
A Collaborative Use  
of CafeOBJ and Maude 

Lecture Note 09b 
CafeOBJ Team for JAIST-FSSV2010 



Topics 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Another way of specifying OTSs in both CafeOBJ & 
Maude for model checking. 
 Qlock is used as an example. 

♦  Another combination of inference & search. 
 NSPK is used as an example. 



Another Way of Specifying OTSs (1) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  States as collections of observable values. 
 E.g., a state of Qlock is depicted as 

pc[p1]: cs 
pc[p2]: ws 

queue: p1 | p2 | empty 

Loop: 
    Remainder Section 
  rs: enq(queue,i); 
  ws: repeat until top(queue) = i; 
    Critical Section 
  cs: deq(queue); 

Qlock 

Note that for each process i, at 
most one value observed by 
“pc”, i.e., pc[i]: l, appears in 
a state. 



Another Way of Specifying OTSs (2) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

pc[p1]: cs 
pc[p2]: ws 

queue: p1 | p2 | empty 

Loop: 
    Remainder Section 
  rs: enq(queue,i); 
  ws: repeat until top(queue) = i; 
    Critical Section 
  cs: deq(queue); 

♦  Configuration 
[Obs < Sys] 
op void : -> Sys {constr} 
op _ _ : Sys Sys -> Sys {constr assoc comm id: void} 

♦  Operators for observable values 
op (pc[_]:_) : Pid Label -> Obs {constr} 
op queue:_ : Queue -> Obs {constr} 

(pc[p1]: cs) (pc[p2]: ws) (queue: p1 | p2 | empty) 



Another Way of Specifying OTSs (3) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Transition want: 
trans [want]: (pc[I]: rs) (queue: Q)  
  => (pc[I]: ws) (queue :enq(Q,I)) . 

pc[I]: rs 

queue: Q 
… 

pc[I]: ws 
queue: enq(Q,I) 

… 

♦  Transition try: 
trans [try]: (pc[I]: ws) (queue: (I | Q))  
  => (pc[I]: cs) (queue: (I | Q)) . 

♦  Transition exit: 
rl [exit]: (pc[I]: cs) (queue: Q)  
  => (pc[I]: rs) (queue: deq(Q)) . 

pc[I]: ws 

queue: I | Q 
… 

pc[I]: cs 

queue: I | Q 
… 

pc[I]: cs 

queue: Q 

… 
pc[I]: rs 

queue:  deq(Q) 
… 



Model Checking Invariants with CafeOBJ 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  When six processes participates in Qlock, the initial state 
is expressed as 

♦  Checking if Qlock enjoys the mutex property. 
open QLOCK 
  red init =(1,*)=>* (pc[I]: cs) (pc[J]: cs) S . 
close 

  No counterexample was found. 
  It took about 60 sec . for CafeOBJ to execute the command on  a 
laptop with 2.33GH CPU and 3GB RAM. 

eq init = (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)  
 (pc[p4]: rs) (pc[p5]: rs) (pc[p6]: rs) (queue: empty) . 



Maude in a Nutshell 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Another direct successor of OBJ3; a sibling language 
of CafeOBJ. 

♦ Based on rewriting logic (RWL) & membership 
equational logic (MEL): 
•  Static data are specified in terms of MEL as equational 

specifications. 
•  Dynamic behaviors of systems are specified in terms of 

RWL as rewrite theory specifications. 
♦ Equipped with meta-programming facilities, model 

checking facilities (the search command & the LTL 
model checker), etc. 

♦ Maude (processors), some documents on Maude, 
and some examples can be obtained from 
 http://maude.cs.uiuc.edu/ 



Rewrite Theory Sepcs. of OTSs 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  A rewrite theory spec. of Qlock: 
sorts Obs Sys .  subsort Obs < Sys . 
*** configurations 
op void : -> Sys [ctor] . 
op _ _ : Sys Sys -> Sys [ctor assoc comm id: void] . 
*** observable values 
op pc[_]:_ : Pid Label -> Obs [ctor] . 
op queue:_ : Queue -> Obs [ctor] . 

rl [want]: (pc[I]: rs) (queue: Q)  
  => (pc[I]: ws) (queue: enq(Q,I)) . 
rl [try]: (pc[I]: ws) (queue: (I | Q))  
  => (pc[I]: cs) (queue: (I | Q)) . 
rl [exit]: (pc[I]: cs) (queue: Q)  
  => (pc[I]: rs) (queue: deq(Q)) . 

pc[p1]: cs 
pc[p2]: ws 

queue: p1 | p2 | empty 

Loop: 
    Remainder Section 
  rs: enq(queue,i); 
  ws: repeat until top(queue) = i; 
    Critical Section 
  cs: deq(queue); 



Model Checking Invariants with Maude (1) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  When six processes participates in Qlock, the initial state 
is expressed as 
eq init = (pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)  
 (pc[p4]: rs) (pc[p5]: rs) (pc[p6]: rs) (queue: empty) . 

♦  Checking if Qlock enjoys the mutex property. 
search [1] in QLOCK : 
init =>* (pc[I]: cs) (pc[J]: cs) S . 

  No counterexample was found. 
  It took about 0.4 sec . for Maude to execute the command on  a 
laptop with 2.33GH CPU and 3GB RAM. 
  2 orders of magnitude faster than CafeOBJ. 



Model Checking Invariants with Maude (2) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  For checking if a state predicate P always holds for a 
system S, 
search [1] in S : init =>* pattern such that cond .  

where the negation of P is expressed as pattern & cond. 

search [1] in QLOCK : 
init =>* (pc[I]: L1) (pc[J]: L2) S 
such that not (L1 == cs and L2 == cs implies I == J) . 

search [1] in QLOCK : 
init =>* (pc[I]: L1) (pc[J]: L2) S 
such that L1 == cs and L2 == cs . 

search [1] in QLOCK : 
init =>* (pc[I]: cs) (pc[J]: cs) S . 

I is different from J. 

Both L1 & L2 are replaced with cs. 



Model Checking Invariants with Maude (3) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  The maximum depth d can be specified. 

search [1,d] in S : init =>* pattern such that cond .  

  Bounded model checking (BMC) of invariants can also be 
conducted. 

d 
The bounded reachable 
state space from init 
whose depth is d. 

init 



NSPK & Agreement Property 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  NSPK ([Needham&Schroeder 1978]): 

♦  Agreement Property (AP): Whenever a protocol run is 
successfully completed by p and q, 
•  AP1: the principal with which p is communicating is really q, and 
•  AP2: the principal with which q is communicating is really p. 

Principal p 

Initiator Responder 

Init: { np, p }k(q) 

Resp: { np, nq }k(p) 

Ack: { nq }k(q) 

Principal q 

p 

q 

q talking p q talking 

p 



Rewrite Theory Spec of NSPK (1) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Configuration & observable values: 
sorts Obs Sys .  subsort Obs < Sys . 
*** configuration 
op none : -> Sys [ctor] . 
op _ _ : Sys Sys -> Sys [ctor assoc comm id: none] . 
*** observable values 
op network:_ : Soup{Message} -> Obs [ctor] . 
op rands:_ : Soup{Random} -> Obs [ctor] . 
op nonces:_ : Soup{Nonce} -> Obs [ctor] . 
op prins:_ : Soup{Principal} -> Obs [ctor] . 
op rands2:_ : Bag{Random} -> Obs [ctor] . 



Rewrite Theory Spec of NSPK (2) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  A state: 
(network: NW) (rands: Rs) (nonces: Ns) 
(prins: Ps) (rands2: Rs2) 

  NW: a collection of messages that have been sent up to the 
state. 
  Rs: a collection of random numbers that have been sued up to 
the state. 
  Ns: a collection of nonces that have been gleaned by the intruder 
up to the state. 
  Ps: the collection of all the principals participating in NSPK. This 
value is not changed by any transitions. 
  Rs2: the collection of all the random numbers available in NSPK. 
This value is not changed by any transitions. 



Rewrite Theory Spec of NSPK (3) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  Suppose that we have three principals including the 
intruder and two random numbers available. 

♦  The initial state is expressed as 

eq init  
 = (network: empty) (rands: empty) (nonces: empty) 
   (prins: (p q intruder)) (rands2: (r1 r2)) . 



Rewrite Theory Spec of NSPK (4) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  The rewrite rule corresponding to sending a Resp 
message obeying NSPK: 
crl [sdm2] : 
 (network: (m1(Q?,Q,P,enc1(P,N,Q)) NW)) (rands: RS)  
 (nonces: NS) (rands2: (R RS2)) 
 => 
 (network: (m2(P,P,Q,enc2(Q,N,n(P,Q,R)))  
            m1(Q?,Q,P,enc1(P,N,Q)) NW)) 
 (rands: (R RS)) (rands2: (R RS2)) 
 (nonces: (if Q == intruder then N n(P,Q,R) NS else NS fi)) 
if not(R \in RS) . 

♦  The rewrite rule corresponding to faking a Resp message 
using two nonces gleaned by the intruder: 
rl [fkm22] : 
    (network: NW) (nonces: (N1 N2 NS)) (prins: (P Q PS)) 
    => 
    (network: (m2(intruder,P,Q,enc2(Q,N1,N2)) NW)) 
    (nonces: (N1 N2 NS)) (prins: (P Q PS)) . 



Model Checking AP1 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  The bounded reachable state space whose depth is up to 
5 can be exhaustively traversed on a laptop with 2.33GH 
CPU and 3GB RAM. 

search [1,5] in NSPK : init 
=>* (network: (m1(P,P,Q,enc1(Q,n(P,Q,R),P)) 
               m2(Q?,Q,P,enc2(P,n(P,Q,R),N)) NW)) S 
such that not(not(P == intruder) implies 
              m2(Q,Q,P,enc2(P,n(P,Q,R),N)) 
               \in m2(Q?,Q,P,enc2(P,n(P,Q,R),N)) NW) . 

p 

q 

q talking 

  No counterexample was found in 
the bounded reachable state space. 



Model Checking AP2 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

search [1,5] in NSPK : init 
=>* (network: (m2(Q,Q,P,enc2(P,N,n(Q,P,R))) 
               m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) S 
such that not(not(Q == intruder) implies 
              m3(P,P,Q,enc3(Q,n(Q,P,R))) 
                \in m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW) . 

  No counterexample was found in 
the bounded reachable state space. 

p q talking 

p 



Lemmas for AP (1) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  One possible thing to do next is to try to prove AP1 & 
AP2 and conjecture some lemmas. 

♦  We can do this with CafeOBJ, conjecturing 5 lemmas. 
eq inv3(S,M2) 
  = (M2 \in network(S) 
     implies 
     random(nonce1(cipher2(M2))) \in rands(S) and 
     random(nonce2(cipher2(M2))) \in rands(S)) . 

eq inv4(S,P,Q,N,R,M2) 
  = (not(P = intruder) and not(Q = intruder) and 
     m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in network(S) and 
     M2 \in network(S) and cipher2(M2) = enc2(P,n(P,Q,R),N) 
     implies 
     m2(Q,Q,P,enc2(P,n(P,Q,R),N)) \in network(S)) . 



Lemmas for AP (2) 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

eq inv5(S,N) 
  = (N \in nonces(S) 
     implies creator(N) = intruder or forwhom(N) = intruder) . 

eq inv6(S,M3) 
     = (M3 \in network(S) 
        implies random(nonce(cipher3(M3))) \in rands(S)) . 

eq inv7(S,P,Q,N,R,M3) 
     = (not(P = intruder) and not(Q = intruder) and 
        m2(Q,Q,P,enc2(P,N,n(Q,P,R))) \in network(S) and 
        M3 \in network(S) and cipher3(M3) = enc3(Q,n(Q,P,R)) 
        implies 
        m3(P,P,Q,enc3(Q,n(Q,P,R))) \in network(S)) . 

  inv5(S,N) is what is called (Nonce) Secrecy Property. 



Model Checking Lemmas 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  No counterexample was found for inv3, inv4, inv6 and 
inv7. 

♦  But, a counterexample was found for inv5. 
search [1,5] in NSPK : init 
=>* (nonces: (N NS)) S 
such that not(creator(N) == intruder  
              or forwhom(N) == intruder) . 

eq s115890 = (nonces: (n(q,p,r2) n(p,intruder,r1))) 
 (network: (m1(intruder,p,q,enc1(q,n(p,intruder,r1),p)) 
   m1(p,p,intruder,enc1(intruder,n(p,intruder,r1),p)) 
   m2(intruder,intruder,p,enc2(p,n(p,intruder,r1),n(q,p,r2))) 
   m2(q,q,p,enc2(p,n(p,intruder,r1),n(q,p,r2))) 
   m3(p,p,intruder,enc3(intruder,n(q,p,r2))))) 
 (rands: (r1 r2)) (prins: (intruder p q)) (rands2: (r1 r2)) . 

  A state such that inv5(S,N) does not hold: 

NSPK does not enjoy Secrecy Property! 



Model Checking AP1 & AP2 from s115890 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦  No counterexample was found for AP1. 
♦  But, a counterexample was found for AP2. 

search [1,5] in NSPK : s115890 
=>* (network: (m2(Q,Q,P,enc2(P,N,n(Q,P,R))) 
               m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW)) S 
such that not(not(Q == intruder) implies 
              m3(P,P,Q,enc3(Q,n(Q,P,R))) 
                \in m3(P?,P,Q,enc3(Q,n(Q,P,R))) NW) . 

NSPK does not enjoy Agreement Property! 



Another Combination of Inference & Search 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

transition t 
¬G 

¬L 

init 

  Suppose that a counterexample of property G exists outside of the 
bounded reachable state space that can be exhaustively traversed. 
  Theorem proving (or induction) can conjecture a lemma L such that its 
counterexample exists in the space. 

Forward 

Backward 

  BMC tries to find a 
counterexample forward. 

  Induction tries to show that 
there are no paths from any 
states such that ¬G to any 
initial states. 

  This can be regarded 
as a combination of 
forward & backward 
reachability analysis 
methods. 

K. Ogata, M. Nakano, W. Kong, K. Futatsugi: Induction-Guided Falsification,  
8th ICFEM, LNCS 4260, Springer, pp.114-131 (2006). 



Summary 

JAIST-FSSV2010, March 1-5, 2010, Kanazawa 

♦ Qlock has been used as an example to describe 
another way of specifying OTSs for model 
checking and to demonstrate that Maude rewrite 
engine is much faster than CafeOBJ rewrite 
engine. 

♦ Even though Maude rewrite engine is fast, the 
combinatorial explosion problem (the state 
explosion problem) is always with us. 

♦ NSPK has been used as an example to describe 
one possible combination of inference & search, 
which can alleviate the problem. 


