational Deduction 33

Each of the items above defines an infinite set of proof rules, called aschemeof proof
rules. Since the equational proof rules consist of five schemes, we can say that the pre-
sentation of the equational proof rules is finite.

Proposition 2.38. The equational proof rules given by Dfn. 2.37 are sound.

Proof. We check the soundness of each of the proof rules of Dfn. 2.37.Let A be any
(S,F)-algebra.

Reflexivity:For any termt, we have thatAt = At , henceA |= t = t.
Symmetry:For any termst andt ′ of the same sort, ifA |= t = t ′ this meansAt = At′ .

By the symmetry of equality we haveAt′ = At , henceA |= t ′ = t.
Transitivity:For any termst, t ′ andt ′′ of the same sort, ifA |= t = t ′ andA |= t ′ = t ′′

this meansAt = At′ andAt′ = At′′ . By the transitivity of equality we haveAt = At′′ hence
A |= t = t ′′.

Congruence:Assume thatA |= ti = t ′i for 1≤ i ≤ n. This meansAti = At′i
for 1≤ i ≤ n

which impliesAσ(At1, . . . ,Atn) = Aσ(At′1
, . . . ,At′n) which by the definition of evaluation of

terms meansAσ(t1,...,tn) = Aσ(t′1,...,t
′
n). HenceA |= σ(t1, . . . ,tn) = σ(t ′1, . . . ,t

′
n).

Substitutivity:Let A be a(S,F)-algebra such thatA |= (∀X)H ⇒C for some condi-
tional equation(∀X)H ⇒C and for some substitutionθ : X → T(S,F). We have to prove
thatA |= θ(H ⇒C) = θ(H) ⇒ θ(C). Let A′ be the(S,F ∪X)-expansion ofA defined by
A′

x = Aθ(x) for each variablex∈ X. We use the following lemma.

Lemma 2.39. A′
t = Aθ(t) for each(S,F ∪X)-term t.

By Lemma 2.39 we have thatAθ(H) = A′
H and Aθ(C) = A′

C. But A |=(S,F) θ(H) means
Aθ(H) ⊆ {(a,a) | a∈ A} which impliesA′

H ⊆ {(a,a) | a∈ A} which meansA′ |=(S,F∪X)

H. BecauseA′ is a(S,F∪X)-expansion ofA we have thatA′ |= H ⇒C, henceA′ |=(S,F∪X)

C, which meansA′
C ⊆ {(a,a) | a ∈ A}. HenceAθ(C) ⊆ {(a,a) | a ∈ A} which means

A |=(S,F) θ(C).
We still owe the proof of Lemma 2.39, which completes the proof of the soundness

of Substitutivity.
Proof of Lemma 2.39:By induction on the structure oft. Let t = σ(t1, . . . ,tn) whereσ ∈
(F ∪X)w→s andt1, . . . ,tn are the immediate subterms oft. We distinguish two cases:

1. If σ ∈ X thenAθ(t) = Aθ(x) = A′
x = A′

t .

2. If σ ∈ F then

Aθ(t) = Aθ(σ(t1,...,tn)) = Aσ(Aθ(t1), . . . ,Aθ(tn)) =
= Aσ(A′

t1, . . . ,A
′
tn) (by the induction hypothesis)

= A′
σ(A′

t1, . . . ,A
′
tn) (sinceAσ = A′

σ)
= A′

σ(t1,...,tn) = A′
t .

�

In some situations, including the case of the proof theoretic entailment system for
conditional equations studied here, it is not enough to generate the respective entailment
system only from proof rules, another kind of rules being needed. These other kind of

34 Chapter 2. Data Type Specification

rules are not proof rules in the sense of Dfn. 2.32, they are rather properties of the respec-
tive entailment system. Hence we call them ‘meta-rules’. Our proof theoretic entailment
system for conditional equations requires two such meta-rules which we discuss in the
following.

The meta-rule of Implication. This meta-rule is better known in logic under the name
of ‘modus ponens’.

Definition 2.40(Implication meta-rule). Given a signature(S,F), an entailment relation
⊢(S,F) for the conditional equations in(S,F) satisfies themeta-rule of Implicationwhen
for each setΓ of conditional equations in(S,F) and for each quantifier-free conditional
equation H⇒C:

Γ ⊢(S,F) (H ⇒C) if and only if Γ∪H ⊢(S,F) C.

An entailment system satisfies the meta-rule ofImplicationwhen each of its entailment
relations satisfy it.

Proposition 2.41. The semantic entailment system|= satisfies theImplicationmeta-rule.

Proof. The Implication meta-rule for|= means that for each signature(S,F)

Γ |=(S,F) H ⇒C if and only if Γ∪H |=(S,F) C

for each set of conditional equationsΓ and each quantifier-free conditional equationH ⇒
C in (S,F). But Γ |=(S,F) H ⇒ C means that for any(S,F)-algebraM, if M |= Γ then
M |= H ⇒ C, which means that ifM |= Γ andM |= H thenM |= C, which means that if
M |= Γ∪H thenM |= C. �

The meta-rule of Universal Quantification. In logic one may find this meta-rule also
under the name of the rule of ‘generalization’.

Definition 2.42 (Universal Quantification meta-rule). An entailment system⊢ for condi-
tional equations satisfies themeta-rule of Universal Quantificationwhen for each setΓ
of conditional equations in a signature(S,F), for each set X of variables for(S,F), and
for each conditional equationρ in the signature(S,F ∪X):

Γ ⊢(S,F) (∀X)ρ if and only if Γ ⊢(S,F∪X) ρ.

Proposition 2.43. The semantic entailment system satisfies theUniversal Quantification
meta-rule.

Proof. TheUniversal Quantificationmeta-rule for|= means that for each signature(S,F)
and for each setX of variables for(S,F)

Γ |=(S,F) (∀X)ρ if and only if Γ |=(S,F∪X) ρ

for each setΓ of conditional equations for(S,F) and for each conditional equationρ for
(S,F ∪X). Let us assumeΓ |=(S,F) (∀X)ρ. For any(S,F ∪X)-algebraM′ that satisfiesΓ
we consider its(S,F)-reductM. We use the following lemma:

2.3. Equational Deduction 35

Lemma 2.44 (Satisfaction condition). For each conditional equationγ for (S,F) and
each(S,F ∪X)-algebra M′ we have that

M′ |=(S,F∪X) γ if and only if M |=(S,F) γ

where M denotes the(S,F)-reduct of M′.

By Lemma 2.44 we have thatM |=(S,F) Γ, henceM |=(S,F) (∀X)ρ. BecauseM′ is an
(S,F ∪X)-expansion ofM we have thatM′ |=(S,F∪X) ρ.
Now let us assume thatΓ |=(S,F∪X) ρ and prove thatΓ |=(S,F) (∀X)ρ. Let M be any(S,F)-
algebra such thatM |=(S,F) Γ and letM′ be any(S,F ∪X)-expansion ofM. By Lemma
2.44 we have thatM′ |=(S,F∪X) ρ, henceM |= (∀X)ρ becauseM′ was considered an arbi-
trary expansion ofM. The following completes the proof of our proposition.

Proof of Lemma 2.44:Let γ be(∀Y)H ⇒C. In order to avoid an artificial clash of
variables we may assume thatX andY are disjoint.M′ |=(S,F∪X) γ means thatM′

1 |=(S,F∪X∪Y)

H ⇒C for any(S,F∪X∪Y)-expansionM′
1 of M′ whileM |=(S,F) γ means thatM1 |=(S,F∪Y)

H ⇒ C for any (S,F ∪Y)-expansionM1 of M. Note that anyM′
1 determines anM1

by considering the(S,F ∪Y)-reduct and anyM1 determines anM′
1 by considering the

(S,F ∪X ∪Y)-expansion defined by(M′
1)x = M′

x for eachx ∈ X. The conclusion of our
lemma follows from the relation

M′
1 |=(S,F∪X∪Y) H ⇒C if and only if M1 |=(S,F∪Y) H ⇒C.

That the above relation equivalence holds can be seen easilyfrom the fact that, because
M′

1 is an(S,F ∪X∪Y)-expansion ofM1, (M′
1)t = (M1)t for each(S,F ∪Y)-termt (which

can be shown immediately by induction on the structure oft). �

Compactness. One of the most important properties of entailment systems is that any
set of finite conclusions can be derived from a finite set of premises.

Definition 2.45(Compact entailment). An entailment system⊢ is compactwhen for each
signatureΣ, for any E⊢Σ Γ with Γ finite there exists E0 ⊆ E finite such that E0 ⊢ Γ.

Proposition 2.46. Let ⊢ be an entailment system for conditional equations that fulfills
the meta-rules of Implication and Universal Quantification. Then the system of relations
⊢c on sets of sentences defined as follows

Γ ⊢c
Σ E if and only if for each finite E0 ⊆ E there exists a finiteΓ0 ⊆ Γ such thatΓ0 ⊢Σ E0

is an entailment system that fulfills the meta-rules ofImplicationandUniversal Quantifi-
cationtoo.

Proof. We have to prove five properties for⊢c as follows.
Union: We assumeΓ ⊢c E andΓ ⊢c E′ and have to show thatΓ ⊢c E∪E′. Any finite
subset ofE∪E′ can be written asE0∪E′

0 with E0 ⊆ E andE′
0 ⊆ E′ both finite. Then there

existsΓ0 andΓ′
0 both finite subsets ofΓ such thatΓ0 ⊢E0 andΓ′

0 ⊢ E′
0. By ‘Monotonicity’

and ‘Transitivity’ of⊢ we have thatΓ0∪Γ′
0 ⊢ E0 andΓ0∪Γ′

0 ⊢ E′
0 and by ‘Union’ of⊢

we further deduce thatΓ0∪Γ′
0 ⊢ E0∪E′

0.

36 Chapter 2. Data Type Specification

Monotonicity:If Γ′ ⊇ Γ ⊢c E andE0 ⊆ E finite then letΓ0 ⊆ Γ finite such thatΓ0 ⊢ E0.
SinceΓ0 ⊆ Γ′ we may deduce thatΓ′ ⊢c E.
Transitivity: AssumeΓ ⊢c E ⊢c E′. For anyE′

0 ⊆ E′ finite there existsE0 ⊆ E finite such
thatE0 ⊢ E′. Now forE0 there existsΓ0 ⊆ Γ finite such thatΓ0 ⊢ E0. By ‘Transitivity’ for
⊢ we have thatΓ0 ⊢ E′

0.
Implication: AssumeΓ ⊢c H ⇒ C. Then letΓ0 ⊆ Γ finite such thatΓ0 ⊢ H ⇒ C. By
Implication of⊢ we have thatΓ0∪H ⊢C. SinceH is finite it follows thatΓ∪H ⊢c C. Now
we assume the opposite, thatΓ∪H ⊢c C. Then letΓ′ ⊆ Γ∪H finite such thatΓ′ ⊢C. Since
H is finite we may assume with any loss of generality thatΓ′ = Γ0∪H. By Implication
for ⊢ we obtain thatΓ0 ⊢ H ⇒C, henceΓ ⊢c H ⇒C.
Universal Quantification:On the one hand we have thatΓ ⊢c

(S,F) (∀X)ρ if and only if

there existsΓ0 ⊆ Γ finite such thatΓ0 ⊢(S,F) (∀X)ρ. On the other hand we have that
Γ ⊢(S,F∪X) ρ if and only if there existsΓ0 ⊆ Γ finite such thatΓ0 ⊢(S,F∪X) ρ. By Universal
Quantification for⊢ we deduce thatΓ ⊢c

(S,F) (∀X)ρ if and only if Γ ⊢c
(S,F∪X) ρ. �

The equational entailment system. Now we have everything necessary for defining a
sound and complete proof theoretic entailment system for conditional equations.

Definition 2.47(Proof theoretic equational entailment system). Theproof theoretic equa-
tional entailment system(denoted⊢e) is the least entailment system for conditional equa-
tions which contains the equational proof rules introducedby Dfn. 2.37 and which satis-
fies the meta-rules ofImplicationand of Universal Quantification.

The proof theoretic equational entailment system is obtained by the intersection of
all entailment systems containing the equational proof rules and satisfying the meta-rules
of Implication and of Universal Quantification. That this intersection is an entailment
system follows by Prop. 2.33. It also satisfies the above mentioned meta-rules because
both of these are preserved under arbitrary intersection ofentailment systems, a property
which can be easily checked in the manner of the proof of Prop.2.33 (we therefore omit
here the details of this proof and leave it as an exercise). Wehave the following important
consequence.

Corollary 2.48. The proof theoretic equational entailment system⊢e is compact.

Proof. Because the equational proof rules of Dfn. 2.37 are finitary,they are contained by
(⊢e)c which according to Prop. 2.46 is an entailment system satisfying Implicationand
Universal Quantificationthat is less than⊢e (since by ‘Transitivity’ alwaysΓ⊢c E implies
Γ ⊢ E). Since⊢e is the least one with these properties, it follows that⊢e= (⊢e)c. �

A more constructive description of⊢e is given by adding iteratively to the proof
rules the general properties of entailment relations plus the meta-rules ofImplication
and ofUniversal Quantificationas follows. For each signature(S,F), each set ofS-sorted
variablesX, any setsΓ,Γ1,Γ2 of conditional equations for(S,F), any conditional equation
H ⇒C for (S,F), and any conditional equationρ for (S,F ∪X):

2.3. Equational Deduction 37

0. Let⊢0
(S,F) be the set of pairs of sets of conditional equations for(S,F) consisting of

the equational proof rules for(S,F) of Dfn. 2.37 and of all pairs(Γ,Γ′) for which
Γ ⊆ Γ′.

For each natural numberk we let:

1. ⊢4k+1
(S,F) = (⊢4k

(S,F)) ∪ {(Γ,Γ1∪Γ2) | Γ ⊢4k
(S,F) Γ1 and Γ ⊢4k

(S,F) Γ2}.

2. ⊢4k+2
(S,F) = (⊢4k+1

(S,F)) ∪ {(Γ,Γ2) | Γ ⊢4k+1
(S,F) Γ1 and Γ1 ⊢

4k+1
(S,F) Γ2}.

3. ⊢4k+3
(S,F)

= (⊢4k+2
(S,F)

) ∪ {(Γ,{H ⇒ C}) | Γ∪H ⊢4k+2
(S,F)

C} ∪ {(Γ∪H,{C} | Γ ⊢4k+2
(S,F)

H ⇒C}.

4. ⊢4k+4
(S,F) = (⊢4k+3

(S,F)) ∪ {(Γ,{(∀X)ρ}) | Γ ⊢4k+3
(S,F∪X) ρ}.

5. ⊢4k+4
(S,F∪X) = (⊢4k+3

(S,F∪X)) ∪ {(Γ,{ρ}) | Γ ⊢4k+3
(S,F) (∀X)ρ}.

Finally, we define⊢e
(S,F) =

S

n∈ω ⊢n
(S,F). Note that⊢e thus defined is indeed an entail-

ment system satisfying the two required meta-rules. Moreover, for any similar entailment
system⊢ it is easy to show by induction onn∈ ω that⊢n

(S,F) ⊆ ⊢(S,F) hence we have that
⊢e ⊆ ⊢.

As an application of Dfn. 2.47 let us develop a fully formal proof of (∀X)X+0 = X
from GROUP. We have already gave a proof of this towards the beginning ofthe section
that was presented in the manner of the usual mathematical proofs thus involving a high
degree of informality. Later on, after Prop. 2.31, we have made it more formal by making
explicit use of the general properties of entailment systems. Now Dfn. 2.47 puts us in the
position to present this deduction in a fully formal way. As previously done, let us use the
fact that

GROUP ⊢e {(∀X)X+(−X) = 0} (2.17)

Let us denote byΣ the signature ofGROUP and and letΣ+a denote its extension with a
constanta. Let us also recall our previous notations:

– A1 for the associativity axiom(∀X,Y,Z)X+(Y+Z) = (X+Y)+Z,

– A2 for (∀X)0+X= X,

– A3 for (∀X)(−X)+X= 0, and

– E2 for (∀X)X+(−X) = 0.

Then our formal deduction goes as follows, first by applying the equational proof rules.
By Reflexivity:

/0 ⊢e
Σ+a {a = a} (2.18)

By Symmetry:

{0+a= a} ⊢e
Σ+a {a = 0+a} (2.19)

{a+(−a) = 0} ⊢e
Σ+a {0 = a+(−a)} (2.20)

38 Chapter 2. Data Type Specification

{a = (a+(−a))+a} ⊢e
Σ+a {(a+(−a))+a= a} (2.21)

{a+((−a)+a)= a+0} ⊢e
Σ+a {a+0= a+((−a)+a)} (2.22)

By Transitivity:

{a = 0+a, 0+a= (a+(−a))+a} ⊢e
Σ+a {a = (a+(−a))+a} (2.23)

{a+((−a)+a)= (a+(−a))+a, (a+(−a))+a= a} ⊢e
Σ+a {a+((−a)+a)= a}(2.24)

{a+0= a+((−a)+a), a+((−a)+a))= a} ⊢e
Σ+a {a+0= a} (2.25)

By Congruence:

{0 = a+(−a), a = a} ⊢e
Σ+a {0+a= (a+(−a))+a} (2.26)

{a = a, (−a)+a= 0} ⊢e
Σ+a {a+((−a)+a)= a+0} (2.27)

By Substitutivityfor X 7→ a, Y 7→ (−a), Z 7→ a:

{A1} ⊢e
Σ+a {a+((−a)+a)= (a+(−a))+a} (2.28)

{A2} ⊢e
Σ+a {0+a= a} (2.29)

{A3} ⊢e
Σ+a {(−a)+a= 0} (2.30)

{E2} ⊢e
Σ+a {a+(−a) = 0} (2.31)

Now we apply the general properties of entailment systems.

{A2} ⊢e
Σ+a {a = 0+a} from 2.29 and 2.19 by ‘transitivity’ (2.32)

{E2} ⊢e
Σ+a {0 = a+(−a)} from 2.31 and 2.20 by ‘transitivity’ (2.33)

{E2} ⊢e
Σ+a {0+a= (a+(−a))+a} from 2.33, 2.18 and 2.26 (2.34)

{A2,E2} ⊢e
Σ+a {a = (a+(−a))+a} from 2.32, 2.34 and 2.23 (2.35)

{A2,E2} ⊢e
Σ+a {(a+(−a))+a= a} from 2.35 and 2.21 by ‘transitivity’(2.36)

{A1,A2,E2} ⊢e
Σ+a {a+((−a)+a)= a} from 2.28, 2.36 and 2.24 (2.37)

{A3} ⊢e
Σ+a {a+((−a)+a)= a+0} from 2.18, 2.30 and 2.27 (2.38)

{A3} ⊢e
Σ+a {a+0= a+((−a)+a)} from 2.38 and 2.22 by ‘transitivity’(2.39)

{A1,A2,A3,E2} ⊢e
Σ+a {a+0= a} from 2.39, 2.37 and 2.25 (2.40)

GROUP= {A1,A2,A3} ⊢e
Σ+a {a+0= a} from 2.40 and 2.17 (2.41)

By applying the meta-rule ofUniversal Quantificationwe further obtain that

GROUP ⊢e
Σ {(∀a)a+0= a} (2.42)

By Substitutivityfor a 7→ X:

{(∀a)a+0= a} ⊢e
Σ+X {X+0 = X} (2.43)

By ’transitivity’ andUniversal Quantificationwe finally obtain that

GROUP ⊢e
Σ {(∀X)X+0 = X} (2.44)

Note how the size of this proof has increased dramatically with the increase in the degree
of formality.

2.3. Equational Deduction 39

Soundness of equational deduction. The precise mathematical formulation for the
general correctness of equational deduction is that the proof theoretic entailment system
of Dfn. 2.47 is sound, which at this stage is rather easy to establish.

Proposition 2.49(Soundness of equational deduction). The proof theoretic equational
entailment system is sound.

Proof. If the semantic entailment system|= satisfied the properties from Dfn. 2.47, then
since⊢e is theleastentailment system satisfying those properties we may conclude with
the soundness property for each signatureΣ, i.e.⊢e

Σ ⊆ |=Σ.
That |= contains the equational proof rules means precisely the soundness of the

latter, which has been established by Prop. 2.36. That|= satisfies the Implication and the
Universal Quantification meta-rules, respectively, has been established by Prop. 2.41 and
2.43, respectively. �

Completeness of equational deduction. Completeness of equational logic is originally
due, for the single sorted case, to a famous result by Birkhoff [2]. This has been extended
to the many sorted case in [19]. Recently the essence of the equational completeness
phenomenon has been captured in [8] to a very general abstract setting based upon the
so-called ‘institution theory’ of [17]. This has lead to a myriad of completeness results
for various logical systems, many of these results being quite remote in form from the
original equational completeness theorem.

Completeness of equational logic is a key to making rewriting, the main execution
procedure for equational specifications, into a decision procedure.

Theorem 2.50(Completeness of equational deduction). The proof theoretic equational
entailment system is complete.

Proof. We have to show that for any setΓ of conditional equations for a signature(S,F)
and for any conditional equationρ for (S,F), Γ |= {ρ} impliesΓ ⊢ {ρ}.
Let us consider the binary relation≡Γ on the term algebra 0(S,F) defined by:

t ≡Γ t ′ if and only if Γ ⊢e {t = t ′}.

The relation≡Γ is

– reflexive because for each(S,F)-termt we have succesively that/0 ⊢e {t = t} by the
proof rule ofReflexivity, Γ ⊢e /0 by the ‘monotonicity’ of⊢e

(S,F), andΓ ⊢e {t = t}
from these two entailments above and by the ‘transitivity’ of ⊢e

(S,F),

– symmetric because wheneverΓ ⊢e {t = t ′} for any(S,F)-termst andt ′ of the same
sort, by the proof rule ofSymmetrywe have that{t = t ′} ⊢e {t ′ = t}, which by the
‘transitivity’ property of⊢e

(S,F) implies thatΓ ⊢e {t ′ = t}, and

– transitive because wheneverΓ ⊢e {t = t ′} andΓ ⊢e {t ′ = t ′′} for any(S,F)-termst,
t ′ andt ′′ of the same sort, by the ‘union’ property of⊢e

(S,F) we haveΓ⊢e {t = t ′, t ′ =

t ′′}, by the proof rule ofTransitivitywe have that{t = t ′, t ′ = t ′′} ⊢e {t = t ′′}, and

40 Chapter 2. Data Type Specification

from the last two entailments, by the ‘transitivity’ property of ⊢e
(S,F), we obtain that

Γ ⊢e {t = t ′′}.

Hence≡Γ is an equivalence. Moreover≡Γ is

– anF-congruence because ifΓ ⊢e {ti = t ′i} for 1≤ i ≤ n andσ ∈ Fw→s then by the
‘union’ property of⊢e

(S,F) we have thatΓ ⊢e {ti = t ′i | 1≤ i ≤ n}, by the proof rule

of Congruencewe have that{ti = t ′i | 1 ≤ i ≤ n} ⊢e {σ(t1, . . . ,tn) = σ(t ′1, . . . ,t
′
n)},

and from the last two entailments, by the ‘transitivity’ property of⊢e
(S,F), we obtain

thatΓ ⊢e {σ(t1, . . . ,tn) = σ(t ′1, . . . ,t
′
n)}.

Let us now prove that≡Γ is aΓ-congruence. For this we consider any conditional equation
(∀X)H ⇒C from Γ and any(S,F ∪X)-expansionA′ of the term algebra 0(S,F). We have
to show thatA′

H ⊆ ≡Γ impliesA′
C ⊆ ≡Γ. Let θ : X → TF be the substitution defined by

θ(x) = A′
x for eachx∈ X. Then by induction on the structure of any(S,F ∪X)-termt it is

easy to see thatθ(t) = A′
t . From this it follows thatA′

H ⊆ ≡Γ means

Γ ⊢e θ(H) (2.45)

We can establish the following sequence of entailments:

Γ ⊢e {(∀X)H ⇒C} by the ‘monotonicity’ property of⊢e
(S,F) (2.46)

{(∀X)H ⇒C} ⊢e {θ(H) ⇒ θ(C)} by the proof rule ofSubstitutivity (2.47)

Γ ⊢e {θ(H) ⇒ θ(C)} from 2.46 and 2.47 by the ‘transitivity’ of⊢e
(S,F) (2.48)

Γ∪θ(H) ⊢e θ(C) from 2.48 theImplicationmeta-rule for ⊢e
(S,F) (2.49)

Γ ⊢e Γ by the ‘monotonicity’ property of⊢e
(S,F) (2.50)

Γ ⊢e Γ∪θ(H) from 2.50 and 2.45 by the ‘union’ property of⊢e
(S,F) (2.51)

Γ ⊢e θ(C) from 2.51 and 2.49 by the ‘transitivity’ property of⊢e
(S,F) (2.52)

Since for each(S,F ∪X)-term t we have thatA′
t = θ(t), the entailment 2.52 just means

A′
C ⊆ ≡Γ. We have thus proved that≡Γ is a Γ-congruence on 0(S,F). By Prop. 2.24 it

follows that 0(S,F)/≡Γ |= Γ.
Consider an equationt = t ′ such thatΓ |= t = t ′. Because 0(S,F)/≡Γ |= Γ we have that

0(S,F)/≡Γ |= t = t ′ which means(0(S,F)/≡Γ)t = (0(S,F)/≡Γ)t′ which meanst/≡Γ = t ′/≡Γ
which meanst ≡Γ t ′. HenceΓ ⊢e t = t ′. We have thus obtained the completeness for the
quantifier free equations. We now extend it to all conditional equations(∀X)H ⇒C.

AssumeΓ |=(S,F) (∀X)H ⇒C. Then byUniversal Quantificationfor |= (cf. Prop. 2.43)
we obtainΓ |=(S,F∪X) H ⇒C and byImplicationfor |= (cf. Prop. 2.41) we further obtain
thatΓ∪H |=(S,F∪X) C. By the completeness for the quantifier free equations that has been
established above in this proof, we have thatΓ∪H ⊢e

(S,F∪X) C. And now we go the same
way opposite direction for⊢e instead of|=. Because⊢e satisfiesImplicationwe have that
Γ ⊢e

(S,F∪X) H ⇒C and because it satisfiesUniversal Quantificationwe finally obtain that

Γ ⊢e
(S,F) (∀X)H ⇒C. �

2.3. Equational Deduction 41

Completeness of equational deduction has many important consequence, an imme-
diate one being the compactness of the semantic entailment.

Corollary 2.51. The semantic entailment|= for conditional equations is compact.

Proof. From the compactness of⊢e (Prop. 2.48) and from the completeness result of
Thm. 2.50. �

The key to the proof of the completeness of equational deduction is that the relation
{(t, t ′) | Γ ⊢e t = t ′} is aΓ-congruence on the initial (term) algebra. It can be easily shown
that in fact it is=Γ, the leastΓ-congruence. The following result, also a consequence of
the completeness Thm. 2.50, generalizes this important insight.

Definition 2.52 (Reachable algebra). An (S,F)-algebra A is reachable when for each
element a of A there exists an(S,F)-term t such that a= At .

Corollary 2.53. For any setΓ of conditional(S,F)-equations, for any reachable(S,F)-
algebra A and for any(S,F)-terms t and t′ of the same sort

E(A)∪Γ ⊢e t = t ′ if and only if At =A
Γ At′

where by E(A) we denote{t = t ′ | A |= t = t ′} and where=A
Γ is the leastΓ-congruence on

A.

Proof. For the implication from the left to the right let us assumeE(A)∪Γ ⊢e t = t ′.
By the soundness result of Prop. 2.49 it follows thatE(A)∪Γ |= t = t ′. Since the quotient
A/=A

Γ
satisfies bothΓ (cf. Prop. 2.24) andE(A) (because(A/=A

Γ
)t = (At)/=A

Γ
for each term

t) it follows thatA/=A
Γ
|= t = t ′ which meansAt =A

Γ At′ .

For the implication from the right to the left let us assume thatAt =A
Γ At′ . Let 0E(A)∪Γ

denote the initial algebra satisfyingE(A)∪Γ (see Cor. 2.28). There exists a homomor-
phismh : A→ 0E(A)∪Γ defined byh(At) = (0E(A)∪Γ)t for each termt. This is defined on
each element ofA becauseA is reachable and it is defined correctly because ifAt1 = At2

then (t1 = t2) ∈ E(A) and thus 0E(A)∪Γ |= t1 = t2. It is also straightforward to check
that h is indeed a homomorphism. SinceA/=A

Γ
is the free algebra overA satisfyingΓ

(see Cor. 2.26), there exists an unique homomorphismh′ : A/=A
Γ
→ 0E(A)∪Γ such that

h = qA
Γ;h′. Thus for any termt we have thath(At) = h′((A/=A

Γ
)t) = (0E(A)∪Γ)t , hence

At =A
Γ At′ implies 0E(A)∪Γ |= t = t ′. Now let us take any modelM such thatM |= E(A)∪Γ.

By considering the unique homomorphism 0E(A)∪Γ →M we obtain thatM |= t = t ′, which
proves thatE(A)∪Γ |= t = t ′. ThenE(A)∪Γ ⊢e t = t ′ by the completeness of equational
deduction (Thm. 2.50). �

Exercises.

2.11. Given substitutionsθ : X → T(S,F∪Y) andψ : Y → T(S,F∪Z), their compositionθ;ψ : X →

T(S,F∪Z) is defined by(θ;ψ)(x) = ψ♯(θ(x)). Show that the composition of substitutions is associa-
tive.

42 Chapter 2. Data Type Specification

2.12. Develop the detailed proof of the fact that the meta-rules ofImplication and ofUniversal
Quantificationare preserved under arbitrary intersections of entailmentsystems.

2.13. Let X andY be disjoint sets of variables for a signature(S,F). Prove the following more
general form ofSubstitutivity, namely that for any(S,F ∪ X)-sentenceρ and any substitution
θ : X → TF(Y),

{(∀X)ρ} |=(S,F) {(∀Y)θ(ρ)}.

2.14. Show that the unconditional equations admit a sound and complete proof theoretic entailment
system which is the least entailment system containing the equational proof rules of Dfn. 2.37 (with

the Substitutivityrule in the unconditional form(∀X)C
θ(C)) and satisfying the meta-rule of Universal

Quantification only.

2.15. Prove by equational deduction that any group satisfies the equation(∀x) -(- x) = x.

2.16. A group hascharacteristic 2if and only if it satisfies the equation(∀x) x + x = 0. Prove
by equational deduction that any group of characteristic 2 is commutative, i.e. it satisfies the equa-
tion (∀x,y) x + y = y + x.

2.4 Rewriting

In its standard form that was presented in the section above,equational deduction is rather
difficult to mechanize. This difficulty owes to the nature of the equational proof rules
leading to a lot choices to make about what rules to use and howto use them. Without
the human mind making these choices, this means an exponential explosion of the search
space of the deduction process. In this section we present the well established method to
overcome this problem in mechanizing equational deduction. This method is known as
‘term rewriting’ or just ‘rewriting’ in more general contexts.

The term rewriting entailment system. An important step for giving direction to the
equational deduction process is to eliminate the rule ofSymmetry, which means that the
equations are used from the left to the right only.

Definition 2.54(Rewriting entailment). The(term) rewriting entailment system(denoted
⊢r) is the least entailment system for conditional equations containing the proof rules of
Reflexivity, Transitivity, CongruenceandSubstitutivity(of Dfn. 2.37) and which satisfies
the meta-rules ofImplicationand of Universal Quantification.

From this definition it is clear that the rewriting entailment system is less than the equa-
tional one, i.e.⊢r

(S,F) ⊆⊢e
(S,F) for each signature(S,F). An immediate consequence of this

observation is that the soundness of the equational entailment system (Cor. 2.50) implies
the soundness of the rewriting entailment system.

Proposition 2.55(Soundness of rewriting). The rewriting entailment system is sound.

Below in the section we will see that although in general the power of deduction without
the rule ofSymmetryis less than the full equational deduction, this differencecan be

2.4. Rewriting 43

overcome by some other conditions which are fullfilled by a large spectrum of equational
specifications.

Now we consider a further step in mechanizing equational deduction, namely that
of the amalgamation of the rules ofCongruenceandSubstitutivityas a single proof rule.
For this we need the following concept.

Definition 2.56 (Rewriting contexts). Given a signature(S,F), an (S,F ∪ {z})-term c
over the signature extended with a new variable z is a(rewriting)(S,F)-context if

– c= z, or

– c= σ(c1, . . . ,cn) such thatσ ∈ Fw→s is an operation symbol and there exists exactly
one k∈ {1, . . . ,n} such that ck is context, with ci being just(S,F)-terms for i6= k.

Then ck is called theimmediate sub-contextof c. A term c′ is asub-contextof (a context)
c if it is either the immediate sub-context of c or else it is a sub-context of the immediate
sub-context of c.

More informally, an(S,F)-context is an(S,F ∪ {z})-term with exactly one oc-
curence ofz. Often, in order to emphasize the new variablez we may denote contexts
by c[z]. In that case, ift is any term of the sort ofz, by c[t] we denote the term resulting
from the replacement ofzby t in c[z].

Proposition 2.57. The rewriting entailment system is the least entailment system con-
taining the proof rules ofReflexivity, Transitivity, and

Rewriting:
{(∀X)H ⇒ (t = t ′)} ∪ θ(H)

c[θ(t)] = c[θ(t ′)]
for any substitutionθ : X → T(S,F) and
each context c.

and which satisfies the meta-rules ofImplicationand of Universal Quantification.

Proof. Let us first show that the rules ofCongruenceandSubstitutivityare contained by
the entailment system defined in the statement of the proposition.

For Substitutivity, by taking the contextc as just the variablez, by Rewritingwe
have that

{(∀X)H ⇒ (t = t ′)}∪θ(H) ⊢ θ(t) = θ(t ′)

which byImplicationimplies

{(∀X)H ⇒ (t = t ′)} ⊢ θ(H)⇒(θ(t) = θ(t ′)).

For Congruence, for the sake of the simplicity of presentation of the argument, let
us consider a binary operationσ and adequate termst1, t ′1, t2 andt ′2.4 We have to prove
that

{t1 = t ′1, t2 = t ′2} ⊢ σ(t1, t2) = σ(t ′1,t
′
2)

4The same argument can be easily extended to the case whenσ has bigger arity.

44 Chapter 2. Data Type Specification

We have the following:

{t2 = t ′2} ⊢ σ(t1, t2) = σ(t1, t
′
2) by Rewritingfor the contextc[z] = σ(t1,z) (2.53)

{t1 = t ′1} ⊢ σ(t1, t
′
2) = σ(t ′1, t

′
2) by Rewritingfor the contextc[z] = σ(z,t ′2) (2.54)

{σ(t1, t2)= σ(t1, t
′
2), σ(t1, t

′
2)= σ(t ′1,t

′
2)} ⊢σ(t1,t2)= σ(t ′1,t

′
2) by Transitivity (2.55)

From (2.53) and (2.54) by ’monotonicity’, ’transitivity’ and ’union’ properties of⊢:

{t1 = t ′1, t2 = t ′2} ⊢ {σ(t1, t2) = σ(t1,t
′
2), σ(t1,t

′
2) = σ(t ′1,t

′
2)} (2.56)

The desired relation now follows from (2.56) and (2.55) by the ’transitivity’ of ⊢.
We have thus showed that the rewriting entailment system is less than the entailment

system defined by the statement of the proposition. For showing the other opposite inclu-
sion, we have to show that the rule ofRewritingis contained by the rewriting entailment
system. This means that for each substitutionθ : X → T(S,F) and for each appropriate
contextc[z] we have to show that

{(∀X)H ⇒ (t = t ′)}∪θ(H) ⊢r c[θ(t)] = c[θ(t ′)]

We have that

{(∀X)H ⇒ (t = t ′)} ⊢r θ(H) ⇒ (θ(t) = θ(t ′)) by Substitutivity (2.57)

and from (2.57) by the meta-rule ofImplicationthat

{(∀X)H ⇒ (t = t ′)}∪θ(H) ⊢r (θ(t) = θ(t ′)) (2.58)

Hence by the ‘transitivity’ property of entailment it wouldbe enough to show, for any
appropriate contextc[z], that

{θ(t) = θ(t ′)} ⊢r c[θ(t)] = c[θ(t ′)] (2.59)

For this we may think ofθ(t) andθ(t ′) as any two terms of the same sort, and therefore it
is enough to show the following simpler variant of (2.59):

{t = t ′} ⊢r c[t] = c[t ′] (2.60)

We show (2.60) by induction on the structure, or on the depth,of the contextc[z].
The base case of this induction is represented by the situation whenc[z] is just the

variablez. Then (2.60) follows directly from the ‘monotonicity’ property of entailment
systems.

For the step case, let us assume thatc= σ(c1, . . . ,cn). Without any loss of generality
we may assumec1 is the immediate sub-context ofc. The induction hypothesis means that
the considered property holds forc1, i.e.

{t = t ′} ⊢r c1[t] = c1[t
′]. (2.61)

For each 2≤ i ≤ n, by Reflexivitywe have that

/0 ⊢ ci = ci (2.62)

2.4. Rewriting 45

and from (2.61) and (2.62) by ‘monotonicity’ and ‘union’ of⊢r we have that

{t = t ′} ⊢r {c1[t] = c1[t
′],c2 = c2, . . . ,cn = cn}. (2.63)

We apply now the rule ofCongruenceand obtain that

{c1[t] = c1[t
′],c2 = c2, . . . ,cn = cn} ⊢

r σ(c1(t),c2, . . .cn)= σ(c1(t
′),c2, . . .cn) (2.64)

Finally, (2.60) is obtained from (2.63) and (2.64) by the ‘transitivity’ of ⊢r. �

The rewriting relation on terms. Given a setΓ of conditional equations for a signature
(S,F) we may define the followingrewriting relationon (S,F)-terms:

t
⋆

−→Γ t ′ if and only if Γ ⊢r t = t ′.

Because⊢r contains the rules ofReflexivityandTransitivitywe have the following imme-
diate consequence:

Corollary 2.58. The rewriting relation
⋆

−→Γ is reflexive and transitive.

The description of the rewriting entailment relation givenby Prop. 2.57 shows that
t

⋆
−→Γ t ′ means that there exists a sequence of termst = t0,t1, . . . ,tn = t ′ such that for each

k ∈ {1, . . . ,n− 1} the equalitytk = tk+1 is obtained as a conclusion by applying (once)
theRewritingrule for some conditional equation(∀X)H ⇒C in Γ. For this we often use
terminology such as ‘performing one rewrite step’ and denote it by tk −→Γ tk+1.

The following simple result represents the standard procedure for performing equa-
tional proofs by rewriting.

Proposition 2.59. If there exists a term t such that t1
⋆

−→Γ t and t2
⋆

−→Γ t thenΓ |= t1 = t2.

Proof. Sinceti
⋆

−→Γ t for eachi ∈{1,2}, by the definition of
⋆

−→Γ we have thatΓ⊢r ti = t.
By the soundness of⊢r (cf. Prop. 2.55) we have thatΓ |= ti = t for eachi ∈ {1,2}. It
follows thatΓ |= t1 = t2. �

Let us illustrate the applicability of the method suggestedby Prop. 2.59 by a simple
example. Recall the following specification of natural numbers that has been introduced
above.

mod! SIMPLE-NAT {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ] : N + (s M) = s(N + M) .
eq [zero] : N + 0 = N .

}

46 Chapter 2. Data Type Specification

By using Prop. 2.59 let us show that

SIMPLE-NAT |= (s 0) + (s s 0) = (s s 0) + (s 0).

In the following letΓ denote the two equations ofSIMPLE-NAT. By the equation [succ]
for the substitutionN,M 7→ (s 0) and for the contextc[z] = z we have the following
rewriting step

(s 0) + (s s 0) −→Γ s((s 0) + (s 0)). (2.65)

By [succ] again for the substitutionM 7→ (s 0) andN 7→ 0 and for the contextc[z] =
s(z) we have the following rewriting step

s((s 0) + (s 0)) −→Γ (s s ((s 0) + 0)). (2.66)

By [zero] for the substitutionN 7→ (s 0) and for the contextc[z] = s(s(z)) we have
the following rewriting step

(s s ((s 0) + 0)) −→Γ (s s s 0). (2.67)

From (2.65), (2.66) and (2.67) we have that

(s 0) + (s s 0)
⋆

−→Γ (s s s 0). (2.68)

By [succ] for the substitutionM 7→ (s s 0) andN 7→ 0 and for the contextc[z] = zwe
have the following rewriting step

(s s 0) + (s 0) −→Γ s((s s 0) + 0). (2.69)

By [zero] for the substitutionN 7→ (s s 0) and for the contextc[z] = s(z) we have
the following rewriting step

s((s s 0) + 0) −→Γ (s s s 0). (2.70)

From (2.69) and (2.70) we have that

(s s 0) + (s 0)
⋆

−→Γ (s s s 0). (2.71)

From (2.68) and (2.71) by Prop. 2.59 we have that

SIMPLE-NAT |= (s 0) + (s s 0) = (s s 0) + (s 0).

The rewriting algorithm. The derivation of termst2 from a termt1 by virtue of the
rewriting relationt1

⋆
−→Γ t2 can be considered a computation process when the applica-

tion of theRewritingrule is presented as an algorithm as follows. We assume a given set
Γ of conditional equations for a signature(S,F).

2.4. Rewriting 47

0. LetT be the input termt1.

1. Select(∀X)H ⇒ (t = t ′) from Γ.

2. Select a sub-termT0 of T such thatT0 = θ(t) for some substitutionθ : X →
T(S,F).

3. If the step 2. is succesful andΓ |= θ(H)

then replace inT0 in T by θ(t ′) and go to step 1.,

else select anew(∀X)H ⇒ (t = t ′) from Γ and go to step 2.

There are several aspects of this rewriting algorithm that need special attention. Some of
these, such as termination and confluence, have led to extensive studies by the research
community.

One aspect is how to deal with the conditionΓ |= θ(H) from step 3. Of course,
this condition occurs only in the cases when the equation used is not unconditional. In
such cases,Γ |= θ(H) is usually proved by rewriting which implies performing a nested
proof process by rewriting inside of the actual rewriting algorithm. Alternatively,θ(H)
can be stored as a goal to be proved later, but in this case the rewriting algorithm can be
considered terminated only when the proof ofθ(H) is accomplished.

Another aspect is that unless the setX coincides with the set of the variables ocur-
ring in t, the process of finding a substitutionθ : X → T(S,F) such thatT0 = θ(t) for T0

sub-term ofT, process that is calledmatching, may have an infinity of solutions since
there would be variables (not occuring int) that could be mapped to any term of ap-
propriate sort. In order that for anyT0 there exists at most one substitutionθ such that
T0 = θ(t), this condition is necessary. For this reason, in many specification languages,
includingCafeOBJ the notation for the universal quantifier in conditional equations is
missing since the set of the variables is implicitly assumedto be that of the variables
occuring int. In these situations, one needs to check that these variables cover all the
variables occuring in botht ′ and in the conditionH. For example,CafeOBJ silently does
not use for rewriting the equations that do not conform to this condition.

Termination. An important aspect of the rewriting algorithm, which is however of a
rather general nature, is that of the termination. Termination is a crucial property of
any algorithm, its absence means that the algorithm runs forever and we do not get
any result. It is easy to imagine situations when a rewritingalgorithm does not termi-
nate, for example a very simple one being whenΓ contains a commutativity equation
(∀M,N) M + N = N + M. Then a term such asa + b may get rewritten tob + a, then
to a+ b again and so on. Another non-termination situation, but of adifferent nature than
the one above, is when we have an equation such as(∀M) (s M) = (s s M). In this
section we will discuss more about termination and in Chap. 3we will discuss generic
techniques for proving algorithm termination.

48 Chapter 2. Data Type Specification

Confluence. The rewriting algorithm isnon-deterministicdue to the possibility to have
several choices for the selections of the equations (steps 1. and 3.) and for the selection
of the sub-termT0 (step 2.).

For example, within the context of the specificationSIMPLE-NAT above, the term
(0 + (s 0)) + 0 may be rewritten in one step in two different ways:

1. To 0 + (s 0) by using the equation [zero].

2. To s(0 + 0) + 0 by using the equation [succ].

Moreover, in the second case a further rewriting step may also be performed in two differ-
ent ways by using the same equation [zero] depending upon the choice of the sub-term
T0 which can be either the whole term or else the sub-term0 + 0.

The confluence property means that the result will be the sameregardless of the
choices we make. We will introduce confluence as a formal property below in this section.
As an example, it is easy to see that forSIMPLE-NAT the confluence property holds
because each term gets eventually rewritten to a term of the form (ss . . .s0).

Abstract termination and confluence. Termination and confluence are paramount prop-
erties of rewriting, with important implications. The study of these properties can be par-
tially done at the level of abstract sets (instead of sets of terms) and of abstract binary
relations (instead of the rewriting relations

⋆
−→Γ). Doing such study abstractly is impor-

tant in two different ways. One is the simplicity, for some concepts and results we can
do without details that are redundant or irrelevant but may make the understanding more
difficult. The other is the level of generality involved, some concepts and results maye
be used in other contexts, for other algorithms, including more sophisticated versions of
rewriting. For example such an abstract approach can be applied to the so-called ‘rewrit-
ing modulo axioms’ discussed below in this section or to the analysis of algorithms in
Chap. 3.

Definition 2.60 (Terminating relation). A binary relation> on a set A isterminatingif
and only if

– it is antisymmetric, i.e. a> b and b> a implies a= b, and

– for each a∈ A the set{b | a > b} is finite.

Definition 2.61 (Confluent relation). A binary relation> on a set A isconfluentif and
only if for each a> b and a> c there exists d∈ A such that b> d and c> d.

a
����� ��>

>>

b
��<

< c
�����

d

Definition 2.62(Normal forms). An element n∈ A is anormal formfor a binary relation
> on A when for each element x∈ A, n> x implies n= x. The element n is a normal form
of another element a with respect to> when it is a normal form for> and a> n.

2.4. Rewriting 49

In the case of the rewriting relation on terms, from a functional programming per-
spective, normal forms can be regarded as results of evaluations of terms. The existence
of unique normal forms is crucial for the smooth applicability of the proof method by
rewriting derived from the Prop. 2.59. As example, the rewriting relation

∗
−→Γ defined

by SIMPLE-NAT has normal forms of all terms, the normal forms being the terms
(s s ...s 0).

Proposition 2.63. Let > be a confluent and terminating preorder relation on a set A.
Then each element of A has a unique normal form with respect to>.

Proof. Let us first handle the uniqueness. Assume that an elementa has two normal
forms, namelyn1 and n2. By confluence there existsn such thatn1 > n and n2 > n.
Becauseni are both normal forms it follows thatni = n. Hencen1 = n2.

For showing the existence of normal forms let us fixa∈ A and suppose that the set
{b | a > b} does not contain any normal form. Note that{b | a > b} is non-empty by the
reflexivity of >. Let us pick anyb0 ∈ {b | a > b}. By induction onk ∈ ω we construct
a chain of elements(bk)k∈ω such thatbk ∈ {b | a > b}, bk > bk+1 and bk 6= bk+1. At
the induction step, we use the fact thatbk is not a normal form sincebk ∈ {b | a > b}
hence there existsbk+1 ∈ A such thatbk > bk+1 and bk 6= bk+1. By the transitivity of
> we also obtain thatbk+1 ∈ {b | a > b}. By the termination hypothesis we have that
{b | a > b} is finite, hence there existsk < n such thatbk = bn. We have thatbk > bk+1

and by the transitivity of> we also havebk+1 > bn. Sincebn = bk this meansbk > bk+1

andbk+1 > bk. By the antisymmetry condition (since> is terminating) it follows that
bk = bk+1. We have thus reached a contradiction withbk 6= bk+1. The conclusion is that
our assumption that{b | a > b} does not contain any normal form is false. �

The following result will be used below in this section.

Proposition 2.64. If > is a confluent preorder relation on a set A then the relation↓
defined by

b ↓ c if and only if there exists d∈ A with b> d and c> d

is the least equivalence containing>.

Proof. The symmetry is immediate. For the transitivity assumeb↓ c andc↓ e. Then there
existsd such thatb > d andc > d and there existsf such thatc > f ande> f .

b
��;

;
c

����� ��;
;;

e
�����

d
��;

;
f

����
g

By confluence there existsg such thatd > g and f > g. By the transitivity of the preorder
we have thatb > g ande> g, henceb ↓ e. �

50 Chapter 2. Data Type Specification

Newmann’s Lemma. There exists a body of rather elaborated techniques for proving
the confluence of a rewriting relation determined by a setΓ of equations, most of this
beyond the aims of this textbook. Here we restrict ourselevsonly to the presentation of
one basic result. This rather famous result is very useful inthe applications since it reduces
the checking of confluence to the one step rewriting situations.

Definition 2.65 (Church-Rosser relation). A relation−→ is Church-Rosserwhen its re-
flexive and transitive closure

⋆
−→ is confluent. It islocally Church-Rosserwhen for any

t −→ t1 and t−→ t2

t

����
��

��?
??

?

t1

⋆ ��>
>>

>
t2

⋆����
��

t ′

there exists t′ such that t1
⋆

−→ t ′ and t2
⋆

−→ t ′.

Note that the relation> in the paragraph above corresponds to
⋆

−→ of Dfn. 2.65,
i.e. the reflexive and transitive closure of−→, rather than to−→.

Definition 2.66 (Noetherian relation). A relation−→ is Noetherianwhen there are no
infinite chains t0 −→ t1 −→ t2 −→

It is immediate to see that if ⋆
−→ is terminating then−→ is Noetherian. The op-

posite does not hold in general, it is easy to find a Noetherianrelation−→ such that its
reflexive and transitive closure

⋆
−→ is not terminating. However in the case of the rewrit-

ing relations these two concepts coincide, i.e.−→Γ is Noetherian if and only if
⋆

−→Γ is
terminating (see Ex. 2.19).

Proposition 2.67(Newmann’s Lemma). A Noetherian relation−→ is Church-Rosser if
and only if it is locally Church-Rosser.

Proof. We focus on the non-trivial implication, from the right to the left. Because the
relation−→ is Noetherian each element has at least one normal form with respect to

⋆
−→. Let us say that an element isambiguouswhen it has at least two normal forms. The
conclusion of the proposition follows if we showed that there are no ambiguous elements.

If we showed that for each ambiguous elementt there exists another ambiguous
elementt ′ such thatt −→ t ′, then the existence of at least one ambiguous element would
contradict the hypothesis that−→ is Noetherian.

Consider a ambiguous elementt and lett1 andt2 be two different normal forms of
t. We havet

⋆
−→ t1 andt

⋆
−→ t2. Each oft1 andt2 is also different fromt (otherwise we

would immediately havet = t1 = t2). Thus there existst ′1 andt ′2 such thatt → t ′1
⋆

−→ t1 and

t → t ′2
⋆

−→ t2. By the locally Church-Rosser hypothesis there existst ′′ such thatt ′1
⋆

−→ t ′′

2.4. Rewriting 51

andt ′2
⋆

−→ t ′′. Let t3 be a normal form fort ′′.

t

����
��

��>
>>

>

t ′1
⋆ ��=

==
=⋆

����
��

t ′2
⋆����

�� ⋆
��<

<<
<

t1 t ′′
⋆��

t2

t3

Sincet1 6= t2 there existsi ∈ {1,2} such thatt3 6= ti . Thent ′i is ambiguous. �

The rewriting relation on arbitrary algebras. A setΓ of conditional equations for a
signature(S,F) induces the following relation on an arbitrary(S,F)-algebraA:

{(At ,At′) | Γ ⊢r t = t ′}

Note that whenA is the initial term algebra 0(S,F) then the above relation is just the

rewriting relation
⋆

−→Γ. However, in general the relation{(At ,At′) | Γ ⊢r t = t ′} may lack
the basic properties of a rewriting relation such as reflexivity and transitivity. Reflexivity
can achieved immediately by the assumption ofreachabilityof the algebraA (we have just
to apply the rule ofReflexivity) whilst for the transitivity we have to do the corresponding
closure.

Notation 2.68. Let
+

−→Γ,A denote the least transitive relation containing{(At ,At′) | Γ ⊢r

t = t ′} and
⋆

−→Γ,A =
+

−→Γ,A ∪{(a,a) | a∈ A} be its reflexive-transitive closure.

We have the following important characterization of
⋆

−→Γ,A.

Proposition 2.69. For any (S,F)-algebra A and for any setΓ of conditional equations
for (S,F)

At
⋆

−→Γ,A At′ if and only if E(A)∪Γ ⊢r t = t ′

for any(S,F)-terms t and t′ and where E(A) = {t = t ′ | A |= t = t ′}.

Proof. E(A)∪Γ ⊢r t = t ′ is equivalent to the existence of a chain of one step rewritings

t = t0 −→E(A)∪Γ t1 −→E(A)∪Γ . . . −→E(A)∪Γ tn = t ′.

By grouping separately the rewriting steps using equationsfrom E(A) andΓ, respectively,
we obtain thatE(A)∪Γ ⊢r t = t ′ is equivalent to the existence of a chain of termst = T0,
T1, . . . , Tn = t ′ such that

T2i−1
⋆

−→E(A) T2i and T2i
⋆

−→Γ T2i+1.

The equivalence to be shown now follows by noticing that

1. T2i−1
⋆

−→E(A) T2i is equivalent toAT2i−1 = AT2i because

52 Chapter 2. Data Type Specification

– on the one handT2i−1
⋆

−→E(A) T2i meansE(A) ⊢r T2i−1 = T2i which by the
soundness of rewriting (Prop. 2.55) impliesE(A) |= T2i−1 = T2i meaningT2i−1 =
T2i ∈ E(A), and

– on the other handAT2i−1 = AT2i meansT2i−1 = T2i ∈ E(A) which by ‘mono-
tonicity’ of ⊢r impliesT2i−1 −→E(A) T2i ,

and

2. T2i
⋆

−→Γ T2i+1 meansΓ ⊢r T2i = T2i+1.

�

The following is obtained easily as a consequence of the above characterization of
⋆

−→Γ,A.

Proposition 2.70. For any(S,F)-algebra A the relation
⋆

−→Γ,A is preserved by the oper-
ations of A.

Proof. Let σ ∈ Fs1...sn→s be an operation symbol of the signature and letti , t ′i be (S,F)-

terms of sortsi for 1≤ i ≤ nsuch thatAti
⋆

−→Γ,A At′i
We have to show thatAσ(At1, . . . ,Atn)

⋆
−→Γ,A

Aσ(At′1
, . . . ,At′n).

By virtue of Prop. 2.69 we have thatAti
⋆

−→Γ,A At′i
meansE(A) ∪ Γ ⊢r ti = t ′i .

By ’union’, Congruence, and ‘transitivity’ it follows thatE(A) ∪ Γ ⊢r σ(t1, . . . ,tn) =

σ(t ′1, . . . ,t
′
n). By Prop. 2.69 this impliesAσ(At1, . . . ,Atn)

⋆
−→Γ,A Aσ(At′1

, . . . ,At′n). �

Definition 2.71 (Preordered algebras). Any (S,F)-algebra A endowed with a preorder
relation >s on As for each s∈ S such that> is preserved by the interpretations of the
operations, in other words such that Aσ is monotone with respect to> for eachσ ∈ Fw→s,
is called apreordered algebra.

Rewriting modulo axioms. An important instance of rewriting relations on algebras is
rewriting modulo axioms. We have seen above that some equations, in spite of the fact that
they need to be involved in the deduction process, are not suitable for rewriting because of
various different reasons. For example, we have seen that the use of commutativity for in
rewriting may lead to non-termination of the rewriting algorithm. Also associativity is bad
to use in rewriting, but for a different reason: it may lead toa deadlock of the rewriting
process due to accumulation of the bracketing to the left or to the right (depending on
how we write the associativity equation). The solution to these problems is to recognize
the ‘bad’ equations, separate them from the ones that are suitable for rewriting, and use
them for deduction in a rather implicit way. This idea is directly supported by modern
specification languages through the so-called ‘operation attributes’ (in Sect. 2.1) we have
discussed commutativity and associativity asCafeOBJ operation attributes). After the
separation of the equations according to their suitabilityfor rewriting, the rewriting is
performed on the elements of the initial algebra of the set ofthe equations not suitable
for rewriting. As we may recall from Sect. 2.1, these elements are congruence classes of

2.4. Rewriting 53

terms modulo these equations (recall from Sect. 2.1 that theclass of a termt moduloE is
denotedt/=E).

In other words, we separate the set of the equations of a givenspecification into a
setΓ of equations to be used for rewriting and a set of equationsE not to be used for
rewriting, and we consider the rewriting relation

⋆
−→Γ,A whereA is 0(S,F)/=E , the initial

algebra satisfyingE.

Notation 2.72. If Γ and E are sets of(S,F)-equations, then by
⋆

−→Γ,E we denote the
rewriting relation determined byΓ on0(S,F)/=E , the initial algebra satisfying E.

Corollary 2.73. For any(S,F)-terms t and t′ we have that

(t/=E)
⋆

−→Γ,E (t ′/=E) if and only if {t1 = t2 | E |= t1 = t2}∪Γ ⊢r t = t ′.

Proof. From Prop. 2.69 whenA is 0E, the initial algebra satisfyingE and by noting that
for each equationt1 = t2 we have thatE |= t1 = t2 if and only if 0E |= t1 = t2. �

From Cor. 2.73 and Prop. 2.55 we obtain immediately the following soundness re-
sult.

Corollary 2.74 (Soundeness of rewriting modulo axioms). For any(S,F)-terms t and t′

we have that

(t/=E)
⋆

−→Γ,E (t ′/=E) implies Γ∪E |= t = t ′.

As a concrete example of equational deduction by rewriting modulo axioms let us
recall the specification of group theory of Sect. 2.3:

mod* GROUP {
[G]
op 0 : -> G
op + : G G -> G {assoc}
op - : G -> G
var X : G
eq [id] : 0 + X = X .
eq [inv] : (- X) + X = 0 .

}

Since associativity is not suitable for rewriting, the associativity axiom for+ is specified
as an operation attribute rather than an ordinary equation.Thus only the equations[id]
and[inv] are used for rewriting, which in this case takes place in the initial algebra
modulo, i.e. satisfying, the associativity axiom for+.

Let us do again (see Sect. 2.3) the proof of

(∀X)X + (- X) = 0

this time by rewriting modulo associativity. By the meta-rule of Universal Quantification
this would be equivalent to proving

a + (- a) = 0 (2.72)

54 Chapter 2. Data Type Specification

in the signature ofGROUP extended with a new constanta. By following the same con-
ventions like for theGROUP examples of Sect. 2.3, letΣ denote the signature ofGROUP
andΣ + a the extended signature mentioned above. Then the algebra inwhich rewriting
is performed is the quotient 0Σ+a/=E where 0Σ+a is the initial (term) algebra ofΣ+a, =E

is the leastE-congruence on 0Σ+a, and whereE consists of the associativity equation for
+ only.

In the case of associativity the elements of the corresponding quotient algebras have
a very intuitive representations, obtained by the elimination of the brackets related to+
from representations of the terms as mix-fix expressions. For example, in 0Σ+a/=E the ex-
pressiona+ (- a) + a stands for the equivalence class{(a+ (- a)) + a, a+ ((- a) + a)}.
In fact this representation is used by many current implementations of rewriting modulo
associativity, including theCafeOBJ and Maude rewriting engines.

Coming back to the proof of (2.72), letΓ denote the two equations[inv] and
[id] to be used in rewriting. We have that:

((−−a)+ (−a))+ (a+(−a)) −→Γ 0+(a+(−a)) by [inv] (2.73)

(0+a)+ (−a) −→Γ a+(−a) by [id] (2.74)

(−−a)+ (((−a)+a)+(−a)) −→Γ (−−a)+ (0+(−a)) by [inv] (2.75)

(−−a)+ (0+(−a)) −→Γ (−−a)+ (−a) by [id] (2.76)

(−−a)+ (−a) −→Γ 0 by [inv] (2.77)

From (2.73) and (2.74) we have

(−−a)+ (−a)+a+(−a)
⋆

−→Γ,E a+(−a) (2.78)

and from (2.75), (2.76) and (2.77) we have

(−−a)+ (−a)+a+(−a)
⋆

−→Γ,E 0 (2.79)

From (2.78) and (2.79) by Cor. 2.73 and Cor. 2.74 we have thatGROUP = Γ∪E |=Σ+a

a+(−a) = 0.

A CafeOBJ proof score. Let us now see how the proof above can be coded into an
actual language, namely inCafeOBJ. The first step, that consists of transforming the
problem into a quantifier-free problem by the application ofUniversal Quantification, is
coded as follows.

open GROUP .
op a : -> G .

Now comes the proof of (2.78) but considered in an opposite direction. Note that in this
case for each rewriting step we need to specify precisely theequation that is used, the
position in the term, and eventually the substitution to be used. The latter is necessary in
the case of the second rewrite since when[inv] is considered from the right to the left
the variableX is not matched by anything.

2.4. Rewriting 55

start a + (- a) .
apply -.[id] at (1) .
apply -.[inv] with X = (- a) at [1] .

The partial result of executing this part of the proof score is (−−a)+ (−a)+a+(−a).
The final part of the proof score, corresponding to the proof of (2.79), consists of a sim-
ple rewriting command on this partial result that leads to anautomatic execution (in the
standard direction) of the steps (2.75), (2.76) and (2.77).

apply reduce at term .
close

The resulting term is 0.

Automation of proofs by rewriting. The proofGROUP ⊢ (∀X)X + (- X) = 0 pre-
sented above is not automatic since one needs to ‘guess’ the expression(−−a)+(−a)+
a+(−a) to be rewritten to both sides of the equation to be proved. This heuristic aspect
depends upon a certain insight into the problem, which is a human mind aspect. Insight
is beyond automation. The automation of rewriting is based upon a procedure related to
Prop. 2.59 that is somehow contrary to the way the proofGROUP⊢ (∀X)X + (- X) = 0
has been performed. Therefore, in order to proveΓ ⊢ t1 = t2, instead of finding a termt
such thatt

⋆
−→Γ t1 andt

⋆
−→Γ t2, we rather findt such thatt1

⋆
−→Γ t andt2

⋆
−→Γ t. The

latter method has a huge advantage towards the former:t can be obtained automatically
as a normal form of rewriting. However this needs some conditions that will be developed
in the following.

Recall from Prop. 2.64 that the relation↓ of defined for any preorder> onA by

(b ↓ c) if and only if b > d and c > d for some d ∈ A.

is the least equivalence onA that contains>.
The typical application of the following technical result is by means of Prop. 2.70

when the role of> is played by the relation
⋆

−→Γ,A for A reachable algebra. This includes
the case of rewriting modulo axioms, whenA is the initial algebra of a setE of axioms.
In the particular case of plain rewriting, whenE is empty, thenA is just the initial term
algebra 0(S,F).

Proposition 2.75. Given a preordered(S,F)-algebra(A,>), if > is a confluent then↓ is
an (S,F)-congruence.

Proof. By Prop. 2.64 we know that↓ is equivalence. For showing the preservation of↓
by the operations letσ be any operation symbol inF anda1, . . . ,an anda′1, . . . ,a

′
n strings

of arguments forAσ such thatai ↓ a′i for eachi ∈ {1, . . . ,n}. For eachi there existsa′′i
such thatai > a′′i anda′i > a′′i . BecauseAσ preserves> we have thatAσ(a1, . . . ,an) >
Aσ(a′′1, . . . ,a

′′
n) and Aσ(a′1, . . . ,a

′
n) > Aσ(a′′1, . . . ,a

′′
n) which shows thatAσ(a1, . . . ,an) ↓

Aσ(a′1, . . . ,a
′
n). �

56 Chapter 2. Data Type Specification

Note that although Prop. 2.75 does not requireA to be reachable, however its applications
for the rewriting relation

⋆
−→Γ,A does require the reachability ofA for the reflexivity of

⋆
−→Γ,A. Note also that in this case the preservation by operations condition of Prop. 2.75
is obtained from Prop. 2.70. These remarks are formally captured by the following Corol-
lary.

Notation 2.76. For any reachable(S,F)-algebra A and any setΓ of conditional(S,F)-
equations let↓Γ,A denote the least equivalence containing

⋆
−→Γ,A (see Prop. 2.64).

Corollary 2.77. On any reachable algebra A, if
⋆

−→Γ,A is confluent then↓Γ,A is a con-
gruence.

Proof. By Prop. 2.70 and Prop. 2.75. �

Generalized soundness of rewriting. The soundness result of Prop. 2.59 can be ex-
tended from the initial (term) algebra to arbitrary reachable algebras by comparing↓Γ,A

to a=A
Γ a′, the leastΓ-congruence onA. One of the benefits of this generalization consists

of applications to rewriting modulo axioms.

Proposition 2.78(General soundness of rewriting). For any reachable(S,F)-algebra A
and for any setΓ of conditional equations,

a ↓Γ,A a′ implies a=A
Γ a′.

Proof. If Γ ⊢r t = t ′ then by the soundness result of Prop. 2.55 we have thatΓ |= t = t ′

which impliesA/=A
Γ
|= t = t ′ which meansAt =A

Γ At′ . Since by definition
⋆

−→Γ,A is the

transitive closure of{(At ,At′) | Γ ⊢r t = t ′} (see Dfn. 2.68) and by the transitivity of=A
Γ

we have that
⋆

−→Γ,A ⊆=A
Γ. By the symmetry and the transitivity of=A

Γ from this it follows
immediately that↓Γ,A ⊆ =A

Γ. �

The soundness of the equational proofs performed by rewriting modulo a setE of
axioms to the same element is an instance of Prop. 2.78 when the roleA is played by the
initial algebra ofE. However the same result can be obtained also from Prop. 2.57and
Cor. 2.74. We leave the rather straightforward proofs as a task to the reader.

Corollary 2.79. For any set of equations E and any setΓ of conditional equations we
have that

(t/=E) ↓Γ,E (t ′/=E) implies Γ∪E |= t = t ′.

Generalized completeness of rewriting. The completeness of the equational proof
method by rewriting both sides of an equation to the same element corresponds to the
inclusion=A

Γ ⊆ ↓Γ,A. This property is significantly harder than its dual, the soundness,
which means that it needs some special conditions.

Proposition 2.80. In a signature(S,F) let us consider a setΓ of conditional equations
of the form(∀X)(H = true) ⇒ (t = t ′) with true a constant. On any reachable(S,F)-
algebra A, if

⋆
−→Γ,A is confluent and Atrue is normal form for

⋆
−→Γ,A then A/↓Γ,A |= Γ.

2.4. Rewriting 57

Proof. Because
⋆

−→Γ,A and A is reachable, cf. Cor. 2.77 the relation↓Γ,A is indeed a
congruence, hence the statement of the proposition is correctly formulated.

Now let
⋆

−→Γ,A be a conditional equation fromΓ. LetB′ be any(S,F∪X)-expansion
of A/↓Γ,A such thatB′

H = B′
true. We consider any(S,F ∪X)-expansion ofA such thatA′

x ∈
B′

x for eachx∈X. Note thatB′ = A′/↓Γ,A. We have thatA′
H/↓Γ,A = B′

H = B′
true = A′

true/↓Γ,A.

This impliesA′
H ↓Γ,A A′

true. SinceA′
true = Atrue is normal form for

⋆
−→Γ,A it follows that

A′
H

⋆
−→Γ,A A′

true. By Prop. 2.69 this implies

E(A′)∪Γ ⊢r
(S,F∪X) (H = true). (2.80)

By ‘monotonicity’ andUniversal Quantificationwe have that

E(A′)∪Γ ⊢r
(S,F∪X) (H = true) ⇒ (t = t ′). (2.81)

From (2.80) and (2.81) by ’union’, ‘transitivity’ andImplicationwe have that

E(A′)∪Γ ⊢r
(S,F∪X) (t = t ′).

By Prop. 2.69 this impliesA′
t

⋆
−→Γ,A A′

t′ which impliesA′
t ↓Γ,A A′

t′ which meansB′
t =

B′
t′ . �

This way to handle the hypotheses of the equations as a quasi-Boolean term as-
sumed by the conditions of Prop. 2.80 is rather common withinthe OBJ family of spec-
ification languages and has certain operational benefits. For example inCafeOBJ the
constanttrue is the corresponding constant of the built-in Boolean type and the condi-
tions of equations are encoded as Boolean terms by means of the Boolean function==s

as presented above in Sect. 2.1.
The following consequence of Prop. 2.80 can be regarded as a general completeness

result for rewriting as a decision procedure for equations.

Theorem 2.81(Completeness of rewriting). Under the conditions of Prop. 2.80, we have
that↓Γ,A = =A

Γ.

Proof. By Prop 2.80 we have thatA/↓Γ,A |= Γ which by Prop. 2.24 implies that↓Γ,A is a
Γ-congruence. Since=A

Γ is the leastΓ-congruence onA it follows that=A
Γ ⊆ ↓Γ,A. The

opposite inclusion is given by Prop. 2.78. �

The relation↓Γ,A is realized in the OBJ family of languages by the built-in semantic
equality predicate==, the same which is used for encoding conditions of equationsas
Boolean terms.

Exercises.

2.17. The rewriting relation defined byBASIC-INT (see Ex. 2.10) is terminating and confluent.

2.18. Give an example of a partial order> on a setA such that each element ofA has a unique
normal form with respect to> but which isnot terminating.

58 Chapter 2. Data Type Specification

2.19. 1. Give an example of a relation−→ which is Noetherian but its reflexive and transitive
closure

⋆
−→ is not terminating.

2. If −→ is Noetherian and for each elementa the set{b | a−→ b} is finite then
⋆

−→ is terminat-
ing. Apply this result to rewriting relations.

2.5 Induction

Inductive properties. When verifying properties of data types specified as initialalge-
bras of sets of conditional equations ordinary equational deduction may not be enough
because initial algebras may satisfy more sentences than what can be deduced from the
sentences of the specification. A very simple example is the specificationSIMPLE-NAT
of the natural numbers that we have already seen here severaltimes.

mod! SIMPLE-NAT {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ] : N + (s M) = s(N + M) .
eq [zero] : N + 0 = N .

}

The denotation ofSIMPLE-NAT, that consists of the initial algebra satisfying of [succ]
and [zero], is the algebraA of the natural numbers interpreting+ as addition of numbers
ands as the succesor function (adding 1 to a number). Since addition of numbers is com-
mutative we have thatA |= (∀m,n)m+ n = n+ m. However the commutativity property
is nota consequence of the two equations ofSIMPLE-NAT because there exists algebras
satisfying [succ] and [zero] that donotsatisfy the commutativity property. The algebra
B defined below gives a very simple example of such a situation.

– BNat = {0,1},

– B0 = 0,

– Bs(x) = x for eachx∈ {0,1}, and

– B+(0,x) = 0 andB+(1,x) = 1 for eachx∈ {0,1}.

The sentences satisfied by the initial algebras of specifications are calledinductive
properties. A proof that a certain sentence is satisfied by an initial algebra of a set of
conditional equations is called aninductive proof. We have seen above that equational
deduction is not enough for proving inductive properties. Therefore in this section we
focus on introducing a general method for inductive proofs on top of ordinary equational
deduction.

2.5. Induction 59

Constructors. In may situations the elements of the initial algebras of specifications
are denoted by terms that are constructed from a subset of theoperation symbols of the
signature. This is for example the case of our benchmark example,SIMPLE-NAT. The
elements of the initial algebraA of SIMPLE-NAT are denoted only by terms formed from
0 ands, the operation+ is not needed. Identifying a smallest possible such as subset of
operations, calledconstructors, can greatly reduce the complexity of inductive proofs.

Definition 2.82 (Sub-signature of constructors). Given a signature(S,F) andΓ a set of
conditional equations for(S,F), a sub-signature(S,Fc) of (S,F) (i.e. Fc

w→s ⊆ Fw→s for
all arities w and sorts s) is asub-signature of constructors forΓ if and only if the unique
(S,Fc)-homomorphism from the initial (term)(S,Fc)-algebra0(S,Fc) to the(S,Fc)-reduct
of 0Γ (the initial algebra satisfyingΓ) is surjective.

The following simple characterization for the sub-signatures of constructors, which
sometimes in the literature is calledsufficient completeness, constitutes a basis for actually
proving the constructor property of Dfn. 2.82. Moreover, this characterization can be used
as an alternative definition for sub-signature of constructors that can be used in more
general contexts whenΓ is any set of sentences (which meansΓ may not have initial
models).

Proposition 2.83. (S,Fc) is a sub-signature of constructors forΓ if and only if for each
(S,F)-term t there exists an(S,Fc)-term t′ such thatΓ |=(S,F) t = t ′.

Proof. The elements of 0Γ are equivalence classes of(S,F)-terms under=Γ, the least
Γ-congruence on 0(S,F). Hence the constructor property of Dfn. 2.82 means that for each
(S,F)-term t there exists an(S,Fc)-term t ′ that is interpreted in 0Γ as the equivalence
class oft, namelyt/=Γ . This is the same as saying that(t/=Γ) = (t ′/=Γ) which means
t =Γ t ′ which is equivalent toΓ |= t = t ′. �

The sufficient completeness property of Prop. 2.83 above canbe shown by induction
on the structure of the termt by skipping the constructors as follows.

Proposition 2.84. (S,Fc) is a sub-signature of constructors forΓ if and only if for any
operation symbolσ ∈ Fs1...sn→s \ Fc

s1...sn→s and for any(S,Fc)-terms t1, . . . ,tn of sorts
s1, . . . ,sn, respectively, there exists an(S,Fc)-term t′ such thatΓ |= σ(t1, . . . ,tn) = t ′.

Proof. By Prop. 2.83 we have to show that each(S,F)-termt there exists an(S,Fc)-term
t ′ suchΓ |= t = t ′. We show this by induction on the structure oft. Let t = σ(t1, . . . ,tn)
whereσ is an operation symbol inF andti , for 1≤ i ≤ n, are sub-terms. We assume that
that for each 1≤ i ≤ n there exists an(S,Fc)-termt ′i such thatΓ ⊢e ti = t ′i . By Congruence
(for the semantic entailment) it follows thatΓ |= t = σ(t ′1, . . . ,t

′
n). There are two cases:

1. Whenσ is a constructor thenσ(t ′1, . . . ,t
′
n) is already an(S,Fc)-term.

2. Whenσ is nota constructor, lett ′ be an(S,Fc)-term such thatΓ |= σ(t ′1, . . . ,t
′
n) = t ′.

By Transitivity(for the semantic entailment) it follows thatΓ |= t = t ′.

�

60 Chapter 2. Data Type Specification

Let us now apply the general method indicated by Prop. 2.84 toactually prove that
0 ands (of course together with the sortNat) constitute a signature of constructors
for SIMPLE-NAT. By the Soundness andf Completeness of equational deduction, in our
proof below we may replace|= by⊢e. According to Prop. 2.84 we have only to show that
for any termst1 andt2 formed only from 0 ands there exists a termt ′ formed only from
0 ands also such thatΓ ⊢e t1+ t2 = t ′ whereΓ consists of the equations [succ] and
[zero] of SIMPLE-NAT. We can do this by induction on the structure oft2. There are
two cases:

– t2 is0. In this case by [zero] we haveΓ ⊢e t1+ t2= t1.

– t2 is (s t ′2) with t ′2 term formed froms and0. In this case by [succ] we have

Γ ⊢e t1+ t2= s(t1+ t ′2). (2.82)

By the induction hypothesis there exists a termt ′′ formed froms and0 such that

Γ ⊢e t1+ t ′2 = t ′′. (2.83)

From (2.83) by theCongruenceand general entailment system properties we get
that

Γ ⊢es(t1+ t ′2) = (s t ′′). (2.84)

From (2.82) and (2.84) byTransitivityand general entailment system properties we
get that

Γ ⊢e t1+ t2= (s t ′′).

Sincet ′′ is formed only from0 ands, we have that(s t ′′) is also formed only from
0 ands.

Reducing inductive proofs to ordinary equational proofs. The following fundamen-
tal result, which constitutes the basis for inductive proofs, reduces the task of proving
inductive properties to a set of ordinary equational proofs.

Proposition 2.85. Let Γ be a set of conditional equations for a signature(S,F) and let
(S,Fc) be a sub-signature of constructors forΓ. Let 0Γ denote the initial algebra ofΓ.
Let E be any set of sentences such that0Γ |= E. Then for any(S,F ∪X)-sentenceρ

0Γ |= (∀X)ρ if Γ∪E |= θ(ρ) for all substitutionsθ : X → T(S,Fc).

Proof. We assume the hypothesisΓ∪E |= θ(ρ) for all substitutionsθ : X → T(S,Fc). Let
A′ be any(S,F ∪X)-expansion of 0Γ. Because(S,Fc) is a sub-signature of constructors
for Γ this yields a substitutionθ : X → T(S,Fc) such thatθ(x) ∈ A′

x for eachx∈ X (recall
A′

x is a class of equivalent terms under=Γ).

2.5. Induction 61

Since 0Γ |= Γ, 0Γ |= E andΓ∪E |= θ(ρ) we have that 0Γ |= θ(ρ). The proof of the
proposition is completed if we proved that

0Γ |= θ(ρ) if and only if A′ |= ρ. (2.85)

Let us do this by induction on the structure ofρ.

1. Whenρ is t1 = t2 the property (2.85) holds by the observation that for each termt,
(0Γ)θ(t) = A′

t (which can be shown by a simple induction on the structure oft).

2. Whenρ = ρ1 ⋆ ρ2, with ⋆ ∈ {∧,∨,⇒} or ρ = ¬ρ′ the induction step is rather
straightforward.

3. Whenρ = (∀Y)ρ′ we have to show that 0Γ |= θ((∀Y)ρ′) = (∀Y)θ(ρ′) is equivalent
to A′ |= (∀Y)ρ′. This follows from the induction hypothesis by noting the bijective
correspondence between the the(S,F ∪Y)-expansionsB of 0Γ and the(S,F ∪X∪
Y)-expansionsB′ of A′, correspondence determined byBy = B′

y for eachy ∈ Y.
Here the induction hypothesis means the property (2.85) considered forB instead of
0Γ, which works becauseB is the initial algebra ofΓ but considered as(S,F ∪Y)-
sentences.

�

In practice the setE of Prop. 2.85 above plays the role of ‘lemmas’, and need not
necessarily consist only of conditional equations, it can be a set of any sentences.

Structural induction. The big problem raised by the result of Prop. 2.85 is that one
needs to perform infinitely many equational proofs corresponding to the substitutionsθ.
In order to be able to actually perform inductive proofs it ismandatory to have a fini-
tary proof procedure for inductive properties. The standard one is the so-calledstructural
inductionmethod that can be presented as a property of semantic deduction, and when
dealing only with conditional equations, of the equationalentailment system⊢e.

Proposition 2.86(Structural induction). Let X be a finite set of variables for a signature
(S,F) and letρ be any(S,F ∪X)-sentence. Let(S,Fc) be a sub-signature of construc-
tors for a setΓ of (S,F)-sentences (in the sense of the alternative definition givenby
Prop. 2.83).

If for any sort preserving mapping Q: X → Fc (i.e. the sort of Qx is the sort of x),

Γ∪{ψ(ρ) | ψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx} |=(S,F∪Z) Q♯(ρ)

where

– Zx are strings of variables for the arguments of Qx such that Zx1∩Zx2 = /0 for x1 6=
x2∈ X, and

– Q♯ is the substitution X→ T(S,Fc∪Z) defined by Q♯(x) = Qx(Zx),

then

Γ |=(S,F) θ(ρ) for all substitutionsθ : X → T(S,Fc).

62 Chapter 2. Data Type Specification

Proof. We prove the conclusion of the proposition by induction on the maximum depth
of the set of terms{θ(x) | x∈ X}. Note that this maximum exists as a consequence ofX
being finite.

For eachx ∈ X let Qx be the topmost operation symbol of the termθ(x) andTx

be the string of the immediate sub-terms ofθ(x). In other wordsθ(x) = Qx(Tx). By the
hypothesis we have that

Γ∪{ψ(ρ) | ψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx} |=(S,F∪Z) Q♯(ρ).

BecauseX is finite we have that the set{ψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx} is finite
too. By Implicationit follows that

Γ |=(S,F∪Z)

^

{ψ(ρ) | ψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx}⇒ Q♯(ρ).

By Universal Quantificationit follows that

Γ |=(S,F) (∀Z)
^

{ψ(ρ) | ψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx}⇒ Q♯(ρ).

By Substitutivityfor the substitutionZ → T(S,Fc) mapping componentwise eachZx to Tx

and by the ‘transitivity’ of|=(S,F) it follows that

Γ |=(S,F)

^

{γ(ρ) | γ : X → T(S,Fc) with γ(x) ∈ Tx}⇒ θ(ρ).

By Implicationit follows that

Γ∪{γ(ρ) | γ : X → T(S,Fc) with γ(x) ∈ Tx} |=(S,F) θ(ρ). (2.86)

Because eachγ(x) ∈ Tx we have that for each substitutionγ as in the relation (2.86) above
the maximum depth of the terms{γ(x) | x∈ X} is strictly less than the maximum depth
of the terms{θ(x) | x∈ X}, hence we can apply the induction hypothesis, meaning

Γ |=(S,F) γ(ρ). (2.87)

Because the set{γ : X → T(S,Fc) | γ(x) ∈ Tx} is finite, by the entailment system properties
of |= from (2.86) and (2.87) it follows that

Γ |=(S,F∪Y) θ(ρ).

�

In the proof of Prop. 2.86 above the meta-rules ofImplicationandUniversal Quan-
tification, as well as the rule ofSubstitutivityhave been considered for the semantic entail-
ment|= in a slightly more general form than introduced in Sect. 2.3,i.e. for any sentences
instead of only for conditional equations. It is easy to check that the above mentioned rule
and meta-rules hold within this extended framework, the proof being similar to the case
of conditional equations.

Corollary 2.87. If in Prop. 2.86 we considerΓ to be a set of conditional equations and
ρ to be a conditional equation, then by the Soundness (Prop. 2.49) and Completeness
(Thm. 2.50) of equational deduction, in Prop. 2.86 we may replace|= by⊢e.

2.5. Induction 63

By noting thatΓ in Prop. 2.86 plays the role ofΓ∪E in Prop. 2.85, this means
that the hypothesis of the structural induction Prop. 2.86 constitutes a sufficient condition
for the inductive property 0Γ |=(S,F) (∀X)ρ. The finitary character of proofs by structural
induction resides in the fact that if the sub-signature of constructors(S,Fc) is finite then
because also of the finiteness ofX there is only a finite number of equational proofs to
be performed, this number being equal to the number of the mappingsQ : X → Fc from
Prop. 2.86. Note that getting a sub-signature of constructors as small as possible reduces
the complexity of the structural induction proofs. Note also that structural induction as
formalized by Prop. 2.86 is based upon the well known Peano induction for natural num-
bers, which is the simplest and the most basic form of induction, and which is a proof
‘principle’ that is beyond formal provability and which is generally assumed through all
bodies of mathematics from elementary school mathematics to the most advanced areas
of mathematical investigation.

An example of inductive proof by structural induction. Let us prove that the initial
algebra ofSIMPLE-NAT satisfies the commutativity of addition,(∀m,n)m+ n = n+
m. Let Σ denote the signature andΓ denote the two sentences [succ] and [zero] of
SIMPLE-NAT. We have proved above in this section that0 ands form a sub-signature
of constructors forΓ. We use the following two lemmas, both of them being proved by
the structural induction method of Prop. 2.86:

0Γ |= (∀n)0+n= n. (2.88)

0Γ |= (∀m,n)s(m)+n = s(m+n). (2.89)

The proof of lemma (2.88):With the notations of Prop. 2.86, we let the setX of the
variables{n}. Because0 ands form a sub-signature of constructors forΓ, we have only
two possibilities for the mappingQ : X → Fc:

1. Qn = 0, in which case according to Prop. 2.86 we have to prove that

Γ ⊢e
Σ 0+0= 0.

Its proof consists of one rewriting step, namely0+0−→Γ 0.

2. Qn = s, in which case according to Prop. 2.86 we have to prove that

Γ∪{0+z= z} ⊢e
Σ+z 0+s(z) = s(z).

Its proof consists of two rewriting steps, namely0+s(z) −→Γ s(0+z) −→0+z=z

s(z).

Note that the setZ of the variables as in Prop. 2.86 is/0 for the first proof and{z} for the
second proof.

The proof of lemma (2.89):We let the parameters of Prop. 2.86, beX = {n} andρ be
(∀m)s(m)+n= s(m+n). As in the proof of lemma (2.88) we have only two possibilities
for the mappingQ : X → Fc:

64 Chapter 2. Data Type Specification

1. Qn = 0, in which case according to Prop. 2.86, by the meta-rule ofUniversal Quan-
tification, we have to prove that

Γ ⊢e
Σ+ms(m)+0= s(m+0).

Its proof consists of the following two rewritings:

s(m)+0−→Γ s(m) and s(m+0) −→Γ s(m)

implying (s(m)+0) ↓Γ s(m+0).

2. Qn = s, in which case according to Prop. 2.86, by the meta-rule ofUniversal Quan-
tification, we have to prove that

Γ∪{(∀M)s(M)+z= s(M +z)} ⊢e
Σ+m+z s(m)+s(z) = s(m+s(z)).

Its proof consists of the following two rewritings:

s(m)+s(z) −→Γ s(s(m)+z) −→(∀M)s(M)+z=s(M+z) s(s(m+z)) and

s(m+s(z)) −→Γ s(s(m+z))

implying (s(m)+s(z)) ↓Γ∪{(∀M)s(M)+z=s(M+z)} s(m+s(z)).

Note that the setZ of the variables as in Prop. 2.86 is the same as in the proof of lemma
(2.88), namely/0 for the proof corresponding toQn = 0 and{z} for the proof correspond-
ing to Qn = s.

The proof of0Γ |= (∀m,n)m+ n = n+ m: Now let E be the set consisting of the two
sentences of the lemmas (2.88) and (2.89). We apply Prop. 2.86 with Γ∪E in the role of
Γ, with X = {n} and withρ being(∀m)m+n = n+m. Like in the proofs of the lemmas
(2.88) and (2.89), here we have two possibilities for the mappingQ : X → Fc:

1. Qn = 0, in which case according to Prop. 2.86, by the meta-rule ofUniversal Quan-
tification, we have to prove that

Γ∪E ⊢e
Σ+m m+0= 0+m.

Its proof consists of the following two rewritings:

m+0−→Γ m and 0+m−→E m

implying (m+0) ↓Γ∪E (0+m).

2.5. Induction 65

2. Qn = s, in which case according to Prop. 2.86, by the meta-rule ofUniversal Quan-
tification, we have to prove that

Γ∪E∪{(∀M)M +z= z+M} ⊢e
Σ+m+z m+s(z) = s(z)+m.

Its proof consists of the following two rewritings:

m+s(z) −→Γ s(m+z)−→{(∀M)M+z=z+M} s(z+m) and

s(z)+m−→E s(z+m)

implying m+s(z) ↓Γ∪E∪{(∀M)M+z=z+M} s(z)+m.

Note that the setZ of the variables as in Prop. 2.86 is the same as in the proof of lemmas
(2.88) and (2.89), namely/0 for the proof corresponding toQn = 0 and{z} for the proof
corresponding toQn = s.

A CafeOBJ proof score. Now we present a translation of the structural induction proof
of (∀)m+n= n+mas an inductive property ofSIMPLE-NAT that we developed above,
into a proof score coded inCafeOBJ. TheCafeOBJ system will perform the rewritings
automatically while we will specify theproof score, i.e. the sequence of proof tasks to be
executed by the system. Except the lemmas, the proof tasks are derived from Prop. 2.86,
which implies that in principle they can also be introduced automatically by the system;
however the coreCafeOBJ language does not have this facility. OurCafeOBJ proof
score follows closely the proof of(∀m,n)m+ n = n+ m presented above, including the
two lemmas involved.

The relation↓ is denoted inCafeOBJ by the binary operation of Boolean sort==,
which means that our proof tasks will be given ast==t ′. WhenCafeOBJ runs the proof
score below these reductions will all produce the result true, meaning the the respective
relationt ↓ t ′ holds, which implies thatt = t ′ holds.
Proof score for lemma (2.88):

open SIMPLE-NAT

The caseQn = 0:

red 0 + 0 == 0 .

The caseQn = s:

op z : -> Nat .
eq 0 + z = z .
red 0 + (s z) == s z .

close

Proof score for lemma (2.89):

open SIMPLE-NAT

66 Chapter 2. Data Type Specification

The caseQn = 0:

op m : -> Nat .
red (s m) + 0 == s(m + 0) .

The caseQn = s:

op z : -> Nat .
eq (s M:Nat) + z = s(M + z) .
red (s m) + (s z) == s(m + (s z)) .

close

The proof score of(∀m,n)m+n= n+m:

open SIMPLE-NAT

We introduce lemmas (2.88) and (2.89):

eq 0 + N:Nat = N:Nat .
eq (s M:Nat) + N:Nat = s (M + N) .

The caseQn = 0:

op m : -> Nat .
red m + 0 == 0 + m .

The caseQn = s:

op z : -> Nat .
eq M:Nat + z = z + M .
red m + (s z) == (s z) + m .

close

Another example. The following is an application of the structural inductionmethod
as given by Prop. 2.86 to a situation when induction is done simultaneously on more
than one variable. Let us consider the following specification of natural numbers with a
semantic equality relation.

mod! PNAT= {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _=_ : Nat Nat -> Bool {comm}
vars M N : Nat
eq ((s M) = 0) = false .
eq (0 = 0) = true .
eq (s M = s N) = (M = N) .

}

The following defines a strict ‘less than’ relation on the natural numbers.

2.5. Induction 67

mod! PNAT< {
protecting(PNAT=)
op _<_ : Nat Nat -> Bool
vars M N : Nat
eq 0 < s M = true .
eq M < 0 = false .
eq (s M < s N) = M < N .

}

The proof score by structural induction (by Prop. 2.86) of the total order property

(∀M,N)(M < N) or (N < M) or (M = N)

as an inductive property considers0, s, true, andfalse as a sub-signature of con-
structors (we exile this fact to the exercise part of the section) and considers four cases
for Q:

open PNAT< .
ops m n : -> Nat .

The caseQM = 0, QN = 0:

red (0 < 0) or (0 < 0) or (0 = 0) .

The caseQM = 0, QN = s:

red (0 < s n) or (s n < 0) or (0 = s n) .

The caseQM = s, QN = 0:

red (s m < 0) or (0 < s m) or (s m = 0) .

The caseQM = s, QN = s:

eq (m < n) or (n < m) or (m = n) = true .
red (s m < s n) or (s n < s m) or (s m = s n) .
close

Note that the only case that involves a premise is the fourth one; this is because in all
other cases there is noψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx because eitherZM or ZN is
empty since eitherQM or QN is 0.

Exercises.

2.20. Prove a that Prop. 2.85 admits a reciprocal for the case whenρ is a finite conjunction of
equations.

2.21. For the specificationSIMPLE-NAT show that the associativity of the addition+ is not an
(ordinary) equational consequence of the two sentences of the specification, but however it is an
inductive property of the specification. Build and run aCafeOBJ proof score of this inductive
property.

68 Chapter 2. Data Type Specification

2.22. For the specificationPNAT< above:

1. Show that0, s , true andfalse form a signature of constructors.

2. Formulate the transitivity property of< and show that it cannot be proved by equational
deduction from the axioms ofPNAT<.

3. Build and run a proof score for the transitivity of< as inductive property.

2.23. Consider the followingCafeOBJ specification:

mod! PNAT- {
protecting(PNAT=)
op _-_ : Nat Nat -> Nat
vars M N : Nat
eq (s M) - (s N) = M - N .
eq M - 0 = M .
eq 0 - M = 0 .

}
mod! GCD {
protecting(PNAT- + PNAT<)
op gcd : Nat Nat -> Nat
vars M N : Nat
eq gcd(M,0) = M .
eq gcd(0,N) = N .
eq gcd(M,M) = M .
cq gcd(M,N) = gcd(M - N,N) if (0 < N) and (N < M) .
cq gcd(M,N) = gcd(M,N - M) if (0 < M) and (M < N) .

}

Prove the inductive property(∀M,N)gcd(M,N)= gcd(N,M) as follows:

1. Extend the given specification with the specification of addition + onNat.

2. Prove that0, s, true andfalse is a subsignature of constructors for the extended
specification.

3. Build a run a proof score for the lemma(∀X,M,N)gcd(M,N)=gcd(N,M) if M + N < X.

4. Build a run a proof score showing that the lemma of the aboveitem implies the goal
property.

2.24. Build a proof score for the associativity ofgcd of Ex. 2.23 by the following steps:

1. Add a specification for a binary ‘divides’ predicatediv .

2. Prove and use the following main lemmas:
– (∀X,M,N) gcd(M,N) div M if M + N < X.

– (∀X,Y,M,N) Y div gcd(M,N) if Y div M and Y div N and M + N < X.

2.6 Subsorts.

Partial versus total functions. In computing science we often encounter situations
when for certain arguments some operations do not return anyresult. There can be dif-
ferent reasons for this such as non-termination or some error in the computation process.

2.6. Subsorts. 69

These two situations are rather familiar to programmers. Let us say that an operation is
‘partial’ when it does not give a result for some of the arguments, otherwise we say that
the operation is ‘total’.

Also partiality may occur naturally for some data types, forexample division of
numbers by 0 is not defined. The same happens with the head of empty lists. Thus division
and head should be thought as partial rather than total operations.

It is useful to understand mathematically the concept of partial function. For this
we have to recall the mathematical definition of the concept of (total) function within
axiomatic set theory. Thus a functionf : A → B is a binary relationf ⊆ A× B that
satisfies the following two conditions:

1. For eachx∈ A there existsy∈ B such thatf (x,y).

2. If f (x,y) and f (x,y′) theny = y′.

The second condition allows us to use the functional notations f (x) = y instead of the
relational notationf (x,y). Then the concept ofpartial function is obtained by dropping
off the first condition above and keeping only the second condition. The set{x∈ A | there
existsy∈ B such thatf (x) = y} is called the domain off and is denoted bydom(f).

Specifications with partial functions have the advantage ofgreater expressivity but
the disadvantages of weaker computational properties and of more complex mathemati-
cal foundations. With respect to the latter issue, it is possible to refine the mathematics
of equational logic from total to partial functions; this iscalledpartial algebra theory.
This refinement includes the concepts of signature, algebra, equation, satisfaction, and
results such as the existence of initial algebra for a set of conditional equations and a
sound and complete proof calculus for conditional equations. There are two schools of
thinking in algebraic specification: one advocates stayingwith total functions while the
other favours the specifications with partial functions. For example, among the modern al-
gebraic specification languages,CafeOBJ and Maude belong to the former school, while
CASL belongs to the latter.

Our lecture notes are rooted within the trend of total functions. The readers inter-
ested to find more about partial algebra may look into classical works such as [25, 4] or
at the more recent CASL literature.

Order sorted algebra. The total functions approach has had to find various ways to
deal with cases of partiality. Although one can never reach the expressivity power of
partial algebra by means of total algebra, some special cases of partiality, that cover a
great deal of specification needs, can be handled by the totalfunction approach. One
solution is to extend the data type with new elements for errors or undefinedness, which
may lead to the necessity to extend the definition of the ordinary data type operations to
handle the new error values. On the other hand many partiality situations may be handled
directly by noticing that the domain of the respective partial operations can be specified
by the use of the so-called ‘subsorts’. For example divisionof numbers by 0 falls in
this latter category, we have just to consider the subsort ofthe non-zero numbers for the
second argument of the division operation. The same may be done for the head of lists

70 Chapter 2. Data Type Specification

(List with elements from a sortElt) by considering the subsort of the non-empty lists
(NList).

op head : NList -> Elt

Moreover, the concept of subsort may be used to handle error values through the so-called
‘error supersort’ approach.

op head : List -> ?Elt

In the former caseNList is a subsort ofList while in the latter caseElt is a subsort
of ?Elt.

The theory of many sorted algebra and many sorted equationallogic, including all
the concepts and results developed until this point in the chapter, has been extended to
the refined framework using subsorts in a way that parallels many sorted algebra; this
is calledorder sorted algebraor order sorted equational logic. However this extension
has some very subtle points that have led to slightly different formalisms (a survey on
this matter is [18]). In this section we refrain from developing order sorted algebra in
detail, and instead we present its basic concepts by emphasizing methodologies of using
subsorts. This may be enough for our use of subsorts in these lecture notes.

An example. The following simple specification of natural numbers only with zero and
succesor that uses subsorts realizes the idea that the succesor operation never gives zero
as result.

mod! BARE-NAT {
[NzNat Zero < Nat]
op 0 : -> Zero
op s : Nat -> NzNat

}

In the specificationBARE-NAT we have usedNzNat as a sort name for the subset of the
non-zero naturals andZero as a sort name for the subset containing only the element zero
(0). Because bothNzNat andZero are meant to name subsets of the natural numbers,
named by the sortNat), they are calledsubsortsof Nat.

As the reader may guess by looking atBARE-NAT, in CafeOBJ subsort relation-
ship is specified by using the ‘less than’ symbol< inside a sort declaration. The graphical
representation of signatures with subsorts also upgrades the graphical convention that
we have introduced for the signatures by representing subsorting as disk inclusion. For
example the following is a graphical representation for thesignature ofBARE-NAT.

Zero NzNat

Nat

0 s_

2.6. Subsorts. 71

Order sorted signatures. In general, ifs is a subsort ofs′, thenAs⊆As′ for any algebra
A of the respective signature. The fact that subset relationship is a partial order is reflected
in the fact that subsort relationship is considered to be a partial order too. Thus when
considering signatures with subsorts we have to upgrade theset of sort symbolsS to a
partial order(S,≤) of sort symbols. Such signatures are calledorder sorted signatures.
The following is the mathematical definition for this concept.

Definition 2.88 (Order sorted signature). An order sorted signatureis a triple (S,≤,F)
such that(S,F) is a many sorted signature, and(S,≤) is a partially ordered set.

An order sorted signature ismonotoneiff for any non-empty arities w1 and w2 and
any sorts s1 and s2

σ ∈ Fw1→s1 ∩Fw2→s2 and w1 ≤ w2 (component-wise) imply s1 ≤ s2.

The following is an example of a monotone order sorted signature with the operation+
specified twice with different arities and sorts:

op _+_ : Nat Nat -> Nat
op _+_ : NzNat Nat -> NzNat

Zero NzNat

Nat

0 s_

+

+

Algebras of order sorted signatures. The coherence of the interpretations of the over-
loaded operation symbols is taken care by the monotonicity condition in the following
definition.

Definition 2.89. Given an order sorted signature(S,≤,F), an(S,≤,F)-algebrais just an
(S,F)-algebra A such that s≤ s′ in S implies As⊆As′ . An(S,≤,F)-algebra A ismonotone
when

σ∈Fw1→s1 ∩Fw2→s2 and w1 ≤w2 and s1 ≤ s2 imply that Aσ:w1→s1 : Aw1 →As1

equals Aσ:w2→s2 : Aw2 → As2 on Aw1.

For example, the standard algebra of the natural numbers (interpreting+ as addition) is
an example of a monotone algebra for the order sorted signature given above as example.

Weak versus strong overloading. Given an order sorted signature(S,≤,F), the inter-
pretations of an overloaded operation symbolσ ∈ Fw1→s1 ∩Fw2→s2 in an algebraA need
not necessarily agree on elements that belong to the intersection of carriers forw1 and

72 Chapter 2. Data Type Specification

w2; thus, a strong form of overloading is supported. For this reason, in the literature this
approach is calledoverloaded order sorted algebra.

It is useful to distinguish between two forms of overloading: in weak overloading,
operation symbols may have more than one arity and sort, so that some expressions can be
typed in more than one way, but a given (well formed) expression can only have one value
in a given algebra; however, instrong overloadingexpressions can have different values.
For example, weak overloading would allow the expression ‘3 + 5’ to be interpreted as
addition of naturals, integers, or rationals, each of whichgives the same value8, but it
would not also allow addition of integers modulo8, where the result would be0; however,
strong overloading would allow both of these.

Strong overloading is important for ordinary mathematicalnotation. For example,
the value of an expression like ‘1 + 1’ depends on how it is parsed. The result can be2
when it is parsed within natural numbers or it can be0 when it is parsed within integers
modulo2. Vector spaces provide a similar example. Thus, expressions like ‘0 + 0’ are
ambiguous, becasue0 is used for both the zero vector and the real0. However such
ambiguous expressions do not occur often in practice.

Non-monotonicities. Notice that in the monotone case, if we takeZ8, for the inte-
gers modulo8, to be a subsort of the naturals, then_+_ : Z8 Z8 -> Z8 cannot be
interpreted as addition modulo8 in an algebra where_+_ : Nat Nat -> Nat is
addition of naturals, because it must agree with addition ofnatural numbers onZ8, and
natural number addition does not restrict toZ8. But there is no such difficulty if we
remove the restriction of monotonicity. Alternatively, wecould retain monotonicity but
remove the subsort relationZ8 < Nat. Either way we get strong overloading, but the
non-monotonic approach provides a more faithful modellingof mathematical practice,
because the subsort relation can ensure that the elements ofsortZ8 really are the usual
numbers0,...,7.

On the other hand, non-monotonicities are rare enough in practice to be considered
exceptional, and we should not build a theory that fails to handle the most common case
in a smooth way. The solution to this dilemma is a mechanism for declaring which op-
eration declarations should be considered non-monotonic.This leads to another level of
refinement of the mathematical concept of signature that theinterested reader can find
[18]. All standard concepts and results of many sorted algebra (such as congruence, term,
deduction, initial and free algebras, completeness, etc.)carry through for signatures with
non-monotonicities but that respect the following condition.

Definition 2.90 (Locally filtered signature). A partially ordered set(S,≤) is (upward)
filtered iff for any two elements s,s′ ∈ S there is an element s′′ ∈ S such that s,s′ ≤ s′′. A
partially ordered set S islocally filterediff each of its connected components5 is filtered.
An order sorted signature(S,≤,F) is locally filterediff (S,≤) is locally filtered.

5Given a poset(S,≤), let ≡ denote the transitive and symmetric closure of≤. Then≡ is an equivalence
relation whose equivalence classes are called theconnected componentsof (S,≤).

2.6. Subsorts. 73

Dynamic type checking. One of the benefits of an accurate specification style making
use of subsorts is that it may give very precise information on the type of the elements by
computing their smallest sorts. TheCafeOBJ commandparse not only shows whether
a term is well formed, but it also gives its smallest sort syntactically. For example

BARE-NAT> parse s s 0 .

gives the answer

(s (s 0)) : NzNat

However the syntactic information on the type of elements may be less accurate than the
semantic one. Take the following case with rational numbers(with Rat the sort of the
rationals andNzRat the subsort of the non-zero rationals).

RAT> parse 2 / 2 .

gives

(2 / 2) : NzRat

but when evaluating this expression by theCafeOBJ commandred:

RAT> red 2 / 2 .

we get

-- reduce in RAT : 2 / 2
1 : NzNat

which means that one of the effects of the computation process is that the system finds
a sort of the respective element which may be smaller than thesort resulting from the
parsing process. This is calleddynamic type checking.

Error supersorts. When attempting to evaluate a partial function for values ofthe argu-
ments not belonging to its domain, theCafeOBJ system indicates the error. For example

RAT> parse 2 / 0 .

gives

(2 / 0) : ?Rat

The error message comes as anerror supersort, ?Rat in this case. ‘Supersort’ means
just thatRAT < ?RAT. The main function of error supersorts is that they store values
corresponding to some of the ill-formed expressions outside of the ordinary sorts. Which
are precisley these ill-formed expressions and why do we need them? These are pseudo-
terms that are defined by the following rules:

– each constant symbol of sorts is a pseudo-term of sortss, and

– for each operation symbolσ ∈ Fs1...sn→s and any pseudo-terms oft1, . . . tn of sorts
s′1 . . .s′n, respectively,σ(t1, . . . ,tn) is a pseudo-term of sorts when for eachk ∈
{1, . . . ,n} the sortssk ands′k have a common subsort.

74 Chapter 2. Data Type Specification

Some of the pseudo-terms, although they are ill-formed syntactically, may still evaluate
to values corresponding to ordinary terms.2 / ((3 / 2) + (1 / 2)) is such an
example. This is the reason we should not discard them completely.

The error supersorts may sometimes be used for the purpose ofspecification; we
will see such example below. InCafeOBJ the error supersorts are built into the system,
meaning that they are made automatically available to the user.

Retracts. The mechanism handling the pseudo-terms consists of introducing a opera-
tionsrs′>s : s′ → s for each subsort relationships< s′ which are subject to the following
equations:

• (∀x : s)rs′>s(x) = x, and

• (∀x : s′′)rs′>s(rs′′>s′(x)) = rs′′>s(x).

These operations are calledretractsand they are inserted in pseudo-terms in places where
the sorts of the subterms do not correspond to the arity of therespective operation. Such
insertion transforms the pseudo-terms into proper terms ofthe signature extended with re-
tracts. For example the pseudo-term2 / 0 is transformed into the term2 / rRat>NzRat

(0). The term2 / 0 is an example of proper pseudo-term because the inserted retract
cannot be elimintated in a computation process.

A different situation is with2 / ((3 / 2) + (1 / 2)), in which the dy-
namic type checking shows its strength. The parsing gives anerror although semantically
it should not be the case.

RAT> parse 2 / ((3 / 2) + (1 / 2)) .
(2 / ((3 / 2) + (1 / 2))) : ?Rat

The source of this error is due to the static aspect of the parsing process, the sort of(3 /
2) + (1 / 2) being computedRat rather thanNzRat. In fact if we were to think of

2 / ((3 / 2) + (1 / 2))

as a proper term we would have to consider the insertion of retracts, in reality the term
being

2 /rRat>NzRat((3 / 2) + (1 / 2)).

During the evaluation of this term, using the followingCafeOBJ command

RAT> red 2 / ((3 / 2) + (1 / 2)) .

at the stage when it becomes

2 /rRat>NzRat(1)

by applying the equation(∀x : NzRat)rRat>NzRat(x) = x the retract operation gets elimi-
nated and the computation process continues for getting thefollowing result

-- reduce in RAT : 2 / (3 / 2 + 1 / 2)
1 : NzNat

2.7. Example: compiler correctness 75

Thus retracts provide more strength to dynamic type checking. Retract operations are also
built into theCafeOBJ system, however they are not transparent to the user unless the
user requires explicitly this.

The consistency of using retracts. Within the context of specifications with initial de-
notation, the use of retracts may pose the following consistency problem. Any retract
operationrs′>s may introduce new (undesired) elements on the sorts. However this is a
problem only when this affects the ‘old’ elements, in the sense that different elements
may get identified by the use of retracts. This could happen for example if the user wrote
an equation such asrRat>NzRat(1) = 2.

Definition 2.91 (Consistency of retracts). Let Γ be a set of conditional equations for an
order sorted signature(S,≤,F) and let Γ⊗ be an extension ofΓ to set of conditional
equations for the extension(S,≤,F⊗) with retracts. We say thatΓ⊗ is consistent with
respect toΓ when the unique(S,≤,F)-homomorphism from (the initial((S,≤,F),Γ)-
algebra)0(S,≤,F),Γ to the reduct of (the initial((S,≤,F⊗),Γ⊗)-algebra)0(S,≤,F⊗),Γ⊗ to
(S,≤,F) is injective.

Adauga ceva despre sort constraints??

Exercises.

2.25. Specify a data type of lists of natural numbers with the Lisp-like operationscar for the head
of a list,cdr for the tail of a list, andcons for adding an element as head to a list.

2.26. Specify a partial minus operation on natural numbers using the error supersort. For this spec-
ification, first parse and then evaluate an expression such as3− (2−1).

2.27. Write a specification of the set of the positive rational numbers that is a confluent and termi-
nating rewriting system.

2.7 Example: compiler correctness

In this section we develop an equational specification of a very simple programming
language, of a compiler from this language to machine code, and formulate its correctness
as an inductive property, and formally prove it by structural induction using rewriting. We
use theCafeOBJ both as specification and as execution language.

The programming language considered is that of arithmetic expressions. However
the same method can be used for more complex programming languages involving im-
perative constructs such as loops,if-then-else, etc.

Initial algebra semantics principle. This is a very classical principle for defining for-
mally the semantics of programming languages. According tothis rather elegant princi-
ple, the syntax of a programming language can be specified as an algebraic signatureΣ
such that the programs are the precisely the terms over this signature. Then a semantics

76 Chapter 2. Data Type Specification

for this language is given by aΣ-algebraA. Given any such semantics, each program can
be evaluated to a semantic value, which is the value of the corresponding term through
the uniqueΣ-algebra homomorphism from 0Σ (theΣ-algebra of terms) toA. This is based
upon the initiality property of the term algebra 0Σ.

For the compiler example, this principle is applied at two different levels:

1. denotational semantics, and

2. operational semantics.

In the denotational semantics the algebraA is an algebra of the values which the programs
of the language are expected to compute. The unique homomorphism 0Σ → A gives the
denotation of each (source program). In the operational semantics the respective alge-
bra is an algebraP of programs in a target lower level language, such as machinecode.
The compiler appears as the unique homomorphism 0Σ → P. The running of compiled
programs appears as a homomorphismrunp between the operational algebra and the
denotational algebra. The initiality property of 0Σ guarantees the commutativity of the
diagram below

0Σ //

��@
@@

@@
@@

A

P

runp

@@�������

which gives the correctness property for the compiler.

Summary of the arithmetic expression compiler specification and verification. The
steps of the process of the specification of the compiler and of the formal verification of
its correctness are as follows:

1. We specify a data type of simple arithmetic expressions with integer numbers.

2. We specify the denotational semantics for the arithmeticexpressions.

3. We specify a compiler from arithmetic expressions to lists of machine instructions.

4. We specify a machine executing configurations formed by lists of machine instruc-
tions and value stacks storing intermediate computation results.

5. Finally, we formulate the correctness of the compiler as inductive property of our
specification and prove it by structural induction using rewriting.

Our specifications, although not really large, still quite significantly involves a structur-
ing mechanism. Therefore it would be useful if the reader hadsome familiarity with the
material of Chap. 6. However we will try to explain on the spotthe structuring involved
in a rather informal and elementary way in order to minimize the dependence on a deep
understanding of the structuring concepts presented in Chap. 6.

2.7. Example: compiler correctness 77

The syntax for arithmetic expressions. We consider simple arithmetic expressions
formed only with three binary operation symbols representing addition, minus, and mul-
tiplication, and with integers as constants. The followingis a specification of the set of
the binary operation symbols.

mod! OPsym {
[Opsym]
ops ++ -- x : -> Opsym

}

For the integers we use the built-in moduleINT provided automatically by theCafeOBJ
system.

mod! EXP {
protecting(INT + OPsym)
[Int < Exp]
op (_ _ _) : Exp Opsym Exp -> Exp

}

The second line of moduleEXP means just thatEXP first puts together the specifica-
tionsOPsym andINT and after adds something more. Two things are thus added: (1)
a subsorting relationship specifying the fact that in our arithmetic expressions language
the integers are (primitive) expressions, and (2) a mix-fix constructor specifying the fact
that the arithmetic expressions are built recursively from(smaller) arithmetic expressions
by using the binary operators. We could have done all these without any structuring by
writing together the specificationsOPsym andINT plus (1) and (2) as a single speci-
fication module, but in that case we could not (re)useINT (made already available by
the system) and also the specification would have been slightly harder to read. At this
stage only slightly harder, but at a later stage, after more and more accumulation of data
specifications, an eventually flat unstructured specfication may be pretty unreadable.

The denotation ofEXP, which is tight (initial) consists of the algebra of the binary
trees with the inner nodes labeled by the three binary operation symbols, and with the
leaves labeled by integers. As a set of elements, this is the same as the terms constructed
with the three binary operations and with the integers as constants, which is exactly the
set of the arithmetic expressions.

From the perspective of the principle of initial algebra semantics we can consider
the syntax for our simple language of arithmetic expressions as a signatureΣ =(S,F) with
only one sort (namelyExp; the other sortsOPsym andInt playing just an auxiliary role)
and such that

– F→Exp is the set of integer numbers, i.e.Z = {. . . ,−2,−1,0,1,2, . . .},

– FExpExp→Exp = {++,--,x}, and

– Fw→Exp = /0 otherwise.

The term algebra 0Σ is indeed the set of all programs, in this case of all arithmetic expres-
sions formed from the integers with the three above introduced binary operations.

78 Chapter 2. Data Type Specification

Denotational semantics for arithmetic expressions. We continue to realize the prin-
ciple of initial algebra semantics by specifying the denotational semanticsΣ-algebraA
which is as follows.

– AExp = Z, i.e. the set of the integers,

and for all integersm,n

– Am = m,

– A++(m,n) = m+n,

– A--(m,n) = m−n, and

– Ax(m,n) = m×n.

The actual specification ofA is given by the mappingapply to that specifies the inter-
pretations of the binary operations. For exampleA--(m,n) is just(apply -- to m n).

mod! APP { protecting(EXP)
op apply_to_ _ : Opsym Int Int -> Int
vars I J : Int
eq apply ++ to I J = I + J .
eq apply -- to I J = I - J .
eq apply x to I J = I * J .

}

The uniqueΣ-homomorphism 0Σ → A, which gives the denotations to the individual ex-
presions, is specified below as the functioneval . Note that the equations ofEVAL just
give the homomorphism conditions foreval.

mod! EVAL { protecting(APP)
op eval_ : Exp -> Int
vars E1 E2 : Exp
eq eval (V:Int) = V .
eq eval(E1 Op:Opsym E2) = apply Op to eval(E1) eval(E2) .

}

Testing of the arithmetic expressions. Now that we are done with the specification
of the denotational semantics for the arithmetic expressions, and our specification has
grown to certain size, we may take a short break and perform a little testing. Such testings
during the building of specifications are important for several reasons. One is that it gives
us a feeling of how our data types work in a very concrete way. It may also happen that
we discover some bugs or things we want to adjust. Finally, testing may give us some
confidence about the quality of our specification building process. So, our little testing
goes as follows.

red eval(((2 -- 3) x 5) ++ (3 x 2)) .

This gives the expected result1.

2.7. Example: compiler correctness 79

Compiler: preliminary list data type. The second stage of our specification is devoted
to the specification of the operational semantics for the arithmetic expressions. We first
need a ‘parameterized’ data type of lists. This means that our data type is generic in the
sense that the set of the elements for the lists is abstract and various list data types may be
obtained just by instantiating it to various concrete sets.The parameterTRIV is a built-in
module in theCafeOBJ system and consists of only one sortElt, specified with loose
semantics. This means its denotation consists of all sets. The lists overElt are specified
by a constructor operation@ adding an element to a list and an associative operation+
standing for the appending of lists. We have also to considerthe empty list, denotednil.
The following is theCafeOBJ coding of these.

mod! LIST (ELT :: TRIV) {
[List]
op nil : -> List
op (_@_) : Elt List -> List
op (_+_) : List List -> List { assoc }
vars l l1 l2 : List
eq nil + l = l .
eq (e:Elt @ l1) + l2 = e @ (l1 + l2) .

}

Thus the denotation ofLIST consists of all algebras interpretingElt as any set and
List (together withnil and @) as the lists constructed from the elements of the inter-
pretation ofElt. Note that because we have specifiednil only as identity to the left its
real functionality is as the end marker for lists.

Compiler: the target code. Now we are going to define the algebraP of the operational
semantics. This algebra consists of lists of machine code-like instructions (specified by
the sortInst) and containing two kinds of instructions:

• loading an integer to the value stack, and

• applying an arithmetic operation.

mod! INST {
protecting(OPsym + INT)
[Inst]
op Load_ : Int -> Inst
op Apply_ : Opsym -> Inst

}

The data type of lists of instructions is obtained by instantiating the set of the elements
Elt of the generic list data typeLIST to the set of our instructions. For the sake of
expressivity, the sortList is renamed toInstList andList to InstList. These
are achieved by the followingCafeOBJ code.

make INST-LIST (LIST(ELT <= view to INST {sort Elt -> Inst})

* {sort List -> InstList})

80 Chapter 2. Data Type Specification

Thus the denotation ofINST-LIST consists of the algebra of lists of instructions.
TheΣ-algebraP of the operational semantics is defined as follows.

– PExp is the set of lists of instructions, i.e. the interpretationof InstList in the
denotation ofINST-LIST,

– Pm = (Load m)@nil for each integerm,

and for any listsl1 andl2,

– P++(l1, l2) = l1 + l2 +(Apply ++)@nil,

– P--(l1, l2) = l1 + l2 +(Apply --)@nil, and

– Px(l1, l2) = l1 + l2 +(Apply x)@nil.

Compiler: the compiler function. Let us denote the uniqueΣ-homomorphism 0Σ → P
by compile. Its name suggests its functionality: it just compiles expressions to lists of
instructions. Its formal specification is given below.

mod! COMPILER {
protecting (EXP + INST-LIST)
op compile_ : Exp -> InstList
eq compile V:Int = (Load V) @ nil .
eq compile (E1:Exp Op:Opsym E2:Exp) =

compile(E1) + compile(E2) + (Apply Op) @ nil .
}

Note thatcompile is not a surjective homomorphism, which means that there are ele-
ments ofP which are not the result ofcompile. Not all lists of instructions, or programs
in the machine code language, are compilations of arithmetic expressions. Note also that
the execution aspect ofCafeOBJ by rewriting gives it real programming capabilities
shown by the fact that we can program a compiler; moreover this is achieved in a highly
declarative way.

Testing the compiler. Now we may test our compiler. Let us do it on the same arith-
metic expression that we have used for our previous testing.

red compile (((2 -- 3) x 5) ++ (3 x 2)) .

This gets the following program.

Load 2 @ Load 3 @ Apply -- @ Load 5 @ Apply x @ Load 3 @
Load 2 @ Apply x @ Apply ++ @ nil : InstList

2.7. Example: compiler correctness 81

The execution machine. The next step is to define the mappingrunp that takes ma-
chine code programs and runs them for getting an integer as result. For this relatively
complex task we have to define an execution machine that consists of configurations
formed by a list of instructions and value stacks for storingintermediate computation
results. The following is a sample of the execution of some code on the machine, which
corresponds to the compiled code for the arithmetic expression(2 -- 3) ++ 5:

Load 2
Load 3
Apply --
Load 5
Apply ++

Load 3
Apply --
Load 5
Apply ++ Apply ++

Apply --
Load 5
Apply ++

Load 5
Apply ++

2 3
2

-1 5
-1

4

A value stack for storing intermediate computation resultsis specified as an instance of
theLIST data type by instantiating the elements (Elt) with integer values (Int). For
the sake of expresivity we also rename the sortList to ValStack. Note that this is a
second reuse of the parameterized data type of lists.

make VALUE-STACK (LIST(ELT <= view to INT { sort Elt -> Int })

* { sort List -> ValStack })

Execution machine: the specification.

mod! EXEC-MACHINE {
protecting (VALUE-STACK + APP + COMPILER)

The operationdo on od builds the configurations.

[Config]
op do_on_od : InstList ValStack -> Config

One step execution of configurations are specified byexec . To address the situations
when configurations cannot be executed, such as for example when the head of the list
of instructions is anApply and there are not at least two integers in the value stack,
the result sort ofexec is specified to be the error supesort for configurations. For such
situations weunder-specifythe functionality ofexec, which simply means that we do
not write any equations corresponding to the respective cases.

op exec_ : Config -> ?Config
vars Il : InstList
vars Vs : ValStack
eq exec do ((Load E:Int) @ Il) on Vs od = do Il on (E @ Vs) od .
eq exec do ((Apply Op:Opsym) @ Il) on (I:Int @ J:Int @ Vs) od =

do Il on ((apply Op to J I) @ Vs) od .

The operationrun is meant for a complete execution of the configurations by using the
auxiliary operationexec . The normal form of terms withrun on the top represent the
result of the complete execution of the corresponding configuration.

82 Chapter 2. Data Type Specification

op run_ : Config -> ?Config
eq run do nil on Vs od = do nil on Vs od .
eq run do (I:Inst @ Il) on Vs od =

run exec do (I @ Il) on Vs od .
}

Note that the right hand side of the latter equation does not really parse well because
the result sort ofexec is ?Config while the argument sort ofrun is Config. This
is silently solved by the system by introducing a corresponding retract function (see
Sect. 2.6). Now we can peform some testing of the execution machine:

red run do compile(((2 -- 3) x 5) ++ (3 x 2)) on nil od .

This gets

(do nil on (1 @ nil) od):Config.

The following is an example giving error value.

red run do Apply ++ @ nil on 1 @ nil od .

This gets

(run (retract (exec (do ((Apply ++) @ nil) on (1 @ nil) od)))):?Config

runp revisited. The operationrun specified above determines immediately the map-
pingrunp from machine code programs to integer values. This takes programs and gives
the values resulting from their execution. However as defined so far,runp is a partial
function because as we have seen before not all machine code programs run to produce
an integer value result. We solve this problem by considering for all machine code pro-
grams that are not compiled code of some arithmetic expression, an error result value,
denotederr. Thus

runp(IL) =

{

i if run(do IL on nil od) = do nil on (i @ nil) od
err otherwise.

In order to haverunp as aΣ-homomorphism from the operational semantics algebraP
to the denotational semantics algebra we have to upgrade thelatter by extending it with
the error valueerr. Let us denote this upgraded algebra byA′, and define it as follow.

– A′
Exp = Z∪{err}, and

– for anyσ ∈ {++,--,x} we letA′
σ(x,y) =

{

Aσ(x,y) if x,y∈ Z

err otherwise.

The formulation of compiler correctness. The correctness of the compiler can be in-
formally stated as

The running of the compiled code for an arithmetic expression gets the same
result as the (semantic) evaluation of the expression.

2.7. Example: compiler correctness 83

which may be formally expressed as

runp ◦ compile = eval.

If we proved thatrunp is a Σ-homomorphismP → A′ then the compiler correctness is
obtained directly from the initiality property of 0Σ as shown by the diagram below.

0Σ
eval //

compile
��@

@@
@@

@@
A′

P

runp

??�������

The proof of the compiler correctness is thus reduced to the proof of theΣ-homomorphism
property forrunp. However we prefer here to use a simpler proof alternative, namely to
prove directly

run do (compile E) on nil od = do nil on eval(E) nil od.(2.90)

The proof of compiler correctness. It is actually more convenient to prove the follow-
ing generalized version of (2.90).

run do ((compile E) + Il) on Vs od = run Il on (eval(E) @ Vs)(2.91)

Since the denotation of our specification is initial, this isan inductive property and we
prove it by using the structural induction method of Prop. 2.85. For our property the setX
of variables of Prop. 2.85 is{E:Exp}. Since there are only two constructors of sortExp,
namely the integer numbers and(), we have only two cases forQE of Prop. 2.85.

The proof score. Now we are ready to write the proof score for our inductive property.

open (EXEC-MACHINE + EVAL)

The caseQE = v for v ∈ Z:

op il : -> InstList .
op vs : -> ValStack .
op v : -> Int .

red run do (compile v) + il on vs od ==
run do il on ((eval v) @ vs) od .

The caseQE = ():

ops e1 e2 : -> Exp .
op op : -> Opsym .

eq run do ((compile e1) + Il:InstList) on Vs:ValStack od =
run do Il on ((eval e1) @ Vs) od .

eq run do ((compile e2) + Il:InstList) on Vs:ValStack od =
run do Il on ((eval e2) @ Vs) od .

red run do (compile (e1 op e2)) + il on vs od ==
run do il on ((eval (e1 op e2)) @ vs) od .

close

84 Chapter 2. Data Type Specification

Exercises.

2.28. Specify theΣ-algebraP of the operational semantics for the arithmetic expressions. Specify
the Σ-algebraA′ and theΣ-homomorphismrunp and prove that the latter is indeed a homomor-
phism.

Chapter 3

Specification with Transitions

This chapter is devoted to rewriting as a specification formalism rather as an execution
mechanism. The chapter is structured as follows.

1. We show how rewriting can be turned into a specification formalism, including the
definition of an underlying logic that extends the logic of (many sorted) algebras
developed in the previous chapter.

2. Next we develop a sound and complete calculus for this new logic as an extension
of the equational proof calculus.

3. The rest of the chapter is devoted to methodologies for rewriting as specification,
the most important being specification and verification of algorithms.

3.1 The logic of transitions

An example: bubble sorting by rewriting Rewriting is a generic algorithm in the sense
that many algorithm can be coded as rewriting systems. Bubble sorting is such an exam-
ple. Let the following be a specification of the data type of natural numbers with a strict
‘less than’ relation:

mod! PNAT= {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _=_ : Nat Nat -> Bool {comm}
vars M N : Nat
eq ((s M) = 0) = false .
eq (0 = 0) = true .
eq (s M = s N) = (M = N) .

}

86 Chapter 3. Specification with Transitions

mod! PNAT< {
protecting(PNAT=)
op _<_ : Nat Nat -> Bool
vars M N : Nat
eq 0 < s M = true .
eq M < 0 = false .
eq (s M < s N) = M < N .

}

The following is a specification of strings of natural numbers with concatenation:

mod! STRG-PNAT< {
protecting(PNAT<)
[Nat < Strg]
op _;_ : Strg Strg -> Strg {assoc}

}

The bubble sorting may be specified by only one rewriting rulemodulo the associativity
of the concatenation operation. The rather compact coding of the bubble sorting algorithm
owes to the power of using operation attributes and of rewriting modulo axioms.

mod! SORTING-NAT {
protecting(STRG-PNAT<)
cq M:Nat ; N:Nat = N ; M if N < M .

}

The denotation ofSORTING-NAT consists of the sorted strings of natural numbers, i.e.
the results of the sorting computation. Thus, at the level ofdenotational semantics the
whole process of sorting is collapsed to the final results, which means that in this case
equational logic is too gross for specifying the states of the algorithm. However the states
of the sorting algorithm are recovered at the level of the preordered algebra of the rewrit-
ing relation modulo associativity. In more precise words, if E consists of associativity
of concatenation (in addition to the equations ofPNAT<) andΓ of sorting equation of
SORTING-NAT, then the elements of this preordered algebra are the strings of naturals,
i.e. classes of terms modulo=E, and the preorder relation is

⋆
−→Γ,E, the rewriting relation

moduloE. The following figure shows the fragment of this preorder relation on on strings
of naturals that corresponds to the sorting of the string (3 ; 2 ; 1).

3.2.1

2.3.1

2.1.3

1.2.3

1.3.2

3.1.2

Strg

3.1. The logic of transitions 87

schimba . cu ; in figura de mai sus si in cele de mai jos

Transitions versus equations. In order to have the preorder algebra of
⋆

−→Γ,E as the
denotation of the specification, we have to refine the logic ofmany sorted algebras of
Chap. 2 in a way that we distinguish between rewrite rules (E) that are used for comput-
ing equalities, and which collapse elements, and those (Γ) that do not collapse elements
but are rather used for specifying transitions between elements. InCafeOBJ and Maude,
respectively, this is achieved by denoting transitions bytrans (or ctrans in the con-
ditional case) andrl (or crl), respectively, rather than byeq (orceq).

This means a refinement of the logic of Chap. 2 to a logic that considers pre-
ordered algebras rather than algebras as models and that hastwo kinds of atoms: equations
and transitions. This is called the logic of preordered algebras (abbreviattedPOA). Both
CafeOBJ and Maude support directlyPOA as a specification paradigm, although for
Maude this is the main focus and is treated at a more sophisticated level than presented
here. Therefore theCafeOBJ code of thePOAspecification of bubble sorting is

mod! SORTING-NAT {
protecting(STRG-PNAT<)
ctrans M:Nat ; N:Nat => N ; M if N < M .

}

The formal definition of POA. In the following we definePOA formally as a logic by
extending the logic of (many sorted) algebras of Chap. 2. Later on we extend the logic
results of Chap. 2 toPOA, including existence of initial models and a sound and complete
proof calculus for conditional sentences. These results constitute the foundations forPOA
specification with conditional sentences.

Definition 3.1 (POAsignatures). Thesignatures ofPOA are just the algebraic signatures,
i.e. of the form(S,F).

Definition 3.2 (POA models and homomorphisms). Given a signature(S,F), a POA
(S,F)-modelis just a preordered(S,F)-algebra. We may denote preordered(S,F)-algebras
by (A,≤) where A is the underlying (discrete)(S,F)-algebra and≤ is the family of pre-
orders(≤s)s∈S on the interpretations of the sorts.

A homomorphism of preordered(S,F)-algebrash : (A,≤) → (A′,≤′) is just an
(S,F)-homomorphism A→ A′ that is monotone, i.e. hs(a) ≤′

s hs(b) for any s∈ S and any
a≤s b.

The monotonicity of the interpretation of the operations inpreordered algebras can
be read as an extension of the interpretation of the operations from elements to transitions.
For example, in the preordered algebra ofSORTING-NAT discussed above we may think
that transitions between strings concatenate like shown bythe figure below.

3.2.1

2.1.3

t1

 2.1

 1.2

t2. t1.t2

3.2.1.2.1

2.1.3.1.2

=

88 Chapter 3. Specification with Transitions

The concatenation of transitions represents the parallel aspect of the bubble sorting, we
can sort independently in parallel different parts of a string and then join the results and
eventually continue from there.

Definition 3.3 (POAsentences). The sentences of POA are constructed like in Dfn. 2.6
with the difference that we consider two kinds of atoms

1. equations, of the form t= t ′ (like in Dfn. 2.6), and

2. transitions, of the form t−> t ′ where t and t′ are terms of the same sort.

A Horn clausein POA is just a sentence of the form(∀X)H ⇒C where H is a finite con-
junction of atoms (either equations or transitions) and C isa single atom (either equation
or transition).

Definition 3.4 (POAsatisfaction). For a given signature(S,F), the satisfaction between
preordered algebras and POA sentences extends the definition of satisfaction for algebras
(Dfn. 2.10) with the satisfaction of transitions:

(A,≤) |=(S,F) t−> t ′ if and only if At ≤ At′ .

Now it is the moment to note that the logic ofPOA goes beyond rewriting mod-
ulo axioms since inPOA the sentences may involve equations and transitions without
restrictions; for example we may have equations conditioned by transitions, a situation
that cannot be captured by splitting the rewriting rules into Γ (for transitions) andE (for
equations).

Initial semantics in POA. It is rather easy to show (we leave this as exercise to the
reader) that the preordered algebra corresponding to the bubble sorting algorithm on the
strings of naturals discussed above is the initial preordered algebra satisfying the sen-
tences ofSORTING-NAT. In fact, like for conditional equations, any set of Horn clauses
in POAadmits an initial model. This result allows for initial semantics specifications with
Horn clauses inPOA, which is an important specification methodology using transitions.
In the rest of this section we develop the result on existenceof initial models for Horn
clauses inPOAby following the same proof pattern as for the existence of initial algebras
for conditional equations.

Congruences and quotients inPOA. First, we need to upgrade the notion of congru-
ence from algebras to preordered algebras.

Definition 3.5 (POA congruence). A POA-congruenceon a preordered(S,F)-algebra
(A,≤) is a pair (≡,⊑) such that

– ≡ is an(S,F)-congruence on A,

– (A,⊑) is a preordered algebra such that≤s ⊆ ⊑s for each sort s∈ S, and

– for each s∈ S, a′ ≡s a,a⊑s b,b≡s b′ implies a′ ⊑s b′ for any elements a,a′,b,b′ ∈
As.

3.1. The logic of transitions 89

Congruences form a partial order under inclusion, i.e.(≡,⊑) ⊆ (≡′,⊑′) if and only if
≡s ⊆ ≡′

s and⊑s ⊆ ⊑′
s for each s∈ S.

The following is an example ofPOA-congruence. Let us consider a signature con-
sisting of one sorts and a binary operation+ and a preordered algebra(A,≤) for this
signature defined by

• As is the set of strings of natural numbers,

• A+ performs component-wise addition of naturals, for example(1;2)+ (2;3;1) =
(3;5;1), and

• x1≤ x2 if and only if x1 is a ‘lax prefix’ ofx2 in the sense that the length ofx1 is
less than or equal to the length ofx2 and the elements ofx1 are less than or equal to
the elements ofx2 component-wise; for example(1;2) ≤ (2;2;3).

Then(≡,⊑) is aPOA-congruence on(A,≤) where

• x1≡ x2 if and only if x1 andx2 have the same length, and

• x1⊑ x2 if and only if the length ofx1 is less than or equal to the length ofx2.

Proposition 3.6. Each POA-congruence(≡,⊑) on a preordered algebra(A,≤) deter-
mines aquotientpreordered algebra homomorphism q: (A,≤) → (A/≡,≤′) where

– q : A→ A/≡ is the quotient algebra homomorphism determined by the congruence
≡ as in Dfn. 2.18, and

– a/≡ ≤′ b/≡ if and only if a⊑ b.

The quotient preordered algebra(A/≡,≤′) may be also denoted by(A,≤)/(≡,⊑).

Proof. The definition of the preorder relation≤′ is correct since it is independent on the
choice ofa andb. Indeed, leta ≡ a′ andb ≡ b′. By the definition ofPOA-congruences
we have thata⊑ b if and only if a′ ⊑ b′. Moreover that≤′ is a preorder follows from the
fact that⊑ is a preorder.

In order to complete the argument that(A/≡,≤′) is a preordered algebra we have to
show that the interpretations of the operations onA/≡ are monotone with respect to the
preorder≤′. Let σ be any operation symbol and(a1, . . . ,an) and(a′1, . . . ,a

′
n) appropriate

lists of arguments forAσ. We have to prove that

(A/≡)σ(a1/≡, . . . ,an/≡) ≤′ (A/≡)σ(a′1/≡, . . . ,a′n/≡)

if ak/≡ ≤′ a′k/≡ for each 1≤ k≤ n. This is equivalent to

Aσ(a1, . . . ,an)/≡ ≤′ Aσ(a′1, . . . ,a
′
n)/≡ and further toAσ(a1, . . . ,an) ⊑ Aσ(a′1, . . . ,a

′
n).

The latter relation holds becauseak ⊑ a′k (sinceak/≡ ≤′ a′k/≡) for each 1≤ k≤ n and by
the definition of thePOA-congruence which guarantees thatAσ is monotone with respect
to the preorder⊑.

The quotient homomorphismq is monotone because ifa ≤ b then a ⊑ b which
impliesa/≡ ≤′ b/≡. �

90 Chapter 3. Specification with Transitions

In the case of thePOA congruence presented above, the corresponding quotient
preordered algebra(A/≡,≤′) has the natural numbers as its elements, interprets+ as
the maximum between two natural numbers, and≤′ is the ordinary ‘less than or equal’
relation between naturals.

The following is the refinement of the concept of kernel of homomorphism of alge-
bras (Dfn. 2.19) to the situation of preordered algebras.

Definition 3.7 (Kernel of homomorphism inPOA). For any preordered algebra homo-
morphism h: (A,≤) → (A′,≤′) its kernel, denoted ker(h), is defined as the pair of fami-
lies of binary relations(=h,≤h) where

– =h is the kernel of h as algebra homomorphism A→ A′, and

– for each sort s of the signature and any a,b ∈ As, a(≤h)sb if and only if hs(a) ≤s

hs(b).

Fact 3.8. ker(h) is a POA-congruence.

The following is aPOArefinement of Prop. 2.21 to preordered algebras.

Proposition 3.9. For any surjective POA homomorphism q: (A,≤) → (A′,≤′) and any
POA homomorphism h′ : (A,≤) → (B,≤′′), there exists an unique POA homomorphism
h′ : (A′,≤′) → (B,≤′′) such that q;h′ = h if and only if ker(q) ⊆ ker(h).

(A,≤)
q

//

h
��=

==
==

==
(A′,≤′)

h′����
��

��
�

(B,≤′′)

Proof. The direct implication is almost trivial, hence we focus on the inverse implication.
Recall thatker(q)⊆ ker(h) means that=q ⊆ =h and≤q ⊆ ≤h. Because=q ⊆ =h we can
use Prop. 2.21 and obtain the existence and uniqueness ofh′ as algebra homomorphism
A′ → B. It thus remains to show thath′ is also monotone.

Let us assumea′1 ≤
′
s a′2 ∈ A′

s. Then if we writea′1 = qs(a1) anda′2 = qs(a2), we have
thata1(≤q)sa2 which by hypothesis impliesa1(≤h)sa2 which meanshs(a1)≤

′′
s hs(a2). By

definition we have thath′s(a
′
k) = hs(ak), henceh′s(a

′
1) ≤

′′
s h′s(a

′
2). �

Free preordered algebras. The following extends the concept ofΓ-congruence from
ordinary algebras (Dfn. 2.22) to preordered algebras.

Definition 3.10 (Γ-congruence inPOA). For any finite conjunction H= (t1 = t ′1)∧·· ·∧
(tn = t ′n)∧ (tn+1−> t ′n+1)∧·· ·∧ (tk−> t ′k) of POA(S,F)-atoms and any preordered(S,F)-
algebra(A,≤), by AH we abbreviate the pair of sets({(Ati ,At′i

) | 1≤ i ≤ n},{(Ati ,At′i
) |

n+1≤ i ≤ k}).
GivenΓ a set of POA Horn clauses for a signature(S,F), a POA congruence(≡,⊑)

on a preordered(S,F)-algebra (A,≤) is a Γ-congruencewhen for each Horn clause
(∀X)H ⇒ C in Γ and for any expansion A′ of A to (S,F ∪X), A′

H ⊆ (≡,⊑) implies
A′

C ⊆ (≡,⊑).

3.1. The logic of transitions 91

Fact 3.11. TheΓ-congruences on a preordered algebra(A,≤) are closed under arbi-

trary intersections. Let(=(A,≤)
Γ ,≤

(A,≤)
Γ) denote the leastΓ-congruence on(A,≤), which

is the intersection of allΓ-congruences on(A,≤). Then by q(A,≤)
Γ we denote the quotient

homomorphism that corresponds to(=
(A,≤)
Γ ,≤

(A,≤)
Γ).

The following three results refine the corresponding results about algebras to pre-
order algebras. Since their proofs just mimic the proofs of Prop. 2.23, Prop. 2.24, and of
Cor. 2.26, respectively, we omit them here.

Proposition 3.12. For any set of POA Horn clausesΓ for a signature(S,F) and any
homomorphism of preordered(S,F)-algebras h: (A,≤) → (B,≤′), if (B,≤′) |= Γ then
ker(h) is a POAΓ-congruence.

Proposition 3.13. For any set of POA Horn clausesΓ for a signature(S,F) and for any
POA congruence(≡,⊑) on a preordered(S,F)-algebra(A,≤)

(A,≤)/(≡,⊑) |= Γ if and only if (≡,⊑) is a POAΓ-congruence.

The concept of free preordered algebras in the result below is like the concept of
free algebras of Cor. 2.26.

Corollary 3.14. For any set of POA Horn clausesΓ for a signature(S,F) and for any
preordered(S,F)-algebra(A,≤), (A,≤)/(=Γ,≤Γ) is thefree preordered algebra over(A,≤
) satisfyingΓ.

(A,≤)
qΓ //

∀h
!!C

CC
CC

CC
C

(A,≤)/(=Γ,≤Γ)

∃!hΓyyttttttttt

(B,≤′) |= Γ

Term preordered algebras. From Prop. 2.27 let us recall the initial term algebra 0(S,F).

Proposition 3.15. For any signature(S,F), (0(S,F),=) is the initial preordered(S,F)-
algebra.

Proof. We have just to note that for each preordered(S,F)-algebra(A,≤), the unique
algebra homomorphismh : 0(S,F) → A is trivially monotone. �

Existence of initial preordered algebras for Horn clause specifications. The follow-
ing is obtained as an instance of Cor. 3.14 for the initial preordered algebra (of Prop. 3.15).

Corollary 3.16. For each setΓ of Horn clauses in POA,(0(S,F),=)/(=Γ,≤Γ) is the initial
preordered algebra which satisfiesΓ.

For example, the initial preordered algebra ofSORTING-NAT is the preordered al-
gebra discussed at the beginning of this section, having thestrings of naturals as elements
of sortStrg, and the preorder relation on strings being generated by onestep transitions
of the bubble sorting algorithm.

92 Chapter 3. Specification with Transitions

Exercises.

3.1. Show that bijective homomorphisms of preordered algebras are not necessarily isomorphisms.

3.2. Let Γ andE be two sets of(S,F)-equations. Show that the preordered algebra determined by
⋆

−→Γ,E, the rewriting relation byΓ moduloE, is the initial preordered algebra that satisfiesΓ as
transitions andE as equations.

3.2 Proof in preordered algebra.

Preordered algebra deduction.

Definition 3.17 (Proof theoretic entailment system forPOA Horn clauses). The proof
theoretic entailment system forPOAHorn clauses, denoted⊢HPOA, is the least entailment
system which satisfies the meta-rules ofImplicationand of Universal Quantificationand
which contains the the equational proof rulesReflexivity, Symmetry, Transitivity, and
Congruenceof Dfn. 2.37, the following rules for transitions

Trans-Reflexivity:
/0

t−> t
for all (S,F)-terms t.

Trans-Transitivity:
{t−> t ′, t ′−> t ′′}

t−> t ′′
for all (S,F)-terms t, t′ and t′′ of the same sort.

Trans-Congruence:
{ti−> t ′i | 1≤ i ≤ n}

σ(t1, . . . ,tn)−> σ(t ′1, . . . ,t
′
n)

for each operation symbolσ ∈ Fs1...sn→s

and any terms ti , t′i of sort si for 1≤ i ≤ n.

the following upgraded (from Dfn. 2.37) rule

POA-Substitutivity:
{(∀X)H ⇒C}
{θ(H ⇒C)}

for any Horn clause(∀X)H ⇒ C for (S,F) and for
each substitutionθ : X → T(S,F).

and the following rule

Compatibility:
{t1 = t2, t1−> t ′1, t ′1 = t ′2}

{t2−> t ′2}
for all (S,F)-terms t1,t2,t ′1,t

′
2.

Soundness and completeness.The soundness of⊢HPOA is obtained in manner very
similar to the soundness of equational deduction (Prop. 2.49) by checking the soundness
of each of the proof rules of Dfn. 3.17. For the equational proof rules this has already
been done by Prop. 2.38,and for the rules for transitions it can be done like in Prop. 2.38,
therefore. we omit these details here.

Proposition 3.18(Soundness ofHPOAdeduction). The entailment system⊢HPOA is sound.

Thecompleteness of⊢HPOA is obtained along the same lines as for the completeness
of equational deduction (Thm. 2.50), therefore here we justsketch its proof here leaving
the details to the reader.

3.2. Proof in preordered algebra. 93

Theorem 3.19(Completeness ofHPOAdeduction). The entailment system⊢HPOA is com-
plete.

Proof. For any fixed setΓ of Horn clauses inPOA let us consider the following two
relations on the initial (term) preordered algebra(0(S,F),=):

– ≡Γ= {(t, t ′) | Γ ⊢HPOA t = t ′}, and

– ⊑Γ= {(t, t ′) | Γ ⊢HPOA t−> t ′}.

Then pair(≡Γ,⊑Γ) can be shown to be aPOA Γ-congruence and by using the quotient
preordered algebra in the manner of the proof of Thm. 2.50 we obtain that(0(S,F),=
)/(≡Γ,⊑Γ) |= Γ that leads for each equation or transitionC to

Γ |= C implies Γ ⊢HPOAC. (3.1)

The relation (3.1) then lifts to all Horn clauses by using themeta-rules ofImplicationand
Universal Quantificationlike in the proof of Thm. 2.50. �

Induction in POA. The issue of inductive properties and proof methods for themin
POA is almost identical to that of induction for ordinary algebras. This means that the
concepts and results of Sect. 2.5 carry to the framework ofPOAwith almost no modifica-
tions, modulo the fact that forPOAwe consider sentences constructed also from atomic
transitions besides equations, and also that the considered models are preordered algebras
rather than algebras. In particular, the statements and theproofs of the crucial results of
Prop. 2.85 and Prop. 2.86 can be interpreted inPOAwithout any change in their original
form. Therefore the structural induction proof method is available forPOA in the same
form as for ordinary algebra. In Sect. 3.4 we will develop an example of induction proof
based upon the interpretation inPOAof Prop. 2.85 and Prop. 2.86.

Rewriting in POA. The proof calculus forPOAHorn clauses given by the entailment
system⊢HPOA can be mechanised by rewriting in a way very similar to equational reason-
ing. This means a rather straightforward extension of results of Sect. 2.4 as follows.

Definition 3.20 (Rewriting entailment inPOA). The POA(term) rewriting entailment
system(denoted⊢r like for ordinary algebras) is the least entailment system for POA
Horn clauses containing the proof rules of Dfn. 3.17 minus the rule of Symmetryand
which satisfies the meta-rules ofImplicationand of Universal Quantification.

The following is a replica of Prop. 2.57 to thePOA framework, its proof being
almost identical to the proof of Prop. 2.57.

Proposition 3.21. The POA rewriting entailment system is the least entailmentsystem
containing the proof rules ofReflexivity, Transitivity, and

POA-Rewriting:
{(∀X)H ⇒C} ∪ θ(H)

c[θ(C)]
for any substitutionθ : X → T(S,F) and
each context c.

94 Chapter 3. Specification with Transitions

(where by c[θ(C))] we mean c[θ(t)] = c[θ(t ′)] when C is t= t ′ and and c[θ(t)]−> c[θ(t ′)]
when C is t−> t ′) and which satisfies the meta-rules ofImplication and of Universal
Quantification.

For any setΓ of POA Horn clauses we define the followingrewriting relation on
(S,F)-terms:

t
⋆

−→Γ t ′ if and only if Γ ⊢r t−> t ′.

Since⊢r is less than⊢HPOA we have immediately the following soundness consequence
for POArewriting.

Corollary 3.22. If t
⋆

−→Γ t ′ thenΓ |= t−> t ′.

Like in the case of rewriting for ordinary algebras, the rewriting relation
⋆

−→Γ can
be considered more generally on an arbitrary(S,F)-algebraA:

⋆
−→Γ,A is the least reflexive-transitive closure of{(At ,At′) | Γ ⊢r t−> t ′}.

Moreover Prop. 2.69 and Prop. 2.70 admit replicas similar totheir original form. As in
the ordinary algebraic framework, whenA is the initial algebra for a setE of conditional
equations, the relation

⋆
−→Γ,A is denoted

⋆
−→Γ,E and we havePOA replicas of Cor. 2.73

and Cor. 2.74, respectively, collected by the following single result.

Corollary 3.23. For any(S,F)-terms t and t′ we have that

(t/=E)
⋆

−→Γ,E (t ′/=E) if and only if {t1 = t2 | E |= t1 = t2}∪Γ ⊢r t−> t ′.

Consequently

(t/=E)
⋆

−→Γ,E (t ′/=E) implies Γ∪E |= t−> t ′.

exec versusred. The computation of normal forms for
⋆

−→Γ,E is supported inCafeOBJ
by the commandexec, the corresponding Maude command beingrewrite. Thus,
while in CafeOBJ the commandred uses only the equations of the specification in
rewriting, the commandexec uses both equations and transitions in rewriting. In both
situations rewriting is performed modulo the declared operation attributes.

For example, the sorting of strings of naturals may be performed inCafeOBJ as
follows:

SORTING-NAT> exec (s s s 0 ; s s 0 ; s 0) .

which gives the result

s 0 ; s s 0 ; s s s 0 : Strg

In this exampleE consists of the associativity of concatenation andΓ of the three equa-
tions of PNAT< plus the conditional transition declared bySORTING-NAT. Thus the
rather compact specification of bubble sorting given bySORTING-NAT functions also as
a sorting program, a highlydeclarativeone based upon rewriting modulo associativity.

3.3. Algorithm specification and verification 95

3.3 Algorithm specification and verification

One of the most meaningful applications ofPOA is for formal specification and verifica-
tion of algorithms. We have already seen the example of an (executable)POAspecification
of bubble sorting for strings of naturals. In this section wedevelop a formal verification
for two of the important properties of this algorithm, namely termination and confluence.
Moreover, in this section we consider the bubble sorting algorithm in a more general form
than in the previous section.

Generic bubble sorting. Many algorithms have a certain degree of independence of the
actual data type, in the sense that they do not depend on all details of the data type, but
rather only on few of the properties of the data type. If we have a careful look at bubble
sorting then we see easily that this is the case of bubble sorting too. Without any problem
we may replace inSORTING-NAT the naturals by other number types such as integers,
reals, etc. What is important is to have an ordering, which does not even need to be total,
it can be partial. Moreover, bubble sorting would work also for some binary relations that
are not even orderings, but in those cases the confluence of the algorithm may be lost.
However we will see that termination always holds. Sorting over such non-conventional
relations is sometimes referred to astopological sorting. While the properties of termina-
tion and confluence are quite obvious in the case of the natural numbers, they are less so
for other structures.

Our first step is to specify a data type of strings parameterised by abstract binary re-
lations for the elements. Next we will specify bubble sorting for those strings and formally
verify the above mentioned properties.

Specifying generic bubble sorting. We first specify strings over any sets of elements
(specified here byTRIV).

mod* TRIV { [Elt] }

mod! STRG (X :: TRIV) {
[Elt < Strg]
op nil : -> Strg
op _;_ : Strg Strg -> Strg assoc id: nil

}

Note that inSTRG the fact thatnil is identity for the concatenation of strings is specified
as an operation attribute (id: nil).

Next we specify a class of binary relations, that includes the partial orders. The
additional predicatenot< stands for the negation of the main relation< .

mod* PSEUDO-ORDER {
[Elt]
op _<_ : Elt Elt -> Bool
op _not<_ : Elt Elt -> Bool

96 Chapter 3. Specification with Transitions

vars E1 E2 E3 : Elt
cq (E1 not< E2) = true if E2 < E1 or not(E1 < E2) .
eq (E1 < E2) and (E1 not< E2) = false .

}

For specifying the generic bubble sorting we just specify that the parameter of the ele-
ments of the strings is model ofPSEUDO-ORDER and add the sorting transition.

mod! SORTING-STRG(Y :: PSEUDO-ORDER) {
protecting(STRG(Y))
ctrans E:Elt ; E’:Elt => E’ ; E if (E’ < E) .

}

From generic to concrete sorting. The sorting of naturals can be obtained from the
generic sorting specificationSORTING-STRG by instantiating the parameterY toPNAT<,
the ordering of the naturals. This is done by the following ‘view’ which specifies the way
< and not< are interpreted inPNAT<. The crucial point of this instantiation is that

the interpretations of< and not< satisfy the axioms ofPSEUDO-ORDER. This has
to be done formally through a proof score, however we omit this here.

view PNAT<asPO from PSEUDO-ORDER to PNAT<
{op (E:Elt not< E’:Elt) -> ((E:Nat = E’:Nat) or (E’ < E))} .

Then the moduleSORTING-STRG(PNAT<asPO) is the same asSORTING-NAT.

Proving termination. Now we prove the termination ofSORTING-STRG. This im-
plies that any of its instances is also terminating. Mathematically, the termination prop-
erty considered here is that the (sorting) preorder relation of the initial preordered algebra
of SORTING-STRG is Noetherian. For this we use a rather common technique, that of
defining a so-calledweight function won the states of the algorithm, with natural numbers
as values, such that

t−> t ′ implies w(t ′) < w(t)

for any stringst and t ′. Because the natural numbers are well-founded with respectto
<, the existence of a such weight functionw means that there are no infinite chains of
transitions between the states of the sorting algorithm.

The weight function. The weight functionw is defined as a measure for the distance
from the states of the algorithm to the sorted state and is specified below by the function
disorder.

mod! PNAT+ {
protecting(PNAT=)
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ+] : M + (s N) = s(M + N) .

3.3. Algorithm specification and verification 97

eq M + 0 = M .
}
mod! SORTING-DISORDER (Y :: PSEUDO-ORDER) {
protecting(SORTING-STRG(Y) + PNAT+)
op _>>_ : Elt Strg -> Nat
op disorder : Strg -> Nat
vars E E’ : Elt
vars S S’ : Strg
eq E >> nil = 0 .
cq E >> E’ = s 0 if (E’ < E) .
cq E >> E’ = 0 if (E’ not< E) .
eq E >> (S ; S’) = (E >> S) + (E >> S’) .
eq disorder(E) = 0 .
eq disorder(E ; S) = disorder(S) + (E >> S) .

}

The following shows some of the behaviour ofdisorder for its instance to the natural
numbers.

3.2.1

3

3.1.2

2

1.3.2

1

1.2.3

0

We may test this with theCafeOBJ system by giving this instance a run as follows:

select SORTING-DISORDER(PNAT<asPO) .
red disorder(s s s 0 ; s 0 ; s s 0) .

Termination proof score. Our proof of termination may be classified as ‘semi-formal’
because we will build and run a proof score for the property

disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′) if E1 < E2. (3.2)

for all S,S′ : Strg andE1,E2 : Elt. From this we derive the desired property

disorder(s) < disorder(s′) if s−> s′ (for s 6= s′)

by using the fact that any transitions−> s′ with s 6= s′ is a finite composition of one-
step transitions like in (3.2). This latter rather obvious fact follows from the mathematical
theory (see the proof of Prop. 2.69), and constitutes the non-formal part of the termination
proof. However note that both this property and (3.2) are inductive properties, they are
not general consequences of the axioms of the specifications.

The proof score for (3.2) requires the following auxiliary relation on the strings:

S<> S′ if and only if (∀E : Elt) E >> S= E >> S′.

98 Chapter 3. Specification with Transitions

Since conditional equations are not expressive enough to specify this relation, we only
introduce the notation and use the definition of<> by hand in the proof score.

mod* SORTING<> (Y :: PSEUDO-ORDER) {
protecting(SORTING-DISORDER(Y))
op _<>_ : Strg Strg -> Bool

}

The proof score of (3.2) given below uses four lemmas, from which the last two refer to
properties of the natural numbers.

open SORTING<> + PNAT< .
vars E E’ : Elt
vars S S1 S2 : Strg
vars M N P : Nat
cq [Lemma-1] : disorder(S ; S1) < disorder(S ; S2) = true

if S1 <> S2 and disorder(S1) < disorder(S2) .
eq [Lemma-2] : (E ; E’ ; S) <> (E’ ; E ; S) = true .
ops e1 e2 : -> Elt .
ops s s’ : -> Strg .

-- [Lemma-3] :
op _+_ : Nat Nat -> Nat {assoc comm}
eq [Lemma-4] : M < s M = true .

We introduce the condition of (3.2):

eq e1 < e2 = true .

and proceed with the proof of the conclusion.

red disorder(s ; e1 ; e2 ; s’) < disorder(s ; e2 ; e1 ; s’) .
close

Proof score forLemma-1. The proof ofLemma-1 is by induction onS and is based
upon the result of the structural induction Prop. 2.86, where

– X = {S} andY = /0, and

– ρ is (∀S1,S2 :Strg)(S1<> S2) ∧ disorder(S1) < disorder(S2) = true⇒
disorder(S ; S1) < disorder(S ; S2) = true.

.
The caseQS = e : Elt:

open SORTING<> + PNAT< .
ops s1 s2 : -> Strg .
op e : -> Elt .
var E : Elt
vars M N P : Nat

3.3. Algorithm specification and verification 99

We introduce the condition of the property

eq disorder(s1) < disorder(s2) = true .
eq E >> s1 = E >> s2 .

and we use againLemma-3 and introduce a new lemma on natural numbers.

-- [Lemma-3] :
op _+_ : Nat Nat -> Nat {assoc comm}
cq [Lemma-5] : M + N < P + N = true if M < P .

Now we execute the conclusion ofLemma-1 for this case:

red disorder(e ; s1) < disorder(e ; s2) .
close

The caseQS = ; :

open SORTING<> + PNAT< .
ops x y s1 s2 : -> Strg .
vars S S1 S2 : Strg

This case involves the following induction hypothesis:

cq disorder(x ; S1) < disorder(x ; S2) = true
if disorder(S1) < disorder(S2) and S1 <> S2 .

cq disorder(y ; S1) < disorder(y ; S2) = true
if disorder(S1) < disorder(S2) and S1 <> S2 .

Now we introduce the condition for this case

eq s1 <> s2 = true .
eq disorder(s1) < disorder(s2) = true .

and a new lemma

cq [Lemma-6] : S ; S1 <> S ; S2 = true if S1 <> S2 .

and proceed with the reduction of the conclusion for this case:

red disorder(x ; y ; s1) < disorder(x ; y ; s2) .
close

Proof score forLemma-2.

open SORTING<> + PNAT< .
ops e1 e e’ : -> Elt .
op s : -> Strg .

We useLemma-3 for the third time in our termination proof and introduce a new lemma
on natural numbers:

100 Chapter 3. Specification with Transitions

-- [Lemma-3] :
op _+_ : Nat Nat -> Nat {assoc comm}
eq [Lemma-7] : (M:Nat = M) = true .

and execute the conclusion ofLemma-2

red e1 >> e ; e’ ; s = e1 >> e’ ; e ; s .
close

Proof score forLemma-6.

open SORTING<> + PNAT< .
ops s s1 s2 : -> Strg .
op e : -> Elt .
var E : Elt

This is the second place in our termination proof score that we use the definition of<>,
which is required by the condition of the lemma:

eq E >> s1 = E >> s2 .

We also use againLemma-7:

eq [Lemma-7] : (M:Nat = M) = true .

and we proceed with the execution of the conclusion of the lemma

red e >> s ; s1 = e >> s ; s2 .
close

This completes our termination proof. We have skipped the proof scores of all lemmas
about natural numbers, and leave this task to the reader.

Mind semantic traps! The last equation ofPSEUDO-ORDER, namely

eq (E1 < E2) and (E1 not< E2) = false .

has not been used in any of the computations of the termination proof score, which means
that the proof score would run and give the desired results without it. Hence this equation
seems to be redundant. Apparently this implies terminationholds for relations< that do
not necessarily satisfy the above mentioned equation. However it is easy to have simple
counterexamples of relations< for whicha < b andb < a for somea andb, which means
an infinite chain of sorting transitions

a;b −> b;a −> a;b. . .

hence non-termination! So, how do we explain this apparent paradox?
In the absence of the above mentioned equation there is the possibility to have for

somee, e′ bothe>> e′ = 0 ande>> e′ = s 0 which implies 0= s 0. This means that the
natural numbers are collapsed which via the equations ofPNAT< leads to the collapse of
the Booleans too, hence our specifications become inconsistent.

3.3. Algorithm specification and verification 101

The conclusion is very clear: the correctness of a proof score depends intimately
upon the semantic correctness of the specification, proof scores arenot mere proof the-
oretic entities. If the specification lack semantic correctness, even if the proof score is
built correctly and its running gives the desired results, then it is still possible that the
conclusion of the proof score may be wrong.

This means we have to take great responsability upon the semantic correctness of
our specifications which concretely may imply the necessityto write axioms with seman-
tic meaning but that may have absolutely no operational meaning.

The confluence of the sorting. It is rather easy to see that the preorder relation on
strings of naturals induced by the bubble sorting algorithmspecified bySORTING-NAT
is confluent since at the end each string gets rewritten to itssorted form. This property is
less obvious when employ other binary relations instead of the standard ordering on the
naturals. In fact the confluence may even fail to hold as shownby the example below.

mod! CONF-CEX {
[Elt]
ops a b c : -> Elt
op _<_ : Elt Elt -> Bool
op _not<_ : Elt Elt -> Bool
eq a < b = true .
eq b < c = true .
eq a < c = false .
eq E:Elt not< E’:Elt = not(E < E’) .

}

Then we have that(c;b;a)−> (b;c;a) and(c;b;a)−> (c;a;b) with both(b;c;a) and
(c;a;b) being normal forms for the preorder induced by the sorting.

Checking confluence by the search commands.Under some conditions, confluence
of algorithms can be checked automatically by using specialsearching commands in
CafeOBJ or Maude associated toPOA specifications. In this area, Maude has a rather
special strength. From the set of Maude search commands the most appropriate for this
task is=>!, which computes all normal forms of any term with respect to the rewriting
relation

⋆
−→Γ,E for Γ a set ofPOAHorn clauses andE a set of operation attributes.

In generalt
⋆

−→Γ,E t ′ impliesΓ∪E |= t−> t ′ (cf. Cor. 3.23), while the reverse im-
plication does not hold in general. However in this case we have an equivalence, meaning
that

⋆
−→Γ,E coincides with the preorder induced by the sorting, hence inorder to establish

the non-confluence of this preorder we just need to have more than one normal form for
some term. Hence the non-confluence example above can be obtained by using the Maude
search mechanism as follows.

select SORTING-STRG(CONF-CEX) .
search (c ; b ; a) =>! s:Strg .

102 Chapter 3. Specification with Transitions

The Maude system gives the following result showing non-confluence.

Solution 1 (state 1)
states: 3 rewrites: 5
s:Strg --> b ; c ; a

Solution 2 (state 2)
states: 3 rewrites: 6
s:Strg --> c ; a ; b

No more solutions.
states: 3 rewrites: 6

Proving confluence. However confluence of bubble sorting holds when the relation<
is transitive. While for establishing non-confluence a counterexample was enough, the
confluence need a proof. The character of this proof would again be semi-formal because
like in the proof of termination we will use the fact that any sorting transitions−> s′

with s 6= s′ is a finite composition of one-step sorting transitionss;e′;e;s−> s;e;e′;s′ with
e< e′. But the crucial aspect of our confluence proof is the usage ofNewman’s Lemma
2.67 which together with the termination property proved above reduces the confluence
property to the local Church-Rosser property of the one-step sorting transition relation.
This can be established through a formal proof score.

Proof score for local Church-Rosser of one-step sorting transition relation. Our
proof score distinguished between two cases:
1. The two initial swaps do not overlap:

open SORTING-STRG .
ops e e’ e1 e1’ : -> Elt .
ops s s’ s’’ : -> Strg .

We introduce the hypothesis:

eq e’ < e = true .
eq e1’ < e1 = true .

The proof of local Church-Rosser for this case consists of two search evaluations, both of
them giving the same result. Since, as we have seen above,=>! is in general included in
the preorder of the initial preordered algebra of the corresponding specification (moreover
in this particular example they are equal, but this not necessary here), this is enough for
establishing the confluence of the algorithm.

search (s ; e’ ; e ; s’ ; e1 ; e1’ ; s’’) =>! x:Strg .
search (s ; e ; e’ ; s’ ; e1’ ; e1 ; s’’) =>! x:Strg .

2. The two initial swaps do overlap.

3.3. Algorithm specification and verification 103

open SORTING-STRG .
ops e e’ e’’ : -> Elt .
ops s s’ : -> Strg .

We introduce the hypothesis.

eq e’ < e = true .
eq e’’ < e’ = true .

At this point our proof needs a transitivity hypothesis on<which is introduced as follows:

eq [transitivity] : e’’ < e = true .

Like in previous case, the proof of local Church-Rosser for this case consists of two search
evaluations, both of them giving the same result.

search (s ; e’ ; e ; e’’ ; s’) =>! x:Strg .
search (s ; e ; e’’ ; e’ ; s’) =>! x:Strg .

Exercises.

3.3. Build and run a proof score for showing that the viewPNAT<asPO satisfies the axioms of
PSEUDO-ORDER.

3.4. Consider the following algorithm on strings of natural numbers:

vars N M : Nat
trans 0 ; M => M .
trans M ; 0 => M .
ctrans M ; N => (M - N) ; N if N < M .
ctrans M ; N => M ; (N - M) if M < N .
trans M ; M => M .

What does this algorithm compute? Is this algorithm terminating and/or confluent? Justify your
answer by proof scores.

3.5. Consider the following problem of simplification of a systemof debts between financial agents.

1. Specify a system of debts as a finite multiset of atomic debts. An atomic debt is a triple
(A n B) consisting of two agentsA andB and a natural numbern representing the fact that
the first agent (A) owesn currency units to the second agent (B).

2. Specify an algorithm for reducing systems of debts that uses the following transition:

(A m B)(B n C) −>

{

(A m C)(B n−m C) if m≤ n
(A m−n B)(A n C) otherwise.

3. Is the reducing debts algorithm confluent?

4. Prove that the reducing debts algorithm is terminating. (Hint: Define a ‘weight’ function
which gives the total amount of debt in the system.)

5. Define a function that for each agent gives its balance withrespect to a given system of
debts. Prove that this is an invariant with respect to reduction operations on the systems
of debts.

104 Chapter 3. Specification with Transitions

3.4 Example: non-deterministic automata

Non-determinism is a natural aspect ofPOAspecifications that, is associated to the situa-
tions when the preorders of the denotations of the specifications are not confluent. In algo-
rithmic terms we may say that non-confluent algorithms correspond to non-deterministic
computations. We have already met this situation in Sect. 3.1 for the bubble sorting over
non-transitive binary relations. In this section we give a special focus toPOAspecification
and formal verification of non-determinism. This includes aproof by structural induction
of an inductive property inPOA.

Non-deterministic automata. Automata provides one of the best known examples of
non-determinism. The following is an example of non-deterministic automata with three
states and two letters or buttons.

 s0 s1 s2

a
a

b

a

a

b

b

The non-deterministic character of this automaton has two aspects. One is that there are
states that do not admit transitions (to other states) by some of the letters, e.g.s0 does
not admit a transition byb. The second non-deterministic aspect of this automaton is that
some states admit transitions to several different states by the same letter, e.g.s1 has
transitions byb to boths0 ands2.

Specification of non-deterministic automata. The following is a generic specification
of words with concatenation operation over arbitrary vocabulary.

mod! WORDS (L :: TRIV) {
[Elt < Word]
op nil : -> Word
op __ : Word Word -> Word {assoc}
var W : Word
eq nil W = W .

}

Our specification of automata consists of a specification of transitions between config-
urations of states and words. These configurations can also be specified generically as
follows.

mod! ND-AUT-GEN (L :: TRIV, S :: TRIV) {
protecting(WORDS(L))
[Config]
op (_*_) : Elt.S Word -> Config

}

3.4. Example: non-deterministic automata 105

The rest of the specification of our automaton has a particular character. We first specify
the concrete set of states and the concrete vocabulary used.

mod! LETTERS {
[Letter]
ops a b : -> Letter

}

mod! STATES {
[State]
ops s0 s1 s2 : -> State

}

Finally, we instantiate the vocabulary and the set of statesand specify the transitions of
our automaton.

mod! ND-AUT {
protecting(ND-AUT-GEN(L <= view to LETTERS {sort Elt -> Letter},

S <= view to STATES {sort Elt -> State}))
var W : Word
trans s0 * a W => s1 * W .
trans s0 * a W => s0 * W .
trans s1 * a W => s1 * W .
trans s1 * b W => s0 * W .
trans s1 * b W => s2 * W .
trans s2 * a W => s1 * W .
trans s2 * b W => s2 * W .

}

Running the automata. A word is ‘accepted’ by an automaton when there exists a
chain of transitions from an ‘initial’ state to a ‘final’ state. In the case of our automaton let
us fix the initial state tos0 and the final state tos2. We may use the search command=>*
of Maude for establishing whether a certain concrete word isaccepted or not by automata.
The command=>* represents an implementation of the rewriting relation

⋆
−→Γ,E for

Γ the set of Horn clauses of thePOA specification, used as rewrite rule, andE set of
operation attributes. According to Cor. 3.23, this means that in general ift =>* t ′ then
Γ∪E |= t−> t ′. discuta si commanda Mauderewrite cu diferite strategii (depth-
first, fair, etc.)

We may use this argument to validate the fact that(a a b a b nil) is accepted
by the automaton by getting a positive answer to the following Maude search query.

search s0 * a a b a b nil =>* s2 * nil .

Since for this particular example we have thatE consists of the monoid equations for
words specified as operation attributes, andΓ consists of a set of (unconditional) transi-
tions, it is easy to see thatt =>* t ′ if and only if Γ∪E |= t−> t ′. We may use this remark
for establishing that(a b b a nil) is not accepted by the automaton by getting a
negative answer to the following Maude search query.

search s0 * a b b a nil =>* s2 * nil .

106 Chapter 3. Specification with Transitions

An inductive property of the automaton specification. Let us consider the property
that(a W b nil) is accepted by our automaton for any wordW. Mathematically this
can be written as

(∀W) s0∗ (a W b nil) −> s2∗nil. (3.3)

This is an inductive property that does hold in the initial preordered algebra ofND-AUT
that has pairs formed from the statess0,s1, ors2 and words over the vocabulary{a,b}.
Its proof is based upon the following lemma:

(∀W) (s1∗ (W b nil) −> s2∗nil)∧ (s2∗ (W b nil) −> s2∗nil). (3.4)

Therefore the proof score of (3.3) goes as follows:

open ND-AUT .
op w : -> Word .
var W : Word
var S : State

We introduce the lemma (3.4):

ctrans S * W b nil => s2 * nil if (S == s1) or (S == s2) .

The proof of (3.3) can be now performed by the following search command

search s0 * a w b nil =>* s2 * nil .
close

The proof of lemma (3.4). This proof is done by structural induction onW by using the
POA interpretation of Prop. 2.86. We consider a sub-signature of constructors formed by
s0,s1,s2,nil,a , andb , where bya andb , respectively, we mean the concatenation
to the front of the words witha andb, respectively. We leave to the reader the task to prove
this rather obvious fact. The proof score for our lemma goes as follows.

open ND-AUT .
op w : -> Word .
var W : Word
var S : State

The proof for caseQW = nil:

search s1 * nil b nil =>* s2 * nil .
search s2 * nil b nil =>* s2 * nil .

The following induction hypothesisis common to both casesQW = a andQW = b .

ctrans S * w b nil => s2 * nil if (S == s1) or (S == s2) .

The proof for caseQW = a :

search s1 * a w b nil =>* s2 * nil .
search s2 * a w b nil =>* s2 * nil .

3.5. Linear case analysis generation 107

The proof for caseQW = b :

search s1 * b w b nil =>* s2 * nil .
search s2 * b w b nil =>* s2 * nil .
close

All search commands of our proof score (including both the proof of the main property
(3.3) and of lemma (3.4)) give a positive answer, and their usage in such proof scores is
justified by the fact that in generalt =>* t ′ implies thatt−> t ′ is a consequence of the
correspondingPOAaxioms.

3.5 Linear case analysis generation

poate ar trebui renuntat la tranzitii deoarece introduce complicatii semantice; in
acest caz sectiunea ar trebui mutata din acest capitol...poate lasat doar in capitolul
de compunere ierarhica de obiecte...In this section we develop another use ofPOA
transitions, for automatic building of complex case analysis for proof scores.

Orthogonal case analysis. Consider the following two functions on the natural num-
bers (the specification is using a pre-defined moduleNAT for the naturals, with<= being
the ‘less than or equal’ relation on the naturals andNzNat being the subsort of the non-
zero naturals).

mod! FG-fun {
protecting(NAT)
ops F G : NzNat -> Nat
var X : NzNat
eq F(1) = 10 .
cq F(X) = 5 if (2 <= X) and (X <= 4) .
cq F(X) = 2 if (5 <= X) and (X <= 9) .
cq F(X) = 1 if (10 <= X) .
cq G(X) = 8 if (1 <= X) and (X <= 7) .
cq G(X) = 9 if (8 <= X) and (X <= 9) .
cq G(X) = 10 if (10 <= X) .

}

Let us consider the problem of proving that for all positive natural numbersX andY,

9 ≤ F(X) + G(Y).

There are four cases for the argumentX, and three cases for the argumentY. The cases
for X and the cases forY areorthogonal, in the sense that they are independent of each
other, so that they have to be combined freely. This means that the total number of cases
for this problem is twelve.

The total proof term for this problem is the conjunction of the twelve instances of
the formula 9≤ F(X) + G(Y) for all combinations of the atomic cases. In general the

