Stainless Formal Verification

on the interdependency between mathematical foundatic
semantics of specifications, and proof score programmi

Razvan Diaconescu

Institutul de Matemati& “Simion Stoilow”, Romania

FSSV 2010, Kanazawa

Outline

Introduction

Mathematical foundations: many sorted algebra
m Signatures, algebras, sentences, satisfaction
m Equational proof theory

= Induction

Example: verification of termination of generic bubble sayt

m Formal specification
= Natural numbers
= Bubble sorting

m Proof management
m Proof score programming

Goal of lecture

Gain some understanding on what is a correct specificatidn an
verification process through clarification of

m mathematical foundations

= semantics

m specification

m proof score programming

and of the relationships between them.

Most of ‘formal verification’ practice, while assumed to be
rigorous by definition, in reality still confused wrt some of
above aspects, hence difficult to be trusted.

‘Stainless’ does not mean ‘perfectly formal’

But rather

m being clear about what are the formal and the informal
proof parts,

m justification of informal parts by solid clear mathematical
arguments,

m proof scores for the formal proof parts strictly based upon
mathematical foundations, and

m clean(!) mathematical foundations.

Specification and verification schema

Each level is defined and makes sense wrt the upper levels.

Formal specification

¥

Informal mathematical D e w——
proofs prog 9

Mathematical foundations

m There is a formal logical system, including both model
theory (for semantics) and proof theory. Very desirable
that these constitute anstitution

m The model theory is sufficiently developed in order to
support necessary specification properties.

m The eventual operational level of the proof theory (e.g.
rewriting) is rigorously supported by mathematics.

Formal specification

m There is a formal specification language such that the
language constructs correspond exactly to mathematical
entities in the underlying logic.

m A specification consists of

m a set ofaxiomsin the underlying logic (this includes the
specification of a corresponding signature), and
m eventually, structuring constructs.

m Each such specification defines ttlass of models
satisfying its axioms.

m In the structured case, this is also determined by the
structuring constructs (requires a bit of mathematical
sophistication).

The whole point of formal specification:

axiomatic definition of certain classes of models.

Role of semantics and foundations

Tendency to forget this sense of formal specification and
verification by neglecting semantics.

No semantics = No meaning!

This implies incorrect non-sense specification and vetitica

Proof management

m Introduce auxiliary entities (e.g. functions, predicates
necessary for the proof; this means extension of the
original specification.

m Separate the formal from the informal parts of the proof.

m Informal parts get mathematical proofs.
m Formal parts are proved by proof score running. Much
higher ‘horizontal’ complexity than the informal parts.

Proof score programming

m Specification of the proof structure, including lemmas,
conditions, proof tasks to be executed by the system, etc.
m Should be rigorously, directly artdansparentlybased
upon mathematical results lying foundations to
corresponding proof methodologies.
m In particular, this means to avoid abuse or even any use of
extra-logical features of the language (suckasetc.)

Many sorted algebra (MSA)

m It is the most classical logical system of algebraic
specification.

m Deeply rooted in conventional mathematics.

m Originating from early mathematical foundations of
semantics of programming languages and of abstract data
types.

m Has very convenient model theoretic and computational
properties, supporting high integration between the
specification and the verification aspects.

m However, there are myriads of other logical systems used
for formal specification, some of them just refinements of
MSA, others quite different (at least through a gross
perspective).

Signatures

S-sorted signaturgS F)
m S—set of sort symbols,

m F={Fuw_s|we S, se S} —indexed family of operation
symbols.

Algebras

(S,F)-algebra Aconsists of
m a setAqfor eachse S and
m afunctionAg.w_s: Aw — Asfor eacho € Fy_.s (where
Ay=As X xAg, forw=s;...s).

(S F)-homomorphism h A — B consists of
such that the followingpomomorphism condition

hs(Ac(@)) = Bo(hw(@)).

for eacha € Ay.

Sentences

The set of(S F)-sentencess the least set such that:
m Each(S F)-equatiort =t is an(S,F)-sentence.
m If p; andp, are(S F)-sentences then
m p1 A P2 (conjunction),
m p1V P2 (disjunction),
m p1 = P2 (implication) and
m —p1 (negation
are alsq S F)-sentences.
m If Xis a set of variables fofS,F), then(vVX)p and(3X)p
are(S,F)-sentences whenevpris an(S, F U X)-sentence.

Satisfaction

Defined recursively on the structure of the sentences.

m A=t=tifandonly if A, = Ay

m A= p1Apzifandonly if A= pp andA = po,
m A=p1Vpifandonly if A= ppor Al po,
m A= p1= peifandonly if A= py or A= po,
m A= —ps ifand only if A b= py,

= Algr) (VX)p if and only if AY = (sFux) P for each
(S, FUX)-expansior’ of A, and

m A (3X)p if and only if A = (VX)—p.

Initial semantics

Initial algebra Ain class% of algebras:
for eachB € ¢ there exists an unigue: A — B.

Fact

Initial algebras are unique up to isomorphisms.

Theorem
Each set of conditional equations, i.e. sentences of thra for
(YX)(t1 =t A---A(th=t}) = (t=1'), has aninitial algebra.

Initial algebras are the models of tight denotation speatifinis
(mod! in CafeOBJf nod in Maude)

Entailment systems

Entailment relation(for a signature) consists of a binary
relationts between sets df-sentences such that:

union:if M'=s My andl s Mo thenl s T U,
monotonicity:if " D T thenl s I, and
transitivity: if ' =z 1 andlMy Fs o thenl =5 .
An entailment systern consists of an entailment relatibi for
each signaturz.

Example: semantic entailment

I =sF) I ifand only if
A |:) I impliesA |= g I for each(S, F)-algebraA.

Modus Ponens (meta-rule)

Meta-rulesare properties of the entailment systems.

|
The semantic entailmeit has Modus-Ponens.

Universal Quantification (meta-rule)

M FsE) (VX)p ifand only if T Fgpux) p-

|
The semantic entailmeit has Universal Quantification.

Equational proof rules

Reflexivity: 0
t=t
t_t’
Symmetry: { t}
e t=t, t'=t"
Transitivity: {t — }
i=t <i<
Congruence: {i=t|1=<i<nj
o(ty,....th) = 0(t],..., 1))
o VX)H=C
Substitutivity: {()—:>} 0: X— TisF)-

{8(H=C)}

The equational entailment system

Definition (entailment system for conditional equatiph§)

The least entailment system, containing the 5 proof rulés an
satisfying the 2 meta-rules above.

Unlike =, € is finitely defined.
This makes-€ usable for formal proofs.

Soundness

An absolutely necessary property for any logical system,
constitutes the basis for the correctness of formal vetifina

Not very hard to establish.

Theorem Soundness of equational deducdion
r P?SF) p impliesl” =sf) p.

Completeness

A very desirable property of logical systems, but not abisdju
necessary.

In general, much harder to establish than soundness.

Theorem Completeness of equational deducjion

[=(sF) p impliesl H(*SF) p.

Soundness and completeness meansthdor conditional
equations) ané€ are the same, hence, very importantly, we
have a finitary definition of= (for conditional equations).

Rewriting

The standard way to mechanize equational deduction, toihave
as a computation process.

AbandonsSymmetnand replaceSubstitutivityand
Congruencéy the following rule:

{(VX)H=(t=1t)} U 6(H)

Rewriting: S8 0] = d6(0)]

In general completeness is lost, however under conditiocis s
asconfluenceandtermination completeness may be retained.

Inductive properties

These are the properties satisfied by the initial algebra of a
given sef” of conditional equations, i.erQ= p.

For example, for the specificatidnas follows:

0 : -> Nat

s : Nat -> Nat

+ : Nat Nat -> Nat
(VX) X+ 0=X

(V XY) X+ s(Y) =s(X+Y)

we have that = (VX)0 + X=Xbutl = (VX)0 + X=X
Hence, direct ordinary (equational) deduction not enowgh f
proving inductive properties.

Constructors

A great device for reducing the complexity of proofs of
inductive properties.

Sub-signature of constructors

SignaturgS F), ' a set of conditional equations 68 F).
(S F°) is asub-signature of constructors férwhen

m F; s CFus and
m Osre) — Or [(gFe) Surjective.

Example 0 ands form a sub-signature of constructors for the
specification above.

Sufficient completeness

The following equivalent characterization for sub-sigmatof
constructors has two advantages:

does not depend on existence of initial algebrag for
hence applicable within more general situations, and

it gives a method to actually prove the constructors
property.

Proposition

(S FC) is a sub-signature of constructors fbrif and only if for
each(S F)-term t there exists af5, F¢)-term { such that

Proving inductive properties

The following gives a sufficient condition for proving indive
properties by ainfinite set of ordinary proofs.

Theorem

I" set of conditional equations for a signatui® F),

(S F°) sub-signature of constructors fér, and

(‘lemmas”) E set of any sentences such ®aj= E.
Then for any(S F U X)-sentence

Or = (VX)p if TUEE6(p) for all substitutions6 : X — T(gre).

Structural induction

Theorem gufficienfiinitary proof method for inductive properties

(S F°) sub-signature of constructors férany set of(S F)-sentences,
X finite set of variables fofS F),
p any (S, FUX)-sentence.

If for any sort preserving mapping QX — F¢

FU{W(P) | Y1 X — Z=UxexZx With Y(x) € Zy} = sruz) @ ()
where

— Zy are strings of variables for the arguments of €uch that
ZyNZp=0forx1#x2 € X, and

— @ is the substitution X- T(gre 7 defined by @x) = Qu(Zy),
thenl” [=(sf) 6(p) for all substitutions8 : X — Tgfc).

Generation of proof goals by Structural Inductic

The Structural Induction Theorem together with the predece
Theorem lead to the following proof goal generation rule.

Structural Induction

{rufwlp) |y X—Z...} Fspuz) (p) | Q: X — F°}
Or =sF) (YX)p

The finitary character of structural induction

Finite number of proof goals always involving finite condits
because:

m for anyQ, finite Z because finit&X and finite arities of
operations, hence finitey | ¢ : X — Z}, and
m if finite FC, then finite{Q | Q: X — F°} since finiteX .
m moreover smalleF® implies fewer proof goals.

Generality of foundations

Many of MSA mathematical concepts and results above can be
interpreted in the same form in other logical systems (ssch a
preordered algebrdor specification with transitions).

For example, the structural induction method above has such
general character.

This means foundations can be mathematically developduabat t
level of abstracinstitutions

Example of ‘stainless’ formal verification

We illustrate

m formal specification based rigorously upon mathematical
foundations,

m proof management,

m proof score building based rigorously upon equational
proof theory and the structural induction theorem above,

m the inter-dependency between semantic-oriented
specification and proof score programming.

Specification of natural numbers

The natural numbers with the usual zero and succesor
operations constitute the initial algebraRNAT=.

Moreover we have a specification of the equality of numbers

nod! PNAT=
[Nat]
op O : -> Nat
op s_ : Nat -> Nat
op _=_: Nat Nat -> Bool {commi

vars M N : Nat

eq ((s M =0) =false .

eq (0 =0) =true .

eq [succ=] : (s M=s N = (M= N)

Specification ok on natural numbers

The following adds a specification of the ‘strictly less than
relation on the naturals numbers.

nod! PNAT< {
prot ecti ng(PNAT=)
op _<_: Nat Nat -> Bool
vars M N : Nat
eq [succ<s] : (s M <(s N =M<N.
eq 0O < (s M =true.
eq M< 0 = fal se .

Strings of natural numbers

The strings of natural numbers with concatenation and empty
string constitute the initial algebra 8TRG PNAT.

nod! STRG PNAT {

[Nat < Strg]

op nil : -> Strg

op ;_: Strg Strg -> Strg {assoc id: nil}
}

Specification of bubble sorting of strings of

natural numbers

Bubble sorting algorithm appears as an instance of rewritin
modulo associativity (of concatenation).

nod! SORTI NG STRG PNAT {

prot ecti ng(STRG PNAT))

vars E E : Nat

ctrans E; E =>F ; E if (E < B
}

The semantics dAORTI NG- STRG- PNAT

The initial model is thgreordered algebrahat has strings of
naturals as elements and the transitions given by the gortin
algorithm as the preorder relation.

Sorting strings of natural numbers

We may use this specification as an actual sorting (very high
level) program by executing it by rewriting modulo
associativity.

exec s ss0O0; s0O0; 0; ssO.

Topological sorting

However, if we look more carefully into the specification of
bubble sorting, we note that it essentially requires onljnaty
relation<, no commitement to any property of the naturals, not
even to the naturals as elements of the strings.

This means bubble sorting is very general, hgemericnature.

Such kind of sorting over binary relations is sometimes kmow
astopologicalsorting.

Specification of generic strings

The following parameterized module specifies strings avgr
set El t) of elements.

nmod! STRG (X :: TRIV) {

[EIt < Strg]

op nil : -> Strg

op ;_: Strg Strg -> Strg {assoc id: nil}
}

Specification of generic pseudo-order

The following specifies a generic binary relatioron the
elements, to be used for the sorting.

We also specify a loose negation<afnamelynot <, mainly
for operational reasons.

nod* PSEUDO- ORDER ({
[EIt]
op _<_: EIt EIt -> Bool
op _not<_: EIt EIt -> Bool
vars E1 E2 E3 : Elt
cqg (E1 not< E2) = true
if E2 < E1 or not(El < E2)

Note on specification of generic pseudo-order

Note that the sentence specifyingt <

cq (E1 not< E2) = true
if E2 < E1 or not(El < E2)

is nota conditional equation (although CafeOBJ notation refers
to it as conditional equation).

However this is OK since this is loose semantics specifinatio
which does not require existence of initial algebras.

Recovering the ordering of the naturals

The following instantiate the above specified pseudo-artter
the standard ordering of the natural numbers.

vi ew PNAT<asPO from PSEUDO- ORDER t 0 PNAT<
{op (EEIt not< E:Et) ->
((EENat = E:Nat) or (E < E))}

It uses default mapping mechanism, hence only the mapping of
not < needs to be specified explicitly.

View definitions require proofs

The view specification requires a proof that the initial algeof
PNAT< satisfies the axiom dPSEUDO- ORDER through the
translation given by the view.

This means an inductive proof, that can be done by proof score
programming based upon the Structural Induction Theoreen; w
skip this here.

Note that in this casproof score programming is involved at
the stage of specification writing

Specification of the generic bubble sorting

algorithm

nod! SORTING STRE Y :: PSEUDO ORDER) ({
protecting(STREY))
vars EE : Et
ctrans E; E =F ; E if (E <E .
}

Specification of the generic bubble sorting

algorithm

nod! SORTING STRE Y :: PSEUDO ORDER) {

protecting(STREY))
vars EE : Elt

ctrans E; E = F ; E if (E < E)
}

SORTI NG- STRG- PNAT can be obtained as an instance of
SORTI NG- STRGby the above defined vieRNAT<as PO.

sel ect SORTI NG STRGE PNAT<asPO) .

Properties of topological sorting

While for the bubble sorting of strings of naturals termioat

and confluence are quite obvious, in the generic case these ar
rather unclear.

In fact, in general they may not hold.

In the following we focus on (proving) termination.

Proof of termination of topological (generic)

bubble sorting

For this we go back to the specification level and define a
functiondi sorder : Strg -> Nat such that

(VS S)[S=>S implies di sor der (S) < di sorder (S)].

(note this is a Horn clause in thROA, the logical system of
preordered algebra).

Then the mathematical argument of well-foundness of the
natural numbers leads to the (informal) mathematical podof
termination.

Specification of auxiliary functions

The definition of functiordi sor der requires specification of
other auxiliary functions too:

nod! PNAT+ {
prot ecti ng(PNAT=)
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ+] : M+ (s N =s(M+ N
eq M+ 0 =M.

Specification of auxiliary functions

m E»Scomputes how many elements®ére less thak.
m di sor der (S) computes how many steps of the sorting
algorithm are needed for the sorting®f

nod! SORTI NG DI SORDER (Y :: PSEUDO ORDER) {
protecting(SORTI NG STRE Y) + PNAT+)
op >> : EIt Strg -> Nat
op disorder : Strg -> Nat
eq E>> nil =0 .
cq E>F s 0if (E <EBE
cq E > F 0 if (E not< E)
eq E> (S; §) =(E>S) + (E>g)
eq disorder(E) = 0 .
eq disorder(E; S) = disorder(S) + (E >> S)

Specification of auxiliary functions

The following specifies an equivalence relation on strings
defined by

S<>S’ ifandonlyif (VE)E»S=E»S.

Although this is not required by the specification of
di sor der,itis used in the formal proofs below.

As this is beyond CafeOBJ logic, at this level we under-dgeci
it, however we will use its complete definition in the proof
scores.

nod+ SORTI NG<> (Y :: PSEUDO CRDER) ({
prot ecti ng(SORTI NG DI SORDER(Y))
op <> : Strg Strg -> Bool

}

Proof management

The proof management of this problem means the following:

1. By an mathematical argument we have reduced the task of
proving termination to proving a Horn clause sentence as
inductive property irPOA
Extension of the original specification with new functions.
3. Mathematical proof of the fact that

no

(VS S,E1,E2)E1 < E2 implies di sorder (SE1;E2;S) <
di sorder (SE2;E1;S)
implies

(VS S) [S=>S implies di sor der (S) < di sor der (9)].

(This mathematical argument is related to the theory of
rewriting modulo axioms.)

Proof management

4. Formal proof (by proof score programming and running)
of

(VS,S,E1,E2) [di sor der (SEL;E2;S) <di sorder (SE2;EL;S)

This requires several lemmas and tranformation of the
proof goals by meta-rules such dsiversal Quantification
or Modus-Ponens

5. Mathematical proofs for sub-signatures of constructors.

Lemmas for the formal proof of
(VS S,E1,E2)di sorder (SE1;E2;S) < di sorder (SE2;E1;S) if E1<E2

Lemma- 1

(VS1,S2) (S1<>S2) A (di sor der (S1) < di sor der (2))
impliesdi sor der (S;S1) < di sorder (S 2).

Lemma- 2

(VE,E,S) (E;E;S)<>(E;E;9).

Lemma- 3

Commutativity and associativity of+_.

Lemma- 4
(VM :Nat) M < sM.

How do we find lemmas?

In general lemmas have various different natures, no genera
method for finding lemmas.

However we may distinguish two main situations:

Lemmas that are very meaningful properties of the
specified system (e.g.erma- 1 andLenma- 2). These
are often hard to find and only on the basis of a deep
understanding of the problem. Their formulation may even
require definition of new functions!

Lemmas that have mainly a role to get the deduction (by
rewriting) flow (e.g.Lemma- 3 andLenma- 4).. These are
sometimes easier to find since they may ‘pop-up’ when the
deduction gets blocked. (Unfortunately not the case here!)

Proof score of

(VS S,E1,E2)di sor der (S E1;E2;S) < di sorder (S E2;E1;S) if E1<E2

By two steps transformation of the original proof goal:
by Universal Quantificatiornto

M FsuELe2ss) EL<E2 implies
di sorder (SE1;E2;S) < di sor der (SE2;E1;S)

and further byModus Ponengto

rU{El <E2} Fsu(E1E2sS)
di sorder (SE1;E2;S) < di sorder (SE2;E1;S)

Finally, we give this proof goal to the system.

Formal proof ofLemma- 1:

(VS,S1,2)di sor der (S;S1) < di sorder (S 2)
if SL <> S2 anddi sor der (S1) < di sor der (S2).

By application ofStructural Inductiorwhere
m The sub-signature of constructors consistrioff , all

e: El t,and_; _, this being established by mathematical
proof.

m X={S}, and

mpIis

(VS1,) SL <> X anddi sor der (Sl) < di sor der ()
impliesdi sor der (S S1) < di sor der (S2).

the original proof goal gets transformed to

G8. (Qs=nil,zZ=0)
I s (VSL,) SL<> X anddi sor der (S1) < di sor der ()
impliesdi sor der (ni | ;S1) < di sorder (ni | ;2).

G (Qs=e:Elt,Z2=0)
[Esugey (VSL,R) SL<> X anddi sor der (S1) < di sor der (&)
impliesdi sor der (e;Sl) < di sor der (e;).

G10: (Qs=_; _,Z={x.y})
ru{ (vSl,2) S1 <> X anddi sor der (S1) < di sor der ()
impliesdi sor der (x;S1) < di sorder (x;2),
(VS1,S2) SL <> &2 anddi sor der (Sl) < di sor der (&)
impliesdi sor der (y;Sl) < di sorder (y;) }
Fsupxy) (VSLS2) SL<> S anddi sor der (S1) < di sor der ()
impliesdi sor der (x;y;Sl) < di sor der (X;y;S2).

Proof of G8, G9, G10

Each of the three proof goals is then manipulatedbywersal
QuantificationandModus Ponenand given to the reduction
engine of the system. However the proof (by reductionp6f
andG10, resp., require the following lemmas, resp.:

Lenma- 5
(VM,N,P:Nat) M < PimpliesM +N < P+ N.

(VS S1,2:Strg) S1<>2 impliesS; S1<>S, 2.

Proof of G8, G9, G10

Each of the three proof goals is then manipulatedbywersal
QuantificationandModus Ponenand given to the reduction
engine of the system. However the proof (by reductionp6f
andG10, resp., require the following lemmas, resp.:

Lenma- 5
(VM,N,P:Nat) M < PimpliesM +N < P+ N.

Lema- 6
(VS S1,2:Strg) S1<>2 impliesS; S1<>S, 2.

Whensl<>s2 is used as condition through goal transformation
by Modus Ponent is given in its explicit format:

eq EEt » s1 = EEt » s2 .

On the different nature dfenma- 5 and

Lema- 6

Lenma- 5 is ‘easy’, not directly related to our problem, and
moreover ‘pops-up’ in the reduction.
Without it the system gives the result:

((disorder(sl) + (e » s2)) <
(di sorder(s2) + (e » s2))): Bool

On the different nature dfenma- 5 and

Lema- 6

Lenma- 5 is ‘easy’, not directly related to our problem, and
moreover ‘pops-up’ in the reduction.
Without it the system gives the result:

((disorder(sl) + (e » s2)) <
(di sorder(s2) + (e » s2))): Bool

Lenma- 6 is ‘hard’ since represents a property of the sorting
algorithm and is not to be discovered directly from the
reduction.

Formal proof ofLemma- 2:

(VE,E',S)(E;E;S) <> (E/;E;S)

We have to do it in its explicit form: which means

(VELE,E',S) El» (E;E;S) =El» (E/;E;S)

The proof by goal transformation througniversal Quantification
andModus Ponensgequires two lemmad,emra- 3 (re-used) and
(YM:Nat) M = M.

Both are ‘easy’ lemmas, being discovered easily from thaecton
process.

The structure of the verification process and of

goal generation

G15v:

Lemma-7

Struct. Induction Formal EQL proof

Gl1lv: Gl2v:
Lemma-5 Lemma-6
Formal EQL proof Formal EQL proof Formal EQL proof Struct. induction
G8v G9v G10v G13v: Gl4v:
Lemma-3 Lemma-7
Structural induction Formal EQL proof Struct. induction Struct. induction

G4v: G5v: G6v: G7v:
Lemma-1 Lemma-2 Lemma-3 Lemma-4

FormallEQTIproot
G3v: (VS,S,E1,E2) E1 < E2 implies disorder(S;E1;E2;S') < disorder(S;E2;E1;S")
Mathematical proof (within rewriting theory)

G2v:(VS,S') S =>S' implies disorder(S') < disorder(S)

(w,<) well founded

G1v: termination of topological sorting

Final conclusions

It is possible to have ‘stainless’ formal specification and
verification

m that is based rigorously and transparently on solid and
clean mathematical foundations, and

m that is also based on the realization of the inter-depeedeci
between mathematical foundations, semantics,
specification and proof score programming methodologies,
with semantics playing the central role.

This gives clarity and simplicity to the
specification/verification process, and consequently
pragmaticand a deep sense of trust.

However this may require some commitement to
intelectual and scientific quality.

	Introduction
	Mathematical foundations: many sorted algebra
	Signatures, algebras, sentences, satisfaction
	Equational proof theory
	Induction

	Example: verification of termination of generic bubble sorting
	Formal specification
	Proof management
	Proof score programming

