
Stainless Formal Verification
on the interdependency between mathematical foundations,
semantics of specifications, and proof score programming

Răzvan Diaconescu

Institutul de Matematic̆a “Simion Stoilow”, Romania

FSSV 2010, Kanazawa

Outline

1 Introduction

2 Mathematical foundations: many sorted algebra
Signatures, algebras, sentences, satisfaction
Equational proof theory
Induction

3 Example: verification of termination of generic bubble sorting
Formal specification

Natural numbers
Bubble sorting

Proof management
Proof score programming

Goal of lecture

Gain some understanding on what is a correct specification and
verification process through clarification of

mathematical foundations
semantics
specification
proof score programming

and of the relationships between them.

Most of ‘formal verification’ practice, while assumed to be
rigorous by definition, in reality still confused wrt some of
above aspects, hence difficult to be trusted.

‘Stainless’ does not mean ‘perfectly formal’

But rather

being clear about what are the formal and the informal
proof parts,

justification of informal parts by solid clear mathematical
arguments,

proof scores for the formal proof parts strictly based upon
mathematical foundations, and

clean(!) mathematical foundations.

Specification and verification schema

Each level is defined and makes sense wrt the upper levels.

Mathematical foundations

There is a formal logical system, including both model
theory (for semantics) and proof theory. Very desirable
that these constitute aninstitution.

The model theory is sufficiently developed in order to
support necessary specification properties.

The eventual operational level of the proof theory (e.g.
rewriting) is rigorously supported by mathematics.

Formal specification

There is a formal specification language such that the
language constructs correspond exactly to mathematical
entities in the underlying logic.
A specification consists of

a set ofaxiomsin the underlying logic (this includes the
specification of a corresponding signature), and
eventually, structuring constructs.

Each such specification defines theclass of models
satisfying its axioms.

In the structured case, this is also determined by the
structuring constructs (requires a bit of mathematical
sophistication).

The whole point of formal specification:

axiomatic definition of certain classes of models.

Role of semantics and foundations

Tendency to forget this sense of formal specification and
verification by neglecting semantics.

No semantics = No meaning!

This implies incorrect non-sense specification and verification.

Proof management

Introduce auxiliary entities (e.g. functions, predicates)
necessary for the proof; this means extension of the
original specification.
Separate the formal from the informal parts of the proof.

Informal parts get mathematical proofs.
Formal parts are proved by proof score running. Much
higher ‘horizontal’ complexity than the informal parts.

Proof score programming

Specification of the proof structure, including lemmas,
conditions, proof tasks to be executed by the system, etc.
Should be rigorously, directly andtransparentlybased
upon mathematical results lying foundations to
corresponding proof methodologies.

In particular, this means to avoid abuse or even any use of
extra-logical features of the language (such as==, etc.)

Many sorted algebra (MSA)

It is the most classical logical system of algebraic
specification.

Deeply rooted in conventional mathematics.
Originating from early mathematical foundations of
semantics of programming languages and of abstract data
types.

Has very convenient model theoretic and computational
properties, supporting high integration between the
specification and the verification aspects.

However, there are myriads of other logical systems used
for formal specification, some of them just refinements of
MSA, others quite different (at least through a gross
perspective).

Signatures

S-sorted signature(S,F)

S– set of sort symbols,

F = {Fw→s | w∈ S∗, s∈ S} – indexed family of operation
symbols.

Algebras

(S,F)-algebra Aconsists of

a setAs for eachs∈ S, and

a functionAσ :w→s : Aw → As for eachσ ∈ Fw→s (where
Aw = As1 ×·· ·×Asn, for w = s1 . . .sn).

(S,F)-homomorphism h: A→ B consists of

hs : As→ Bs for eachs∈ S,

such that the followinghomomorphism condition

hs(Aσ (a)) = Bσ (hw(a)).

for eacha∈ Aw.

Sentences

The set of(S,F)-sentencesis the least set such that:

Each(S,F)-equationt = t′ is an(S,F)-sentence.
If ρ1 andρ2 are(S,F)-sentences then

ρ1∧ρ2 (conjunction),
ρ1∨ρ2 (disjunction),
ρ1 ⇒ ρ2 (implication) and
¬ρ1 (negation)

are also(S,F)-sentences.

If X is a set of variables for(S,F), then(∀X)ρ and(∃X)ρ
are(S,F)-sentences wheneverρ is an(S,F∪X)-sentence.

Satisfaction

Defined recursively on the structure of the sentences.

A |= t = t′ if and only if At = At′

(whereAσ(t1,...,tn) = Aσ (At1, . . . ,Atn)),

A |= ρ1∧ρ2 if and only if A |= ρ1 andA |= ρ2,

A |= ρ1∨ρ2 if and only if A |= ρ1 or A |= ρ2,

A |= ρ1 ⇒ ρ2 if and only if A 6|= ρ1 or A |= ρ2,

A |= ¬ρ1 if and only if A 6|= ρ1,

A |=(S,F) (∀X)ρ if and only if A′ |=(S,F∪X) ρ for each
(S,F∪X)-expansionA′ of A, and

A |= (∃X)ρ if and only if A 6|= (∀X)¬ρ .

Initial semantics

Initial algebra A in classC of algebras:
for eachB∈ C there exists an uniqueh : A→ B.

Fact

Initial algebras are unique up to isomorphisms.

Theorem

Each set of conditional equations, i.e. sentences of the form
(∀X)(t1 = t′1)∧· · ·∧ (tn = t′n) ⇒ (t = t′), has an initial algebra.

Initial algebras are the models of tight denotation specifications
(mod! in CafeOBJ,fmod in Maude)

Entailment systems

Entailment relation(for a signatureΣ) consists of a binary
relation⊢Σ between sets ofΣ-sentences such that:

1 union: if Γ ⊢Σ Γ1 andΓ ⊢Σ Γ2 thenΓ ⊢Σ Γ1∪Γ2,

2 monotonicity:if Γ′ ⊇ Γ thenΓ′ ⊢Σ Γ, and

3 transitivity: if Γ ⊢Σ Γ1 andΓ1 ⊢Σ Γ2 thenΓ ⊢Σ Γ2.

An entailment system⊢ consists of an entailment relation⊢Σ for
each signatureΣ.

Example: semantic entailment

Γ |=(S,F) Γ′ if and only if
A |=(S,F) Γ impliesA |=(S,F) Γ′ for each(S,F)-algebraA.

Modus Ponens (meta-rule)

Meta-rulesare properties of the entailment systems.

Γ ⊢(S,F) (H ⇒ C) if and only if Γ∪H ⊢(S,F) C.

The semantic entailment|= has Modus-Ponens.

Universal Quantification (meta-rule)

Γ ⊢(S,F) (∀X)ρ if and only if Γ ⊢(S,F∪X) ρ.

The semantic entailment|= has Universal Quantification.

Equational proof rules

Reflexivity:
/0

t = t

Symmetry:
{t = t′}
t′ = t

Transitivity:
{t = t′, t′ = t′′}

t = t′′

Congruence:
{ti = t′i | 1≤ i ≤ n}

σ(t1, . . . , tn) = σ(t′1, . . . , t
′
n)

Substitutivity:
{(∀X)H ⇒ C}
{θ(H ⇒ C)}

θ : X → T(S,F).

The equational entailment system

Definition (entailment system for conditional equations, ⊢e)

The least entailment system, containing the 5 proof rules and
satisfying the 2 meta-rules above.

Unlike |=, ⊢e is finitely defined.
This makes⊢e usable for formal proofs.

Soundness

An absolutely necessary property for any logical system,
constitutes the basis for the correctness of formal verification.

Not very hard to establish.

Theorem (Soundness of equational deduction)

Γ ⊢e
(S,F) ρ impliesΓ |=(S,F) ρ .

Completeness

A very desirable property of logical systems, but not absolutely
necessary.

In general, much harder to establish than soundness.

Theorem (Completeness of equational deduction)

Γ |=(S,F) ρ impliesΓ ⊢e
(S,F) ρ .

Soundness and completeness means that|= (for conditional
equations) and⊢e are the same, hence, very importantly, we
have a finitary definition of|= (for conditional equations).

Rewriting

The standard way to mechanize equational deduction, to haveit
as a computation process.

AbandonsSymmetryand replacesSubstitutivityand
Congruenceby the following rule:

Rewriting:
{(∀X)H ⇒ (t = t′)} ∪ θ(H)

c[θ(t)] = c[θ(t′)]

In general completeness is lost, however under conditions such
asconfluenceandtermination, completeness may be retained.

Inductive properties

These are the properties satisfied by the initial algebra of a
given setΓ of conditional equations, i.e. 0Γ |= ρ .

For example, for the specificationΓ as follows:

0 : -> Nat
s : Nat -> Nat
+ : Nat Nat -> Nat
(∀ X) X + 0 = X
(∀ X,Y) X + s(Y) = s(X + Y)

we have that 0Γ |= (∀X)0 + X= X but Γ 6|= (∀X)0 + X= X.
Hence, direct ordinary (equational) deduction not enough for
proving inductive properties.

Constructors

A great device for reducing the complexity of proofs of
inductive properties.

Sub-signature of constructors

Signature(S,F), Γ a set of conditional equations for(S,F).
(S,Fc) is asub-signature of constructors forΓ when

Fc
w→s⊆ Fw→s, and

0(S,Fc) → 0Γ↾(S,Fc) surjective.

Example: 0 ands form a sub-signature of constructors for the
specification above.

Sufficient completeness

The following equivalent characterization for sub-signature of
constructors has two advantages:

1 does not depend on existence of initial algebras forΓ,
hence applicable within more general situations, and

2 it gives a method to actually prove the constructors
property.

Proposition

(S,Fc) is a sub-signature of constructors forΓ if and only if for
each(S,F)-term t there exists an(S,Fc)-term t′ such that
Γ |=(S,F) t = t′.

Proving inductive properties

The following gives a sufficient condition for proving inductive
properties by aninfiniteset of ordinary proofs.

Theorem

1 Γ set of conditional equations for a signature(S,F),

2 (S,Fc) sub-signature of constructors forΓ, and

3 (‘lemmas’:) E set of any sentences such that0Γ |= E.

Then for any(S,F∪X)-sentenceρ

0Γ |=(∀X)ρ if Γ∪E |= θ(ρ) for all substitutionsθ : X→T(S,Fc).

Structural induction

Theorem (sufficientfinitary proof method for inductive properties)

1 (S,Fc) sub-signature of constructors forΓ anyset of(S,F)-sentences,
2 X finite set of variables for(S,F),
3 ρ any (S,F∪X)-sentence.

If for any sort preserving mapping Q: X → Fc

Γ∪{ψ(ρ) | ψ : X → Z = ∪x∈XZx with ψ(x) ∈ Zx} |=(S,F∪Z) Q♯(ρ)

where

– Zx are strings of variables for the arguments of Qx such that
Zx1∩Zx2 = /0 for x1 6= x2∈ X, and

– Q♯ is the substitution X→ T(S,Fc∪Z) defined by Q♯(x) = Qx(Zx),

thenΓ |=(S,F) θ (ρ) for all substitutionsθ : X → T(S,Fc).

Generation of proof goals by Structural Induction

The Structural Induction Theorem together with the predecesor
Theorem lead to the following proof goal generation rule.

Structural Induction

{Γ∪{ψ(ρ) | ψ : X → Z . . .} |=(S,F∪Z) Q♯(ρ) | Q : X → Fc}

0Γ |=(S,F) (∀X)ρ

The finitary character of structural induction

Finite number of proof goals always involving finite conditions
because:

for anyQ, finite Z because finiteX and finite arities of
operations, hence finite{ψ | ψ : X → Z}, and
if finite Fc, then finite{Q | Q : X → Fc} since finiteX .

moreover smallerFc implies fewer proof goals.

Generality of foundations

Many of MSA mathematical concepts and results above can be
interpreted in the same form in other logical systems (such as
preordered algebrafor specification with transitions).

For example, the structural induction method above has such
general character.

This means foundations can be mathematically developed at the
level of abstractinstitutions.

Example of ‘stainless’ formal verification

We illustrate

formal specification based rigorously upon mathematical
foundations,

proof management,

proof score building based rigorously upon equational
proof theory and the structural induction theorem above,

the inter-dependency between semantic-oriented
specification and proof score programming.

Specification of natural numbers

The natural numbers with the usual zero and succesor
operations constitute the initial algebra ofPNAT=.

Moreover we have a specification of the equality of numbers

mod! PNAT=
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _=_ : Nat Nat -> Bool {comm}
vars M N : Nat
eq ((s M) = 0) = false .
eq (0 = 0) = true .
eq [succ=] : (s M = s N) = (M = N) .

}

Specification of< on natural numbers

The following adds a specification of the ‘strictly less than’
relation on the naturals numbers.

mod! PNAT< {
protecting(PNAT=)
op _<_ : Nat Nat -> Bool
vars M N : Nat
eq [succ<] : (s M) < (s N) = M < N .
eq 0 < (s M) = true .
eq M < 0 = false .

}

Strings of natural numbers

The strings of natural numbers with concatenation and empty
string constitute the initial algebra ofSTRG-PNAT.

mod! STRG-PNAT {
[Nat < Strg]
op nil : -> Strg
op _;_ : Strg Strg -> Strg {assoc id: nil}

}

Specification of bubble sorting of strings of
natural numbers

Bubble sorting algorithm appears as an instance of rewriting
modulo associativity (of concatenation).

mod! SORTING-STRG-PNAT {
protecting(STRG-PNAT))
vars E E’ : Nat
ctrans E ; E’ => E’ ; E if (E’ < E) .

}

The semantics ofSORTING-STRG-PNAT

The initial model is thepreordered algebrathat has strings of
naturals as elements and the transitions given by the sorting
algorithm as the preorder relation.

3;2;1

2;3;1

2;1;3

1;2;3

1;3;2

3;1;2

Strg

Sorting strings of natural numbers

We may use this specification as an actual sorting (very high
level) program by executing it by rewriting modulo
associativity.

exec s s s 0 ; s 0 ; 0 ; s s 0 .

Topological sorting

However, if we look more carefully into the specification of
bubble sorting, we note that it essentially requires only a binary
relation<, no commitement to any property of the naturals, not
even to the naturals as elements of the strings.

This means bubble sorting is very general, has agenericnature.

Such kind of sorting over binary relations is sometimes known
astopologicalsorting.

Specification of generic strings

The following parameterized module specifies strings overany
set (Elt) of elements.

mod! STRG (X :: TRIV) {
[Elt < Strg]
op nil : -> Strg
op _;_ : Strg Strg -> Strg {assoc id: nil}

}

Specification of generic pseudo-order

The following specifies a generic binary relation< on the
elements, to be used for the sorting.
We also specify a loose negation of<, namelynot<, mainly
for operational reasons.

mod* PSEUDO-ORDER {
[Elt]
op _<_ : Elt Elt -> Bool
op _not<_ : Elt Elt -> Bool
vars E1 E2 E3 : Elt
cq (E1 not< E2) = true

if E2 < E1 or not(E1 < E2) .
}

Note on specification of generic pseudo-order

Note that the sentence specifyingnot<

cq (E1 not< E2) = true
if E2 < E1 or not(E1 < E2) .

is nota conditional equation (although CafeOBJ notation refers
to it as conditional equation).

However this is OK since this is loose semantics specification,
which does not require existence of initial algebras.

Recovering the ordering of the naturals

The following instantiate the above specified pseudo-orders to
the standard ordering of the natural numbers.

view PNAT<asPO from PSEUDO-ORDER to PNAT<
{op (E:Elt not< E’:Elt) ->

((E:Nat = E’:Nat) or (E’ < E))} .

It uses default mapping mechanism, hence only the mapping of
not< needs to be specified explicitly.

View definitions require proofs

The view specification requires a proof that the initial algebra of
PNAT< satisfies the axiom ofPSEUDO-ORDER through the
translation given by the view.

This means an inductive proof, that can be done by proof score
programming based upon the Structural Induction Theorem; we
skip this here.

Note that in this caseproof score programming is involved at
the stage of specification writing.

Specification of the generic bubble sorting
algorithm

mod! SORTING-STRG(Y :: PSEUDO-ORDER) {
protecting(STRG(Y))
vars E E’ : Elt
ctrans E ; E’ => E’ ; E if (E’ < E) .

}

SORTING-STRG-PNAT can be obtained as an instance of
SORTING-STRG by the above defined viewPNAT<asPO.

select SORTING-STRG(PNAT<asPO) .

Specification of the generic bubble sorting
algorithm

mod! SORTING-STRG(Y :: PSEUDO-ORDER) {
protecting(STRG(Y))
vars E E’ : Elt
ctrans E ; E’ => E’ ; E if (E’ < E) .

}

SORTING-STRG-PNAT can be obtained as an instance of
SORTING-STRG by the above defined viewPNAT<asPO.

select SORTING-STRG(PNAT<asPO) .

Properties of topological sorting

While for the bubble sorting of strings of naturals termination
and confluence are quite obvious, in the generic case these are
rather unclear.

In fact, in general they may not hold.

In the following we focus on (proving) termination.

Proof of termination of topological (generic)
bubble sorting

For this we go back to the specification level and define a
functiondisorder : Strg -> Nat such that

(∀S,S′)[S=>S′ implies disorder(S′) < disorder(S)].

(note this is a Horn clause in thePOA, the logical system of
preordered algebra).

Then the mathematical argument of well-foundness of the
natural numbers leads to the (informal) mathematical proofof
termination.

Specification of auxiliary functions

The definition of functiondisorder requires specification of
other auxiliary functions too:

mod! PNAT+ {
protecting(PNAT=)
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq [succ+] : M + (s N) = s(M + N) .
eq M + 0 = M .

}

Specification of auxiliary functions

E»Scomputes how many elements ofSare less thanE.
disorder(S) computes how many steps of the sorting
algorithm are needed for the sorting ofS.

mod! SORTING-DISORDER (Y :: PSEUDO-ORDER) {
protecting(SORTING-STRG(Y) + PNAT+)
op _>>_ : Elt Strg -> Nat
op disorder : Strg -> Nat
eq E >> nil = 0 .
cq E >> E’ = s 0 if (E’ < E) .
cq E >> E’ = 0 if (E’ not< E) .
eq E >> (S ; S’) = (E >> S) + (E >> S’) .
eq disorder(E) = 0 .
eq disorder(E ; S) = disorder(S) + (E >> S) .

}

Specification of auxiliary functions

The following specifies an equivalence relation on strings
defined by

S<> S’ if and only if (∀E)E»S= E»S′.

Although this is not required by the specification of
disorder, it is used in the formal proofs below.

As this is beyond CafeOBJ logic, at this level we under-specify
it, however we will use its complete definition in the proof
scores.

mod* SORTING<> (Y :: PSEUDO-ORDER) {
protecting(SORTING-DISORDER(Y))
op _<>_ : Strg Strg -> Bool

}

Proof management

The proof management of this problem means the following:
1. By an mathematical argument we have reduced the task of

proving termination to proving a Horn clause sentence as
inductive property inPOA.

2. Extension of the original specification with new functions.
3. Mathematical proof of the fact that

(∀S,S′,E1,E2)E1 < E2 implies disorder(S;E1;E2;S′) <

disorder(S;E2;E1;S′)

implies

(∀S,S′) [S=>S′ implies disorder(S′) < disorder(S)].

(This mathematical argument is related to the theory of
rewriting modulo axioms.)

Proof management

4. Formal proof (by proof score programming and running)
of

(∀S,S′,E1,E2) [disorder(S;E1;E2;S′)<disorder(S;E2;E1;S′) if

This requires several lemmas and tranformation of the
proof goals by meta-rules such asUniversal Quantification
or Modus-Ponens.

5. Mathematical proofs for sub-signatures of constructors.

Lemmas for the formal proof of
(∀S,S′,E1,E2)disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′) if E1 < E2

Lemma-1

(∀S1,S2) (S1<>S2)∧ (disorder(S1) < disorder(S2))
impliesdisorder(S;S1) < disorder(S;S2).

Lemma-2

(∀E,E′,S) (E;E′;S)<>(E′;E;S).

Lemma-3

Commutativity and associativity of_+_.

Lemma-4

(∀M : Nat) M < sM.

How do we find lemmas?

In general lemmas have various different natures, no general
method for finding lemmas.

However we may distinguish two main situations:

1 Lemmas that are very meaningful properties of the
specified system (e.g.Lemma-1 andLemma-2). These
are often hard to find and only on the basis of a deep
understanding of the problem. Their formulation may even
require definition of new functions!

2 Lemmas that have mainly a role to get the deduction (by
rewriting) flow (e.g.Lemma-3 andLemma-4).. These are
sometimes easier to find since they may ‘pop-up’ when the
deduction gets blocked. (Unfortunately not the case here!)

Proof score of
(∀S,S′,E1,E2)disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′) if E1 < E2

By two steps transformation of the original proof goal:

by Universal Quantificationinto

Γ ⊢Σ∪{E1,E2,S,S′} E1 < E2 implies
disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′)

and further byModus Ponensinto

Γ∪{E1 < E2} ⊢Σ∪{E1,E2,S,S′}

disorder(S;E1;E2;S′) < disorder(S;E2;E1;S′)

Finally, we give this proof goal to the system.

Formal proof ofLemma-1:

(∀S,S1,S2)disorder(S;S1) < disorder(S;S2)
if S1 <> S2 anddisorder(S1) < disorder(S2).

By application ofStructural Inductionwhere

The sub-signature of constructors consists ofnil, all
e:Elt, and_;_, this being established by mathematical
proof.

X = {S}, and

ρ is
(∀S1,S2) S1 <> S2 anddisorder(S1) < disorder(S2)

impliesdisorder(S;S1) < disorder(S;S2).

the original proof goal gets transformed to

G8: (QS = nil, Z = /0)
Γ |=Σ (∀S1,S2) S1 <> S2 anddisorder(S1) < disorder(S2)

impliesdisorder(nil;S1) < disorder(nil;S2).

G9: (QS = e:Elt, Z = /0)
Γ |=Σ∪{e} (∀S1,S2) S1 <> S2 anddisorder(S1) < disorder(S2)

impliesdisorder(e;S1) < disorder(e;S2).

G10: (QS = _;_, Z = {x,y})
Γ∪{ (∀S1,S2) S1 <> S2 anddisorder(S1) < disorder(S2)

impliesdisorder(x;S1) < disorder(x;S2),
(∀S1,S2) S1 <> S2 anddisorder(S1) < disorder(S2)

impliesdisorder(y;S1) < disorder(y;S2) }
|=Σ∪{x,y} (∀S1,S2) S1 <> S2 anddisorder(S1) < disorder(S2)

impliesdisorder(x;y;S1) < disorder(x;y;S2).

Proof ofG8, G9, G10

Each of the three proof goals is then manipulated byUniversal
QuantificationandModus Ponensand given to the reduction
engine of the system. However the proof (by reduction) ofG9
andG10, resp., require the following lemmas, resp.:

Lemma-5

(∀M,N,P : Nat) M < P impliesM +N < P+N.

Lemma-6

(∀S,S1,S2 :Strg) S1<>S2 impliesS;S1<>S;S2.

Whens1<>s2 is used as condition through goal transformation
by Modus Ponensit is given in its explicit format:

eq E:Elt » s1 = E:Elt » s2 .

Proof ofG8, G9, G10

Each of the three proof goals is then manipulated byUniversal
QuantificationandModus Ponensand given to the reduction
engine of the system. However the proof (by reduction) ofG9
andG10, resp., require the following lemmas, resp.:

Lemma-5

(∀M,N,P : Nat) M < P impliesM +N < P+N.

Lemma-6

(∀S,S1,S2 :Strg) S1<>S2 impliesS;S1<>S;S2.

Whens1<>s2 is used as condition through goal transformation
by Modus Ponensit is given in its explicit format:

eq E:Elt » s1 = E:Elt » s2 .

On the different nature ofLemma-5 and
Lemma-6

Lemma-5 is ‘easy’, not directly related to our problem, and
moreover ‘pops-up’ in the reduction.
Without it the system gives the result:

((disorder(s1) + (e » s2)) <
(disorder(s2) + (e » s2))):Bool

Lemma-6 is ‘hard’ since represents a property of the sorting
algorithm and is not to be discovered directly from the
reduction.

On the different nature ofLemma-5 and
Lemma-6

Lemma-5 is ‘easy’, not directly related to our problem, and
moreover ‘pops-up’ in the reduction.
Without it the system gives the result:

((disorder(s1) + (e » s2)) <
(disorder(s2) + (e » s2))):Bool

Lemma-6 is ‘hard’ since represents a property of the sorting
algorithm and is not to be discovered directly from the
reduction.

Formal proof ofLemma-2:

(∀E,E′,S)(E;E′;S) <> (E′;E;S)

We have to do it in its explicit form: which means

(∀E1,E,E′,S) E1 » (E;E′;S) = E1 » (E′;E;S)

The proof by goal transformation throughUniversal Quantification
andModus Ponensrequires two lemmas,Lemma-3 (re-used) and

Lemma-7

(∀M : Nat) M = M.

Both are ‘easy’ lemmas, being discovered easily from the reduction
process.

The structure of the verification process and of
goal generation

�����
�������

�	
��	
������	��� ��
���������
���

�����
�������

������
�������

��
���������
��� ��
���������
��� ��
���������
��� �	
��	
������	���

��� ��� ���� �����
�������

��	��
�������

�	
��	�
��������	��� ��
���������
��� �	
��	
������	��� �	
��	
������	���

�	���
�������

�����
�������

�
��
�������

����
�������

��
���������
���

����� ��!�"!��!��#����$����������%���������� �&��&��&�"#�$��������� �&��&��&�"#

'�	(���	������
����)�	(���
�)
�	��*�	(��
+#

����� ��!�"#����,-��"��������%��������� �"#�$��������� �#

 �!$#�)�����������

�����	�
����	�������	�����*�����%�
	��*

Final conclusions

1 It is possible to have ‘stainless’ formal specification and
verification

that is based rigorously and transparently on solid and
clean mathematical foundations, and
that is also based on the realization of the inter-dependecies
between mathematical foundations, semantics,
specification and proof score programming methodologies,
with semantics playing the central role.

2 This gives clarity and simplicity to the
specification/verification process, and consequently
pragmaticand a deep sense of trust.

3 However this may require some commitement to
intelectual and scientific quality.

	Introduction
	Mathematical foundations: many sorted algebra
	Signatures, algebras, sentences, satisfaction
	Equational proof theory
	Induction

	Example: verification of termination of generic bubble sorting
	Formal specification
	Proof management
	Proof score programming

